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Two ways to explore the boundaries

→ From outside (by adding something to QT)

• Nonlocality: local realism is incompatible with QT
• Contextuality: noncontextual HV is incompatible with QT
• Compatible:

No-signaling, Information Causality, Local orthogonality, ...

→ From inside (assuming the structure of a Hilbert space)

• Gleason Theorem
• Uncertainty Relations
• Bounds on quantum error-correcting codes
• Universal Cloning Machines
• Quantum metrology
• ...
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P.O.S.E of Quantum Theory

• Probability: P∆ = Tr(E(ρ)M∆)

• Observable: POVM {Mi ≥ 0,
∑

Mi = I}
• State: density matrix ρ ≥ 0

• Evolution: completely positive map ρ 7→ E(ρ)
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Two kinds of uncertainty relations

• Preparation Uncertainty Relations ← ρ ≥ 0

• Measurement Uncertainty Relations ← ρ ≥ 0 & MI ≥ 0
• Heisenberg’s microscope
• Joint measurement of two incompatible observables
• Duality inequality
• ...
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Examples of Uncertainty Relations

Involving only partial information of the statistics such as

• Variance (δρA)2 = 〈A2〉ρ − 〈A〉2ρ
• Quantum Fisher Information (the convex roof of variance)

Fρ(A) =
∑
i

2(λi − λj)2

λi + λj
|〈i |A|j〉|2 = 4 min

{pi ,|ψi 〉}
pi (δψi

A)2

• Entropy H(P) = −∑Pi lnPi = − lnM0(P)

• Generalized Entropy

Mr (P) =

(∑
i

P1+r
i

)1/r

(−1 ≤ r ≤ ∞)
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Kennard-Robertson-Schrödinger UR

• Kennard

δX δP ≥ 1

2

• Schrödinger

(δA)2(δB)2 ≥ 1

4
(〈AB + BA〉2 + 〈AB − BA〉2)

• Robertson |σX | ≥ |iδX | where

[[σX ]]kj =
1

2
〈XkXj +XjXk〉−〈Xk〉〈Xj〉, [[δX ]]kj =

i

2
〈[Xk ,Xj ]〉
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Maassen-Uffink UR

Ms(P)Mr (Q) ≤ c2

• Mr (P) =
(∑

i P
1+r
i

)1/r

• r ≥ 0, s = −r/(2r + 1), and c = maxij |〈pi |qj〉|
→ r = s = 0

H(P) + H(Q) ≥ −2 ln c

→ r =∞, s = −1/2 √
Qmax ≤ c

∑
n

√
Pn
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Larsen’s (exact) uncertainty relation

Consider two observables P and Q and take purities

M1(P) =
∑
i

P2
i = π̄p +

1

d
, M1(Q) =

∑
i

Q2
i = π̄q +

1

d

as the figures of merit, then it holds1054 U Larsen 

Figure 1. Accessible region for the values of the two purities (eig, et) associated with a 
pair of aspects forming the minimal angle &,,, and the maximal angle &,, . The purity of 
the measured state is fr < 1 - l /g .  Curved parts of the boundary are segments of ellipses 
given by (42). Unless the aspects have states in common 6 ,  > 0, and the allowed region 
excludes the region near (fr, fr). 

However, this is of little significance with respect to the relationship between the 
aspects sdg and dr. We can decide to project operators from the whole (unit) sphere 
of a2, be they states or not. The relationship remains controlled by the two angles 
4 m  and 4 ~ .  

The uncertainty relations (14) and (15) are obtained by setting 0 = 0, 4 = &, in 
(42). The straight line bound of (14) coincides with the exact boundary for 
perpendicular aspects, &, = ~ / 2 :  

.rr,+iipsR (&,l&) 
without the restriction to prime g of ( 2 6 ) .  

3.5. A geometrical proof 

We use the vector notation defined in section 3.1 .  The vectors W, x, and y span a 
three-dimensional subspace of a2, and x and y span a two-dimensional subspace with 
the geometry of figure 2. Here A is the diameter through 0 of the circumscribed circle 
of the triangle (0, x, y ) .  The angle, in this plane, between x and y is given by (30). 

x is the perpendicular projection of both 
A and W. So A and W both point to a plane perpendicular to x, through its tip. 
Likewise for y .  Thus A and W belong to the intersection of these planes, which is the 
line through the tips of A and W, perpendicular on the ( x , y )  plane. Consequently, 
for the lengths 

In this three-dimensional subspace of 

A s  w. (43) 
Elementary plane geometry gives 

/x  - yJ  = A sin 4. (44) 

[JPA:Math.Gen 1990]
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Formulate the problem

Given a set of observables {P,Q,R, . . .} to determine the exact
range (〈P〉ρ, 〈Q〉ρ, 〈R〉ρ, . . .) over all possible state ρ.

