Quantifying quantum incompatibility

Erkka Haapasalo

Quantum Incompatibility 2017, Aug. 30th 2017

Outlook

Quantum measurements

Compatibility and incompatibility Some notations Formal definition Different notions of incompatibility

Incompatibility as a resource Compatibility non-decreasing operations

Quantification schemes Noise robustness of incompatibility Examples Other measures for observable incompatibility

Quantum measurements

Quantum measurements: Instruments

- physical system $\sim \mathcal{H}$, states: $\mathscr{S}(\mathcal{H})$
- measurement outcomes: (Ω, Σ)
- \blacktriangleright post-measurement system $\sim~\mathcal{K}$, trace class: $\mathcal{T}(\mathcal{K})$

measurement \sim instrument $\Gamma:$

- $\blacktriangleright \ \Gamma: \Sigma \times \mathscr{S}(\mathscr{H}) \to \mathscr{T}(\mathscr{K})$
- $\Gamma(X, \cdot)$ CP maps, $X = \Omega$: CPTP map
- $\blacktriangleright \ {\rm tr}[\Gamma(\cdot,\rho)] \ {\rm probability \ measure \ for \ all \ } \rho \in \mathscr{S}(\mathscr{H})$
- $\blacktriangleright \text{ denote } \Gamma(X, \cdot) = \Gamma_X$

Parts of a measurement: observable and channel

Measurement (instrument Γ) contains a statistics branch, observable M_{Γ} , and an unconditioned state transformation branch, channel $\mathscr{E}_{\Gamma}.$

Measurement and its parts

Measurement device \sim instrument Γ

Measurement and its parts

An initial state is subjected to a measurement \ldots

Measurement and its parts

 \ldots and outcome $\omega \in X$ is registered with prob. $p_\rho^{\mathsf{M}_\Gamma}(X) = \mathrm{tr}[\Gamma(X,\rho)] \ldots$

Measurement and its parts

 \ldots and, conditioned by this, conditional output state exits the device.

Measurement and its parts

Neglect the state transformations: you obtain the observable (POVM) M_{Γ} measured by $\Gamma.$

Measurement and its parts

From now on, we call elements of quantum measurements, observables, channels, and instruments, as quantum (measurement) devices.

Neglect the outcome statistics: you obtain the unconditioned channel (CPTP map) induced by $\Gamma.$

Compatibility and incompatibility

An observable-channel pair (M,\mathscr{E}) is compatible if they can be implemented simultaneously in a measurement. This means that there is an instrument Γ such that

$$\mathsf{M}=\mathsf{M}_{\Gamma},\qquad \mathscr{E}=\mathscr{E}_{\Gamma}.$$

Let's generalize this notion for other quantum devices (n-tuples of them, $n \geq 2$).

Some notations

Following notations shall be used throughout the rest of this talk. Fix

- (convex) sets \mathbf{Q}_{j} , $j = 1, \ldots, n$, of similar quantum devices with input state space $\mathscr{S}_{\mathrm{in}}$ and output state spaces $\mathscr{S}_{\mathrm{out}}^{j}$,
- $\blacktriangleright \ \mathbf{Q} := \mathbf{Q}_1 \times \cdots \times \mathbf{Q}_n, \text{ and }$
- $\begin{array}{l} \blacktriangleright \ \mathscr{S}_{\mathrm{out}} \coloneqq \bigotimes_{j=1}^n \mathscr{S}_{\mathrm{out}}^j, \ \text{the set } \mathbf{Q}_{\mathrm{joint}} \ \text{of devices} \\ \Psi : \mathscr{S}_{\mathrm{in}} \to \mathscr{S}_{\mathrm{out}}. \end{array}$

Typically input system is a quantum system: $\mathscr{S}_{\mathrm{in}}=\mathscr{S}(\mathscr{H}).$ Output system determines the type of devices studied:

- $\mathscr{S}^j_{\text{out}} = \mathscr{S}(\mathscr{K}_j) \Rightarrow \mathbf{Q}_j$ consists of channels.
- $\mathscr{S}^{j}_{\mathrm{out}}$ is a set of probability measures on a measurable space $\Rightarrow \mathbf{Q}_{j}$ consists of observables.

