Quasi-probability representation and quantum joint measurements

Ali Asadian, Siegen University

Maria Laach, August 2017

Outline

- Joint quantum measurements of compatible observables
- Quasi-probability representations of quantum mechanics
- Quasi-PRs of the joint measurements
- Example: qubit and higher dimension
- Concluding remarks

Joint measurements

Joint measurement \mathcal{M}
Is a compound measurement of a set of compatible observables (e.g. M_{1}, M_{2}) described by $\left\{E_{k_{1}, k_{2} \mid \mathcal{M}}\right\} \quad, \quad \sum_{k_{1}, k_{2}} E_{k_{1}, k_{2} \mid \mathcal{M}}=I$

Joint measurements

Joint measurement \mathcal{M}
Is a compound measurement of a set of compatible observables (e.g. M_{1}, M_{2})
described by $\left\{E_{\left.k_{1}, k_{2} \mid \mathcal{M}\right\}}\right\} \quad, \quad \sum_{k_{1}, k_{2}} E_{k_{1}, k_{2} \mid \mathcal{M}}=I$

Marginality condition:

Does (an optimal) joint measurements exist?
How to construct them?
Can we answer with a single recipe?

Quasi-probability representation

- Quasi-PR of the quantum states and measurements:

$$
\begin{aligned}
& \mu: \rho \mapsto \mu_{\rho}(\lambda) \in \mathbb{R} \text { and } \sum_{\lambda \in \Lambda} \mu_{\rho}(\lambda)=1 \\
& \xi: E_{k \mid M} \mapsto \xi_{M}(k \mid \lambda) \in \mathbb{R} \text { and } \sum_{k} \xi_{E}(k \mid \lambda)=1, \forall \lambda
\end{aligned}
$$

Born's rule (the total law of probability):

$$
p_{k}=\operatorname{Tr}\left(\rho E_{k}\right)=\sum_{\lambda \in \Lambda} \mu_{\rho}(\lambda) \xi_{E}(k \mid \lambda)
$$

.. Much like a classical probability

Quasi-probability representation

- Quasi-PR of the quantum states and measurements:

$$
\begin{aligned}
& \mu: \rho \mapsto \mu_{\rho}(\lambda) \in \mathbb{R} \text { and } \sum_{\lambda \in \Lambda} \mu_{\rho}(\lambda)=1 \\
& \xi: E_{k \mid M} \mapsto \xi_{M}(k \mid \lambda) \in \mathbb{R} \text { and } \sum_{k} \xi_{E}(k \mid \lambda)=1, \forall \lambda
\end{aligned}
$$

Born's rule (the total law of probability):

$$
p_{k}=\operatorname{Tr}\left(\rho E_{k}\right)=\sum_{\lambda \in \Lambda} \mu_{\rho}(\lambda) \xi_{E}(k \mid \lambda)
$$

.. Much like a classical probability
Frame representation(orthogonal basis):

$$
\begin{array}{llr}
\left\{F_{\lambda}\right\}, \sum_{\lambda} F_{\lambda}=\mathbb{I} \Longleftrightarrow \sum_{\lambda} \mu_{\rho}(\lambda)=1 & \mu_{\rho}(\lambda)=\operatorname{Tr}\left[\rho F_{\lambda}\right] \\
\left\{D_{\lambda}\right\}, \operatorname{Tr} D_{\lambda}=1 \Longleftrightarrow \sum_{k} \xi_{E}(k \mid \lambda)=1 & \xi_{E}(k \mid \lambda)=\operatorname{Tr}\left[E_{k} D_{\lambda}\right]
\end{array}
$$

$\operatorname{Tr}\left(F_{\lambda} D_{\lambda^{\prime}}\right)=\delta_{\lambda, \lambda^{\prime}}$ orthogonal, and thus form a complete basis

