Exact Uncertainty Relations

Exploring the quantum boundaries

Sixia Yu

University of Science and Technology of China
\& National University of Singapore
August 2017, Germany

Outline

Two kinds of incompatibility

Two kinds of uncertainty relations

Exact Uncertainty Relations

Summary

Two ways to explore the boundaries

\rightarrow From outside (by adding something to QT)

- Nonlocality: local realism is incompatible with QT
- Contextuality: noncontextual HV is incompatible with QT
- Compatible:

No-signaling, Information Causality, Local orthogonality, ...
\rightarrow From inside (assuming the structure of a Hilbert space)

- Gleason Theorem
- Uncertainty Relations
- Bounds on quantum error-correcting codes
- Universal Cloning Machines
- Quantum metrology
- ...

P.O.S.E of Quantum Theory

- Probability: $P_{\Delta}=\operatorname{Tr}\left(\mathcal{E}(\rho) M_{\Delta}\right)$
- Observable: POVM $\left\{M_{i} \geq 0, \sum M_{i}=I\right\}$
- State: density matrix $\rho \geq 0$
- Evolution: completely positive map $\rho \mapsto \mathcal{E}(\rho)$

Two kinds of uncertainty relations

- Preparation Uncertainty Relations $\leftarrow \rho \geq 0$
- Measurement Uncertainty Relations $\leftarrow \rho \geq 0$ \& $M_{I} \geq 0$
- Heisenberg's microscope
- Joint measurement of two incompatible observables
- Duality inequality
- ...

Examples of Uncertainty Relations

Involving only partial information of the statistics such as

- Variance $\left(\delta_{\rho} A\right)^{2}=\left\langle A^{2}\right\rangle_{\rho}-\langle A\rangle_{\rho}^{2}$
- Quantum Fisher Information (the convex roof of variance)

$$
\left.F_{\rho}(A)=\sum_{i} \frac{2\left(\lambda_{i}-\lambda_{j}\right)^{2}}{\lambda_{i}+\lambda_{j}}|\langle i| A| j\right\rangle\left.\right|^{2}=4 \min _{\left\{p_{i},\left|\psi_{i}\right\rangle\right\}} p_{i}\left(\delta_{\psi_{i}} A\right)^{2}
$$

- Entropy $H(P)=-\sum P_{i} \ln P_{i}=-\ln M_{0}(P)$
- Generalized Entropy

$$
M_{r}(P)=\left(\sum_{i} P_{i}^{1+r}\right)^{1 / r} \quad(-1 \leq r \leq \infty)
$$

Kennard-Robertson-Schrödinger UR

- Kennard

$$
\delta X \delta P \geq \frac{1}{2}
$$

- Schrödinger

$$
(\delta A)^{2}(\delta B)^{2} \geq \frac{1}{4}\left(\langle A B+B A\rangle^{2}+\langle A B-B A\rangle^{2}\right)
$$

- Robertson $\left|\sigma_{X}\right| \geq\left|i \delta_{X}\right|$ where

$$
\left[\left[\sigma_{X}\right]\right]_{k j}=\frac{1}{2}\left\langle X_{k} X_{j}+X_{j} X_{k}\right\rangle-\left\langle X_{k}\right\rangle\left\langle X_{j}\right\rangle, \quad\left[\left[\delta_{X}\right]\right]_{k j}=\frac{i}{2}\left\langle\left[X_{k}, X_{j}\right]\right\rangle
$$

Maassen-Uffink UR

$$
M_{s}(P) M_{r}(Q) \leq c^{2}
$$

- $M_{r}(P)=\left(\sum_{i} P_{i}^{1+r}\right)^{1 / r}$
- $r \geq 0, s=-r /(2 r+1)$, and $c=\max _{i j}\left|\left\langle p_{i} \mid q_{j}\right\rangle\right|$
$\rightarrow r=s=0$

$$
H(P)+H(Q) \geq-2 \ln c
$$

$$
\rightarrow r=\infty, s=-1 / 2
$$

$$
\sqrt{Q_{\max }} \leq c \sum_{n} \sqrt{P_{n}}
$$

Larsen's (exact) uncertainty relation

Consider two observables P and Q and take purities

$$
M_{1}(P)=\sum_{i} P_{i}^{2}=\bar{\pi}_{p}+\frac{1}{d}, \quad M_{1}(Q)=\sum_{i} Q_{i}^{2}=\bar{\pi}_{q}+\frac{1}{d}
$$

as the figures of merit, then it holds

Formulate the problem

Given a set of observables $\{P, Q, R, \ldots\}$ to determine the exact range $\left(\langle P\rangle_{\rho},\langle Q\rangle_{\rho},\langle R\rangle_{\rho}, \ldots\right)$ over all possible state ρ.

