Quasi-probability representation and quantum joint measurements

Ali Asadian, Siegen University

Maria Laach, August 2017

Outline

- Joint quantum measurements of compatible observables
- Quasi-probability representations of quantum mechanics
- Quasi-PRs of the joint measurements
- Example: qubit and higher dimension
- Concluding remarks

Joint measurements

Joint measurement ${\cal M}$

Is a compound measurement of a set of compatible observables $({
m e.g.}~M_1,M_2)$

described by
$$\{E_{k_1,k_2|\mathcal{M}}\}$$
, $\sum_{k_1,k_2} E_{k_1,k_2|\mathcal{M}} = I$

Joint measurements

Joint measurement ${\cal M}$

Is a compound measurement of a set of compatible observables (e.g. M_1, M_2) described by $\{E_{k_1,k_2|\mathcal{M}}\}$, $\sum_{k_1,k_2} E_{k_1,k_2|\mathcal{M}} = I$

Marginality condition:

$$\sum_{k_2} E_{k_1,k_2|\mathcal{M}} = E_{k_1|M_1},$$
$$\sum_{k_1} E_{k_1,k_2|\mathcal{M}} = E_{k_2|M_2}$$

Does (an optimal) joint measurements exist? Com

Compatibility of the observables

How to construct them?

Can we answer with a single recipe?

Quasi-probability representation

• Quasi-PR of the quantum states and measurements:

$$\mu: \rho \mapsto \mu_{\rho}(\lambda) \in \mathbb{R} \text{ and } \sum_{\lambda \in \Lambda} \mu_{\rho}(\lambda) = 1$$
So called ontic state
$$\xi: E_{k|M} \mapsto \xi_{M}(k|\lambda) \in \mathbb{R} \text{ and } \sum_{k} \xi_{E}(k|\lambda) = 1 , \forall \lambda$$
Born's rule (the total law of probability):

$$p_k = \operatorname{Tr}(\rho E_k) = \sum_{\lambda \in \Lambda} \mu_{\rho}(\lambda) \xi_E(k|\lambda)$$

.. Much like a classical probability

Quasi-probability representation

• Quasi-PR of the quantum states and measurements:

$$\begin{split} \mu:\rho\mapsto\mu_{\rho}(\lambda)\in\mathbb{R} \quad \text{and} \quad &\sum_{\lambda\in\Lambda}\mu_{\rho}(\lambda)=1\\ \text{, so called ontic state} \\ \xi:E_{k|M}\mapsto\xi_{M}(k|\lambda)\in\mathbb{R} \quad \text{and} \quad &\sum_{k}\xi_{E}(k|\lambda)=1 \quad , \ \forall\lambda \end{split}$$
Born's rule (the total law of probability):
$$p_{k}=\mathrm{Tr}(\rho E_{k})=\sum_{\lambda\in\Lambda}\mu_{\rho}(\lambda)\xi_{E}(k|\lambda)$$
... Much like a classical probability

Frame representation(orthogonal basis):

$$\{F_{\lambda}\} , \sum_{\lambda} F_{\lambda} = \mathbb{I} \longrightarrow \sum_{\lambda} \mu_{\rho}(\lambda) = 1 \qquad \mu_{\rho}(\lambda) = \operatorname{Tr}[\rho F_{\lambda}]$$

$$\{D_{\lambda}\} , \operatorname{Tr}D_{\lambda} = 1 \longrightarrow \sum_{k} \xi_{E}(k|\lambda) = 1 \qquad \xi_{E}(k|\lambda) = \operatorname{Tr}[E_{k}D_{\lambda}]$$

$$\operatorname{Tr}(F_{\lambda}D_{\lambda'}) = \delta_{\lambda,\lambda'} \text{ Orthogonal, and thus form a complete basis}$$

Ferrie & Emerson NJP (2008)

