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1 Motivation

Digital information processing builds upon elementary physical elements (“bits”)
that may occupy either one of two possible states labeled 0 and 1, respec-
tively. If a quantum system, for example, an individual atom having discrete
energy eigenstates, is chosen as elementary switch (“qubit” ), then the general
state of this system will be a superposition of the two computational basis
states, i.e. the states chosen to represent the logic 0 and 1. When applying
the superposition principle to a register comprising N qubits, one immedi-
ately sees that such a register can exist in a superposition of 2N states thus
representing 2N binary encoded numbers simultaneously. Any operation on
this register will act on all states at once, effecting parallel processing on an
exponentially growing (with N) number of states. The outcome of a mea-
surement on this register after such an operation will, of course, yield just
one out of 2N possible results with a certain probability.

In order to take advantage of quantum parallelism for efficient computing,
a second ingredient is necessary: interference. A useful quantum algorithm
has to exploit this parallelism, and, at the same time, make different com-
putational paths interfere such that only the correct result survives after the
last computational step [1]. An important example is Shor’s algorithm for the
factorization of large numbers [2]. Once created, coherent superpositions have
to remain intact while a quantum algorithm is carried out, i.e. qubits must
not in an uncontrollable way interact with their environment. This would
lead to decoherence, an important issue, not only in the realm of quantum
information processing (QIP), but also related to the notion of measurement
in quantum mechanics [3,4].

A quantum computer is ideally suited for the simulation of quantum me-
chanical systems [5,6], for example, to determine eigenvalues and eigenvectors
of many-body systems [7]. Calculating the dynamics of chaotic systems is an-
other useful line of action for a quantum computer, even for one that consists
of only a few qubits [8]. Beneficial both for fundamental research and appli-
cations is the ability of a quantum computer – comprising a modest number
of qubits and working with limited accuracy – to simulate the dynamics of
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a macroscopic ensemble of classical particles, a task not suitable even for
modern supercomputers [9].

In the course of a quantum computation entangled states of qubits are
created exhibiting correlations between individual qubits that possess no clas-
sical analog. Fundamental questions concerning the role of entanglement, not
only in QIP, but also in the framework of general physics [10] add more mo-
tivation to exploring the field of QIP. In 1935 Einstein, Podolsky, and Rosen
scrutinized quantum mechanical predictions for two entangled particles and
found non-local correlations between these particles [11]. This, what Einstein
called, ‘spooky action at a distance’ prompted him to call into question quan-
tum theory. During the last decade various experiments succeeded in prepar-
ing and analyzing entangled states of different physical systems [12,13], which
marked the beginning of controlled manipulation of entanglement of massive
particles. On the theoretical side, too, the search for better understanding,
quantification, and use of entanglement as a resource for QIP is a very active
field [14].

2 Trapped ions and QIP

QIP is an interdisciplinary field of research, whose results will have significant
impact both on basic research and applied sciences. Theory in this field is
still well ahead of experimental progress and manageable experimental sys-
tems are needed. Essential characteristics of a device designed for quantum
computing include [15] the scalability of the system, the ability to reset the
qubits’ states to a known one, and to make qubit specific measurements. Fur-
thermore, decoherence times have to be much longer than the typical gate
operation time. Finally, a set of quantum gates is needed to construct any
desired unitary transformation of N qubits. A sequence of unitary transfor-
mations that make up a quantum algorithm can be broken down into two
operational elements sufficient for the synthesis of any quantum algorithm
[16]: i) the preparation of individual qubits in arbitrary superposition states,
and ii) the execution of conditional dynamics on different qubits, which is at
the heart of quantum computing. It is this last requirement we will be mainly
concerned with in this chapter.

A promising system for QIP are electrodynamically trapped ions where
two internal states of each ion, labelled |0〉 and |1〉 in the remainder of this
chapter, are chosen as one qubit [17]. Conditional dynamics with N trapped
ions require coupling of their internal and external degrees of freedom. Fol-
lowing the first preparation and detection of a single atom reported in [18]
– prerequisite for many important studies with trapped ions – principal ele-
ments of ion trap quantum computing have been realized experimentally (for
instance, [19–24].)

