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Quantum measurements Quantum measurements: Instruments

I physical system ∼ H , states: S (H )

I measurement outcomes: (Ω,Σ)

I post-measurement system ∼ K , trace class: T (K )

measurement ∼ instrument Γ:

I Γ : Σ×S (H )→ T (K )

I Γ(X, ·) CP maps, X = Ω: CPTP map

I tr[Γ(·, ρ)] probability measure for all ρ ∈ S (H )

I denote Γ(X, ·) = ΓX



Parts of a measurement: observable and channel

Measurement (instrument Γ) contains a statistics branch,
observable MΓ, and an unconditioned state transformation branch,
channel EΓ.

Measurement and its parts

Measurement device ∼ instrument Γ
.

Measurement and its parts

An initial state is subjected to a measurement
. . .

Measurement and its parts

. . . and outcome ω ∈ X is registered with prob.
pMΓ
ρ (X) = tr[Γ(X, ρ)]. . .



Measurement and its parts

. . . and, conditioned by this, conditional output state exits the
device.

Measurement and its parts

Neglect the state transformations: you obtain the observable
(POVM) MΓ measured by Γ.

Measurement and its parts

Neglect the outcome statistics: you obtain the unconditioned
channel (CPTP map) induced by Γ.

From now on, we call elements of quantum measurements,
observables, channels, and instruments, as quantum
(measurement) devices.



Compatibility and incompatibility

An observable-channel pair (M,E ) is compatible if they can be
implemented simultaneously in a measurement.
This means that there is an instrument Γ such that

M = MΓ, E = EΓ.

Let’s generalize this notion for other quantum devices (n-tuples of
them, n ≥ 2).

Some notations

Following notations shall be used throughout the rest of this talk.
Fix

I (convex) sets Qj , j = 1, . . . , n, of similar quantum devices

with input state space Sin and output state spaces S j
out,

I Q := Q1 × · · · ×Qn, and

I Sout :=
⊗n

j=1 S j
out, the set Qjoint of devices

Ψ : Sin → Sout.

Typically input system is a quantum system: Sin = S (H ).
Output system determines the type of devices studied:

I S j
out = S (Kj) ⇒ Qj consists of channels.

I S j
out is a set of probability measures on a measurable space
⇒ Qj consists of observables.

Formal definition

[E. H., T. Heinosaari, J.-P. Pellonpää, Rev. Math. Phys. 26,
1450002 (2014)]:

Definition
Collection ~Φ ∈ Q is compatible if there is a device Ψ ∈ Qjoint such

that Φj = Ψ(j) = πj ◦Ψ, j = 1, . . . , n. Otherwise, ~Φ is

incompatible. The subset of compatible device n-tuples ~Φ ∈ Q is
denoted by Comp.

Above, πj is the j:th marginalization; partial trace, summing up
classical outcomes. . .



Device Ψ has a joint system as its output system.

Ignoring the second arm. . . Ignoring the second arm gives the first marginal Ψ(1).



Similarly, one obtains. . . Similarly, one obtains the second marginal Ψ(2).

Device Γ is a joint device for the subdevices Ψ(1) and Ψ(2).

Different notions of compatibility

In addition to the observable-channel compatibility, the above
definition of compatibility encompasses the following notions for
pairs devices of the same type:

I observable-observable case: joint measurability

I channel-channel case: broadcastability



Joint measurability Joint measurability

Joint measurability Joint measurability



Broadcastability Broadcastability

Broadcastability Broadcastability



Broadcastability Incompatibility as a resource

Incompatibility and EPR-steering

A bipartite state ρAB ∈ S (HA ⊗HB) is (A→ B)-steerable if
there is a collection of observables ~M = (M1, . . . , Mn) on
subsystem A such that, by measuring ~M on A, one can steer the
conditional sub-system state on B outside a state assemblage like
the ones arising from local-hidden-state models.