• Exact UR: constraints on a set of probabilities under which
they can be obtained by measuring the given set of
observables in certain quantum state.

• Involves the complete statistics obtained by measuring a set of
observables;

• Delineates the exact boundary, i.e., whenever the URs are
satisfied there is a quantum state in which the measurements
of the given set of observables account for the given statistics.
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Gleason Theorem

In the case of d ≥ 3 if all observables represented by complete
orthonormal bases {O} are involved then there is essentially no
constraints except the trivial one∑

Pi (O) = 1 (∀O).
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Lenard’s exact numerical range

Consider two 2-outcome measurements {P, I − P}, {Q, I − Q}
with P,Q being projections (without common eigenvector) then

THE NUMERICAL RANGE OF A PAIR OF PROJECTIONS 415 

Recalling the formulas (11) and (12), we obtain then 

I 

*( 1 + cos 20, sin 2or) + (sin 2or > 0), 
44 = i (sin 2or = 0), 

Q(1 + cos 20, sin 2a)f (sin 201 < 0). (26) 

This completes the computation of p(a). 
Let B(0) denote the ellipse ((x, y): x = + + & cos(t + 6), 

y = 8 + $cos(t - 13), t real} and L?(O) its convex hull (i.e., the 
“solid” ellipse). Its axes are the diagonals of the unit square, and it is 
tangent to it at the points (sin2 0, 0), (1, cos2 I?), (co9 8, 1) and 
(0, sin2 0). An elementary calculation whose details we omit shows 
that its radius of support with respect to the center (4, *) is p(a) = 
8(1 + cos 28 sin 201)l12. Noting this fact and comparing with (26) we 
see that the closure 9 of 9 may be described simply as follows: 9 is 
the convex hull of &‘(e,) and &‘(e,) ( or e q uivalently, the convex hull of 
the 8(e) for 8i < 8 < 0,) (cf. Fig. 1). The extreme cases 8, = 0 or 

FIGURE 1 

8, = 7r/2 are not excluded, in this case 6(8,) or S(Q, respectively, 
degenerate into the diagonals of the unit square. If 0r = 8, we have 
only one (solid) ellipse. 

In order to determine 9 completely it remains to find those points 
of 9 which belong to Y itself. These are of two kinds (cf. Fig. 1). 
They may be points on the boundary of the square but not on &‘(e,) 

[J. Function Analysis 1972]

with x = 〈P〉ρ, y = 〈Q〉ρ, and cos2 θ1,2 being the largest and
smallest eigenvalues of QPQ.
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Exact range for two qubit observables
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The boundary

M1: The boundary is the convex hull of possible values attainable
by pure states.

M2: Consider the expectations of m observables {Pµ}mµ=1. Let
n = (n1, n2, . . . , nm) be an arbitrary unit vector and

λ(n) = Largest eigenvalue of
∑
µ

nµPµ

then the boundary is the hypersurface determined by

xµ = 〈Pµ〉 =
∂λ(n)

∂nµ
.



Two kinds of incompatibility Two kinds of uncertainty relations Exact Uncertainty Relations Summary

Main Results: Two Unbiased observables

Consider a d-outcome measurement {|n〉〈n|}d−1
n=0 and a 2-outcome

measurement {Pθ = |θ〉〈θ|, I − Pθ} with

|θ〉 =
1√
d

d−1∑
n=0

|n〉.

For two probability distributions {Pn} and {Q, 1− Q} there exists
a quantum state ρ such that

Pn = 〈n|ρ|n〉, Q = 〈Pθ〉,

if and only if

max{0, 2
√
Pmax −

d−1∑
n=1

√
Pn} ≤

√
dQ ≤

d−1∑
n=0

√
Pn.
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d=3
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Main Results: Three Unbiased observables

