Nichtlineare Optimierung — Übungsblatt 7

Dr. Klaus Schönefeld Andrej Garanza, M. Sc. Department Mathematik Fakultät IV, Universität Siegen

Sommersemester 2018

Zu bearbeiten bis zur Übung am 12.06.2018

Aufgabe 27

Beweisen Sie die Äquivalenz folgender Aussagen für eine lokale Minimumsstelle x^* der NLOA (12):

- i) Die Regularitätsbedingung (MFCQ) gilt in x^* ,
- ii) Die Menge der zu x^* gehörenden Lagrange-Multiplikatoren ist nichtleer und beschränkt.

Aufgabe 28

Im \mathbb{R}^3 sei die folgende Optimierungsaufgabe gegeben:

$$f(x) = \frac{1}{x_1} + \frac{4}{x_2} + \frac{9}{x_3}$$
 bei $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 > 0$.

a) Bestimmen Sie eine Lösung dieser Aufgabe.

Hinweise:

- Ersetzen Sie die Nebenbedingungen $x_i > 0$ durch $x_i \ge \varepsilon$, j = 1, 2, 3.
- Rechtfertigen Sie diese Änderung durch die Begründung, weshalb diese veränderten Nebenbedingungen (für hinreichend kleines $\varepsilon > 0$) im Lösungspunkt nicht aktiv sein können.
- b) Warum besitzt die Optimierungsaufgabe keine weiteren Lösungen?

— Programmieraufgabe —

(Wenn Sie Schwierigkeiten beim Programmieren haben, melden Sie sich bitte frühzeitig persönlich oder per E-Mail bei Herrn Garanza.)

Aufgabe 29

a) Implementieren Sie das *Newton-Verfahren für die Gleichungen in den KKT-Bedingungen* aus Algorithmus 2.31 aus der Vorlesung.

Vorschlag: Schreiben Sie dazu (falls Sie MATLAB/Octave benutzen) eine Funktion, die folgende Eingabeparameter enthält:

- Den Gradienten $\nabla_1 L$ und die Hesse-Matrix $\nabla_{11} L$ der Lagrange-Funktion als function handles/anonyme Funktionen, jeweils abhängig von den primalen und dualen Variablen,
- die Nebenbedingungen g und ihre Gradienten ∇g als vektorwertige function handles/anonyme Funktionen,
- ullet die Dimension n und die Anzahl der Nebenbedingungen m, falls Sie diese benötigen,
- je einen Startwert x_0 für die primale bzw. u_0 für die duale Variable.

Lassen Sie in jedem Iterationsschritt n des Newton-Verfahrens die aktuelle Approximation (x_n, u_n) ausgeben.

b) Testen Sie Ihr Programm an der Optimierungsaufgabe

$$f(x_1, x_2) = x_1^2 - x_2^2 o ext{min!},$$
 bei $g(x_1, x_2) = \begin{pmatrix} x_1^2 + x_2^2 - 4 \\ -x_1 - x_2 - 2 \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- i) Bestimmen Sie (analytisch) die lokalen Optimallösungen der Optimierungsaufgabe, die zugehörigen Lagrange-Parameter und aktiven Nebenbedingungen.
- ii) Lassen Sie ihr Programm für verschiedene Startwerte (x_0, u_0) laufen.
- iii) Konvergiert das Verfahren immer gegen eine der Optimallösungen? Entspricht die Konvergenzgeschwindigkeit Ihren Erwartungen? Finden Sie Startwerte, für die das Verfahren sehr langsam oder gar nicht konvergiert?