Formal definition

[E. H., T. Heinosaari, J.-P. Pellonpää, *Rev. Math. Phys.* **26**, 1450002 (2014)]:

Definition

Collection $\vec{\Phi} \in \mathbf{Q}$ is compatible if there is a device $\Psi \in \mathbf{Q}_{\text{joint}}$ such that $\Phi_j = \Psi_{(j)} = \pi_j \circ \Psi$, j = 1, ..., n. Otherwise, $\vec{\Phi}$ is incompatible. The subset of compatible device *n*-tuples $\vec{\Phi} \in \mathbf{Q}$ is denoted by **Comp**.

Above, π_j is the $j{:}{\rm th}$ marginalization; partial trace, summing up classical outcomes. . .

Device $\boldsymbol{\Psi}$ has a joint system as its output system.

Ignoring the second arm...

Ignoring the second arm gives the first marginal $\Psi_{(1)}$.

Similarly, one obtains...

Similarly, one obtains the second marginal $\Psi_{(2)}$.

Device Γ is a joint device for the subdevices $\Psi_{(1)}$ and $\Psi_{(2)}.$

Different notions of compatibility

In addition to the observable-channel compatibility, the above definition of compatibility encompasses the following notions for pairs devices of the same type:

- observable-observable case: joint measurability
- channel-channel case: broadcastability

Joint measurability

Joint measurability

Joint measurability

Joint measurability

Broadcastability

Broadcastability

Broadcastability

Broadcastability

Broadcastability

Incompatibility as a resource

Incompatibility and EPR-steering

A bipartite state $\rho_{AB} \in \mathscr{S}(\mathscr{H}_A \otimes \mathscr{H}_B)$ is $(A \to B)$ -steerable if there is a collection of observables $\vec{M} = (M_1, \ldots, M_n)$ on subsystem A such that, by measuring \vec{M} on A, one can steer the conditional sub-system state on B outside a state assemblage like the ones arising from local-hidden-state models.

For this steering to succeed, \vec{M} has to be incompatible.

- [M. T. Quintino, T. Vértesi, and N. Brunner, *Phys. Rev. Lett.* 113, 160402 (2014)]
- [R. Uola, T. Moroder, and O. Gühne, *Phys. Rev. Lett.* 113, 160403 (2014)]

Incompatibility is a resource.

Compatibility non-decreasing operations

 $\ensuremath{\mathsf{Examples}}$ on operations on collections of devices that preserve compatibility:

- common pre-processing
- post-processing

Let's illustrate these for a $\vec{\Phi} \in \mathbf{Q}$.

Common pre-processing

Before applying each device, a common preprocessing (a fixed device $\Theta:\mathscr{S}_{prae}\to\mathscr{S}_{in})$ is applied. For a possible joint device $\Psi,$ this means a single preprocessing by $\Theta.$

We denote $\vec{\Phi}' \leq_{\text{prae}} \vec{\Phi}$ if there is Θ such that $\Phi'_j = \Phi_j \circ \Theta$, $j = 1, \ldots, n$.

- If $\vec{\Phi} \in \mathbf{Comp}$, then $\vec{\Phi}' \in \mathbf{Comp}$.
- \blacktriangleright Typically, the input system of the devices is fully quantum system implying that Θ is a quantum channel.

Post-processing

After operating with device Φ_j , operate with a post-processing (a device $\alpha_j : \mathscr{S}^j_{\mathrm{out}} \to \mathscr{S}^j_{\mathrm{post}}$). For a possible joint device this means post-processing with $\alpha_1 \otimes \cdots \otimes \alpha_n$.

We denote $\vec{\Phi}' \leq_{\text{post}} \vec{\Phi}$ if there is $\vec{\alpha}$ such that $\Phi'_j = \alpha_j \circ \Phi_j$, $j = 1, \dots, n$.

