Mário Ziman

 RCQI, Institute of Physics, Bratislava, Slovakia$$
\begin{aligned}
& \text { Incompatibility and } \\
& \text { nonlocality for quantum } \\
& \text { process theories }
\end{aligned}
$$

joint work with
Giulio Chiribella, Daniel Reitzner, Michal Sedlák, Martin Plávala,

Quantum process GPT

$A C B$

CHSH with quantum processes

Incompatibility of process observables

Quantum process GPT

basic model of measurement

 system sources
measuring apparatuses

probability = f(state, observable)

Quantum process GPT

examples

states
density operators probabilities channels

observables
positive opvalued measures
positive functionals
process povms

Quantum process GPT

process observables

quantum process = channel
- CP+TP linear map on L(H)
- qq input/output box

process observable

- channel \rightarrow probability
- affine assignement

Quantum process GPT

process observables

$\operatorname{prob}(\mathrm{x})=\operatorname{tr}\left[\mathrm{CM}_{\mathrm{x}}\right]$

$$
\boldsymbol{C}=(\mathrm{Id} \otimes \mathrm{C})\left[\Phi_{\downarrow}\right]
$$

$$
M_{x}=\left(R_{\omega}^{*} \otimes \mid d\right)\left[F_{x}\right] \quad \text { where }\left(R_{\omega} \otimes \mathrm{Id}\right)\left[\Phi_{+}\right]=\omega
$$

- are operators in $\mathrm{L}\left(\mathrm{H}_{d} \otimes \mathrm{H}_{d}\right)$

Quantum process GPT

process observables = process POVM

= 1-testers

$$
M_{x}: M_{x} \geq 0, \Sigma_{x} M_{x}=\rho \otimes \mathrm{id}_{d}
$$

density operator

$\operatorname{prob}(\mathrm{x})=\operatorname{tr}\left[C M_{x}\right]$

Choi-Jamiolkowski
channel representation
$\boldsymbol{C}: \operatorname{tr}_{1}[\mathrm{C}]=\mathrm{id}_{d}$

Quantum process GPT

process observables = process POVM
 = 1-testers

$M_{x}: M_{x} \geq 0, \Sigma_{x} M_{x}=\rho \otimes i d_{d}$
density operator

$\operatorname{prob}(\mathrm{x})=\operatorname{tr}\left[C M_{x}\right]$

Choi-Jamiolkowski $\quad \boldsymbol{C}: ~ \boldsymbol{d} \boldsymbol{r}_{1}[\boldsymbol{C}]=\mathrm{id}_{d}$ always density operator

Incompatibility

definition of compatibility

$A C B$
if $\boldsymbol{A}, \boldsymbol{B}$ are marginals of some \boldsymbol{G}

Incompatibility

 compatibility

Incompatibility

compatibility of testers

A : $\boldsymbol{A}_{\mathrm{x}}$ such that $\Sigma_{\mathrm{x}} \boldsymbol{A}_{\mathrm{x}}=\rho \otimes \mathrm{id}_{d}$
$B: B_{y}$ such that $\sum_{y} B_{y}=\sigma \otimes$ id $_{d}$

$A \propto B$ iff $\rho=\sigma$ and $\mathrm{P} \propto \mathrm{Q}$

P, Q are POVMs for cannonical realization

$$
\begin{aligned}
& P_{x}=\left(\rho^{-1 / 2} \otimes \mathrm{id}\right) A_{\mathrm{x}}\left(\rho^{-1 / 2} \otimes \mathrm{id}\right) \\
& Q_{y}=\left(\sigma^{1 / 2} \otimes \mathrm{id}\right) \boldsymbol{B}_{\mathrm{y}}\left(\sigma^{1 / 2} \otimes \mathrm{id}\right)
\end{aligned}
$$

Incompatibility
 commutativity does not imply compatibility

$A \propto B$ iff $\rho=\sigma$ and $P \propto Q$
There exist commuting \boldsymbol{A} and \boldsymbol{B} with different normalization states.

