Mário Ziman

RCQI, Institute of Physics, Bratislava, Slovakia

Incompatibility and nonlocality for quantum process theories

joint work with Giulio Chiribella, Daniel Reitzner, Michal Sedlák, Martin Plávala,

basic model of measurement

system sources measuring apparatuses

probability = f(state, observable)

Quantum process GPT examples

states density operators probabilities <u>channels</u>

observables

positive opvalued measures positive functionals

process povms

process observables

quantum process = channel

- CP+TP linear map on L(H)
- qq input/output box

process observable

- channel \rightarrow probability
- affine assignement

process observables

 $\boldsymbol{C} = (Id \otimes C)[\Phi]$

prob(x)=tr[*CM*,]

process observable

outcome M_x describes choice

of in-state $\boldsymbol{\omega}$ and out-POVM F (resulting in effect F_x)

 $M_{x} = (R_{\omega}^{*} \otimes Id)[F_{x}] \text{ where } (R_{\omega}^{} \otimes Id)[\Phi_{\downarrow}] = \omega$ - are operators in L(H_d \otimes H_d)

<u>process observables</u> = process POVM

Choi-Jamiolkowski channel representation

 $C: d \operatorname{tr}_{1}[C] = \operatorname{id}_{d}$

always density operator

definition of compatibility

compatibility

Incompatibility compatibility of testers

- $\boldsymbol{A}: \boldsymbol{A}_{x}$ such that $\sum_{x} \boldsymbol{A}_{x} = \rho \otimes \mathrm{id}_{d}$
- $\boldsymbol{B}: \boldsymbol{B}_{y} \text{ such that } \boldsymbol{\Sigma}_{y} \boldsymbol{B}_{y} = \boldsymbol{\sigma} \otimes \mathrm{id}_{d}$

$$A \bigcirc B \quad \text{iff } \rho = \sigma \quad \text{and} \quad P \oslash Q$$

P,Q are POVMs for cannonical realization $P_x = (\rho^{-1/2} \otimes id) A_x(\rho^{-1/2} \otimes id)$ $Q_y = (\sigma^{-1/2} \otimes id) B_y(\sigma^{-1/2} \otimes id)$

commutativity does not imply compatibility

<u>Incompatibility</u>

<u>commutativity does not imply compatibility</u>

There exist commuting **A** and **B** with different normalization states.

<u>commutativity does not imply compatibility</u>

There exist commuting **H** and **V** with different normalization states.

 $V_0 = \Pi_v \otimes \Pi_h$ $V_1 = \Pi_V \otimes \Pi_V$ $H_0 = \Pi_h \otimes \Pi_h$

 $H_1 = \Pi_h \otimes \Pi_v$

<u>commutativity does not imply compatibility</u>

There exist commuting **H** and **V** with different normalization states.

 $V_0 = \Pi_v \otimes \Pi_h$ $V_1 = \Pi_V \otimes \Pi_V$ $H_0 = \Pi_h \otimes \Pi_h$ $H_1 = \Pi_h \otimes \Pi_v$

quantification of incompatibility

A, **B** are λ compatible if there exist **N**^(A), **N**^(B):

(1-
$$\lambda$$
) $\mathbf{A} + \lambda \mathbf{N}^{(A)}$ **(1- λ)** $\mathbf{B} + \lambda \mathbf{N}^{(B)}$

robustness of incompatibility R_t

- minimal λ such that **A**, **B** are λ compatible

quantification of incompatibility

A, **B** are λ compatible if there exist **N**^(A), **N**^(B):

(1-
$$\lambda$$
) $\mathbf{A} + \lambda \mathbf{N}^{(A)}$ **CO** (1- λ) $\mathbf{B} + \lambda \mathbf{N}^{(B)}$

robustness of incompatibility R_t

- minimal λ such that **A**, **B** are λ compatible

$$0 \le R_{\rm t} \le 1/2$$

Incompatibility robustness bounds

- robustness of A and B R_t
- robustness of ρ and $\sigma \dots R_s$
- robustness of P and Q ... R_m

Incompatibility robustness bounds

- robustness of A and B ... R_t
- robustness of ρ and $\sigma \dots R_s$
- robustness of P and Q ... R_m

$$0 \le R_{s} \le R_{t} \le R_{m} \le 1/2$$
only if $R_{s} = 0$

- maximal incompatibility, i.e. R = 1/2
- for POVMs achieved **only for** $d = \infty$
- for testers **for arbitrary** d

maximal incompatibility, i.e. R = 1/2

- for POVMs achieved only for $d = \infty$
- for testers for arbitrary d
- H,V example before

$$R_{s}(\Pi_{v},\Pi_{h}) = \frac{1}{2}$$
 implies $R_{t} = \frac{1}{2}$

the setting same as usual

- Alice and Bob choosing testers A,A',B,B',
- each with outcomes labeled ±1
- CHSH-Bell inequality (for mean values)

$$-2 \leq A \otimes (B + B') + A' \otimes (B - B') \leq 2$$

our task: maximize over testers and channels
 motication: maximal incompatibility