- If $\vec{\Phi} \in \mathbf{Comp}$, then $\vec{\Phi}' \in \mathbf{Comp}$.
- If, e.g., output system j is classical (Φ_j is an observable), α_j is a classical-to-classical channel, i.e., a statistical operator.

Quantification schemes

Quantification schemes

How to measure the separation of $\vec{\Phi} \in \mathbf{Q} \setminus \mathbf{Comp}$ from the (convex) zero-resource set \mathbf{Comp} ?

Requirements for an incompatibility measure

For $D:\mathbf{Q}\to\mathbf{R}_+$ to be a measure for incompatibility, we require, at least, the following:

- $D(\vec{\Phi}) = 0$ if and only if $\vec{\Phi} \in \mathbf{Comp}$.
- ► *D* is a convex function.
- $\blacktriangleright \ \text{ If } \vec{\Phi}' \leq_{\text{prae}} \vec{\Phi} \text{, } D(\vec{\Phi}') \leq D(\vec{\Phi}).$
- If $\vec{\Phi}' \leq_{\text{post}} \vec{\Phi}$, $D(\vec{\Phi}') \leq D(\vec{\Phi})$.

Compatible approximations

 $\vec{\Phi}$ is incompatible.

Compatible approximations

Approximate $\vec{\Phi}$ with. . .

Compatible approximations

Approximate $\vec{\Phi}$ with marginals of a joint device $\Psi: \mathscr{S}_{in} \to \mathscr{S}_{out}$.

Noise robustness of incompatibility

Different types of noise can be mixed with $\vec{\Phi}$:

compatible noise,

$\mathbf{Approx}_{\vec{\Phi}}$

$$= \{ \Psi | \Psi_{(j)} = w \Phi_j + (1 - w) \Theta_j, \ w \in [0, 1], \ \vec{\Theta} \in \mathbf{Comp} \}$$

► general noise,

$$\widetilde{\operatorname{Approx}}_{\vec{\Phi}} = \{\Psi \mid \Psi_{(j)} = w\Phi_j + (1-w)\Theta_j, \ w \in [0,1], \ \vec{\Theta} \in \mathbf{Q}\}$$

Determine how much noise can be mixed with $\vec{\Phi}$ before the mixture becomes compatible.

Determine:

- Approx $_{\vec{\Phi}}$, the set of all accepted approximate joint devices Ψ for $\vec{\Phi}$,
- ▶ a method of evaluating the approximation between Φ_j and $\Psi_{(j)}$, $j = 1, \ldots, n$, for $\Psi \in \operatorname{Approx}_{\vec{\Phi}}$.
- Extremize the above approximation over $\Psi \in \mathbf{Approx}_{\vec{\Phi}}$.

 \Rightarrow measure for incompatibility

Let us look at two ways of doing this.

$$\begin{aligned} r(\vec{\Phi}|\vec{\Theta}) &:= \inf\left\{s \geq 0 \mid \frac{1}{s+1}(\vec{\Phi} + s\vec{\Theta}) \in \mathbf{Comp}\right\} \\ r(\vec{\Phi}) &:= \inf_{\vec{\Theta} \in \mathbf{Comp}} r(\vec{\Phi}|\vec{\Theta}) \end{aligned}$$

 $\mathbf{Comp} \ni \vec{\Psi} = (\Psi_{(1)}, \dots, \Psi_{(n)}) = \frac{1}{r(\vec{\Phi}) + 1} \vec{\Phi} + \frac{r(\vec{\Phi})}{r(\vec{\Phi}) + 1} \vec{\Theta}$

$$\begin{split} r(\vec{\Phi}|\vec{\Theta}) &:= &\inf\Big\{s \geq 0 \,|\, \frac{1}{s+1}(\vec{\Phi}+s\vec{\Theta}) \in \mathbf{Comp}\Big\},\\ R(\vec{\Phi}) &:= &\inf_{\vec{\Theta}' \in \mathbf{Q}} r(\vec{\Phi}|\vec{\Theta}') \end{split}$$

Comp
$$\ni \vec{\Psi}' = (\Psi'_{(1)}, \dots, \Psi'_{(n)}) = \frac{1}{R(\vec{\Phi})+1}\vec{\Phi} + \frac{R(\vec{\Phi})}{R(\vec{\Phi})+1}\vec{\Theta}'$$

Properties of the robustness measures

We call both r and R as robustness of incompatibility. $R \mbox{ (and } r)$ has the following properties:

- $\blacktriangleright \ 0 \leq R(\vec{\Phi}) \leq n-1 \text{ for all } \vec{\Phi} \in \mathbf{Q}.$
- ▶ If the input system is of dimension $d < \infty$, $R(\vec{\Phi}) \leq \frac{d(n-1)}{d+n}$.
- ► The earlier requirements are met.