..continued

Frame representation

$$
\begin{aligned}
\mathcal{O}=\sum_{\lambda} \operatorname{Tr}\left(\mathcal{O} D_{\lambda}\right) F_{\lambda} \quad, \quad \forall \mathcal{O} & \\
E_{k}=\sum_{\lambda} \operatorname{Tr}\left(E_{k} D_{\lambda}\right) F_{\lambda} \Rightarrow p_{k}=\operatorname{Tr}\left[E_{k} \rho\right] & =\sum_{\lambda} \operatorname{Tr}\left(E_{k} D_{\lambda}\right) \operatorname{Tr}\left(\rho F_{\lambda}\right) \\
& :=\sum_{\lambda} \xi_{E}(k \mid \lambda) \mu_{\rho}(\lambda)
\end{aligned}
$$

..continued

Frame representation

$$
\begin{aligned}
\mathcal{O}=\sum_{\lambda} \operatorname{Tr}\left(\mathcal{O} D_{\lambda}\right) F_{\lambda} \quad, \quad \forall \mathcal{O} & \\
E_{k}=\sum_{\lambda} \operatorname{Tr}\left(E_{k} D_{\lambda}\right) F_{\lambda} \Rightarrow p_{k}=\operatorname{Tr}\left[E_{k} \rho\right] & =\sum_{\lambda} \operatorname{Tr}\left(E_{k} D_{\lambda}\right) \operatorname{Tr}\left(\rho F_{\lambda}\right) \\
& :=\sum_{\lambda} \xi_{E}(k \mid \lambda) \mu_{\rho}(\lambda)
\end{aligned}
$$

A general class of a frame: phase-space point operators Wigner representation (Wootters 1987, Gross 2006, et al)

$$
W_{\lambda} \equiv D_{\lambda}=d F_{\lambda}
$$

Wigner representation of a single effect:

$$
E_{k}=\frac{1}{d} \sum_{\lambda} \operatorname{Tr}\left(E_{k} W_{\lambda}\right) W_{\lambda}=\frac{1}{d} \sum_{\lambda} \xi_{E}(k \mid \lambda) W_{\lambda}
$$

Qubit example:

Phase-space point operators:

$$
l, m=0,1
$$

$$
\begin{aligned}
& W_{l m}=\frac{1}{2}\left[I+(-1)^{l} \sigma_{1}+(-1)^{m} \sigma_{2}+(-1)^{l+m} \sigma_{3}\right] \\
& \sigma_{1}=\boldsymbol{r} \cdot \boldsymbol{\sigma}=\sin \theta \cos \varphi \sigma_{x}+\sin \theta \sin \varphi \sigma_{y}+\cos \theta \sigma_{z} \\
& \sigma_{2}=\boldsymbol{\theta} \cdot \boldsymbol{\sigma}=\cos \theta \cos \varphi \sigma_{x}+\cos \theta \sin \varphi \sigma_{y}-\sin \theta \sigma_{z} \\
& \sigma_{3}=\boldsymbol{\varphi} \cdot \boldsymbol{\sigma}=-\sin \varphi \sigma_{x}+\cos \varphi \sigma_{y}
\end{aligned} \quad l \begin{array}{ll}
10 & 11 \\
\cline { 2 - 3 } & \\
& 00 \\
& 01 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=\delta_{i j}\left\{W_{00}, W_{10}, W_{01}, W_{11}\right\} \quad \operatorname{Tr}\left(W_{\lambda} W_{\lambda^{\prime}}\right)=2 \delta_{\lambda \lambda^{\prime}} \\
& \begin{array}{l}
\text { State } \\
\rho=\sum_{j=0}^{3} \eta_{j} \sigma_{j}
\end{array} \\
& \text { Effect } \\
& E=\sum_{j=0}^{3} e_{j} \sigma_{j} \\
& \text { Born's rule } \\
& p_{k}=\operatorname{Tr}\left(E_{k} \rho\right)=\sum_{j=0}^{3} e_{j}^{k} \eta_{j} \\
& \text { State } \\
& \rho=\frac{1}{2} \sum_{l, m=0,1} \mu_{\rho}(l m) W_{l m} \\
& \text { Effect } \\
& E_{k}=\frac{1}{2} \sum_{l, m=0,1} \xi_{E}(k \mid l m) W_{l m} \\
& \text { Born's rule } \quad \mu_{\rho}(l m)=\operatorname{Tr}\left(\rho W_{l m}\right) / d \\
& p_{k}=\operatorname{Tr}\left(E_{k} \rho\right)=\sum_{l, m=0,1} \xi_{E}(k \mid l m) \mu_{\rho}(l m)
\end{aligned}
$$