- Alice and Bob choosing testers being either *H* or *V*, i.e. -2 ≤ *V*⊗(*V*+*H*)+*H*⊗(*V*-*H*) ≤ 2

- measurement of the channel output: vertical polarization measurement
- test states: vertical or horizontal polarization

- Alice and Bob choosing measurements being either *H* or *V*, i.e. -2 ≤ *V*⊗(*V*+*H*)+*H*⊗(*V*-*H*) ≤ 2

- consider channel $C[\omega] = (1-\kappa)\xi_{cor} + \kappa\xi_{acor}$

$$\begin{split} \kappa &= tr[\omega\Pi_{h}\otimes\Pi_{h}]\\ \xi_{cor} &= (\Pi_{h}\otimes\Pi_{h} + \Pi_{v}\otimes\Pi_{v})/2\\ \xi_{acor} &= (\Pi_{v}\otimes\Pi_{h} + \Pi_{v}\otimes\Pi_{h})/2 \end{split}$$

- Alice and Bob choosing measurements being either *H* or *V*, i.e.
- consider channel $C[\omega] = (1-\kappa)\xi_{cor} + \kappa\xi_{acor}$

$$\begin{split} \kappa &= tr[\omega\Pi_{h}\otimes\Pi_{h}]\\ \xi_{cor} &= (\Pi_{h}\otimes\Pi_{h} + \Pi_{v}\otimes\Pi_{v})/2\\ \xi_{acor} &= (\Pi_{v}\otimes\Pi_{h} + \Pi_{v}\otimes\Pi_{h})/2 \end{split}$$

- then $V \otimes V = V \otimes H = H \otimes V = 1$ and $H \otimes H = -1$

$$V \otimes (V+H) + H \otimes (V-H) = 4$$

- Alice and Bob choosing measurements being either *H* or *V*, i.e.
- consider channel $C[\omega] = (1-\kappa)\xi_{cor} + \kappa\xi_{acor}$

$$\begin{aligned} &\mathsf{k} = \mathsf{tr}[\boldsymbol{\omega}\Pi_{\mathsf{h}}\otimes\Pi_{\mathsf{h}}] \\ &\boldsymbol{\xi}_{\mathsf{cor}} = (\Pi_{\mathsf{h}}\otimes\Pi_{\mathsf{h}} + \Pi_{\mathsf{v}}\otimes\Pi_{\mathsf{v}})/2 \\ &\boldsymbol{\xi}_{\mathsf{acor}} = (\Pi_{\mathsf{v}}\otimes\Pi_{\mathsf{h}} + \Pi_{\mathsf{v}}\otimes\Pi_{\mathsf{h}})/2 \end{aligned}$$

- then $V \otimes V = V \otimes H = H \otimes V = 1$ and $H \otimes H = -1$

$$V \otimes (V+H) + H \otimes (V-H) = 4$$

- Popescu-Rohrlich box correlations

Nonlocality with testers

- Popescu-Rohrlich box correlations

$$V \otimes (V+H) + H \otimes (V-H) = 4$$

- Nonlocal?
- yes in systems, but not spatially nonlocal

Nonlocality with testers

- Popescu-Rohrlich box correlations

$$V \otimes (V+H) + H \otimes (V-H) = 4$$

- Nonlocal?

- yes in systems, but not spatially nonlocal
- distributing bipartite channel over space(-time) is pure fantasy

Classical PR box analogue

there is nothing quantum in our example

<u>Classical PR box analogue</u>

there is nothing quantum in our example

- channel is measure-and-prepare (QC) channel
- measurement and initial states are diagonal
- conclusion: maximal violation observed also for classical processes

$$V \otimes (V+H) + H \otimes (V-H) = 4$$

- question: is there purely quantum example?

Conclusion

GPT of processes accommodate both qualitatively and quantitatively different incompatibility.

Conclusion

GPT of processes accommodate both qualitatively and quantitatively different incompatibility.

Maximal incompatibility

R_t (**H,V**) = 1/2

PR box

$$V \otimes (V+H) + H \otimes (V-H) = 4$$

- mathematical curiosity
- conceptual differences in incompatibility between classical and quantum processes?

Thank you

REFERENCES:

[arXiv:1511.00976] Michal Sedlák, Daniel Reitzner, Giulio Chiribella, Mário Ziman: **Incompatible measurements on quantum causal networks**, Phys. Rev. A 93, 052323 (2016)

[arXiv:1708.07425] Martin Plávala, Mário Ziman: **Popescu-Rohrlich box implementation in general probabilistic theory of processes**

joint work with Giulio Chiribella, Daniel Reitzner, Michal Sedlák, Martin Plávala,