- Exact UR: constraints on a set of probabilities under which they can be obtained by measuring the given set of observables in certain quantum state.
- Involves the complete statistics obtained by measuring a set of observables;
- Delineates the exact boundary, i.e., whenever the URs are satisfied there is a quantum state in which the measurements of the given set of observables account for the given statistics.

Gleason Theorem

In the case of $d \geq 3$ if all observables represented by complete orthonormal bases $\{\mathcal{O}\}$ are involved then there is essentially no constraints except the trivial one

$$
\sum P_{i}(\mathcal{O})=1 \quad(\forall \mathcal{O})
$$

Lenard's exact numerical range

Consider two 2-outcome measurements $\{P, I-P\},\{Q, I-Q\}$ with P, Q being projections (without common eigenvector) then

[J. Function Analysis 1972]
with $x=\langle P\rangle_{\rho}, y=\langle Q\rangle_{\rho}$, and $\cos ^{2} \theta_{1,2}$ being the largest and smallest eigenvalues of $Q P Q$.

Exact range for two qubit observables

$$
P+Q-2 \sqrt{P Q} \cos \frac{\theta}{2} \leq \sin ^{2} \frac{\theta}{2}
$$

The boundary

M1: The boundary is the convex hull of possible values attainable by pure states.
M2: Consider the expectations of m observables $\left\{P_{\mu}\right\}_{\mu=1}^{m}$. Let $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{m}\right)$ be an arbitrary unit vector and

$$
\lambda(\mathbf{n})=\text { Largest eigenvalue of } \sum_{\mu} n_{\mu} P_{\mu}
$$

then the boundary is the hypersurface determined by

$$
x_{\mu}=\left\langle P_{\mu}\right\rangle=\frac{\partial \lambda(\mathbf{n})}{\partial n_{\mu}} .
$$

Main Results: Two Unbiased observables

Consider a d-outcome measurement $\{|n\rangle\langle n|\}_{n=0}^{d-1}$ and a 2-outcome measurement $\left\{P_{\theta}=|\theta\rangle\langle\theta|, I-P_{\theta}\right\}$ with

$$
|\theta\rangle=\frac{1}{\sqrt{d}} \sum_{n=0}^{d-1}|n\rangle
$$

For two probability distributions $\left\{P_{n}\right\}$ and $\{Q, 1-Q\}$ there exists a quantum state ρ such that

$$
P_{n}=\langle n| \rho|n\rangle, \quad Q=\left\langle P_{\theta}\right\rangle,
$$

if and only if

$$
\max \left\{0,2 \sqrt{P_{\max }}-\sum_{n=1}^{d-1} \sqrt{P_{n}}\right\} \leq \sqrt{d Q} \leq \sum_{n=0}^{d-1} \sqrt{P_{n}}
$$

$$
d=3
$$

Main Results: Three Unbiased observables

In a 3-level system, consider three 2-outcome measurements
$\left\{P_{0}=|0\rangle\langle 0|, I-P_{0}\right\},\left\{Q_{0}=|\theta\rangle\langle\theta|, I-Q_{0}\right\}$, and
$\left\{R_{0}=|\beta\rangle\langle\beta|, I-R_{0}\right\}$ with

$$
|\beta\rangle=\frac{1}{\sqrt{3}}\left(e^{i \frac{2 \pi}{3}}|0\rangle+|1\rangle+|2\rangle\right)
$$

The values

$$
x=\frac{3\left\langle P_{0}\right\rangle_{\rho}-1}{2}, \quad y=\frac{3\left\langle Q_{0}\right\rangle_{\rho}-1}{2}, \quad z=\frac{3\left\langle R_{0}\right\rangle_{\rho}-1}{2}
$$

are possible if and only if (x, y, z) belongs to the convex hull of

$$
\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right), \quad E\left(x^{2}+y^{2}+z^{2}+x y+x z+y z=x+y+z\right)
$$

Main Result: Angular momentum

Consider the measurements of three components $\left\{J_{x}, J_{y}, J_{z}\right\}$ of spin- 1 system. The corresponding eigenstates are

$$
\begin{aligned}
& J_{x}\left\{\left|x_{ \pm}\right\rangle=\frac{1}{2}(|-1\rangle \pm \sqrt{2}|0\rangle+|1\rangle),|-\rangle=\frac{1}{\sqrt{2}}(|-1\rangle-|1\rangle)\right\} \\
& J_{y}\left\{\left|y_{ \pm}\right\rangle=\frac{1}{2}(|-1\rangle \pm i \sqrt{2}|0\rangle-|1\rangle),|+\rangle=\frac{1}{\sqrt{2}}(|-1\rangle+|1\rangle)\right\} \\
& J_{z}\{|-1\rangle,|0\rangle,|1\rangle\}
\end{aligned}
$$