Quasi-PR of the joint measurements

Ansatz: \quad For a given set of observables $\left\{M_{1}, M_{2}\right\}$
$E_{k_{1}, k_{2} \mid \mathcal{M}}=\frac{1}{d} \sum_{\lambda} \operatorname{Tr}\left(E_{k_{1} \mid M_{1}} W_{\lambda}\right) \operatorname{Tr}\left(E_{k_{2} \mid M_{2}} W_{\lambda}\right) W_{\lambda}$

$$
=\frac{1}{d} \sum_{\lambda} \xi_{M_{1}}\left(k_{1} \mid \lambda\right) \xi_{M_{2}}\left(k_{2} \mid \lambda\right) W_{\lambda} \geq 0
$$

Marginalizing

Factorized conditional quasi-probabilities

```
Recall:
```

$p_{k_{1} k_{2} \mid \mathcal{M}}=\sum_{\lambda} \xi_{M_{1}}\left(k_{1} \mid \lambda\right) \xi_{M_{2}}\left(k_{2} \mid \lambda\right) \mu_{\rho}(\lambda)$

$$
\begin{aligned}
E_{k_{1}}=\sum_{k_{2}} E_{k_{1}, k_{2} \mid \mathcal{M}} & =\frac{1}{d} \sum_{\lambda} \operatorname{Tr}\left(E_{k_{1} \mid M_{1}} W_{\lambda}\right) \operatorname{Tr}\left(\sum_{k_{2}} E_{k_{2} \mid M_{2}} W_{\lambda}\right) W_{\lambda} \\
& =\frac{1}{d} \sum_{\lambda} \operatorname{Tr}\left(E_{k_{1} \mid M_{1}} W_{\lambda}\right) W_{\lambda}
\end{aligned}
$$

Quasi-PR of the joint measurements

Ansatz: \quad For a given set of observables $\left\{M_{1}, M_{2}\right\}$

$$
E_{k_{1}, k_{2} \mid \mathcal{M}}=\frac{1}{d} \sum_{\lambda} \operatorname{Tr}\left(E_{k_{1} \mid M_{1}} W_{\lambda}\right) \operatorname{Tr}\left(E_{k_{2} \mid M_{2}} W_{\lambda}\right) W_{\lambda}
$$

$$
=\frac{1}{d} \sum_{\lambda} \xi_{M_{1}}\left(k_{1} \mid \lambda\right) \xi_{M_{2}}\left(k_{2} \mid \lambda\right) W_{\lambda} \geq 0
$$

Marginalizing

Factorized conditional quasi-probabilities

```
Recall:
```

$p_{k_{1} k_{2} \mid \mathcal{M}}=\sum_{\lambda} \xi_{M_{1}}\left(k_{1} \mid \lambda\right) \xi_{M_{2}}\left(k_{2} \mid \lambda\right) \mu_{\rho}(\lambda)$

$$
\begin{aligned}
E_{k_{1}}=\sum_{k_{2}} E_{k_{1}, k_{2} \mid \mathcal{M}} & =\frac{1}{d} \sum_{\lambda} \operatorname{Tr}\left(E_{k_{1} \mid M_{1}} W_{\lambda}\right) \operatorname{Tr}\left(\sum_{k_{2}} E_{k_{2} \mid M_{2}} W_{\lambda}\right) W_{\lambda} \\
& =\frac{1}{d} \sum_{\lambda} \operatorname{Tr}\left(E_{k_{1} \mid M_{1}} W_{\lambda}\right) W_{\lambda} E_{k_{2} \mid M_{2}}=I \quad, \quad \operatorname{Tr}\left(W_{\lambda}\right)=1
\end{aligned}
$$