Ted Hänsch once illustrated the principles of electrodynamic trapping us-
ing macroscopic charged particles [25]. After testing various kinds of electrode
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configurations he finally arrived at the ultimate simplification: a conventional
paper clip, connected to a regular power socket sufficed to stably trap charged
lycopodium seeds. He documented his efforts with a humorous video that,
for example, shows the periodic motion of particles in step with ballet music.
This may shed a little light on Ted Hänsch’s imaginative, playful approach
to physics that enabled him to make so many outstanding contributions.

The vibrational motion of a collection of ions (the “bus -qubit”) is used as
means of communication between individual qubits to implement conditional
quantum dynamics in ion traps [17]. An example may serve to illustrate
how qubit A in a trap is manipulated conditioned on the state of qubit
B. Initially the ion string is cooled to the ground state of the vibrational
mode to be used as the bus-qubit. A pulse of electromagnetic radiation is
applied first to qubit A, then to qubit B. Each of these pulses switches the
respective qubit’s state between |0〉 and |1〉 (π−pulse). If qubit A is in state
|0〉 initially, and is driven by radiation detuned below its resonance by the
frequency of a vibrational mode of the ion string (the so-called red sideband),
then the internal excitation to state |1〉 cannot take place because of energy
conservation. However, if qubit A is initially in |1〉, then its deexcitation will
be successful and accompanied by the creation of one vibrational quantum.
Analogously, qubit B – initially in its ground state – can only be excited to
|1〉 by the second radiation pulse (red sideband), if the vibrational motion
has previously been excited, i.e. if qubit A was in |1〉.

This example shows that cooling of the ions’ motional degrees of freedom
is indispensable for QIP. Optical cooling of atoms, suggested by Ted Hänsch
and Arthur Schawlow [26] and for trapped atoms by Wineland and Dehmelt
[27], has for the first time been observed on a collection of trapped ions [28].

2.1 Why is optical radiation used ?

Common to all experiments – related either to QIP or other research fields
– that require some kind of coupling between internal and external degrees
of freedom of atoms is the use of optical radiation for this purpose. The
parameter determining the coupling strength between internal and motional
dynamics is the so-called Lamb-Dicke parameter

η ≡

√

(h̄k)2

2m
/h̄ν1 = ∆z1 k (1)

the square of which gives the ratio between the change in kinetic energy of
the atom due to the absorption or emission of a photon and the quantized en-
ergy spacing of the harmonic trapping potential characterized by the angular
frequency ν1 (k is the wavevector of the light field, m the mass of the atom,
and ∆z1 =

√

h̄/2mν1 signifies the spatial extent of the vibrational ground
state wavefunction of the atom). Only if η is nonvanishing will the absorption
or emission of photons be possibly accompanied by a change of the motional



4 Christof Wunderlich

state of the atom. This is apparent when the Hamiltonian describing the cou-
pling between an applied electromagnetic field of angular frequency ω and a
harmonically trapped 2-state atom is considered:

HI =
1

2
h̄ΩR(σ+ + σ−)

[
exp[i(η(a† + a)− ωt+ φ′)] + h.c.

]
, (2)

where ΩR = d·F /h̄ is the Rabi frequency with d·F signifying either magnetic
or electric coupling between the atomic dipole and the respective field com-
ponent. σ+,− = 1/2 (σx ± σy) are the atomic raising and lowering operators,
respectively, ∆z1(a

†+a) is the position operator, and φ′ is the initial phase of
the driving field. Trapping a 171Yb+ ion, for example, with ν1 = 2π 100kHz
gives ∆z1 ≈ 17nm and 1 shows that driving radiation in the optical regime
is necessary to couple internal and external dynamics of trapped atoms.

Here, and in the remainder of this article, we consider a Paul trap [29] in
a linear configuration where a time-dependent two-dimensional quadrupole
field strongly confines the ions in the radial direction yielding an average
effective harmonic potential [30]. An additional static electric field is chosen
such that the ions are harmonically confined also in the axial direction [31].
If the confinement of N ions is much stronger in the radial than in the axial
direction, the ions will form a linear chain [32] with typical inter-ion distance
δz = ζ 2N−0.57 where ζ ≡ (e2/4πε0mν

2
1)

1/3 [33]. The distance between neigh-
boring ions δz is determined by mutual Coulomb repulsion of the ions and
trap frequency ν1 in the axial direction. Manipulation of individual ions is
achieved by focusing laser light to a spot size smaller than δz. Typically, δz
is of the order of a few µm; for example, δz ≈ 7µm for N = 10 171Yb+ ions
with ν1 = 2π 100kHz. Again, only optical radiation is useful for this purpose.