Incompatibility

commutativity does not imply compatibility

$A \propto B$
 iff $\rho=\sigma$ and $P \infty Q$

There exist commuting \boldsymbol{H} and \boldsymbol{V} with different normalization states.

$$
\begin{aligned}
& \boldsymbol{V}_{0}=\Pi_{v} \otimes \Pi_{h} \\
& V_{1}=\Pi_{v} \otimes \Pi_{v} \\
& \boldsymbol{H}_{0}=\Pi_{h} \otimes \Pi_{h} \\
& \boldsymbol{H}_{1}=\Pi_{h} \otimes \Pi_{v}
\end{aligned}
$$

Incompatibility

commutativity does not imply compatibility

$A C B$
 iff $\rho=\sigma$ and $P \omega Q$

There exist commuting \boldsymbol{H} and \boldsymbol{V} with different normalization states.

$$
\begin{aligned}
& \boldsymbol{V}_{0}=\Pi_{v} \otimes \Pi_{h} \\
& V_{1}=\Pi_{v} \otimes \Pi_{v} \\
& \boldsymbol{H}_{0}=\Pi_{h} \otimes \Pi_{h} \\
& \boldsymbol{H}_{1}=\Pi_{h} \otimes \Pi_{v}
\end{aligned}
$$

Incompatibility quantification of incompatibility

A, B are λ compatible if there exist $\boldsymbol{N}^{(A)}, \mathbf{N}^{(B)}$:

$$
\text { (1- } \lambda) A+\lambda N^{(A)} \omega(1-\lambda) B+\lambda N^{(B)}
$$

robustness of incompatibility R_{t}

- minimal λ such that $\boldsymbol{A}, \boldsymbol{B}$ are λ compatible

Incompatibility quantification of incompatibility

A, B are λ compatible if there exist $\boldsymbol{N}^{(A)}, \mathbf{N}^{(B)}$:

$$
\text { (1- } \lambda) A+\lambda N^{(A)} \omega(1-\lambda) B+\lambda N^{(B)}
$$

robustness of incompatibility R_{t}

- minimal λ such that $\boldsymbol{A}, \boldsymbol{B}$ are λ compatible

$$
0 \leq R_{\mathrm{t}} \leq 1 / 2
$$

Incompatibility

robustness bounds

$A \infty B$ iff $\rho=\sigma$ and $P \propto Q$

- robustness of A and B... R_{t}
- robustness of ρ and $\sigma \ldots R_{s}$
- robustness of P and $\mathrm{Q} . . . R_{\mathrm{m}}$

Incompatibility

robustness bounds

$A \infty B$ iff $\rho=\sigma$ and $P \infty Q$

- robustness of A and $B \ldots R_{t}$
- robustness of ρ and $\sigma \ldots R_{s}$
- robustness of P and $Q \ldots R_{m}$

$$
\underbrace{\mathbf{0} \leq R_{\mathrm{s}} \leq R_{\mathrm{t}} \leq R_{\mathrm{m}} \leq 1 / 2}_{\text {only if } R_{\mathrm{s}}=0}
$$

Incompatibility

maximal incompatibility, i.e. $R=1 / 2$

- for POVMs achieved only for $d=\infty$
- for testers for arbitrary d

Incompatibility

maximal incompatibility, i.e. $R=1 / 2$

- for POVMs achieved only for $d=\infty$
- for testers for arbitrary d
- H,V example before

$\boldsymbol{R}_{\mathrm{s}}\left(\Pi_{\mathrm{v}}, \Pi_{\mathrm{h}}\right)=1 / 2$ implies $\boldsymbol{R}_{\mathrm{t}}=1 / 2$
(but $R_{\mathrm{m}}=0$)
the setting same as usual
- Alice and Bob choosing testers $A, A^{\prime}, B, B^{\prime}$,
- each with outcomes labeled ± 1
- CHSH-Bell inequality (for mean values)

$$
-2 \leq A \otimes\left(B+B^{\prime}\right)+A^{\prime} \otimes\left(B-B^{\prime}\right) \leq 2
$$

- our task: maximize over testers and channels
- motication: maximal incompatibility

CHSH with testers

- Alice and Bob choosing testers being either \boldsymbol{H} or V i.e. $-2 \leq V \otimes(V+H)+H \otimes(V-H) \leq 2$

- measurement of the channel output: vertical polarization measurement
- test states: vertical or horizontal polarization

CHSH with testers

- Alice and Bob choosing measurements being either \boldsymbol{H} ог \boldsymbol{V}, i.e. $\mathbf{- 2} \leq \boldsymbol{V} \otimes(\boldsymbol{V}+\boldsymbol{H})+\boldsymbol{H} \otimes(\boldsymbol{V}-\boldsymbol{H}) \leq \mathbf{2}$