..continued

Frame representation

$$\mathcal{O} = \sum_{\lambda} \operatorname{Tr}(\mathcal{O}D_{\lambda})F_{\lambda} \quad , \quad \forall \ \mathcal{O}$$
$$E_{k} = \sum_{\lambda} \operatorname{Tr}(E_{k}D_{\lambda})F_{\lambda} \implies p_{k} = \operatorname{Tr}[E_{k}\rho] = \sum_{\lambda} \operatorname{Tr}(E_{k}D_{\lambda})\operatorname{Tr}(\rho F_{\lambda})$$
$$:= \sum_{\lambda} \xi_{E}(k|\lambda)\mu_{\rho}(\lambda)$$

..continued

Frame representation

$$\mathcal{O} = \sum_{\lambda} \operatorname{Tr}(\mathcal{O}D_{\lambda})F_{\lambda} \quad , \quad \forall \ \mathcal{O}$$
$$E_{k} = \sum_{\lambda} \operatorname{Tr}(E_{k}D_{\lambda})F_{\lambda} \implies p_{k} = \operatorname{Tr}[E_{k}\rho] = \sum_{\lambda} \operatorname{Tr}(E_{k}D_{\lambda})\operatorname{Tr}(\rho F_{\lambda})$$
$$:= \sum_{\lambda} \xi_{E}(k|\lambda)\mu_{\rho}(\lambda)$$

A general class of a frame: phase-space point operators Wigner representation (Wootters 1987, Gross 2006, et al)

$$W_{\lambda} \equiv D_{\lambda} = dF_{\lambda}$$

Wigner representation of a single effect:

$$E_k = \frac{1}{d} \sum_{\lambda} \operatorname{Tr}(E_k W_\lambda) W_\lambda = \frac{1}{d} \sum_{\lambda} \xi_E(k|\lambda) W_\lambda$$

Qubit example:

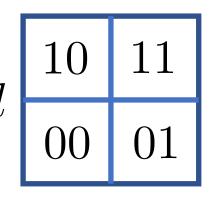
Phase-space point operators:

$$W_{lm} = \frac{1}{2} \left[I + (-1)^{l} \sigma_{1} + (-1)^{m} \sigma_{2} + (-1)^{l+m} \sigma_{3} \right]$$

 $\sigma_{1} = \boldsymbol{r} \cdot \boldsymbol{\sigma} = \sin \theta \cos \varphi \sigma_{x} + \sin \theta \sin \varphi \sigma_{y} + \cos \theta \sigma_{z}$ $\sigma_{2} = \boldsymbol{\theta} \cdot \boldsymbol{\sigma} = \cos \theta \cos \varphi \sigma_{x} + \cos \theta \sin \varphi \sigma_{y} - \sin \theta \sigma_{z}$ $\sigma_{3} = \boldsymbol{\varphi} \cdot \boldsymbol{\sigma} = -\sin \varphi \sigma_{x} + \cos \varphi \sigma_{y}$

$$l, m = 0, 1$$

Discrete phase space



$$E_{\pm|X} = \frac{1}{2}(1 \pm \eta_x \sigma_x) \quad l \begin{bmatrix} 10 & 11 \\ 00 & 01 \end{bmatrix} \quad l \begin{bmatrix} 10 & 11 \\ 00 & 01 \end{bmatrix} \quad m$$

$$E_{\pm|Z} = \frac{1}{2}(1 \pm \eta_z \sigma_z) \quad l \begin{bmatrix} 10 & 11 \\ 00 & 01 \end{bmatrix} \quad l \begin{bmatrix} 10 & 11 \\ 00 & 11 \\ 00 & 01 \end{bmatrix} \quad m$$
Wootters (1989)
$$m$$

$$m$$

$$m$$

$$m$$

Bloch

VS

Frame

 $\{I, \sigma_1, \sigma_2, \sigma_3\} \quad \operatorname{Tr}(\sigma_i \sigma_j) = \delta_{ij} \mid \{W_{00}, W_{10}, W_{01}, W_{11}\} \quad \operatorname{Tr}(W_{\lambda} W_{\lambda'}) = 2\delta_{\lambda\lambda'}$

