Analyse bzw. Bestimmung der Kristall- und Molekülstruktur fester Stoffe heißt:

Bestimmung

- der Geometrie (Gitterkonstanten a, b, c, α , β , γ)
- der Symmetrie (Raumgruppe)
- des Inhalts (Art, Lage x_j, y_j, z_j und thermische Parameter B_i der Atome j)

der Elementarzelle einer kristallinen Verbindung sowie deren Analyse/Interpretation hinsichtlich chemisch/physikalischer Fragestellungen

Sie beruht auf der Streuung elektromagnetischer Strahlung oder von Neutronen geeigneter Energien/Geschwindigkeiten/Wellenlängen, und man benötigt:

- eine kristalline Probe (Pulver oder Einkristall ($V \sim 0.01 \text{ mm}^3$)),
- eine passende elektromagnetische Strahlung ($\lambda \sim 10^{-10}$ m),
- Kenntnisse über Eigenschaften und Streuung der Strahlung,
- Kenntnisse über Struktur und Symmetrie von Kristallen,
- ein Diffraktometer (mit Punkt- oder Flächendetektor),
- einen leistungsfähigen Rechner mit den erforderlichen Programmen zur Lösung, Verfeinerung, Analyse und Visualisierung der Kristall-/Molekülstruktur,
- chemisch/physikalische Kenntnisse zur Interpretation der Ergebnisse.

Bei der Bestrahlung eines Stoffes mit elektromagn. Strahlung oder Neutronen geeigneter Wellenlänge wird ein kleiner Teil der Primärstrahlung an den Atomen/Ionen/Molekülen der Probe elastisch ($\Delta E = 0$) und kohärent ($\Delta \phi = konstant$) in alle Raumrichtungen gestreut. Das dabei durch Überlagerung der Streuwellen resultierende Streu-/Beugungsbild **R** kann als **Fouriertransformierte** der Elektronen-/Streudichteverteilungsfunktion ρ der Probe beschrieben werden und vice versa.

sample

$$\rho(\vec{r}) = \frac{\int_{V} \rho(\vec{r}) \exp(2\pi i \vec{r} \cdot \vec{S}) dV}{\rho(\vec{r}) = \frac{1}{V} \int_{V^{*}} R(\vec{S}) \exp(-2\pi i \vec{r} \cdot \vec{S}) dV^{*}} \qquad \text{diffr. pattern}$$

Das resultierende Streubild hängt vom Ordnungsgrad der Probe ab:

Röntgen-(Neutronen-)Streuung an einer amorphen Probe

Röntgen-(Neutronen-)Streuung an einer kristallinen Probe

Kristallpulver Orientierung statistisch, λ fest \Rightarrow Interferenzkegel

Debye-Scherrer-Diagramm

Einkristall Orientierung oder λ variabel \Rightarrow Interferenzpunkte (Reflexe)

Streuung von Röntgenstrahlen an kristallinen Proben (Einkristall/Kristallpulver)

Die von einem Kristall gestreute Röntgenstrahlung wird nur für die Strahlen nicht vollständig ausgelöscht, die "in Phase" sind. R(S) und $I(\theta)$ sind also periodische Funktionen aus "Bragg-Reflexen".

Bragg-Gleichung: $n \cdot \lambda = 2d \cdot \sin\theta$ bzw. $\lambda = 2d(hkl) \cdot \sin\theta(hkl)$

Streuung von Röntgenstrahlen an kristallinen Proben

Geometrie, Symmetrie, Art/Verteilung (Lagekoordinaaten) der Atome in der Elementarzelle

Kristall-/Molekülstrukturbestimmung fester Stoffe heißt also: Bestimmung

- der Geometrie (Gitterkonstanten a, b, c, α , β , γ)
- der Symmetrie (Raumgruppe)
- des Inhalts (Art, Lage x_j, y_j, z_j und thermische Parameter B_i der Atome j)

der Elementarzelle einer kristallinen Verbindung aus ihrem Streu-/Beugungsbild **R(S) bzw. I(θ) bzw. I(hkl)**.

Wie geht das?

- Die Geometrie (Gitterkonstanten a, b, c, α, β, γ) der Elementarzelle/Verbindung erhält man aus der Geometrie des Beugungsbildes, also aus der Lage der Reflexe (Beugungswinkel θ bei Kristallpulvern, Eulerwinkel θ, ω, φ, χ der Reflexe bei Einkristallen),
- die Symmetrie (Raumgruppe) erhält man aus den Reflexintensitäten und den systematischen Reflex-Auslöschungen,
- den Inhalt (Art, Lage x_j , y_j , z_j und thermische Parameter B_j der Atome j) aus den Reflexintensitäten I(hkl) und der zu jedem Reflex gehörenden Phaseninformation (Phase α (hkl)).