- consider channel $\boldsymbol{C}[\omega]=(1-\kappa) \xi_{\text {cor }}+K \xi_{\text {acor }}$

$$
\begin{aligned}
& \kappa=\operatorname{tr}\left[\omega \Pi_{h} \otimes \Pi_{h}\right] \\
& \xi_{\text {cor }}=\left(\Pi_{h} \otimes \Pi_{h}+\Pi_{v} \otimes \Pi_{v}\right) / 2 \\
& \xi_{\text {acor }}=\left(\Pi_{v} \otimes \Pi_{h}+\Pi_{v} \otimes \Pi_{h}\right) / 2
\end{aligned}
$$

CHSH with testers

- Alice and Bob choosing measurements being either \boldsymbol{H} or \boldsymbol{V}, i.e.
- consider channel $\boldsymbol{C}[\omega]=(1-\kappa) \xi_{\text {cor }}+\kappa \xi_{\text {acor }}$

$$
\begin{aligned}
& \kappa=\operatorname{tr}\left[\omega \Pi_{h} \otimes \Pi_{h}\right] \\
& \xi_{\text {cor }}=\left(\Pi_{h} \otimes \Pi_{h}+\Pi_{v} \otimes \Pi_{v}\right) / 2 \\
& \xi_{\text {acor }}=\left(\Pi_{v} \otimes \Pi_{h}+\Pi_{v} \otimes \Pi_{h}\right) / 2
\end{aligned}
$$

- then $V \otimes V=V \otimes H=H \otimes V=1$ and $H \otimes H=-1$

$$
V \otimes(V+H)+H \otimes(V-H)=4
$$

- Alice and Bob choosing measurements being either \boldsymbol{H} or \boldsymbol{V}, i.e.
- consider channel $\boldsymbol{C}[\omega]=(1-\kappa) \xi_{\text {cor }}+\kappa \xi_{\text {acor }}$

$$
\begin{aligned}
& \kappa=\operatorname{tr}\left[\omega \Pi_{h} \otimes \Pi_{h}\right] \\
& \xi_{\text {cor }}=\left(\Pi_{h} \otimes \Pi_{h}+\Pi_{v} \otimes \Pi_{v}\right) / 2 \\
& \xi_{\text {acor }}=\left(\Pi_{v} \otimes \Pi_{h}+\Pi_{v} \otimes \Pi_{h}\right) / 2
\end{aligned}
$$

- then $V \otimes V=V \otimes H=H \otimes V=1$ and $H \otimes H=-1$

$$
V \otimes(V+H)+H \otimes(V-H)=4
$$

- Popescu-Rohrlich box correlations

Nonlocality with testers.

- Popescu-Rohrlich box correlations

$$
V \otimes(V+H)+H \otimes(V-H)=4
$$

- Nonlocal?
- yes in systems, but not spatially nonlocal

Nonlocality with testers.

- Popescu-Rohrlich box correlations

$$
V \otimes(V+H)+H \otimes(V-H)=4
$$

- Nonlocal?
- yes in systems, but not spatially nonlocal
- distributing bipartite channel over space(-time) is pure fantasy

Classical PR box analogue

there is nothing quantum in our example

Classical PR box analogue

there is nothing quantum in our example

- channel is measure-and-prepare (QC) channel
- measurement and initial states are diagonal
- conclusion: maximal violation observed also for classical processes

$$
V \otimes(V+H)+H \otimes(V-H)=4
$$

- question: is there purely quantum example?

GPT of processes accommodate both qualitatively and quantitatively different incompatibility.

GPT of processes accommodate both qualitatively and quantitatively different incompatibility.

Maximal incompatibility
 $\boldsymbol{R}_{\mathrm{t}}(\boldsymbol{H}, \boldsymbol{V})=1 / 2$

PR box

$$
V \otimes(V+H)+H \otimes(V-H)=4
$$

- mathematical curiosity
- conceptual differences in incompatibility between classical and quantum processes?

REFERENCES:
[arXiv:1511.00976] Michal Sedlák, Daniel Reitzner, Giulio Chiribella, Mário Ziman: Incompatible measurements on quantum causal networks, Phys. Rev. A 93, 052323 (2016)
[arXiv:1708.07425] Martin Plávala, Mário Ziman: PopescuRohrlich box implementation in general probabilistic theory of processes
joint work with
Giulio Chiribella, Daniel Reitzner, Michal Sedlák, Martin Plávala,

