A Refined Model Construction for the Polymorphic Lambda Calculus

> Dieter Spreen University of Siegen

"Program Extraction and Constructive Proof" Brno, 21 August 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Polymorphic Lambda Calculus (Girard, 1971; Reynolds, 1974)

Definition

The *types* of the polymorphic lambda calculus are those that can be generated by the following clauses:

- 1. The type variables $\alpha, \alpha_0, \alpha_1$ etc. are types.
- 2. If σ and τ are types, then $\sigma \rightarrow \tau$ is a type.
- 3. If σ is a type and γ is a type variable, then $\Pi\gamma.\sigma$ is a type.

Definition

The concept of a *term of type* σ , where σ is a type, is inductively defined by the following clauses:

- 1. For any type σ , the variables of type σ , x^{σ} , x_0^{σ} , x_1^{σ} etc. are terms of type σ .
- 2. If t is a term of type τ and y^{σ} is a variable of type σ , then $\lambda y^{\sigma}.t$ is a term of type $\sigma \to \tau$.
- 3. If t and u are terms of respective types $\sigma \to \tau$ and σ , then t(u) is a term of type τ .
- If t is a term of type σ and γ is a type variable that is not free in the type of any variable freely occurring in t, then Λγ.t is a term of type Πγ.σ.

5. If t is a term of type $\Pi\gamma.\sigma$ and τ is a type, then $t\{\tau\}$ is a term of type $\sigma[\tau/\gamma]$.

Semantics

Problem: Interpretation of $\Pi \gamma . \tau$.

$$\llbracket \Pi \gamma . \tau \rrbracket = \prod_{\llbracket types \rrbracket} \llbracket \tau \rrbracket,$$

but $\Pi \gamma . \tau \in \text{types}.$

Reynolds, 1984:

There is no set-theoretical model of the polymorphic lambda calculus.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution (Girard, 1986):

Let **DOM** be a category of domains such that every object in **DOM** is the colimit of an ω -chain of finite domains with embedding-projections as bonding maps.

Let τ be a type expression with free type variables $\gamma_1, \ldots, \gamma_n$. Interpret τ as an ω -continuous functor

$\llbracket \tau \rrbracket : (\mathsf{DOM}^{\mathsf{ep}})^n \to \mathsf{DOM}^{\mathsf{ep}}$

and $\Pi\gamma.\tau$ as the collection of its continuous sections.

Problem: This collection is too large to be a set.

Important observation: Every continuous section of $[\tau]$ is uniquely determined by its behaviour on the finite domains in **DOM**.

Let $\mathbb S$ be a countable full subcategory of \textbf{DOM}^{ep} which up to isomorphism contains every finite domain in DOM.

Set

$$\llbracket \Pi \gamma. \tau \rrbracket = \{ \text{continuous section of } \llbracket \tau \rrbracket \upharpoonright S \}.$$

Note that this is a domain again with respect to the pointwise order.

Interpretation of terms:

Let t be a term of type τ with free variables $x_1^{\sigma_1}, \ldots, x_n^{\sigma_n}$. Set

$$\llbracket t \rrbracket =$$
 continuous section of $\llbracket \tau \rrbracket$.

Girard uses qualitative domains, but he does not fully exploit their approximability by finite domains.

Each such domains is a colimit of an ω -chain of finite subdomains.

- ► Provides a measure of how good an approximation z of x is: take the smallest n so that z ∈ D_n.
- For any x ∈ D, there is a best approximation of x with respect to each level D_n:

$$[x]_n = \bigsqcup \{ z \in D_n \mid z \sqsubseteq x \}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition Let (D, \sqsubseteq) be a poset and $x \in D$. Then x is

1. *compact* if for all directed $S \subseteq D$ with least upper bound in D,

$$x \sqsubseteq \bigsqcup S \Rightarrow (\exists u \in S) x \sqsubseteq u.$$

2. *completely prime* if for all bounded $S \subseteq D$ with least upper bound in D,

$$x \sqsubseteq \bigsqcup S \Rightarrow (\exists u \in S) x \sqsubseteq u.$$

Set

$$D^{0} = \{ x \in D \mid x \text{ is compact } \}$$
$$D^{p} = \{ x \in D \mid x \text{ is completely prime } \}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

D is a pre-dl-domain if

- Every directed $S \subseteq D$ has a least upper bound in D
- ▶ All bounded $\{x, y\} \subseteq D$ have a least upper bound in D.
- For all x, y, z ∈ D such that {y, z} is bounded and x □ (y ⊔ z), x □ y, x □ z exist in D,

$$x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z).$$

• For all
$$x \in D^0$$
, $\downarrow \{x\}$ is finite.