Reading on this and similar measures:

- ► E. H., J. Phys. A: Math. Theor. 48, 255303 (2015): this case
- C. Napoli et al. Phys. Rev. Lett. 116, 150502 (2016): robustness of coherence
- ► G. Vidal and R. Tarrach, *Phys. Rev. A* **59**, 141-155 (1998): robustness of entanglement
- P. Skrzypczyk, M. Navascués, and D. Cavalcanti, *Phys. Rev. Lett.* 112, 180404 (2014): steerable weight

Utilizing covariance

The input and output systems feature symmetry properties associated with a symmetry group G:

- ► Group actions:

 - $\begin{array}{l} \bullet \quad G \ni g \mapsto \gamma_g \in \operatorname{Aut}(\mathscr{S}_{\operatorname{in}}), \\ \bullet \quad G \ni g \mapsto \delta_g \in \operatorname{Aut}(\mathscr{S}_{\operatorname{out}}), \\ \bullet \quad G \ni g \mapsto \delta_g^j \in \operatorname{Aut}(\mathscr{S}_{\operatorname{out}}^j), \ j = 1, \dots, n, \\ \bullet \quad \pi_j \circ \delta_g = \delta_g^j \circ \pi_j. \end{array}$
- Covariant devices:
 - $\mathbf{Cov}_{\gamma}^{\delta} := \{ \Psi \in \mathbf{Q}_{\text{joint}} \mid \Psi \circ \gamma_g = \delta_g \circ \Psi \ \forall g \in G \},$ $\blacktriangleright \ \mathbf{Cov}_{\gamma}^{\delta^{j}} := \{ \Phi \in \mathbf{Q}_{j} \, | \, \Phi \circ \gamma_{g} = \delta^{j}_{g} \circ \Phi \ \forall g \in G \}, \, j = 1, \dots, \, n,$
 - and $\mathbf{Cov}_{\gamma}^{\vec{\delta}} := \prod_{j=1}^{n} \mathbf{Cov}_{\gamma}^{\delta^{j}}.$

Utilizing covariance

Under certain conditions, e.g., G is finite, covariance simplifies the evaluation of robustness:

Proposition Whenever $ec{\Phi} \in \mathbf{Cov}^{ec{\delta}}_{\gamma}$,

$$\begin{split} r(\vec{\Phi}) &= \inf_{\vec{\Theta} \in \mathbf{Cov}_{\gamma}^{\vec{\delta}} \cap \mathbf{Comp}} r(\vec{\Phi} | \vec{\Theta}) \\ R(\vec{\Phi}) &= \inf_{\vec{\Theta} \in \mathbf{Cov}_{\gamma}^{\vec{\delta}}} r(\vec{\Phi} | \vec{\Theta}) \end{split}$$

This result greatly simplifies calculating the robustness for physically meaningful sets of devices.

Examples

Let's take a look at three bipartite exemplary cases; an observable-observable, channel-channel, and observable-channel case.