In a 3-level system, consider three 2-outcome measurements
{P0 = |0〉〈0|, I − P0}, {Q0 = |θ〉〈θ|, I − Q0}, and
{R0 = |β〉〈β|, I − R0} with

|β〉 =
1√
3

(
e i

2π
3 |0〉+ |1〉+ |2〉

)
The values

x =
3〈P0〉ρ − 1

2
, y =

3〈Q0〉ρ − 1

2
, z =

3〈R0〉ρ − 1

2

are possible if and only if (x , y , z) belongs to the convex hull of

(−1

2
,−1

2
,−1

2
), E (x2 + y2 + z2 + xy + xz + yz = x + y + z).
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Main Result: Angular momentum

Consider the measurements of three components {Jx , Jy , Jz} of
spin-1 system. The corresponding eigenstates are

Jx {|x±〉 = 1
2 (| − 1〉 ±

√
2|0〉+ |1〉), |−〉 = 1√

2
(| − 1〉 − |1〉)}

Jy {|y±〉 = 1
2 (| − 1〉 ± i

√
2|0〉 − |1〉), |+〉 = 1√

2
(| − 1〉+ |1〉)}

Jz {| − 1〉, |0〉, |1〉}
As a result, among three sets of probability distributions
{Px± ,P−}, {Py± ,P+}, {P±1,P0} there are only 5 independent
parameters since P0 + P+ + P− = 1 and we denote

〈Jx〉 = 〈Px+ − Px−〉, 〈Jy 〉 = 〈Py+ − Py−〉, 〈Jz〉 = 〈P1 − P−1〉,

θx = 〈P−〉, θy = 〈P+〉, θz = 〈P0〉
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θx〈Jx〉2 + θy 〈Jy 〉2 + θz〈Jz〉2

≤ 8θxθyθz +
√

(4θyθz − 〈Jx〉2)(4θzθx − 〈Jy 〉2)(4θxθy − 〈Jz〉2)

x =
〈Jx〉

2
√
θzθy

,

y =
〈Jy 〉

2
√
θzθx

,

z =
〈Jz〉

2
√
θxθy
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Asymmetric Universal Cloning Machines

FA =! Tr"!C1"!##d! =
d + fA

d"d + 1#
, "1#

where fA=Tr"QRA"RA# with QRA=IR ! C1""RA# being a subnormalized state "Tr QRA=d# of the
composite system of a reference qudit R and the original qudit A and "RA denoting the density
matrix of a "subnormalized# maximally entangled state $"%=&n$nn% of the composite system RA.
It is obvious that the output fidelity FA ranges from 1 / "d+1# to 1 because fA takes values from 0
to d2. The maximal output fidelity arises from the identity map I"!#=! and the minimal fidelity
arises from the fact that the cloning machine must be a physical process allowed by the principle
of quantum mechanics, i.e., C"!# is a completely positive map. In the case of d=2 the minimal
output fidelity is achieved by the optimal universal NOT gate.

The situation is similar for cloning machines producing two or more copies. Let us consider
now a 1!2 universal cloning machine, which can be represented by a completely positive map C2
from HA to HA ! HB. Its two output fidelities FA and FB are determined by the expectation values
fA and fB of two observables "RA and "RB in the subnormalized state QRAB=IR ! C2""RA#. Thus
the bound of the optimal output fidelities is bounded by all the possible expectation values of two
observables "RA and "RB when the state runs over all possible states of composite system RAB.

Obviously the range of two observables "RA and "RB is spanned by 2d states $"%RA$k%B and
$"%RB$k%A with k=0,1 , . . . ,d−1, from which an orthonormal basis can be constructed,

$#k
$% =

1
'2"d $ 1#

"$"%RA$k%B $ $"%RB$k%A# . "2#

It is not complete thus &k#k
++#k

−%I3, where #k
$ denotes the projector of the corresponding state

and I3 is the identity matrix for 3-qudit. When averaged in an arbitrary 3-qudit state QRAB with
normalization Tr QRAB=d, the incompleteness condition leads to

"'fA + 'fB#2

2"d + 1#
+

"'fA − 'fB#2

2"d − 1#
% d . "3#

This inequality can be regarded as an uncertainty relationship between observables "RA and "RB.
The expectation values that saturate the inequality Eq. "3# for a 3-qudit state corresponding to the
optimal 1 to 2 asymmetric cloning machine13 without the restriction that the coefficients be
non-negative. Thus the trade-off between two output fidelities FA and FB can be plotted as in Fig.
1. It should be pointed out that given one of the output fidelities in the interval between 1
−1 /d"d+1# and 1, the other output fidelity assumes a minimal value which is greater than the
minimal possible fidelity 1 / "d+1#.