Das Problem dabei ist, daß die Phaseninformation bei der Messung der Reflexintensitäten verloren geht (Phasenproblem der Kristallstruktur-Bestimmungsmethoden).

Strukturbestimmung ist nur indirekt möglich!

1. Fixierung und Zentrierung eines Kristalls auf dem Diffraktometer und Bestimmung der Orientierungsmatrix M und der Gitterkonstanten a, b, c, α , β , γ des Kristalls aus den Eulerwinkeln der Reflexe (θ , ω , φ , χ) sowie der Zellbesetzungszahl Z (aus Zellvolumen, Dichte und Summenformel),

Prinzip eines Vierkreis-Diffraktometers für die Einkristall-Strukturanalyse mittels Röntgen- oder Neutronenstrahlung

- 2. Bestimmung der Raumgruppe (aus der Reflexsymmetrie und den systematischen Reflexauslöschungen)
- 3. Messung der Reflexintensitäten (I(hkl) (asymmetrischer Teil des reziproken Gitters bis zu $0.5 \le \sin\theta/\lambda \le 1.1$ genügt häufig)
- 4. Berechnung der Strukturamplituden $|F_o(hkl)|$ aus den I(hkl) incl. Absorptions-, Extinktions-, LP-Korrektur \rightarrow Datenreduktion
- 5. Bestimmung der Skalierungsfaktoren (K) und der mittleren Temperaturparameter (B) aus den $|F_o(hkl)|$ gemäß $\ln(|F_o|^2/\Sigma f_j^2) = \ln(1/K) - 2B(\sin^2\theta_m)/\lambda^2 \rightarrow Datenskalierung$

- 6a. Bestimmung der Phasen α (hkl) der Strukturamplituden |F_o(hkl)| \rightarrow Phasenbestimmung (Phasenproblem der Strukturanalyse)
 - Trial and Error (Modell, dann Prüfung des Beugungsbildes)
 - Berechnung der Patterson-Funktion

 $P_{(uvw)} = (1/V) \cdot \Sigma |F_o(hkl)|^2 \cos 2\pi (hu+kv+lw)$

aus den Strukturamplituden liefert Abstandsvektoren zwischen allen Atomen der Elementarzelle

Daraus Hinweise auf Verteilung und Lage "schwerer Atome" in der Elementarzelle → Schweratommethode

6b. Bestimmung der Phasen α (hkl) der Strukturamplituden |F_o(hkl)|

• Direkte Methoden zur Phasenbestimmung Phasen $\alpha(hkl)$ und Intensitätsverteilung sind nicht unabhängig voneinander \rightarrow erlaubt Bestimmung der Phasen $\alpha(hkl)$

z.B. $F(hkl) \sim \Sigma\Sigma\SigmaF(h'k'l') \cdot F(h-h',k-k',l-l')$ (Sayre, 1952)

oder $S(F_{hkl}) \sim S(F_{h'k'l'}) \cdot S(F_{h-h',k-k',l-l'})$ (S = Vorzeichen)

Direkte Methoden sind die heute wichtigsten Methoden zur Lösung des Phasenproblems der Strukturanalyse

• Anomaldispersionsmethoden nutzen die Phasen- und Intensitätsunterschiede bei der Streuung von Röntgenstrahlung nahe oder abseits von Absorptionskanten (Messungen mit Strahlung unterschiedlicher Wellenlänge erforderlich)

7. Berechnung der Elektronendichteverteilung

 $\delta(xyz) = (1/V) \cdot \Sigma |F_o(hkl)| \cdot exp(i\alpha(hkl) \cdot exp(-2\pi i(hx+ky+lz)))$

der Elementarzelle aus den Strukturamplituden $|F_o(hkl)|$ und den Phasen $\alpha(hkl)$ der Reflexe hkl (mit B und K) \rightarrow Fouriersynthese

Platin-Phthalocyanin, $PtC_{32}H_{16}N_8$: Elektronendichteprojektion $\rho(xz)$.

und daraus Bestimmung der Elemente und Atomlagen xj, yj, zj

8. Berechnung der Strukturfaktoren F(hkl) (= $F_c(hkl)$, c: calculated) aus den so bestimmten Atomlagen/-koordinaten x_j , y_j , z_j gemäß