Definition

D is a qualitative pre-domain if

- ► D is a pre-dl-domain,
- ► The elements of D^p are pairwise incomparable with respect to ⊆.

Note. $x \in D$ is uniquely determined by $\{ p \in D^p \mid p \sqsubseteq x \}$.

Definition

Let D be a qualitative pre-domain. Then $([\cdot]_i^D : D \to D)_{i \in \omega}$ is an *approximation structure* on D if for all $i, j \in \omega$ and $x, y \in D$,

- [·]^D_i is stable
- ► $\downarrow D_i \subseteq D_i$, where $D_i = \{x \in D \mid [x]_i^D = x\}$.
- $D^0 \subseteq \bigcup_{\nu} D_{\nu}$
- $\blacktriangleright \ [\cdot]_i^D \circ [\cdot]_j^D = [\cdot]_{\min\{i,j\}}^D$
- $[\cdot]_i^D \sqsubseteq_s \operatorname{id}_D$
- $\blacktriangleright \bigsqcup_{\nu} [\cdot]_{\nu}^{D} = \mathrm{id}_{D}$
- $[x]_0^D = [y]_0^D$.

Note.

- ► All conditions are universally quantified. Thus, (Ø, Ø, (Ø)_{i∈ω}) is a qualitative pre-domain with approximation structure.
- If D is nonempty, then D is a qualitative domain with least element [x]^D₀.

Aim. Interpret types by qualitative pre-domains with approximation structure.

Definition

For $x \in D$ the *rank* rk(x) of x is given by

$$\operatorname{rk}(x) = \begin{cases} \min \{ i \mid x \in D_i \}, & \text{if } \{ i \mid x \in D_i \} \neq \emptyset \\ \omega, & \text{otherwise.} \end{cases}$$

The approximation structure is determined by the ranks of the complete primes.

Lemma

$$\operatorname{rk}(x) = \sup \{ \operatorname{rk}(p) \mid p \in D^p, p \sqsubseteq x \}.$$

Note that for $p \in D^p$, $\operatorname{rk}(p) < \omega$, as $D^p \subseteq D^0 \subseteq \bigcup_{\nu} D_{\nu}$.

Lemma

Let D be a qualitative domain or empty, and $r: D^p \rightarrow \omega$. Set

$$[x]_i^D = \bigsqcup \{ p \in D^p \mid p \in D^p, r(p) \le i \}.$$

Then $([\cdot]_i^D)_{i\in\omega}$ is an approximation structure on D with $\operatorname{rk}(p) = r(p)$, for $p \in D^p$.

Assume. { $p \in D^p | r(p) \le i$ } is finite, for all $i \in \omega$. Then D_i is finite as well.

Definition

Let D, E be qualitative pre-domains with approximation structure. A map $f: D \to E$ is *rank-preserving* if for all $x \in D$, and $i, j \in \omega$ with $j \ge i$,

$$[f(x)]_i^E = [f([x]_j^D)]_i^E.$$

Note.

• *f* is rank-preserving iff for all $x, y \in D$ and $i \in \omega$,

$$[x]_i^D = [y]_i^D \Rightarrow [f(x)]_i^E = [f(y)]_i^E.$$

► The empty map is rank-preserving if *D* is empty.

Let

$$[D \rightarrow_{srp} E] = \{ f \colon D \rightarrow E \mid f \text{ stable, rank-preserving} \}.$$

Every stable map f is uniquely determined by its *trace* $tr(f) = \{ (u, p) \in D^0 \times E^p \mid u \text{ least with } p \sqsubseteq f(u) \}.$

Lemma

For
$$f \in [D \to_{srp} E]$$
, $tr(f)$ satisfies
1. $(\forall (u_1, p_1), ..., (u_n, p_n) \in tr(f))[\{u_1, ..., u_n\}\uparrow \Rightarrow \{p_1, ..., p_n\}\uparrow].$
2. $(\forall (u, p), (u', p') \in tr(f))[\{u, u'\}\uparrow \Rightarrow u = u'].$
3. $(\forall (u, p) \in tr(f)) rk(u) \leq rk(p).$

Lemma

1. From its trace f can be computed via

$$f(x) = \bigsqcup \{ p \mid (\exists u \sqsubseteq x)(u, p) \in \operatorname{tr}(f) \}.$$
(*)

2. If $X \subseteq D^0 \times E^p$ with (1-3), then X is the trace of the stable rank-preserving map given by (*).

For $f \in [D \rightarrow_{srp} E]$ set

$$f \sqsubseteq_{s} g \Leftrightarrow \operatorname{tr}(f) \subseteq \operatorname{tr}(g),$$
$$[f]_{i}^{\rightarrow}(x) = [f(x)]_{i}^{E}.$$

Proposition

 $([D \rightarrow_{srp} E], \sqsubseteq_s, ([\cdot]_i^{\rightarrow})_{i \in \omega})$ is a qualitative pre-domain with approximation structrure.