For this steering to succeed, ~M has to be incompatible.

I [M. T. Quintino, T. Vértesi, and N. Brunner, Phys. Rev. Lett.
113, 160402 (2014)]

I [R. Uola, T. Moroder, and O. Gühne, Phys. Rev. Lett. 113,
160403 (2014)]

Incompatibility is a resource.

Compatibility non-decreasing operations

Examples on operations on collections of devices that preserve
compatibility:

I common pre-processing

I post-processing

Let’s illustrate these for a ~Φ ∈ Q.



Common pre-processing

Before applying each device, a common preprocessing (a fixed
device Θ : Sprae → Sin) is applied. For a possible joint device Ψ,
this means a single preprocessing by Θ.

We denote ~Φ′ ≤prae
~Φ if there is Θ such that Φ′j = Φj ◦Θ,

j = 1, . . . , n.

I If ~Φ ∈ Comp, then ~Φ′ ∈ Comp.

I Typically, the input system of the devices is fully quantum
system implying that Θ is a quantum channel.

Post-processing

After operating with device Φj , operate with a post-processing (a

device αj : S j
out → S j

post). For a possible joint device this means
post-processing with α1 ⊗ · · · ⊗ αn.

We denote ~Φ′ ≤post
~Φ if there is ~α such that Φ′j = αj ◦ Φj ,

j = 1, . . . , n.

I If ~Φ ∈ Comp, then ~Φ′ ∈ Comp.

I If, e.g., output system j is classical (Φj is an observable), αj
is a classical-to-classical channel, i.e., a statistical operator.



Quantification schemes Quantification schemes

How to measure the separation of ~Φ ∈ Q \Comp from the
(convex) zero-resource set Comp?

Requirements for an incompatibility measure

For D : Q→ R+ to be a measure for incompatibility, we require,
at least, the following:

I D(~Φ) = 0 if and only if ~Φ ∈ Comp.

I D is a convex function.

I If ~Φ′ ≤prae
~Φ, D(~Φ′) ≤ D(~Φ).

I If ~Φ′ ≤post
~Φ, D(~Φ′) ≤ D(~Φ).

Compatible approximations

~Φ is incompatible.



Compatible approximations

Approximate ~Φ with. . .

Compatible approximations

Approximate ~Φ with marginals of a joint device Ψ : Sin → Sout.

Determine:

I Approx~Φ, the set of all accepted approximate joint devices

Ψ for ~Φ,

I a method of evaluating the approximation between Φj and
Ψ(j), j = 1, . . . , n, for Ψ ∈ Approx~Φ.

Extremize the above approximation over Ψ ∈ Approx~Φ.
⇒ measure for incompatibility

Let us look at two ways of doing this.

Noise robustness of incompatibility

Different types of noise can be mixed with ~Φ:

I compatible noise,

Approx~Φ

= {Ψ |Ψ(j) = wΦj + (1− w)Θj , w ∈ [0, 1], ~Θ ∈ Comp}

I general noise,

Ãpprox~Φ = {Ψ |Ψ(j) = wΦj+(1−w)Θj , w ∈ [0, 1], ~Θ ∈ Q}.

Determine how much noise can be mixed with ~Φ before the
mixture becomes compatible.



r(~Φ|~Θ) := inf
{
s ≥ 0 | 1

s+ 1
(~Φ + s~Θ) ∈ Comp

}
,

r(~Φ) := inf
~Θ∈Comp

r(~Φ|~Θ)

Comp 3 ~Ψ = (Ψ(1), . . . ,Ψ(n)) = 1
r(~Φ)+1

~Φ + r(~Φ)

r(~Φ)+1
~Θ

r(~Φ|~Θ) := inf
{
s ≥ 0 | 1

s+ 1
(~Φ + s~Θ) ∈ Comp

}
,

R(~Φ) := inf
~Θ′∈Q

r(~Φ|~Θ′)

Comp 3 ~Ψ′ = (Ψ′(1), . . . ,Ψ
′
(n)) = 1

R(~Φ)+1
~Φ + R(~Φ)

R(~Φ)+1
~Θ′

Properties of the robustness measures

We call both r and R as robustness of incompatibility. R (and r)
has the following properties:

I 0 ≤ R(~Φ) ≤ n− 1 for all ~Φ ∈ Q.