(

1
d+1 ,

1
d+1

)

1
d

1
d

FA

FB

d2+d−1
d(d+1)

d2+d−1
d(d+1)

(1, 1)

FIG. 1. "Color online# The trade-off between two output fidelities of 1 to 2 asymmetric cloning machine. The shaded area
which is bounded by two axes and part of an ellipse contains all possible output fidelities.

052306-2 M. Jiang and S. Yu J. Math. Phys. 51, 052306 !2010"

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
137.132.123.69 On: Sun, 02 Nov 2014 02:57:52

• One to two asymmetric UCM.

• F = d+f
d(d+1)

• Exact ranges of

f1 = d〈Φ̂01 ⊗ I2〉
f2 = d〈Φ̂02 ⊗ I1〉

over all states ρ012.

• |Φ〉0k =
∑

n |n〉0 ⊗ |n〉k
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Asymmetric Universal Cloning Machines

x2 + y2 + z2 +
!x − y + z"2

d − 2
! d!d + 1" , !9b"

x2 + y2 + z2 +
!x − y − z"2

d − 2
! d!d + 1" , !9c"

together with restrictions z"x+y, y"x+z, and x"z+y, respectively, or lie within the sphere,

x2 + y2 + z2 ! d!d + 1" !10"

restricted by the conditions

x ! y + z, y ! x + z, z ! x + y . !11"

These bounds specify the range of all the possible expectation values of #R$ !$=A ,B ,C" in pure
states. Thus all the possible expectation values of three observables #R$ !$=A ,B ,C" in arbitrary
states are all possible convex combinations of those bounds, i.e., the boundary is the convex hull
of those four ellipsoids defined in Eq. !8" and Eqs. !9a"–!9c" and the partial sphere in Eq. !10",
which is explicitly plotted in the Fig. 2. We note that the restricted sphere equation !10" is
contained in the convex hull for d"3 and in the case of d=2 the boundary is the convex hull of
Eqs. !8" and !10". Since the function #x is a one-to-one concave function, the boundary for the
fidelities F$ has essentially the same structure as the boundary for #f$ !$=A ,B ,C".

In the following we shall prove that the surface of the convex hull as plotted in Fig. 2 is
attainable by explicitly constructing the universal cloning machines with the desired output fideli-
ties. To do so we have only to construct the cloning machines that saturate those four inequalities
Eqs. !8" and !9a"–!9c", respectively. We consider a system of five qudits labeled with A, B, C, E,
and F and define two unitary evolutions as

U%$mA0BCEF% =# 2
d!d % 1"

!$ + &Y + 'Y2"

$m%A!$#%BE$#%CF % $#%CE$#%BF" , !12"

where Y is the permutation acting on ABC as before and $, &, and ' are real numbers satisfying

$2 + &2 + '2 %
2
d

!$& + &' + '$" = 1. !13"

It is easy to check that the cloning machines defined by U% are universal. For convenience we
denote x%=d$% !&+'", y%=d&% !$+'", and z%=d'% !&+$".
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1

FIG. 2. !Color online" The convex hull of four ellipsoids with colored parts being the extremal points.
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x =
√
f1, y =

√
f2, z =

√
f3

• One to three.

• F = d+f
d(d+1)

• Exact ranges of

f1 = d〈Φ̂01 ⊗ I23〉,
f2 = d〈Φ̂02 ⊗ I13〉,
f3 = d〈Φ̂03 ⊗ I12〉,

over all states ρ0123.

[MJ&SY, JMP 2010]
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Uncertainty relation via parameter estimation

1

IA
+

1

IB
≥ 3

• In order to estimate two parameters a = 〈A〉ρ and b = 〈B〉ρ in
a qubit state ρ, we let the qubit interact with a meter qubit

U|k〉|φ0〉 = |k〉|φk〉.

• Two measurements A = ~a · ~σ and B = ~b · ~σ are made on the
meter and system respectively. The precisions are quantified
by the Fisher information of corresponding statistics

∆ϕ2 ≥ 1

nI
, I =

∑
k

ṗ2
k

pk
.

[LS,etal SY,PRA 2017]
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Summary

• Two kinds of incompatibility lead to two ways of exploring the
quantum boundary.

• Two ways to determine the exact range of the statis-
tics, i.e., exact uncertainty relation, of a set of observables, e.g.,

• Two applications illustrated. Might help strengthen the usual
uncertainty relations; determine the best performance of some
informational operations; establish some measurement
uncertainty relations; detection of entanglement (to do).
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