State

$$\rho = \sum_{j=0}^{3} \eta_j \sigma_j$$

Effect
$$E = \sum_{j=0}^{3} e_j \sigma_j$$

Born's rule

Born's rule

$$p_k = \operatorname{Tr}(E_k \rho) = \sum_{j=0}^3 e_j^k \eta_j$$

State

$$\rho = \frac{1}{2} \sum_{l,m=0,1} \mu_{\rho}(lm) W_{lm}$$

Effect
$$E_k = \frac{1}{2} \sum_{l,m=0,1} \xi_E(k|lm) W_{lm}$$

Born's rule

$$\mu_{\rho}(lm) = \mathrm{Tr}(\rho W_{lm})/d$$

$$p_k = \operatorname{Tr}(E_k \rho) = \sum_{l,m=0,1} \xi_E(k|lm) \mu_\rho(lm)$$

Quasi-PR of the joint measurements

Ansatz: For a given set of observables
$$\{M_1, M_2\}$$

 $E_{k_1,k_2|\mathcal{M}} = \frac{1}{d} \sum_{\lambda} \operatorname{Tr}(E_{k_1|M_1}W_{\lambda}) \operatorname{Tr}(E_{k_2|M_2}W_{\lambda}) W_{\lambda}$
 $= \frac{1}{d} \sum_{\lambda} \xi_{M_1}(k_1|\lambda) \xi_{M_2}(k_2|\lambda) W_{\lambda} \ge 0$
Factorized condition
Recall:

Marginalizing

Factorized conditional quasi-probabilities

Recall:

$$p_{k_1k_2|\mathcal{M}} = \sum_{\lambda} \xi_{M_1}(k_1|\lambda)\xi_{M_2}(k_2|\lambda)\mu_{\rho}(\lambda)$$

$$E_{k_1} = \sum_{k_2} E_{k_1, k_2 \mid \mathcal{M}} = \frac{1}{d} \sum_{\lambda} \operatorname{Tr}(E_{k_1 \mid M_1} W_{\lambda}) \operatorname{Tr}(\sum_{k_2} E_{k_2 \mid M_2} W_{\lambda}) W_{\lambda}$$
$$= \frac{1}{d} \sum_{\lambda} \operatorname{Tr}(E_{k_1 \mid M_1} W_{\lambda}) W_{\lambda}$$

Quasi-PR of the joint measurements

$$\begin{array}{ll} \text{Ansatz:} & \text{For a given set of observables } \left\{ M_1, M_2 \right\} \\ E_{k_1,k_2|\mathcal{M}} = \frac{1}{d} \sum_{\lambda} \operatorname{Tr}(E_{k_1|M_1} W_{\lambda}) \operatorname{Tr}(E_{k_2|M_2} W_{\lambda}) W_{\lambda} \\ & = \frac{1}{d} \sum_{\lambda} \xi_{M_1}(k_1|\lambda) \xi_{M_2}(k_2|\lambda) W_{\lambda} \ge \mathbf{0} \end{array}$$

$$\begin{array}{l} \text{Factorized conditional quasi-probabilities} \\ \text{Recall:} \\ \text{Recall:} \end{array}$$

Marginalizing

Recall:

$$p_{k_1k_2|\mathcal{M}} = \sum_{\lambda} \xi_{M_1}(k_1|\lambda)\xi_{M_2}(k_2|\lambda)\mu_{\rho}(\lambda)$$

$$E_{k_1} = \sum_{k_2} E_{k_1,k_2|\mathcal{M}} = \frac{1}{d} \sum_{\lambda} \operatorname{Tr}(E_{k_1|M_1}W_{\lambda}) \operatorname{Tr}(\sum_{k_2} E_{k_2|M_2}W_{\lambda}) W_{\lambda}$$
$$= \frac{1}{d} \sum_{\lambda} \operatorname{Tr}(E_{k_1|M_1}W_{\lambda}) W_{\lambda}$$
$$\sum_{k_2} E_{k_2|M_2} = I \quad , \quad \operatorname{Tr}(W_{\lambda}) = I$$