Fourier-coupled rank-1 PVMs

For any finite $d \in \mathbf{N}$, denote by \mathscr{H}_d the d-dimensional complex Hilbert space. Fix

- ▶ an orthonormal basis $\{\varphi_j\}_{j \in \mathbf{Z}_d} \subset \mathscr{H}_d$,
- \blacktriangleright the Fourier transform (unitary operator) $\mathscr{F}\in\mathscr{L}(\mathscr{H}_d),$

$$\mathscr{F}\varphi_k = \frac{1}{\sqrt{d}} \sum_{j \in \mathbf{Z}_d} e^{i2\pi jk/d} \varphi_j =: \psi_k,$$

▶ observables
$$Q = (Q(j))_{j \in \mathbf{Z}_d}$$
 and $P = (P(k))_{k \in \mathbf{Z}_d}$,

$$\mathsf{Q}(j) = |\varphi_j\rangle\langle\varphi_j|, \quad \mathsf{P}(k) = |\psi_k\rangle\langle\psi_k|,$$

and

• unitary operators U(q), V(p), and W(q, p),

 $U(q)\varphi_j = \varphi_{j+q}, \quad V(p)\varphi_j = e^{i2\pi j p/d}\varphi_j, \quad W(q,p) = U(q)V(p).$

Fourier-coupled rank-1 PVMs

Weyl covariance largely as in C. Carmeli, T. Heinosaari, and A. Toigo, **Phys. Rev. A 85**, 012109 (2012):

 $W(q,p)^*\mathsf{Q}(j)W(q,p)=\mathsf{Q}(j{-}q),\quad W(q,p)^*\mathsf{P}(k)W(q,p)=\mathsf{P}(k{-}p).$

Using this, one obtains

$$R(\mathsf{Q},\mathsf{P}) = \frac{\sqrt{d}-1}{\sqrt{d}+1}.$$

 \Rightarrow as $d \rightarrow \infty$, $R({\rm Q},{\rm P})$ tends to the maximal value 1.

Maximal robustness for pairs of channels

Let $d < \infty$, \mathscr{K}_1 and \mathscr{K}_2 be Hilbert spaces, and $\mathscr{E}_1 : \mathscr{S}(\mathscr{H}_d) \to \mathscr{S}(\mathscr{K}_1)$ and $\mathscr{E}_2 : \mathscr{S}(\mathscr{H}_d) \to \mathscr{S}(\mathscr{K}_2)$ be channels. Using

- \blacktriangleright monotonicity of R and
- ▶ U(d)-symmetry of $id_{\mathscr{L}(\mathscr{H}_d)}$ (T. Eggeling and R. F. Werner, *Phys. Rev. A* **63**, 042111 (2001)),

one obtains

$$R(\mathscr{E}_1, \mathscr{E}_2) \le R(\mathrm{id}_{\mathscr{L}(\mathscr{H}_d)}, \mathrm{id}_{\mathscr{L}(\mathscr{H}_d)}) = \frac{d-1}{d+1}$$

The same holds for the other measure r.

A rank-1 PVM and a channel

Let $d<\infty$ and $\{\varphi_j\}_{j\in {\bf Z}_d}\subset \mathscr{H}_d$ be an orthonormal basis. Define

• the observable $A = (A(j))_{j \in \mathbb{Z}_d}$,

$$\mathsf{A}(j) = |\varphi_j\rangle\langle\varphi_j|, \quad j \in \mathbf{Z}_d,$$

and

• the unitaries W(q, p) as earlier.

To evaluate $R(\mathsf{A},\mathrm{id}_{\mathscr{L}(\mathscr{H}_d)})$ it suffices to consider noise of the form $(\mathsf{N},\mathscr{G}),$ where

$$\begin{split} &W(q,p)^*\mathsf{N}(j)W(q,p) &= \mathsf{N}(j-q),\\ &\mathscr{G}\Big(W(q,p)\rho W(q,p)^*\Big) &= W(q,p)\mathscr{G}(\rho)W(q,p)^*. \end{split}$$

A rank-1 PVM and a channel

Let $\mathscr{E}:\mathscr{S}(\mathscr{H}_d)\to\mathscr{S}(\mathscr{K})$ be a channel. Using

 \blacktriangleright the monotonicity of R and

 \blacktriangleright the symmetry properties of A and $id_{\mathscr{L}(\mathscr{H}_d)}\text{,}$ one obtains

$$R(\mathsf{A},\mathscr{E}) \leq R(\mathsf{A}, \mathrm{id}_{\mathscr{L}(\mathscr{H}_d)}) = \frac{\sqrt{d}-1}{\sqrt{d}+1}.$$

