Symmetry of Molecules and Crystals

What does symmetry mean?

Symmetry (Greek = harmony, regularity) means the repetition of a motif and
thus the agreement of parts of an ensemble (Fig. 1).
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Fig.1 Examples of symmetric objects

Symmetry can also mean harmony of proportions, or stability, order, and
beauty.



Definition:

An object is symmetric if it is left invariant by a transformation, i.e., cannot
be distinguished before and after transformation.

Symmetry transformations, operations, elements are:

Symbol* Symmetry operation

* Notation of symmetry elements after Schonflies (Sch for moleculs)
and International Notation after Hermann/Mauguin (HM for crystals)

E | (1) |identity (E from “Einheit” = unity, an object is left unchanged)

Sch|HM

Cn | (n) |properrotation through an angle of 27/n rad.

improperrotation through an angle of 27/n rad.

Sh followed by a reflection in a plane perpendicular to the axis
(rotation-reflection axis)

improperrotation through an angle of 27/n rad.

followed by a reflection through a point on the axis (rotation-
inversion axis)

inversion (point reflection) (1 =8S,) —

(x,y, z —-X, -y, -z in Cartesian coordinates)

3l

o | m |mirror plane (from “Spiegel”)
horizontal reflection in a plane passing through the origin and

Ch perpendicular to the axis with highest symmetry

vertical reflection in a plane passing through the origin and the
OV axis with highest symmetry

diagonal reflection in a plane as o, and bisecting the angle
off between the two-fold axis perpendicular to the axis of highest

symmetry

translation £ = ny-d+ n,-b + ns-¢

!

1. column: notation after Schonflies (molecules)

2. column: notation after Hermann/Mauguin (crystals)

Symmetry classes and combinations = point groups (see Table 1)
(in a point group at least one point in space is left invariant by the operation)



Table 1 Point groups of molecules and polyhedra*

Pointgr. | Sym elements* | h*** | Pointgr. Sym elements* | h***
C, E 1 Ci [ 2
C c 2 Cn Cn n
Sh Sh n Cuw C,, noy 2n
Con Ch, On 2N D, C,, nC,1C,

Dng C,, nC,LC,, noy 4n Din C,, nC,LC,, on, noy | 4N
Cov linear no i 00 D.p, linear with i 00
T tetrahedral 12 o) oktahedral 24
Ty 24 Oh (cubic) 48
Th 24
I ikosahedral 60 K spherical 00
I 120

* Schoenflies notation, ** Important symmetry elements, *** Order h (number of repetitions)

The point groups of some inorganic and organic compounds and the
schematic representation of the symmetries of some important objects and
polyhedra with their orders (repetitions) n =2, 3, 4, 5, 6 and <o are shown in
Figs. 2a und 2b.
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Abb. 2a Point groups of some inorganic and organic molecules
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Fig. 2b Schematic representation of some figures and polyhedra with their
symmetry properties, orders n and point groups

The point group notation after Hermann-Mauguin is given in the part Crystal
symmetry.

As exercise (find, note and systematize), the symmetry elements and point
groups of some molecules (without electron pairs) are listed in Fig. 3.
A symmetry flow chart is given in Fig. 4.



gpf(')ﬂt) Symmetry elements Structure/shape | Example(s)

(8 E SiBrCIFI

G E,G, H,0,

C, E.o NHF,

Cyy E.C,,0,,6, H,0, S0,Cl,

B E,%C;.30, NH,, PCl;, POCI,

Cay E,C,;,2Cy,. . .00,

Dy, E.Cy(x,y,2),0(xy,yz,2x),i
D3h E=C3:3C273Gv10111S3
D4h E1C47C2:2C£:2C2N7ias4)ah:zo.v)zo-d

D, B Cions {00,080 0 2865

Td E13C274C3:6ad=4S4

Oh E,6C2,4C3,3C4,4S6,3S4,i,30'h,60'd

X903 )5-

€0, HCI, 0CS

NZOM BZHG

BF,, PCl,

Xek,, trans-MA,B,

HZ: COZ) C2H2

CH,, SiCl,

SF,

Fig. 3 Point groups and symmetry elements of some molecules



Systematic search for a point group of a given molecule
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Linear?
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Figure 7-9
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Fig. 4 Symmetry flow chart for the determination of point groups



Representation/demonstration of symmetry properties
To demonstrate the symmetry properties of three-dimensional (spatial)

objects (e.g. molecules, optional figures or frames, polyhedra, crystals) in a
plane, projections like e.g. the stereographic projection are used (Fig. 5).