I If the input system is of dimension d <∞, R(~Φ) ≤ d(n−1)
d+n .

I The earlier requirements are met.

Reading on this and similar measures:

I E. H., J. Phys. A: Math. Theor. 48, 255303 (2015): this case

I C. Napoli et al. Phys. Rev. Lett. 116, 150502 (2016):
robustness of coherence

I G. Vidal and R. Tarrach, Phys. Rev. A 59, 141-155 (1998):
robustness of entanglement

I P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Phys. Rev.
Lett. 112, 180404 (2014): steerable weight



Utilizing covariance

The input and output systems feature symmetry properties
associated with a symmetry group G:

I Group actions:
I G 3 g 7→ γg ∈ Aut(Sin),
I G 3 g 7→ δg ∈ Aut(Sout),
I G 3 g 7→ δjg ∈ Aut(S j

out), j = 1, . . . , n,
I πj ◦ δg = δjg ◦ πj .

I Covariant devices:
I Covδγ := {Ψ ∈ Qjoint |Ψ ◦ γg = δg ◦Ψ ∀g ∈ G},
I Covδ

j

γ := {Φ ∈ Qj |Φ ◦ γg = δjg ◦ Φ ∀g ∈ G}, j = 1, . . . , n,
and

I Cov
~δ
γ :=

∏n
j=1 Covδ

j

γ .

Utilizing covariance

Under certain conditions, e.g., G is finite, covariance simplifies the
evaluation of robustness:

Proposition

Whenever ~Φ ∈ Cov
~δ
γ ,

r(~Φ) = inf
~Θ∈Cov

~δ
γ∩Comp

r(~Φ|~Θ)

R(~Φ) = inf
~Θ∈Cov

~δ
γ

r(~Φ|~Θ)

This result greatly simplifies calculating the robustness for
physically meaningful sets of devices.

Examples

Let’s take a look at three bipartite exemplary cases; an
observable-observable, channel-channel, and observable-channel
case.

Fourier-coupled rank-1 PVMs
For any finite d ∈ N, denote by Hd the d-dimensional complex
Hilbert space. Fix

I an orthonormal basis {ϕj}j∈Zd ⊂Hd,

I the Fourier transform (unitary operator) F ∈ L (Hd),

Fϕk =
1√
d

∑
j∈Zd

ei2πjk/dϕj =: ψk,

I observables Q =
(
Q(j)

)
j∈Zd

and P =
(
P(k)

)
k∈Zd

,

Q(j) = |ϕj〉〈ϕj |, P(k) = |ψk〉〈ψk|,

and

I unitary operators U(q), V (p), and W (q, p),

U(q)ϕj = ϕj+q, V (p)ϕj = ei2πjp/dϕj , W (q, p) = U(q)V (p).



Fourier-coupled rank-1 PVMs

Weyl covariance largely as in C. Carmeli, T. Heinosaari, and A.
Toigo, Phys. Rev. A 85, 012109 (2012):

W (q, p)∗Q(j)W (q, p) = Q(j−q), W (q, p)∗P(k)W (q, p) = P(k−p).

Using this, one obtains

R(Q,P) =

√
d− 1√
d+ 1

.

⇒ as d→∞, R(Q,P) tends to the maximal value 1.