Joint measurement of n compatible observables:

$$E_{\boldsymbol{k}|\mathcal{M}} = \frac{1}{d} \sum_{\lambda} \xi_{\mathcal{M}}(\boldsymbol{k}|\lambda) W_{\lambda}$$
$$= \frac{1}{d} \sum_{\lambda} \prod_{j=1}^{n} \xi_{M_j}(k_j|\lambda) W_{\lambda}$$

$$\mathcal{M} = \{M_1, \cdots, M_n\}$$
$$\boldsymbol{k} = (k_1, \cdots, k_n)$$

Quasi-PR of the joint measurements

Joint measurement of n compatible observables:

$$\mathcal{M} = \{M_1, \cdots, M_n\}$$

 $\boldsymbol{k} = (k_1, \cdots, k_n)$

Conjecture:

One can always find a suitable frame by which the joint measurement of the n compatible observable can be represented as

$$E_{\boldsymbol{k}|\mathcal{M}} = \frac{1}{d} \sum_{\lambda} \xi_{\mathcal{M}}(\boldsymbol{k}|\lambda) W_{\lambda}$$
$$= \frac{1}{d} \sum_{\lambda} \prod_{j=1}^{n} \xi_{M_j}(k_j|\lambda) W_{\lambda}$$

Compatibility criteria..

Sufficient(for arbitrary number of measurements) : Come from positivity condition

$$\sum_{l=0,1} \left(\xi_{\mathcal{M}}(\boldsymbol{k}|l,l) - \xi_{\mathcal{M}}(\boldsymbol{k}|l,l\oplus 1) \right)^2 \leq 2 \prod_{l=0,1} \left(\xi_{\mathcal{M}}(\boldsymbol{k}|l,l) + \xi_{\mathcal{M}}(\boldsymbol{k}|l,l\oplus 1) \right) *$$

Probabilistic version

Recall:

$$\begin{aligned} & \left\{ \xi_{\mathcal{M}}(\boldsymbol{k}|l,m) = \prod_{j=1}^{n} \xi_{M_j}(k_j|l,m) = \prod_{j=1}^{n} \operatorname{Tr}(E_{k_j|M_j}W_{lm}) \right. \end{aligned}$$

Compatibility criteria..

Sufficient(for arbitrary number of measurements) : Come from positivity condition

$$\sum_{l=0,1} \left(\xi_{\mathcal{M}}(\boldsymbol{k}|l,l) - \xi_{\mathcal{M}}(\boldsymbol{k}|l,l\oplus 1) \right)^2 \leq 2 \prod_{l=0,1} \left(\xi_{\mathcal{M}}(\boldsymbol{k}|l,l) + \xi_{\mathcal{M}}(\boldsymbol{k}|l,l\oplus 1) \right) *$$

Probabilistic language

Recall:

$$\xi_{\mathcal{M}}(\boldsymbol{k}|l,m) = \prod_{j=1}^{n} \xi_{M_j}(k_j|l,m) = \prod_{j=1}^{n} \operatorname{Tr}(E_{k_j|M_j}W_{lm})$$

For n=2

Necessary (Busch Criterion):

$$|oldsymbol{\eta}_1 - oldsymbol{\eta}_2| + |oldsymbol{\eta}_1 + oldsymbol{\eta}_2| \leq 2$$
 ** Quantum language

Symmetric (unbiased) qubit effects:

** Paul Busch PRD(1986)

Concluding remarks..

Advantages of the quasiprobability approach to quantum compatibility & joint measurability:

Conceptual

A (quasi-)probabilistic ("classical-like") description of the compatibility and joint measurability; offers unifying picture

Compatibility outside QM and Compatibility inside QM

Practical

 General construction of (optimal) joint measurements of multiple measurements using frame representation

Concluding remarks..

Advantages of the quasiprobability approach to quantum compatibility & joint measurability:

Conceptual

A (quasi-)probabilistic ("classical-like") description of the compatibility and joint measurability; offers unifying picture

Compatibility outside QM and Compatibility inside QM

Practical

 General construction of (optimal) joint measurements of multiple measurements using frame representation

Thank you