Note.

Consequently, $\{ f \in [D \rightarrow_{srp} E]^p \mid rk(f) \leq i \}$ is finite.

Every qualitative domain is a colimit of an ω -chain of finite qualitative domains with embeddings as bonding maps.

Now. Embeddings must preserve the approximation structure!

Definition

Let D, E be qualitative domains with approximation structure and $e: D \rightarrow E$], $p: E \rightarrow D$ be stable maps. Then (e, p) is a *rigid* embedding/projection pair if

$$\blacktriangleright \ p \circ e = \mathrm{id}_D$$

•
$$e \circ p \sqsubseteq_s \operatorname{id}_E$$
.

Notation: $p = e^R$.

In addition: Embeddings must commute with the approximation maps:

$$e([x]_i^D) = [e(x)]_i^E$$
 $(x \in D, i \in \omega).$

Note.

- Subspace inclusion commutes with the approximation maps.
- $e^{R}([y]_{i}^{E}) = [e^{R}(y)]_{i}^{D}$.

Let $\mathbf{qPA}^{\mathbf{e}}$ be the category of qualitative pre-domains with approximation structure and rigid embeddings that commute with the approximation maps.

Then \emptyset is an isolated object: there are no arrows from/to other objects.

Proposition

Every object in $\mathbf{qPA}^{\mathbf{e}}$ is a colimit of an ω -chain in $\mathbf{qPA}^{\mathbf{e}}$ of finite objects.

The Function Space Functor

Let

$$F(D,E) = [D
ightarrow {\it srp} E]$$

and for $d \in \mathbf{qPA}^{\mathbf{e}}[D, D']$ and $e \in \mathbf{qPA}^{\mathbf{e}}[E, E']$,

$$\begin{split} F(d,e)(h) &= e \circ h \circ d^R \qquad (h \in F(D,E)) \\ F(d,e)^R(h') &= e^R \circ h' \circ d \qquad (h' \in F(D',E')). \end{split}$$

Proposition

The function space functor F is stable and rank-preserving, i.e. for all $D, E \in \mathbf{qPA}^{\mathbf{e}}$ and all $i, j \in \omega$ with $j \ge i$,

$$F(D_j \hookrightarrow D, E_j \hookrightarrow E) \upharpoonright F(D_j, E_j)_i \colon F(D_j, E_j)_i \xrightarrow{iso} F(D, E)_i.$$

Note. $D \mapsto D_i$ defines an approximation structure on **qPA**^e.

The Product Construction

Definition

Let $G: \mathbf{qPA}^{\mathbf{e}} \to \mathbf{qPA}^{\mathbf{e}}$ be a stable functor. Then $(t(X))_{X \in \mathbf{qPA}^{\mathbf{e}}}$ is a *uniform family* of G if for all $X, Y \in \mathbf{qPA}^{\mathbf{e}}, f \in \mathbf{qPA}^{\mathbf{e}}[X, Y]$)

•
$$t(X) \in G(X)$$
,

•
$$t(X) = G(f)^R(t(Y)).$$

Proposition

Let G be stable and rank-preserving and t be a uniform family of G. Then t is rank-preserving, i.e. for all $X \in \mathbf{qPA}^{\mathbf{e}}$ and all $i, j \in \omega$ with $j \ge i$,

$$[t(X)]_i^{G(X)} = G(X_j \hookrightarrow X)([t(X_j)]_i^{G(X_j)}).$$

Set

$$\prod G = \{ t \mid t \text{ is a uniform family of } G \}.$$

Note. $(\exists X \in \mathbf{qPA})G(X) = \emptyset \Rightarrow \prod G = \emptyset \in \mathbf{qPA}.$

Assume: $G(X) \neq \emptyset$, for all $X \in \mathbf{qPA}$.