When $\operatorname{id}_{\mathscr{S}(\mathscr{H}_d)} \leq_{\operatorname{post}} \mathscr{E}$:

$$\begin{split} \mathsf{T}(j) &= \ \frac{1}{d}, \quad \mathscr{E}_\mathsf{A}(\rho) = \sum_{j=1}^d \mathsf{A}(j)\rho\mathsf{A}(j), \\ \Gamma_j(\rho) &= \ \frac{\sqrt{d}}{2(\sqrt{d}+1)} \mathscr{E}\big((d^{-1/2}\mathbbm{1} + \mathsf{A}(j))\rho(d^{-1/2}\mathbbm{1} + \mathsf{A}(j))\big) \end{split}$$

Other interesting examples

There are several other physically motivated cases of incompatible devices where robustness measures could be evaluated:

- ▶ Cases where $n \ge 3$, e.g., evaluate R(id, Q, P) or r(id, Q, P).
- Infinite-dimensional cases, e.g., evaluate R(Q, P) of r(Q, P) where (Q, P) is the sharp position-momentum pair on L²(R).
 Conjecture:

 $R(\mathbf{Q}, \mathbf{P}) = r(\mathbf{Q}, \mathbf{P}) = 1$ (maximally incompatible)

Other measures for observable incompatibility

Several proposals for measuring observable-observable incompatibility exist:

►

$$R_p(\mathsf{M},\mathsf{N}) = \inf\{t \ge 0 \mid (\mathsf{M}_{t,p},\mathsf{N}_{t,p}) \in \mathbf{Comp}\} \text{ where}$$
$$\mathsf{M}_{t,p}(i) = (1-t)\mathsf{M}(i) + tp(i)\mathbb{1}$$

- P. Busch, T. Heinosaari, J. Schultz, and N. Stevens, EPL 103 10002 (2013)
- C. Carmeli, T. Heinosaari, and A. Toigo, *Phys. Rev. A* 85, 012109 (2012)
- T. Heinosaari, J. Kiukas, and D. Reitzner, *Phys. Rev. A* 92 022115 (2015)
- T. Heinosaari, J. Schultz, A. Toigo, and M. Ziman, *Phys. Lett.* A 378 1695-1699 (2014)
- Same measure can also be defined for testers (as Mário told us earlier today).

Other measures for observable incompatibility

 $\begin{aligned} R_{\mathscr{T}}(\mathsf{M},\mathsf{N}) &= \inf\{t \geq 0 \,|\, (\mathsf{M}_{t,\mathscr{T}},\mathsf{N}_{t,\mathscr{T}}) \in \mathbf{Comp}\} \text{ where } \\ \mathsf{M}_{t,\mathscr{T}}(i) &= (1-t)\mathsf{M}(i) + t\mathscr{T}\big(\mathsf{M}(i)\big), \end{aligned}$

and *T* is the completely depolarizing channel
► T. Heinosaari, J. Kiukas, and D. Reitzner, *Phys. Rev. A* 92 022115 (2015)

Both this measure and the previous one generalize to the multipartite case.

Other measures for observable incompatibility

An entropic measure [A. Barchielli, M. Gregoratti, and A. Toigo: arXiv:1608.01986, arXiv:1705.09949]:

$$c(\vec{\mathsf{M}}) = \inf_{\mathsf{G}} \sup_{\rho} \sum_{j=1}^{n} S(p_{\rho}^{\mathsf{M}_{j}} \| p_{\rho}^{\mathsf{G}_{(j)}}),$$

where G runs through all possible joint observables and $S(\cdot\|\cdot)$ is the Kullback-Leibler distance for probability measures. A possibility: This measure can be generalized also for collections channels and other quantum devices;

$$c(\vec{\Phi}) = \inf_{\Psi \in \mathbf{Q}_{\text{joint}}} \sup_{\rho \in \mathscr{S}_{\text{in}}} \sum_{j=1}^{n} D_j \big(\Phi_j(\rho) \| \Psi_{(j)}(\rho) \big)$$