Joint measurement of n compatible observables:

$$
\begin{array}{rlrl}
E_{\boldsymbol{k} \mid \mathcal{M}} & =\frac{1}{d} \sum_{\lambda} \xi_{\mathcal{M}}(\boldsymbol{k} \mid \lambda) W_{\lambda} & \mathcal{M} & =\left\{M_{1}, \cdots, M_{n}\right\} \\
& =\frac{1}{d} \sum_{\lambda} \prod_{j=1}^{n} \xi_{M_{j}}\left(k_{j} \mid \lambda\right) W_{\lambda} & \boldsymbol{k}=\left(k_{1}, \cdots, k_{n}\right)
\end{array}
$$

Quasi-PR of the joint measurements

Joint measurement of n compatible observables:

$$
\begin{aligned}
\mathcal{M} & =\left\{M_{1}, \cdots, M_{n}\right\} \\
\boldsymbol{k} & =\left(k_{1}, \cdots, k_{n}\right)
\end{aligned}
$$

Conjecture:

One can always find a suitable frame by which the joint measurement of the n compatible observable can be represented as

$$
\begin{aligned}
E_{\boldsymbol{k} \mid \mathcal{M}} & =\frac{1}{d} \sum_{\lambda} \xi_{\mathcal{M}}(\boldsymbol{k} \mid \lambda) W_{\lambda} \\
& =\frac{1}{d} \sum_{\lambda} \prod_{j=1}^{n} \xi_{M_{j}}\left(k_{j} \mid \lambda\right) W_{\lambda}
\end{aligned}
$$

Compatibility criteria..

Sufficient(for arbitrary number of measurements) : Come from positivity condition

$$
\sum_{l=0,1}\left(\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l)-\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l \oplus 1)\right)^{2} \leq 2 \prod_{l=0,1}\left(\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l)+\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l \oplus 1)\right) *
$$

Probabilistic version

$$
\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, m)=\prod_{j=1}^{n} \xi_{M_{j}}\left(k_{j} \mid l, m\right)=\prod_{j=1}^{n} \operatorname{Tr}\left(E_{k_{j} \mid M_{j}} W_{l m}\right)
$$

Compatibility criteria..

Sufficient(for arbitrary number of measurements) : Come from positivity condition

$$
\sum_{l=0,1}\left(\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l)-\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l \oplus 1)\right)^{2} \leq 2 \prod_{l=0,1}\left(\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l)+\xi_{\mathcal{M}}(\boldsymbol{k} \mid l, l \oplus 1)\right) \boldsymbol{*}
$$

Probabilistic language

$$
\xi_{\mathcal{M}}^{\text {Recall: }}(\boldsymbol{k} \mid l, m)=\prod_{j=1}^{n} \xi_{M_{j}}\left(k_{j} \mid l, m\right)=\prod_{j=1}^{n} \operatorname{Tr}\left(E_{k_{j} \mid M_{j}} W_{l m}\right)
$$

For $n=2$
Necessary (Busch Criterion):
$\left|\boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2}\right|+\left|\boldsymbol{\eta}_{1}+\boldsymbol{\eta}_{2}\right| \leq 2 * * \quad$ Quantum language
Symmetric (unbiased) qubit effects:

Necessary and sufficient

Concluding remarks..

Advantages of the quasiprobability approach to quantum compatibility \& joint measurability:

Conceptual

$>$ A (quasi-)probabilistic ("classical-like") description of the compatibility and joint measurability; offers unifying picture

Compatibility outside QM and Compatibility inside QM

Practical

> General construction of (optimal) joint measurements of multiple measurements using frame representation

Concluding remarks..

Advantages of the quasiprobability approach to quantum compatibility \& joint measurability:

Conceptual

$>$ A (quasi-)probabilistic ("classical-like") description of the compatibility and joint measurability; offers unifying picture

Compatibility outside QM and Compatibility inside QM

Practical

> General construction of (optimal) joint measurements of multiple measurements using frame representation

