Qubit triple measurement uncertainty

Oliver Reardon-Smith

University of York
ors510@york.ac.uk
September 19, 2017

Overview

(1) Measurement uncertainty basics

(2) Covariance

(3) Specific case

The problem

- Fix a Hilbert space \mathcal{H}
- Have some family $\left\{A_{i} \mid i \in 1 \ldots n\right\}$ of incompatible observables we would like to measure $A_{i}: \Omega_{i} \rightarrow \mathcal{L}(\mathcal{H})$
- Consider an arbitrary family of compatible observables, with the same outcome spaces $B_{i}: \Omega_{i} \rightarrow \mathcal{L}(\mathcal{H})$
- Ensure compatibility by requiring that the B_{i} are marginals of some joint $J: \prod_{i} \Omega_{i} \rightarrow \mathcal{L}(\mathcal{H})$
- Choose a figure of merit δ for an approximation and explore the set of allowed vectors $\left(\delta\left(A_{1}, B_{1}\right), \ldots \delta\left(A_{n}, B_{n}\right)\right)$

The problem

Figures of merit

- POVM + state $=$ probabilty distribution
- Statisticians know many ways of measuring similarity of probability distributions
- Here we take the worst case difference of the probabilities
- Symbolically

$$
\begin{equation*}
d(P, Q)=\sup _{\omega \in \Omega}|P(\omega)-Q(\omega)| \tag{1}
\end{equation*}
$$

- Which state to use? -The worst one!
- Sup "norm" of a POVM

$$
\begin{align*}
\|E\|_{\text {sup }}: & =\sup _{\rho} \sup _{\omega \in \Omega}|\operatorname{tr}(E(\omega) \rho)| \tag{2}\\
d(E, F) & =\|E-F\|_{\text {sup }} \tag{3}
\end{align*}
$$

The difficult bit

- Exploring the space of joints is hard
- $J: \prod_{i} \Omega_{i} \rightarrow \mathcal{L}(\mathcal{H})$ is often a POVM with very many outcomes
- Explicit parameterisations are not known
- Sometimes we can impose covariance to reduce the search space
- Dammeier, Schwonnek and Werner NJP 1709.3046
- Carmeli, Heinosaari, Reitzner, Schultz and Toigo Mathematics 20164 54
- Busch, Kiukas and Werner arXiv:1604.00566
- many others

Covariance (1)

- Given a group G, with an action (\cdot) on a set Ω, and an (anti-) unitary projective representation $\left\{U_{g} \mid g \in G\right\}$ acting on Hilbert space \mathcal{H} we say an observable $E: \Omega \rightarrow \mathcal{L}(\mathcal{H})$ is covariant if

$$
\begin{equation*}
E(g \cdot \omega)=U_{g} E(\omega) U_{g}^{*}, \quad \forall g \in G, \omega \in \Omega \tag{4}
\end{equation*}
$$

- We can't require this in general, but covariance is often present in physically relevant scenarios
- For all self-adjoint operators ρ, and for all $g, h \in G$ we have

$$
\begin{equation*}
U_{g} U_{h} \rho U_{h}^{*} U_{g}^{*}=U_{g h} \rho U_{g h}^{*} \tag{5}
\end{equation*}
$$

Covariance (2)

- Given G and U_{g} we can define the group averaging map, which maps POVMs to POVMs

$$
\begin{equation*}
M(E)(\omega)=\frac{1}{|G|} \sum_{g \in G} U_{g^{-1}} E(g \cdot \omega) U_{g^{-1}}^{*} \tag{6}
\end{equation*}
$$

- Covariant observables are invariant under M
- It is easy to verify that $M(E)$ is always covariant
- Under an additional (natural) assumption M also acts to reduce the sup-norm of a POVM: $\forall \omega, \omega^{\prime} \in \Omega$

$$
\begin{equation*}
\left|\left\{g \in G \mid g \cdot \omega=\omega^{\prime}\right\}\right|=\frac{|G|}{|\Omega|} \tag{7}
\end{equation*}
$$

Qubit orthogonal triple

- Attempting to simultaneously approximate the observables

$$
\begin{align*}
A_{ \pm} & =\frac{1}{2}(1 \pm \vec{a} \cdot \vec{\sigma}) \tag{8}\\
B_{ \pm} & =\frac{1}{2}(1 \pm \vec{b} \cdot \vec{\sigma}) \tag{9}\\
C_{ \pm} & =\frac{1}{2}(1 \pm \vec{c} \cdot \vec{\sigma}) \tag{10}
\end{align*}
$$

where $\vec{a}, \vec{b}, \vec{c}$ are pairwise orthogonal

- Column vectors will be written in the $\vec{a}, \vec{b}, \vec{c}$ basis so

$$
\vec{a}=\left(\begin{array}{l}
1 \tag{11}\\
0 \\
0
\end{array}\right) \quad \vec{b}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \vec{c}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Approximators

- Define

$$
\begin{align*}
D_{k} & =\frac{1}{2}\left(1+k d_{0}+k \vec{d} \cdot \vec{\sigma}\right)=\sum_{l, m} J_{k l m} \tag{12}\\
E_{I} & =\frac{1}{2}\left(1+l d_{0}+l \vec{d} \cdot \vec{\sigma}\right)=\sum_{k, m} J_{k l m} \tag{13}\\
F_{m} & =\frac{1}{2}\left(1+m d_{0}+m \vec{d} \cdot \vec{\sigma}\right)=\sum_{k, l} J_{k l m} \tag{14}
\end{align*}
$$

where $k, I, m \in\{+1,-1\}$

- We must impose the constraints $J_{k l m} \geq 0$ and $\sum_{k l m} J_{k l m}=1$

What group should we use?

