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The problem

Fix a Hilbert space H
Have some family {Ai | i ∈ 1...n} of incompatible observables we
would like to measure Ai : Ωi → L(H)

Consider an arbitrary family of compatible observables, with the same
outcome spaces Bi : Ωi → L(H)

Ensure compatibility by requiring that the Bi are marginals of some
joint J :

∏
i Ωi → L(H)

Choose a figure of merit δ for an approximation and explore the set of
allowed vectors (δ(A1,B1), ...δ(An,Bn))
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Figures of merit

POVM + state = probabilty distribution

Statisticians know many ways of measuring similarity of probability
distributions

Here we take the worst case difference of the probabilities

Symbolically
d(P,Q) = sup

ω∈Ω
|P(ω)− Q(ω)| (1)

Which state to use? -The worst one!

Sup “norm” of a POVM

||E ||sup : = sup
ρ

sup
ω∈Ω
|tr(E (ω)ρ)| (2)

d(E ,F ) = ||E − F ||sup (3)
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The difficult bit

Exploring the space of joints is hard

J :
∏

i Ωi → L(H) is often a POVM with very many outcomes

Explicit parameterisations are not known

Sometimes we can impose covariance to reduce the search space

Dammeier, Schwonnek and Werner NJP 1709.3046
Carmeli, Heinosaari, Reitzner, Schultz and Toigo Mathematics 2016 4
54
Busch, Kiukas and Werner arXiv:1604.00566
many others

Oliver Reardon-Smith (University of York) Qubit triple September 19, 2017 6 / 19



Covariance (1)

Given a group G , with an action (·) on a set Ω, and an (anti-)unitary
projective representation {Ug | g ∈ G} acting on Hilbert space H we
say an observable E : Ω→ L(H) is covariant if

E (g · ω) = UgE (ω)U∗g , ∀g ∈ G , ω ∈ Ω (4)

We can’t require this in general, but covariance is often present in
physically relevant scenarios

For all self-adjoint operators ρ, and for all g , h ∈ G we have

UgUh ρU
∗
hU
∗
g = Ugh ρU

∗
gh (5)
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Covariance (2)

Given G and Ug we can define the group averaging map, which maps
POVMs to POVMs

M(E )(ω) =
1

|G |
∑
g∈G

Ug−1E (g .ω)U∗g−1 (6)

Covariant observables are invariant under M

It is easy to verify that M(E ) is always covariant

Under an additional (natural) assumption M also acts to reduce the
sup-norm of a POVM: ∀ω, ω′ ∈ Ω

∣∣{g ∈ G | g .ω = ω′}
∣∣ =
|G |
|Ω|

(7)

Oliver Reardon-Smith (University of York) Qubit triple September 19, 2017 8 / 19



Qubit orthogonal triple

Attempting to simultaneously approximate the observables

A± =
1

2
(1±~a · ~σ) (8)

B± =
1

2

(
1± ~b · ~σ

)
(9)

C± =
1

2
(1± ~c · ~σ) , (10)

where ~a, ~b, ~c are pairwise orthogonal

Column vectors will be written in the ~a, ~b, ~c basis so

~a =

1
0
0

 ~b =

0
1
0

 ~c =

0
0
1

 (11)

Oliver Reardon-Smith (University of York) Qubit triple September 19, 2017 9 / 19



Approximators

Define

Dk =
1

2

(
1 + kd0 + k~d · ~σ

)
=
∑
l ,m

Jklm (12)

El =
1

2

(
1 + ld0 + l~d · ~σ

)
=
∑
k,m

Jklm (13)

Fm =
1

2

(
1 + md0 + m~d · ~σ

)
=
∑
k,l

Jklm, (14)

where k , l ,m ∈ {+1,−1}
We must impose the constraints Jklm ≥ 0 and

∑
klm Jklm = 1
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What group should we use?

We need |G ||Ω| ∈ Z, so look for an 8 element group

A natural choice is given by the elementary Abelian group
E8 ∼= (Z/2Z)3

We can label each group element with a tuple of three numbers, each
either 1 or −1 then

g(h, i , j) g(k, l ,m) = g(hk, il , jm) (15)

The group action on Ω is similar

g(h, i , j) · (k , l ,m) = (hk, il , jm) (16)
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Representation

It is easy to verify that the following assignments give a projective
representation of E8 with the required properties

Ug(+,+,+) = I Ug(−,−,−) = Γ (17)

Ug(+,−,−) = X Ug(−,+,+) = Γ X (18)

Ug(−,+,−) = Y Ug(+,−,+) = Γ Y (19)

Ug(−,−,+) = Z Ug(+,+,−) = Γ Z (20)

Γ is an anti-unitary operator obeying Γ (I +~r · ~σ) Γ∗ = I−~r ·σ, ∀r ∈ R3
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The main result (1)

We consider a different group action depending on which marginal we
are looking at

For example, for the first marginal we use g(k , l ,m) · h = kh, for the
second g(k , l ,m) · i = li , etc.

These marginal actions obey all the assumptions we need, and the
target measurements are covariant so

M(A) = A (21)

M(B) = B (22)

M(C ) = C (23)

(24)
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The main result (2)

In particular

d(M(D),A) = d(M(D),M(A)) (25)

= ||M(D − A) ||sup (26)

≤ ||D − A ||sup (27)

= d(D,A), (28)

and similar for the B, E , and C , F pairs

Applying the map to a joint observable therefore does not increase
the error of any of the marginals
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The main result (3)

Covariance fixes the form of J

Jk,l ,m =
1

8

I +

k jx
l jy
m jz

 · ~σ
 (29)

where jx , jy and jz may be chosen freely as long as j2
x + j2

y + j2
z ≤ 1

Computing the marginals then gives d(D,A) = 1
2 (1− jx), and similar

for y and z

The set of allowed (d(D,A), d(E ,B), d(F ,C )) values is therefore a
sphere of radius 1

2 , centered at point 1
2
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Thank you for your time
and hopefully your attention!
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Covariance of group averaging mapped observable

M(E )(ω) =
1

|G |
∑
g∈G

Ug−1E (g .ω)U∗g−1 (30)

Let g̃h = g

M(E )(ω) =
1

|G |
∑
g̃∈G

Uh−1g̃−1E (g̃h.ω)U∗h−1g̃−1 (31)

= Uh−1

 1

|G |
∑
g̃∈G

Ug̃−1E (g̃h.ω)U∗g̃−1

U∗h−1 (32)

=⇒ UhM(E )(ω)U∗h = M(E )(h.ω) (33)
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M acts to reduce the sup-norm

||M(E ) ||sup = sup
ω
||M(E )(ω)|| (34)

= sup
ω

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

|G |
∑
g∈G

Ug−1E (g .ω)U∗g−1

∣∣∣∣∣∣
∣∣∣∣∣∣ (35)

≤ 1

|G |
sup
ω

∑
g∈G

∣∣∣∣∣∣Ug−1E (g .ω)U∗g−1

∣∣∣∣∣∣ (36)

=
1

|Ω|
sup
ω

∑
ω′∈Ω

∣∣∣∣E (ω′)
∣∣∣∣ (37)

≤ sup
ω
||E (ω)|| (38)

= ||E ||sup (39)
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