 $F(hkl) = \Sigma f_j \cdot exp(2\pi i(hx_j + ky_j + lz_j))$

und den Atomformfaktoren (atomaren Streufaktoren) f_i

9. Verfeinerung des Skalierungsfaktors K, des Temperaturparameters B (bzw. später der individuellen B_j der Atome j der Elementarzelle) und der Atomkoordinaten x_j,y_j,z_j mit der Methode der kleinsten Quadrate (least squares, LSQ) durch Minimierung der Funktion

 $(\Delta F)^2 = (|F_o| - |F_c|)^2$ für alle gemessenen Reflexe hkl

Übereinstimmungsfaktor: $R = \Sigma |(|F_o| - |F_c|)|/\Sigma |F_o|$

10. Berechnung von Bindungslängen und –winkeln etc. sowie graphische Darstellung der Struktur (Strukturplot)

Kristallographische and Strukturverfeinerungsdataten von Cs₂Co(HSeO₃)₄·2H₂O

Name	Figure	Name	Figure
Formula	Cs ₂ Co(HSeO ₃) ₄ ·2H ₂ O	Diffractometer	IPDS (Stoe)
Temperature	293(2) K	Range for data collection	3.1° ≤Θ≤ 30.4 °
Formula weight	872.60 g/mol	hkl ranges	-10 ≤ <i>h</i> ≤ 10
Crystal system	Monoclinic		-17 ≤ <i>k</i> ≤ 18
Space group	P 2 ₁ /c		-10 ≤ <i>I</i> ≤ 9
Unit cell dimensions	<i>a</i> = 757.70(20) pm	Absorption coefficient	μ = 15.067 mm ⁻¹
	<i>b</i> = 1438.80(30) pm	No. of measured reflections	9177
	<i>c</i> = 729.40(10) pm	No. of unique reflections	2190
	β = 100.660(30) °	No. of reflections ($I_0 \ge 2\sigma$ (I))	1925
Volume	$781.45(45) \times 10^{6} \text{ pm}^{3}$	Extinction coefficient	<i>ε</i> = 0.0064
Formula units per unit cell	Z = 2	$\Delta ho_{ m min}$ / $\Delta ho_{ m max}$ / e/pm $^3 imes$ 10 $^{-6}$	-2.128 / 1.424
Density (calculated)	3.71 g/cm ³	$R_{1} / wR_{2} (I_{0} \ge 2\sigma (I))$	0.034 / 0.081
Structure solution	SHELXS – 97	R_1 / wR_2 (all data)	0.039 / 0.083
Structure refinement	SHELXL – 97	Goodness-of-fit on F ²	1.045
Refinement method	Full matrix LSQ on <i>F</i> ²		

Lage- und isotrope Temperaturparameter von Cs₂Co(HSeO₃)₄·2H2O

Atom	WP	x	У	z	U _{eq} /pm²
Cs	4e	0.50028(3)	0.84864(2)	0.09093(4)	0.02950(11)
Со	2a	0.0000	1.0000	0.0000	0.01615(16)
Se1	4e	0.74422(5)	0.57877(3)	0.12509(5)	0.01947(12)
011	4e	0.7585(4)	0.5043(3)	0.3029(4)	0.0278(7)
012	4e	0.6986(4)	0.5119(3)	-0.0656(4)	0.0291(7)
O13	4e	0.5291(4)	0.6280(3)	0.1211(5)	0.0346(8)
H11	4e	0.460(9)	0.583(5)	0.085(9)	0.041
Se2	4e	0.04243(5)	0.67039(3)	-0.18486(5)	0.01892(12)
O21	4e	-0.0624(4)	0.6300(2)	-0.3942(4)	0.0229(6)
022	4e	0.1834(4)	0.7494(3)	-0.2357(5)	0.0317(7)
023	4e	-0.1440(4)	0.7389(2)	-0.1484(4)	0.0247(6)
H21	4e	-0.120(8)	0.772(5)	-0.062(9)	0.038
OW	4e	-0.1395(5)	1.0685(3)	0.1848(5)	0.0270(7)
HW1	4e	-0.147(8)	1.131(5)	0.032	0.032
HW2	4e	-0.159(9)	1.045(5)	0.247(9)	0.032

