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Joint	measurements
M

Is	a	compound	measurement	of	a	set	of	compatible	observables	

Joint	measurement

X

k2

Ek1,k2|M = Ek1|M1
,

X

k1

Ek1,k2|M = Ek2|M2

(e.g. M1,M2)

Does	(an	optimal)	joint	measurements	exist? Compatibility	of	the	observables

How	to	construct them?

Can	we	answer	with	a	single	recipe?

described	by

Marginality	condition:
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Quasi-probability	representation

• Quasi-PR	of	the	quantum	states	and	measurements:

µ : ⇢ 7! µ⇢(�) 2 R and
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X

k
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Born’s rule	(	the	total	law	of	probability):

..	Much	like	a	classical	probability

So	called	ontic	state

Ferrie &	Emerson	JPA	(2008)
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µ⇢(�) = 1

⇠ : Ek|M 7! ⇠M (k|�) 2 R and
X

k

⇠E(k|�) = 1 , 8�

µ⇢(�) = Tr[⇢F�]{F�} ,
X

�

F� = I

{D�} , TrD� = 1 ⇠E(k|�) = Tr[EkD�]

Tr(F�D�0) = ��,�0

Frame	representation(orthogonal	basis):
X

�

µ⇢(�) = 1

X

k

⇠E(k|�) = 1

Orthogonal,	and	thus	form	a	complete	basis

Born’s rule	(	the	total	law	of	probability):

..	Much	like	a	classical	probability

So	called	ontic	state

Ferrie &	Emerson	NJP	(2008)

pk = Tr(⇢Ek) =
X

�2⇤

µ⇢(�)⇠E(k|�)
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Frame	representation

A	general	class	of	a	frame:		phase-space	point	operators	
Wigner	representation
W� ⌘ D� = dF�

Ek =
1

d

X

�

Tr(EkW�)W� =
1

d

X

�

⇠E(k|�)W�

Wigner	representation	of	a	single	effect:

(Wootters 1987,	Gross	2006,	et	al)



Qubit	example:
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Bloch vs Frame

E =
3X

j=0

ej�j

Tr(�i�j) = �ij

pk = Tr(Ek⇢) =
3X

j=0

ekj ⌘j

⇢ =
3X

j=0

⌘j�j

{I,�1,�2,�3} {W00,W10,W01,W11} Tr(W�W�0) = 2���0

⇢ =
1

2

X

l,m=0,1

µ⇢(lm)Wlm

Ek =
1

2

X

l,m=0,1

⇠E(k|lm)Wlm

µ⇢(lm) = Tr(⇢Wlm)/d

pk = Tr(Ek⇢) =
X

l,m=0,1

⇠E(k|lm)µ⇢(lm)

State

Effect

Born’s rule

State

Effect

Born’s rule



Quasi-PR	of	the	joint	measurements
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Marginalizing

≥ 0

Ansatz: {M1,M2}For	a	given	set	of	observables

Factorized	conditional	quasi-probabilities
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Recall:

Marginalizing

Joint	measurement	of	n	compatible	observables:

≥ 0

k = (k1, · · · , kn)
M = {M1, · · · ,Mn}

Ansatz: {M1,M2}For	a	given	set	of	observables

Factorized	conditional	quasi-probabilities

X
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Ek2|M2
= I , Tr(W�) = 1



Quasi-PR	of	the	joint	measurements

Ek|M =
1

d

X

�

⇠M(k|�)W�

=
1

d

X

�

nY

j=1

⇠Mj (kj |�)W�

Joint	measurement	of	n	compatible	observables:

k = (k1, · · · , kn)
M = {M1, · · · ,Mn}

One	can	always	find	a	suitable	frame	by	which	the	
joint	measurement	of	the	n	compatible	observable
can	be	represented	as

Conjecture:



Compatibility	criteria..

X

l=0,1

⇣
⇠M(k|l, l)� ⇠M(k|l, l � 1)

⌘2
 2

Y
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⇠M(k|l, l) + ⇠M(k|l, l � 1)

⌘
Sufficient(	for	arbitrary	number	of	measurements)	:

*
Recall:Probabilistic	version

⇠M(k|l,m) =
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⇠Mj (kj |l,m) =
nY

j=1

Tr(Ekj |Mj
Wlm)

Come	from	positivity	condition



Compatibility	criteria..

X

l=0,1

⇣
⇠M(k|l, l)� ⇠M(k|l, l � 1)

⌘2
 2

Y

l=0,1

⇣
⇠M(k|l, l) + ⇠M(k|l, l � 1)

⌘

|⌘1 � ⌘2|+ |⌘1 + ⌘2|  2

Sufficient(	for	arbitrary	number	of	measurements)	:

Necessary	(Busch	Criterion):

Symmetric	(unbiased)	qubit	effects:

*

**

* **

Recall:Probabilistic	language

,
**	Paul	Busch		PRD(1986)

Necessary	and	sufficient

⇠M(k|l,m) =
nY

j=1

⇠Mj (kj |l,m) =
nY

j=1

Tr(Ekj |Mj
Wlm)

n = 2For	

Quantum	language

Come	from	positivity	condition



Concluding	remarks..

Ø A	(quasi-)probabilistic	(	“classical-like”)	description	of	the	
compatibility	and	joint	measurability;	offers	unifying	picture

Compatibility	outside QM	and	Compatibility	inside QM

Ø General	construction	of	(optimal)	joint	measurements	
of	multiple	measurements	using	frame	representation

Conceptual	

Advantages	of	the	quasiprobability approach	to	quantum	compatibility	&	joint	measurability:

Practical
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Thank	you	