As a result, among three sets of probability distributions $\left\{P_{x_{ \pm}}, P_{-}\right\},\left\{P_{y \pm}, P_{+}\right\},\left\{P_{ \pm 1}, P_{0}\right\}$ there are only 5 independent parameters since $P_{0}+P_{+}+P_{-}=1$ and we denote

$$
\begin{gathered}
\left\langle J_{x}\right\rangle=\left\langle P_{x_{+}-}-P_{x_{-}}\right\rangle,\left\langle J_{y}\right\rangle=\left\langle P_{y_{+}}-P_{y_{-}}\right\rangle,\left\langle J_{z}\right\rangle=\left\langle P_{1}-P_{-1}\right\rangle, \\
\theta_{x}=\left\langle P_{-}\right\rangle, \theta_{y}=\left\langle P_{+}\right\rangle, \theta_{z}=\left\langle P_{0}\right\rangle
\end{gathered}
$$

$$
\begin{gathered}
\theta_{x}\left\langle J_{x}\right\rangle^{2}+\theta_{y}\left\langle J_{y}\right\rangle^{2}+\theta_{z}\left\langle J_{z}\right\rangle^{2} \\
\leq 8 \theta_{x} \theta_{y} \theta_{z}+\sqrt{\left(4 \theta_{y} \theta_{z}-\left\langle J_{x}\right\rangle^{2}\right)\left(4 \theta_{z} \theta_{x}-\left\langle J_{y}\right\rangle^{2}\right)\left(4 \theta_{x} \theta_{y}-\left\langle J_{z}\right\rangle^{2}\right)}
\end{gathered}
$$

$$
\begin{aligned}
x & =\frac{\left\langle J_{x}\right\rangle}{2 \sqrt{\theta_{z} \theta_{y}}}, \\
y & =\frac{\left\langle J_{y}\right\rangle}{2 \sqrt{\theta_{z} \theta_{x}}}, \\
z & =\frac{\left\langle J_{z}\right\rangle}{2 \sqrt{\theta_{x} \theta_{y}}}
\end{aligned}
$$

Asymmetric Universal Cloning Machines

- One to two asymmetric UCM.
- $F=\frac{d+f}{d(d+1)}$
- Exact ranges of

$$
\begin{aligned}
& f_{1}=d\left\langle\hat{\Phi}_{01} \otimes I_{2}\right\rangle \\
& f_{2}=d\left\langle\hat{\Phi}_{02} \otimes I_{1}\right\rangle
\end{aligned}
$$

over all states ρ_{012}.

- $|\Phi\rangle_{0 k}=\sum_{n}|n\rangle_{0} \otimes|n\rangle_{k}$

Asymmetric Universal Cloning Machines

- One to three.
- $F=\frac{d+f}{d(d+1)}$
- Exact ranges of

$$
\begin{aligned}
& f_{1}=d\left\langle\hat{\Phi}_{01} \otimes I_{23}\right\rangle, \\
& f_{2}=d\left\langle\hat{\Phi}_{02} \otimes I_{13}\right\rangle, \\
& f_{3}=d\left\langle\hat{\Phi}_{03} \otimes I_{12}\right\rangle,
\end{aligned}
$$

over all states ρ_{0123}.
[MJ\&SY, JMP 2010]

Uncertainty relation via parameter estimation

$$
\frac{1}{I_{A}}+\frac{1}{I_{B}} \geq 3
$$

- In order to estimate two parameters $a=\langle A\rangle_{\rho}$ and $b=\langle B\rangle_{\rho}$ in a qubit state ρ, we let the qubit interact with a meter qubit

$$
U|k\rangle\left|\phi_{0}\right\rangle=|k\rangle\left|\phi_{k}\right\rangle .
$$

- Two measurements $A=\vec{a} \cdot \vec{\sigma}$ and $B=\vec{b} \cdot \vec{\sigma}$ are made on the meter and system respectively. The precisions are quantified by the Fisher information of corresponding statistics

$$
\Delta \varphi^{2} \geq \frac{1}{n l}, \quad I=\sum_{k} \frac{\dot{p}_{k}^{2}}{p_{k}} .
$$

$\frac{1}{I_{A}} \frac{1}{I_{B}} \geq(\vec{a} \times \vec{b})^{2}$

Summary

- Two kinds of incompatibility lead to two ways of exploring the quantum boundary.
- Two ways to determine the exact range of the statistics, i.e., exact uncertainty relation, of a set of observables, e.g.,

- Two applications illustrated. Might help strengthen the usual uncertainty relations; determine the best performance of some informational operations; establish some measurement uncertainty relations; detection of entanglement (to do).