Anisotrope thermische Parameter $U_{ij} \times 10^4$ /pm² von Cs₂Co(HSeO₃)₄·2H₂O

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃	
Cs	0.0205(2)	0.0371(2)	0.0304(2)	0.00328(9)	0.0033(1)	-0.00052(1)	
Со	0.0149(3)	0.0211(4)	0.0130(3)	0.0006(2)	0.0041(2)	0.0006(2)	
Se1	0.0159(2)	0.0251(3)	0.01751(2)	-0.00089(1)	0.00345(1)	0.00097(1)	
011	0.0207(1)	0.043(2)	0.0181(1)	-0.0068(1)	-0.0013(1)	0.0085(1)	
012	0.0264(2)	0.043(2)	0.0198(1)	-0.0009(1)	0.0089(1)	-0.0094(1)	
O13	0.0219(1)	0.034(2)	0.048(2)	0.0053(1)	0.0080(1)	-0.009(2)	
Se2	0.0179(2)	0.0232(2)	0.0160(2)	0.00109(1)	0.00393(1)	-0.0001(1)	
O21	0.0283(1)	0.024(2)	0.0161(1)	0.0008(1)	0.0036(1)	-0.0042(1)	
022	0.0225(1)	0.032(2)	0.044(2)	-0.0058(1)	0.0147(1)	-0.0055(1)	
023	0.0206(1)	0.030(2)	0.0240(1)	0.0018(1)	0.0055(1)	-0.0076(1)	
OW	0.0336(2)	0.028(2)	0.0260(2)	0.0009(1)	0.0210(1)	-0.0006(1)	

Der anisotrope Temperaturfaktor ist definiert nach: exp $\{-2\pi^2[U_{11}(ha^*)2 + ... + 2U_{12}hka^*b^*]\}$

Ausgewählte Bindungslängen (/pm) und –winkel (/°) von Cs₂Co(HSeO₃)₄·2H₂O

CsO ₉ polyhedron]	SeO ₃ ²⁻ anions					
Cs-011	316.6(3)	O22-Cs-OW	78.76(8)		Se1-011	167.1(3)		O12- Se1-O11	104.49(18)	
Cs-013	318.7(4)	022-Cs-012	103.40(9)		Se1-012	167.4(3)		O12- Se1-O13	101.34(18)	
Cs-022	323.7(3)	O23-Cs-O11	94.80(7)		Se1-O13	177.2(3)		O11- Se1-O13	99.66(17)	
Cs-023	325.1(3)	013-Cs-011	42.81(8)		Se2-O21	168.9(3)		O22- Se2-O21	104.46(17)	
Cs-OW	330.2(4)	O11-Cs-O23	127.96(8)		Se2-O22	164.8(3)		O22- Se2-O23	102.51(17)	
Cs-021	331.0(3)	013-Cs-022	65.50(9)		Se2-O23	178.3(3)		O21- Se2-O23	94.14(15)	
Cs-012	334.2(4)	022-Cs-022	66.96(5)							
Cs-022	337.1(4)	O11-Cs-OW	54.05(8)		Hydrogen bonds		d(O-H)	d(O […] H)	d(OO)	<oho< td=""></oho<>
Cs-013	349.0(4)	O23-Cs-O22	130.85(9)							
					013-H11 O12		85(7)	180(7)	263.3(5)	166(6)
CoO ₆ octahedron					O23-H21O21		78(6)	187(7)	263.7 (4)	168(7)
					OW-HW1 O22		91(7)	177(7)	267.7 (5)	174(6)
Co-OW	210.5(3)	OW-Co-OW	180		OW-HW2 O12		61(6)	206(6)	264.3 (4)	161(8)
Co-O11	210.8(3)	OW-Co-O21	90.45(13)							
Co-O21	211.0(3)	OW-Co-O11	89.55(13)							

Symmetry codes:

- 1. -x, -y+2, -z 10. -x, y+1/2, -z-1/2
- 2. -x+1, -y+2, -z 3. -x+1, y-1/2, -z+1/24. x-1, -y+3/2, z-1/2 5. x, -y+3/2, z-1/2 6. x, -y+3/2, z+1/2 7. -x, y-1/2, -z-1/2 8. -x+1, y+1/2, -z+1/2 9. x+1, -y+3/2, z+1/2
 - 11. -x+1, -y+1, -z

- 12. x-1, -y+3/2, z+1/2

C.

Verknüpfung der Koordinationspolyeder von Cs₂Co(HSeO₃)₄·2H₂O

Cs 0 C OW

Kristallstruktur von $Cs_2Co(HSeO_3)_4 \cdot 2H_2O$