2.2 Spin resonance

Many phenomena that were only recently studied in the optical domain form
the basis for techniques belonging to the standard repertoire of coherent ma-
nipulation of nuclear and electronic magnetic moments associated with their
spins. One reason for the tremendous and fast success of nuclear magnetic
resonance (NMR) experiments in the field of QIP is the high level of sophis-
tication that experimental techniques in this field have reached over decades.
This is an impressive example for a successful technology whose basis was
developed by physicists [34] and that has overcome the boundaries between
disciplines of science. For many years researchers, for example, in chemistry
and in the life sciences have routinely used commercial NMR equipment. The
technological basis for NMR – apart from the preparation of the samples to
be investigated – is the generation and coherent manipulation of electromag-
netic radiation in the radiofrequency (rf) and microwave (mw) regime. This
treasure of knowledge and technology could immediately be exploited, again
for fundamental research, in the emerging field of QIP, where even complete
algorithms based on quantum logic have been demonstrated [35,36].



Conditional Spin Resonance with Trapped Ions 5

There are also drawbacks associated with NMR quantum computing, for
example, considerable effort has to be devoted to the preparation of pseudo-
pure states of a macroscopic ensemble of spins with initial thermal popu-
lation distribution. This preparation leads to an exponentially growing cost
(with the number N of qubits) either in signal strength or the number of
experiments involved [37], since the fraction of spins in their ground state is
proportional to N/2N . Extending NMR quantum computing to larger num-
bers of qubits than in present experiments will also require molecules with
more nuclear spins distinct in their resonance frequencies and, at the same
time, with appreciable coupling constants.

Trapped ions, on the other hand, provide individual qubits – for example
hyperfine states – well isolated from their environment. However, the applica-
tion of mw radiation for quantum logic operations with a string of ions is not
possible, since i) this long wavelength radiation does not couple internal and
external degrees of freedom of the ions, and ii) focusing down to the required
small spot sizes for access to individual qubits is not possible. It would be
desirable to combine the advantages of trapped ions and NMR techniques in
future experiments.

3 A modified ion trap

An axial magnetic field gradient applied to an electrodynamic trap indeed
has the desired effect of coupling internal state dynamics and motion of the
ions when mw driving radiation is applied [38]. In addition, the field gra-
dient serves to separate qubit resonances of individual ions making them
distinguishable in frequency space. Thus microwave radiation can be used to
coherently manipulate hyperfine states of individual ions and condition their
internal dynamics on the states of other qubits. The treatment put forward
in [38] is generalized in what follows and it is shown that mutual spin–spin
coupling between qubits arises in such a modified ion trap analogous to the
coupling Hamiltonian in molecules used for NMR. The size of this NMR-
type coupling is proportional to the square of the ratio between magnetic
field gradient ∂zB and ν1.

The non-relativistic Hamiltonian describing the internal dynamics of a
diatomic molecule may be written as [39]

HM = TN + Tel + V (r, R) (3)

where TN and Tel represent the kinetic energy operator of nuclear and elec-
tronic motion, respectively. All electrostatic potential energy terms are con-
tained in V (r, R), with r denoting the collection of electronic coordinates
and R the internuclear distance. Neglecting initially the nuclear kinetic en-
ergy yields the Schrödinger equation for the electronic wavefunctions

(Tel + V (r, R))Φa(r, R) ≡ HelΦa(r, R) = Eel,a(R)Φa(r, R) . (4)
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These Born-Oppenheimer (BO) wavefunctions depend on R as a parameter.
With 〈Φa|TN |Φa〉χ ≈ TN 〈Φa|Φa〉χ = TNχ the Schrödinger equation for the
nuclear motional wavefunction χ

(TN + Eel,a)χ = ETχ (5)

determines the dynamics of the nuclei on the BO potential energy curves
Eel,a.