Maximal robustness for pairs of channels

Let d <∞, K1 and K2 be Hilbert spaces, and
E1 : S (Hd)→ S (K1) and E2 : S (Hd)→ S (K2) be channels.
Using

I monotonicity of R and

I U(d)-symmetry of idL (Hd) (T. Eggeling and R. F. Werner,
Phys. Rev. A 63, 042111 (2001)),

one obtains

R(E1,E2) ≤ R(idL (Hd), idL (Hd)) =
d− 1

d+ 1

The same holds for the other measure r.

A rank-1 PVM and a channel

Let d <∞ and {ϕj}j∈Zd ⊂Hd be an orthonormal basis. Define

I the observable A =
(
A(j)

)
j∈Zd

,

A(j) = |ϕj〉〈ϕj |, j ∈ Zd,

and

I the unitaries W (q, p) as earlier.

To evaluate R(A, idL (Hd)) it suffices to consider noise of the form
(N,G ), where

W (q, p)∗N(j)W (q, p) = N(j − q),
G
(
W (q, p)ρW (q, p)∗

)
= W (q, p)G (ρ)W (q, p)∗.

A rank-1 PVM and a channel

Let E : S (Hd)→ S (K ) be a channel.
Using

I the monotonicity of R and

I the symmetry properties of A and idL (Hd),

one obtains

R(A,E ) ≤ R(A, idL (Hd)) =

√
d− 1√
d+ 1

.



When idS (Hd) ≤post E :

T(j) =
1

d
, EA(ρ) =

d∑
j=1

A(j)ρA(j),

Γj(ρ) =

√
d

2(
√
d+ 1)

E
(
(d−1/2

1 + A(j))ρ(d−1/2
1 + A(j))

)

Other interesting examples

There are several other physically motivated cases of incompatible
devices where robustness measures could be evaluated:

I Cases where n ≥ 3, e.g., evaluate R(id,Q,P) or r(id,Q,P).
I Infinite-dimensional cases, e.g., evaluate R(Q,P) of r(Q,P)

where (Q,P) is the sharp position-momentum pair on L2(R).
I Conjecture:

R(Q,P) = r(Q,P) = 1 (maximally incompatible)

Other measures for observable incompatibility

Several proposals for measuring observable-observable
incompatibility exist:

I

Rp(M,N) = inf{t ≥ 0 | (Mt,p,Nt,p) ∈ Comp} where

Mt,p(i) = (1− t)M(i) + tp(i)1

I P. Busch, T. Heinosaari, J. Schultz, and N. Stevens, EPL 103
10002 (2013)

I C. Carmeli, T. Heinosaari, and A. Toigo, Phys. Rev. A 85,
012109 (2012)

I T. Heinosaari, J. Kiukas, and D. Reitzner, Phys. Rev. A 92
022115 (2015)

I T. Heinosaari, J. Schultz, A. Toigo, and M. Ziman, Phys. Lett.
A 378 1695-1699 (2014)

I Same measure can also be defined for testers (as Mário told us
earlier today).

Other measures for observable incompatibility

I

RT (M,N) = inf{t ≥ 0 | (Mt,T ,Nt,T ) ∈ Comp} where

Mt,T (i) = (1− t)M(i) + tT
(
M(i)

)
,

and T is the completely depolarizing channel
I T. Heinosaari, J. Kiukas, and D. Reitzner, Phys. Rev. A 92

022115 (2015)

Both this measure and the previous one generalize to the
multipartite case.



Other measures for observable incompatibility

An entropic measure [A. Barchielli, M. Gregoratti, and A. Toigo:
arXiv:1608.01986, arXiv:1705.09949]:

c(~M) = inf
G

sup
ρ

n∑
j=1

S(p
Mj
ρ ‖p

G(j)
ρ ),

where G runs through all possible joint observables and S(·‖·) is
the Kullback-Leibler distance for probability measures.
A possibility: This measure can be generalized also for collections
channels and other quantum devices;

c(~Φ) = inf
Ψ∈Qjoint

sup
ρ∈Sin

n∑
j=1

Dj

(
Φj(ρ)‖Ψ(j)(ρ)

)
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