Exercises for Advanced Inorganic Chemistry, Part Coordination Chemistry

- 1. Name the following complexes according to the IUPAC nomenclature: $\begin{bmatrix} Co(CO_3)(NH_3)_4 \end{bmatrix} NO_3$ $K[MnO_4]$ $\begin{bmatrix} CrCl(H_2O)_5 \end{bmatrix} Cl_2$ $\begin{bmatrix} CrCl_2(H_2O)_4 \end{bmatrix} Cl$ $Ba[FeO_4]$ $Na_2[TiO_3]$ $\begin{bmatrix} Pt(NH_3)_6 \end{bmatrix} Cl_4$ $K_2[PtCl_6]$ $\begin{bmatrix} Co(en)_2(SCN)Cl \end{bmatrix} Cl$ $cis[CrCl_2(NH_3)_4]^+$ $\begin{bmatrix} Pt(NH_3)_4 \end{bmatrix} [PtCl_6]$
- 2. Write the formula for the following complexes: Trisodium-hexafluoroaluminate Pentacarbonyliron Tetrapotassium-hexacyanoferrat(II) Tripotassium-hexacyanoferrat(III) Potassium-tetrafluorooxochromat(V) Bisdiethylentriamincobalt(III)chlorid Tris-2,2'-bipyridylchromium(I)iodide Potassium-tetracyanoniccolate(0) Potassium-tetracyanoniccolate(0) Potassium-tetracyanoniccolate(II) Diaquabis(ethylendiamin)cobalt(III)-bromide Zinc hexachloroplatinate(IV) Tetrammineplatin(II) amminetrichloroplatinate(II) Potassium aquapentachlororhodate(III)
- 3. Ethylendiamine (abbreviated as "en") formes a complex [Co(en)₂Cl₂]Cl with Cobaltchloride. Draw the possible structures of the complex in an octahedral and a hexagonal planar arrangement of the ligands.
- 4. Which structures do you expect for a complex with the formula [ZL₄]? How could you distinguish between the different possibilities?
- 5. The molecules BCl₃ and ICl₃ have totally different structures though they both are element trihalogenides. Explain the difference.
- 6. From an aqueous solution of a complex with the composition $CoClSO_4(NH_3)_{5,a}$ precipitate is obtained with $BaCl_2$ but not with AgNO₃. What is the correct formula and the structure of the complex?

- 7. Show the structures of a tetrahedron, a square, an octahedron and a trigonal prism by the method which uses points on the surface of a globe, sketch their stereographic projections and give their symmetry groups.
- 8. Explain the term "bidentate ligand" and give an example.
- 9. Define/explain the terms chiral, optical isomers, enantiomers, and diastereomers
- 10. Which of the complexes [Cr(edta)]⁻, [Ru(bipy)₃]²⁺, and [PtCl(dien)]⁺ are chiral?
- 11. Draw all the possible isomers of octahedral [Ru(NH₃)₄Cl₂], square planar [Ir(PR₃)₂H(CO)], octahedral [CoCl₃(OH₂)₃], and octahedral [CoCl₂(en)(NH₃)₂]⁺.
- 12. Why is it not possible to separate and isolate the isomers cis-[CuCl₂(NH₃)₄] and trans-[CuCl₂(NH₃)₄]? Is it likely to be possible to separate and isolate the isomers cis-[IrCl₂(NH₃)₄] and trans-[IrCl₂(NH₃)₄]?
- The commercially available chromium chloride has the composition CrCl₃·6H₂O. An aqueous solution is green but turns blue and then purple within several hours. Under heating, the solution turns green again. Interpret these observations.
- 14. Make a sketch of the splitting of the d-orbitals in an octahedral and a tetrahedral ligand field. Name the different orbitals and show how the orbital energies are affected by an elongation of the octahedron along the c-axis.
- 15. Which coordination geometries are possible for coordination number 4? How do the d-orbitals of the central atom split according to the ligand field theory?
- 16. Show and explain the main differences between the valence bond theory and the ligand field theory for the description of the bonding in complexes
- 17. In a $[CoF_6]^{3-}$ complex the pairing energy of the electrons is 21000 cm⁻¹ and the ligand field splitting is 13000 cm⁻¹. Which type of a complex do you expect?
- 18. Make a sketch of cis- and trans- $[Co(en)_2Cl_2]^+$ and show whether these complexes can exhibit optical isomerism.

- 19. Which of the ions $[Fe(H_2O)_6]^{2+}$ and $[Fe(CN)_6]^{4-}$ build a low spin complex? Explain why.
- 20. Give the electron count for $[Fe(CN)_6]^{4+}$ with respect to the 18e rule.
- 21. Explain the terms high spin complex and low spin complex with respect to the magnetic properties of coordination compounds and complexes.
- 22. Discuss the electronic structure and the magnetism of a d^8 and a d^{10} ion in an octahedral and a tetrahedral field.
- 23. The complex $[Ni(CN)_4]^{2-}$ is diamagnetic but $[Ni(Cl)_4]^{2-}$ is paramagnetic with two unpaired electrons. Likewise, $[Fe(CN)_6]^{3-}$ has only one unpaired electron but $[Fe(H_2O)_6]^{3+}$ has five. Explain these observations using a) valence bond theory and b) simple crystal field theory.
- 24. How does the absorption band in the electronic spectra of complexes shift when the ligands I⁻ is replaced by Cl⁻, Br⁻ or CN⁻?
- 25. Calculate the ligand field stabilization energy for a d¹ and a d⁴system in an octahedral and a tetrahedral field.
- 26. Which of the following complexes obey the 18 electron rule? $[Cu(NH_3)_4]^{2^+}$, $[Fe(CN)_6]^{4^-}$, $[Fe(CN)_6]^{3^-}$, $[Cr(NH_3)_6]^{3^+}$, $[Cr(CO)_6]$, $[Fe(CO)_5]$?
- 27. There are 5 diastereomers of a complex $[PtCl_2(NH_3)_2(NO_2)_2]$, one of them having an enantiomer. For each of the achiral isomers, locate the S_n axis to prove that it is not chiral.
- 28. How many coordination isomers could be formed starting with $[Cu(NH_3)_4][PtCl_4]$. Write the formula for each isomer.
- 29. The addition of PEtPh₂ to NiBr₂ at -78°C in CS₂ gives a red, diamagnetic complex with the formula $(PEtPh_2)_2NiBr_2$ which is converted to a green, paramagnetic complex of the same formula on standing. Which of these complexes is square planar and which is tetrahedral?
- 30. The spin pairing energy P for Fe^{2+} is 210 kJ/mole. The ligand field splitting energies of $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$ and $[\text{Fe}(\text{CN})_6]^{2+}$ are 120 and 390 kJ/mole, respectively. Draw a diagram for the splitting of the d-orbitals. Are these complexes in a high spin or a low spin state?

- 31. Make a sketch of an octahedral complex showing cis/trans isomerism and one showing fac/mer isomerism.
- 32. Make a sketch of the splitting of the d-orbitals in an octahedral ligand field. Name the different orbitals and show how the orbital energies are affected by an elongation of the octahedron along the c-axis.
- 33. What quantities are related to the kinetic and the thermodynamic of a chemical reaction.
- 34. Explain the terms strong, weak, inert, and labile complexes, respectively and name and describe the related figures.
- 35. For the ligand substitution reaction $X-M + Y \rightarrow X + M-Y$ sketch the reaction profiles and intermediates for an associative and interchange reaction mechanism.
- 36. If a substitution process is associative, why may is be difficult to characterize an aqua ion as labile or inert?
- 37. Explain the term π backbonding by using a metal carbonyl as an example.