- We need $\frac{|G|}{|\Omega|} \in \mathbb{Z}$, so look for an 8 element group
- A natural choice is given by the elementary Abelian group $\mathrm{E} 8 \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}$
- We can label each group element with a tuple of three numbers, each either 1 or -1 then

$$
\begin{equation*}
g(h, i, j) g(k, l, m)=g(h k, i l, j m) \tag{15}
\end{equation*}
$$

- The group action on Ω is similar

$$
\begin{equation*}
g(h, i, j) \cdot(k, l, m)=(h k, i l, j m) \tag{16}
\end{equation*}
$$

Representation

- It is easy to verify that the following assignments give a projective representation of E8 with the required properties

$$
\begin{array}{ll}
U_{g(+,+,+)}=I & U_{g(-,-,-)}=\Gamma \\
U_{g(+,-,-)}=X & U_{g(-,+,+)}=\Gamma X \\
U_{g(-,+,-)}=Y & U_{g(+,-,+)}=\Gamma Y \\
U_{g(-,-,+)}=Z & U_{g(+,+,-)}=\Gamma Z \tag{20}
\end{array}
$$

- Γ is an anti-unitary operator obeying $\Gamma(I+\vec{r} \cdot \vec{\sigma}) \Gamma^{*}=I-\vec{r} \cdot \sigma, \forall r \in \mathbb{R}^{3}$

The main result (1)

- We consider a different group action depending on which marginal we are looking at
- For example, for the first marginal we use $g(k, l, m) \cdot h=k h$, for the second $g(k, l, m) \cdot i=l i$, etc.
- These marginal actions obey all the assumptions we need, and the target measurements are covariant so

$$
\begin{align*}
& M(A)=A \tag{21}\\
& M(B)=B \tag{22}\\
& M(C)=C \tag{23}
\end{align*}
$$

The main result (2)

- In particular

$$
\begin{align*}
d(M(D), A) & =d(M(D), M(A)) \tag{25}\\
& =\|M(D-A)\|_{\text {sup }} \tag{26}\\
& \leq\|D-A\|_{\text {sup }} \tag{27}\\
& =d(D, A) \tag{28}
\end{align*}
$$

- and similar for the B, E, and C, F pairs
- Applying the map to a joint observable therefore does not increase the error of any of the marginals

The main result (3)

- Covariance fixes the form of J

$$
J_{k, l, m}=\frac{1}{8}\left(I+\left(\begin{array}{c}
k j_{x} \tag{29}\\
l j_{y} \\
m j_{z}
\end{array}\right) \cdot \vec{\sigma}\right)
$$

- where j_{x}, j_{y} and j_{z} may be chosen freely as long as $j_{x}^{2}+j_{y}^{2}+j_{z}^{2} \leq 1$
- Computing the marginals then gives $d(D, A)=\frac{1}{2}\left(1-j_{x}\right)$, and similar for y and z
- The set of allowed $(d(D, A), d(E, B), d(F, C))$ values is therefore a sphere of radius $\frac{1}{2}$, centered at point $\frac{1}{2}$

Thank you for your time and hopefully your attention!

Covariance of group averaging mapped observable

$$
\begin{equation*}
M(E)(\omega)=\frac{1}{|G|} \sum_{g \in G} U_{g^{-1}} E(g \cdot \omega) U_{g^{-1}}^{*} \tag{30}
\end{equation*}
$$

Let $\tilde{g} h=g$

$$
\begin{align*}
M(E)(\omega) & =\frac{1}{|G|} \sum_{\tilde{g} \in G} U_{h^{-1} \tilde{g}^{-1}} E(\tilde{g} h \cdot \omega) U_{h^{-1} \tilde{g}^{-1}}^{*} \tag{31}\\
& =U_{h^{-1}}\left(\frac{1}{|G|} \sum_{\tilde{g} \in G} U_{\tilde{g}^{-1}} E(\tilde{g} h \cdot \omega) U_{\tilde{g}^{-1}}^{*}\right) U_{h^{-1}}^{*} \tag{32}\\
\Longrightarrow U_{h} M(E)(\omega) U_{h}^{*} & =M(E)(h \cdot \omega) \tag{33}
\end{align*}
$$

M acts to reduce the sup-norm

$$
\begin{align*}
\|M(E)\|_{\text {sup }} & =\sup _{\omega}\|M(E)(\omega)\| \tag{34}\\
& =\sup _{\omega}\left\|\frac{1}{|G|} \sum_{g \in G} U_{g^{-1}} E(g \cdot \omega) U_{g^{-1}}^{*}\right\| \tag{35}\\
& \leq \frac{1}{|G|} \sup _{\omega} \sum_{g \in G}\left\|U_{g^{-1}} E(g \cdot \omega) U_{g^{-1}}^{*}\right\| \tag{36}\\
& =\frac{1}{|\Omega|} \sup _{\omega} \sum_{\omega^{\prime} \in \Omega}\left\|E\left(\omega^{\prime}\right)\right\| \tag{37}\\
& \leq \sup _{\omega}\|E(\omega)\| \tag{38}\\
& =\|E\|_{\text {sup }} \tag{39}
\end{align*}
$$