Theorem (Normal Form Theorem)

Let G be stable and rank-preserving, $X \in \mathbf{qPA}$, and $p \in G(X)^p$. Then there exist a finite $\widehat{X} \in \mathbf{qPA}$, $f \in \mathbf{qPA}^{\mathbf{e}}[\widehat{X}, X]$ and $\widehat{p} \in G(\widehat{X})^p$ such that

- *p* = *G*(*f*)(*p̂*) (normal form of *p* with respect to *G*(*X̂*))
 rk(*X̂*) ≤ rk(*p̂*)
- ► For all $Y \in \mathbf{qPA}$, $f' \in \mathbf{qPA}^{\mathbf{e}}[Y, X]$, $y \in G(Y)^p$ with p = G(f')(y) there is exactly one $h \in \mathbf{qPA}^{\mathbf{e}}[\widehat{X}, Y]$ so that

$$y = G(h)(\hat{p})$$
 and $f = f' \circ h$.

As in (Girard, 1986): $\prod G$ is a qualitative domain.

For $t \in \prod G$ and $i \in \omega$ set

$$[t]_i^{\prod G}(X) = [t(X)]_i^{G(X)}$$

Lemma $([\cdot]_{i}^{\prod G})_{i \in \omega}$ is an approximation structure on $\prod G$.

Let $G: (\mathbf{qPA}^{\mathbf{e}})^{m+1} \to \mathbf{qPA}^{\mathbf{e}}$ be stable and rank-preserving. For $Y \in \mathbf{qPA}^{\mathbf{e}}$ and $f \in \mathbf{qPA}^{\mathbf{e}}[Y, Y']$ set

$$egin{aligned} G_{ec{X}}(Y) &= G(ec{X},Y) \ G_{ec{X}}(f) &= G(\operatorname{id}_{ec{X}},f). \end{aligned}$$

Then $\prod^{G} : (\mathbf{q}\mathbf{P}\mathbf{A}^{\mathbf{e}})^{m} \to \mathbf{q}\mathbf{P}\mathbf{A}^{\mathbf{e}}$ with

$$\prod^{G}(\vec{X}) = \prod G_{\vec{X}}$$

(日) (同) (三) (三) (三) (○) (○)

can be made into a stable rank-preserving functor.

Model:

type expression stable rank-preserving functor term uniform family

Advantages:

- Absurdity $\Pi \alpha. \alpha$ is interpreted by \emptyset (as it should be!).
- The interpretation of arrow types is smaller as in Girard's model.
- The approximability of domains by finite domains is fully taken into consideration.

However

The interpretation of

$$Polybool = \Pi \alpha. \alpha \to (\alpha \to \alpha)$$

still consists of

TRUE, FALSE, INTER,

where

INTER = $\Lambda X \cdot \lambda x \cdot \lambda y \cdot x \sqcap y$.

Solution. Restrict to *total* domain elements.

Girard: No requirements: Any $D' \subseteq D$ is a set of total elements.

Obviously, this definition is much too general. Intuitive requirements for an element to be total are that it is

- completely specified,
- the result of an infinite approximation process.

Here, we will require that it has at least infinite rank.

Definition

Let D be a qualitative pre-domain with approximation structure. $D^t \subseteq D$ is a *totality* on D, if $rk(x) = \omega$, for all $x \in D^t$, in case that $rk(D) = \omega$.

Obviously, if $\operatorname{rk}(D) < \omega$ then $D^t = \emptyset$.

Let **qPAT**^e be the full subcategory of **qPA**^e of qualitative pre-domains with approximation structure and totality.

Lemma

Let $(D, D^t), (E, E^t)$ be qualitative pre-domains with approximation structure and totality and set

$$[D \rightarrow_{srp} E]^t = \{ f \in [D \rightarrow_{srp} E] \mid f(D^t) \subseteq E^t \}.$$

Then $[D \rightarrow_{srp} E]^t$ is a totality on $[D \rightarrow_{srp} E]$.

Lemma

Let $G\colon q\textbf{PAT}^e\to q\textbf{PAT}^e$ be a stable rank-preserving functor and set

$$(\prod G)^t = \{ t \in \prod G \mid (\forall X \in \mathsf{qPAT}^e)[\operatorname{rk}(X) = \omega \Rightarrow t(X) \in G(X)^t] \}$$

Then $(\prod G)^t$ is a totality on $\prod G$.

In the modified model the only total elements of $\rm POLYBOOL$ are $\rm TRUE$ and $\rm FALSE.$ Similarly for $\rm POLYNAT.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