We now turn to the description of a linear chain of N harmonically
trapped, singly ionized two-level ions in an analogous way. The electronic
part of the total Hamiltonian can be solved independently for each ion, since
the distance δz between different ions is much larger than the extent of in-
dividual spatial wavefunctions. Two Zeeman states, |E0n〉 and |E1n〉, of each
ion serve as one qubit (n = 1, . . . , N). The overall electronic state of the ions
obeys HelΦa(z) = Eel,a(z)Φa(z) with

Hel =
1

2
h̄

N∑

n=1

ωn(zn)σz,n (6)

and Φa(z) =
∏N
n=1 |Ecn(zn)〉, where a = 1 . . . 2N , c = 0, 1; zn denotes the

axial coordinate of ion n, and σz is the usual Pauli matrix. The qubit tran-
sition frequency ωn = (E1n − E0n)/h̄. A magnetic field applied to the linear
arrangement of ions shifts the qubit states |Ecn〉 depending on the location
zn of the n−th ion (here, B = bz · ẑ+B0 is assumed for clarity, with ẑ being
the unit vector in the axial direction). The complete Hamiltonian for the ion
chain is given by

H = Hel(z) + TA(z) + VA(z)

= Hel(z) +
1

2m

N∑

n=1

p2z,n +
m

2

N∑

n=1

ν21z +
e2

8πε0

N∑

n6=l

1

|zn − zl|
(7)

The potential energy relevant for the motion of the ions is obtained from
〈Φa|(Hel + VA(z))|Φa〉 = Eel,a + VA(z). When there is no field gradient
present, i.e. b = 0, the electronic energy is independent of z and simply gives
an additive constant. Therefore, only TA and VA have to be considered in
this case. Expanding VA around the equilibrium positions z0,n of the ions in

terms of qn ≡ zn−z0,n up to second order yields the dynamical matrix Â with
Aln ≡ ∂zl

∂zn
VA and the Hamiltonian of a harmonic oscillator is obtained

TA + VA =
1

2m

N∑

n=1

P 2
Q,n +

m

2

N∑

n=1

ν2nQn (8)

with N uncoupled vibrational modes [40]. The normal coordinates Q and
local coordinates q are connected via q = ŜQ where Ŝ is the unitary trans-
formation matrix that diagonalizes Â. Further, PQ,n = mQ̇n.
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Taking into consideration the field gradient, a new term in the potential
energy arises for ion j:

〈Φa|Hel,j(z)|Φa〉 = Ecj(z0,j) +
h̄

2

∂ωj
∂zj

∣
∣
∣
∣
z0,j

qj(−1)
c+1

︸ ︷︷ ︸

VB

. (9)

An order of magnitude estimate of the size of the additional potential
energy term VB experienced by ion j, is obtained upon substitution of qj ≈
∆z1 into 9. The new term, VB has to be compared to h̄ν1, the ground state
energy of the unperturbed lowest oscillator mode:

ε ≡
|VB |

h̄ν1
=
|∂zωj |∆z1

ν1
. (10)

As long as ε is much smaller than unity, the eigenfrequencies of the oscillator
modes only negligibly depend on the additional potential term introduced by
the Zeeman shift of the ionic qubit states. Therefore, the part of the Hamilto-
nian that describes the motional state of the ion string is well approximated
by the unperturbed harmonic oscillator, and the complete Hamiltonian reads

H =
h̄

2

N∑

n=1

ωn(z0,n)σz,n +
1

2m

N∑

n=1

P 2
Q,n +

m

2

N∑

n=1

ν2nQ
2
n

+
h̄

2

N∑

n=1

[

∂ωn
∂zn

∣
∣
∣
∣
z0,n

σz,n

N∑

l=1

SlnQl

]

=
h̄

2

N∑

n=1

ωn(z0,n)σz,n +
1

2m

N∑

n=1

P 2
Q,n

+
m

2

N∑

l=1

ν2l

[

Ql +
h̄

2mν2l

∑

n

∂ωn
∂zn

∣
∣
∣
∣
z0,n

σz,nSln

]2

−
h̄

4m

N∑

l=1

1

ν2l

[
∑

n

∂ωn
∂zn

∣
∣
∣
∣
z0,n

σz,nSln

]2

︸ ︷︷ ︸

HSS

(11)

with the electronic energy expanded up to first order in qn. The unitary
transformation H̃ = U †HU with

U = exp

[

−i
∑

l

(

1

2mν2l

∑

n

∂ωn
∂zn

∣
∣
∣
∣
z0,n

σz,nSln

)

PQ,l

]

(12)

yields

H̃ =
h̄

2

N∑

n=1

ωn(z0,n)σz,n +
N∑

n=1

P 2
Q,n

2m
+
m

2
ν2nQ

2
n −HSS . (13)
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Expressing the harmonic oscillator in 13 in terms of creation and annihilation
operators a†n and an, respectively, using the definitions

εnl ≡ Snl
∂zωl∆zn

νn
, (14)

Jnl ≡

N∑

j=1

νjεjnεjl , (15)

and after dropping constant terms, 13 reads

H̃ =
h̄

2

N∑

n=1

ωn(z0,n)σz,n +

N∑

n=1

h̄νn(a
†
nan)−

h̄

2

N∑

n<l

Jnlσz,nσz,l . (16)

H̃ describes a linear string of ions with each ion representing an individually
accessible qubit with characteristic resonance frequency. The last term in
this Hamiltonian expresses a pairwise coupling between qubits, analogous to
the well-known spin-spin coupling in molecules used for NMR experiments.
The collection of trapped ions can be viewed as an N -qubit molecule with
adjustable coupling constants (compare section 3.2).

3.1 Adding a driving field

The additional term in the Hamiltonian governing the dynamics of qubit j
when irradiated with electromagnetic radiation at frequency ω close to its
resonance is given by

HM =
h̄

2
ΩR(σ

+
j + σ−j ) [exp[i(kzj − ωt+ φ′)] + exp[−i(kzj − ωt+ φ′)]]

=
h̄

2
ΩR(σ

+
j + σ−j )

[

exp

[
∑

n

iSnjηn(a
†
n + an)− iωt+ iφ

]

+ h.c.

]

.(17)

First performing the unitary transformation H̃M = U †HMU where it is con-
venient to express U given in 12 as

U = exp

[

1

2

N∑

n=1

N∑

l=1

εnl(a†n − an)σz,l

]

, (18)

then transforming H̃M into the interaction picture defined by H̃I
M = exp( ih̄H̃t)H̃M exp(− i

h̄H̃t),
and finally omitting terms with time dependent factors that contain the sum
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of ω and ωj (rotating wave approximation) gives

H̃I
M =

h̄

2
ΩR [ exp

[

i

(

ωj − ω −
1

2

∑

n

νnεnj

)

t+ iφ

]

σ+j

exp

[

i

(
∑

n

(ηnSnj + iεnj)a†n(t) + (ηnSnj − iεnj)an(t)

+ iηnSnj
∑

l

εnlσ
(1−δlj)
z,l

)]

+ h.c. ] (19)

with an(t) = an exp(−iνnt) and a
†
n(t) = a†n exp(iνnt). If the driving radiation

ω pertains to the rf or mw regime, then ηn is close to zero and the last
term in the exponent in 19 can be neglected (η1 ≈ 10−6 for 10 Yb+ ions
with transition frequency ω0 = 2π 12.6 GHz and ν1 = 2π 100kHz). With the
definitions

η′nj exp(iφj) ≡ ηnSnj + iεnj ,

φj ≡
π

2
− tan

ηnSnj
εnj

≈
π

2
,

and ∆j ≡
1

2

∑

n

νnεnj (20)

the Hamiltonian in 19 can be rewritten as

H̃I
M =

h̄

2
ΩR [ exp [i(ωj +∆j − ω)t+ iφ]σ+j

exp

[

i
∑

n

η′nj(a
†
n(t)e

iφj + an(t)e
−iφj )

]

+ h.c. ] (21)

The exact value of νn depends on the internal state configuration of the
ion chain. However, after summing over all vibrational modes ∆j in 21 is
nearly independent of the ions’ internal states and reflects a constant shift
in the qubit’s resonance frequency. The Hamiltonian 21 is formally the same
as the one valid for the interaction between trapped ions and optical radia-
tion, except that the parameter combination ηnSnj determining the coupling
strength between external and internal dynamics has now been replaced by
the effective Lamb-Dicke parameter η′nj ≈ εnj . Any operation that requires
coupling between motion and internal dynamics and thus usually requires
optical radiation can be carried out using radiation in the rf or mw regime.
For example, conditional quantum dynamics on a collection of qubits may be
implemented according to the schemes proposed in [17,41,42].

Sideband cooling is achieved when combining excitation on the so-called
red sideband resonance of an internal ionic transition with a suitable dissipa-
tive process, similar to sideband cooling in the optical regime. Optical side-
band cooling has proven efficient for the preparation of trapped ions close to
their motional ground state [19–21].
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3.2 Spin resonance with trapped ions

The additional spin–spin coupling term in 16 is considered to be a distur-
bance when schemes for quantum logic are applied – specifically designed for
trapped ions – that in one way or the other rely on the existence of motional
sidebands accompanying qubit transitions. The error introduced by this term
is negligible compared to other technological limitations, and does not impose
a new limit on the precision of ion trap quantum logic operations [38].

Instead of employing usual ion trap schemes, this spin-spin coupling term
may be directly used to implement conditional dynamics using NMR meth-
ods. To obtain an order of magnitude estimate of the coupling constant J
in 15 we take ∂zωj = (µB/h̄)∂zB ∀ j. Here, state |1〉 experiences a linear
Zeeman shift and there is no shift for |0〉. This is the case, for example, with
the ground state of 171Yb+when |0〉 and |1〉 are identified with |S1/2, F = 0〉

and |S1/2, F = 1,mF = 1〉, respectively. With Sjn ≈ N−1/2 ≈ Sjl we obtain

J ≈
1

4Nmh̄

(

µB
∂B

∂z

)2
1

ν21

N∑

j=1

1

λ2j
, (22)

where λ2j denotes the j–th eigenvalue of the dynamical matrix Â. For 10
171Yb+ions, ν1 = 2π 100kHz, and ∂zB = 10T/m, J/2π ≈ 40Hz. The mag-
nitude of J is comparable to values that occur in NMR experiments where
it depends on the type of molecule and nuclei used. For example, in [35]
J/2π = 7.2Hz with protons is quoted; protons and carbon nuclei coupled by
JHC/2π = 103Hz and JCC/2π = 201Hz are described in [43]; values of J/2π
ranging from 0.9Hz to 163Hz with the same nuclei in a different molecule
are reported in [44]), and protons, nitrogen, carbon, and fluorine nuclei with
J/2π between 2.7Hz and 366Hz are described in [45]. Here, J can be given
a desired value by variation of ν1 that characterizes the trapping potential,
and of the field gradient ∂zB. If a gradient is applied that changes with z,
then the coupling constants Jnl can assume different values for different pairs
of spins.

The variation of the field gradient along the z−axis is also useful to si-
multaneously cool all vibrational modes of the ion string [46].

4 Concluding remarks

Hitherto it was accepted that electromagnetic radiation does not couple inter-
nal and motional degrees of freedom of trapped atoms when long-wavelength
radiation is used, since the Lamb-Dicke parameter is negligibly small. Here,
physical conditions are described under which this coupling does occur for
electrodynamically trapped ions and can be used for QIP and other exper-
iments that require coherent conditional dynamics. It has been shown that
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individual qubits can be distinguished by frequency using microwave radia-
tion.

To date, experiments using spin resonance on the one hand and trapped
ions on the other, undoubtedly have been most successful in the implemen-
tation of quantum computing. This proposal combines the respective advan-
tages of these two types of experimental techniques: qubits in ion traps can
be individually addressed, they are well isolated from the environment, and
their number and mutual coupling is variable over a wide range. On the other
hand, microwave and radiofrequency technology for NMR experiments has
been developed over decades. Thus a new avenue for QIP research is opened
up that may lead to simpler and more precise experimental procedures.

Fruitful discussions with D. Reißand helpful comments on the manuscript
by W. Neuhauser are gratefully acknowledged. This work was supported by
the Deutsche Forschungsgemeinschaft.
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