North pole

Equatorial plane =
plane of projection

Reference sphere
of radius 1

Center of projection
South pole

Fig. 5 Principle of a stereographic projection

The treated object, polyhedron, crystal etc. is positioned at the center of a
sphere so that his main symmetry axis (axis of highest symmetry) is oriented
perpendicularly to the equatorial plane. Its surface normals or center beams
will meet the surface of the sphere at the so called point or plane pole P.

The connecting line of the point or plane pole P with the opposite sphere pole
(north or south pole) will meet the equatorial (projection) plane at the
projection point P’ of the point or plane pole P.

The angle between two point or plane poles corresponds to the angle between
two center beams or the normal angles of two of the figure or crystal faces
(normal angle = 180° - plane angel), respectively, and gives the equatorial
angle (azimuth B) and the vertical angle (90° - pole altitude o).

|.e., the stereographic projection is isogonal (s. Fig. 6 und 7).
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Fig. 6 Stereographic projection of a tetragonal prism (a) and tetragonal
pyramid (b). The angle coordinates ¢ = 8 and 6 = a of the planes of the
pyramid are also given.
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Fig. 7 Plane poles and stereographic projection of a galenite crystal

The plane poles of a crystal mostly are positioned on few great circles. The
corresponding planes belong to so called crystal zones. The zone axis is
oriented perpendicularly to the plane of the respective great circle.

With the help of stereographic projections one can show/demonstrate, point

or plane poles, plane angles, and thus the symmetry properties of molecules,
polyhedra, or crystals.



Symmetry and geometry of crystals

The basic feature of the crystalline state is (idealized) the high degree of
order, i.e., the components of crystals (atoms, molecules, ions) are repeated in
a regular way, i.e., are 3D periodic (Kepler, 1611; Hooke, 1665; Bergmann,
1773; Hally, 1782)

CRYSTAL LATTICE STRUCTURAL MOTIF
'\ _’,_,_/
T;nvolu! ion
Unit cell(s)

CRYSTAL STRUCTURE

Fig. 8 Representation of a (2D) crystal structure

Crystals can be described as consisting of a structural motif (one or more
atoms, molecules, ions) belonging to one lattice point and being repeated by a
3D lattice translation (Fig. 8).

Structural motiv (basis) + 3D translation (crystal lattice) — Crystal structure
Unit cell: Parallelepiped representing crystal lattice+crystal structure (Fig. 9)
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Fig. 9 Unit cells with unit cell vectors (lattice translations) a, b, C.



Motif (basis), unit cell, crystal lattice and crystal structure have a definite,
combined symmetry (Fig. 9).

Fig. 9 Translational repetitions of symmetric motifs.

The asymmetric unit is repeated by symmetry m (a) and 4 (b), resulting in 2D
lattice arrangements of symmetry m (a) and 4 (b), respectively.
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Crystallographic symmetry elements/operations

Since crystals are 3D translational subjects, only space filling symmetry
elements are allowed. Besides a mirror plane (m) and an inversion center (1),
those space filling symmetry elements are the rotation axes 1, 2, 3, 4, and 6
only (Figs. 10, 11, 12).

B @ B 8B

rotation axes: 1,2,3,4,6 | mirror plane: m | translations: a, E, c

as well as their combinations including 1 (Hermann/Mauguin)

Fig. 10 Space filling symmetry elements (n=15, 7, 8, ... not allowed)
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Table 1-1 Conventional designation of improper axes

Rotoinversion Rotoreflection

axis axis Conventional designation
i 2 Center of symmetry 1
2 i Mirror plane m
3 6 3-fold rotoinversion 3
4 4 4-fold rotoinversion 4
6 3 6-fold rotoinversion 6
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Fig. 11 Demonstration, designation, and stereographic projections of proper
and improper crystallographic (space filling) axes
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Space filling point symmetry elements
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Coupling of the 5 basic rotation operations (1, 2, 3, 4, 6) and (T)

(rotation axes n = 1, 2, 3, 4, 6 with repeating angles of ¢ = 27/n radians)

leads to 10 point group symmetry elements
7 rotation-inversion axes; S, : rotation-reflection axes
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Fig. 12 The 10 crystallographic (space filling) point group elements

Crystal classes (crystallographic point groups)

Omitting translations, there are exactly 32 combinations possible for crystals,
resulting inexactly 32 crystallographic point groups or crystal classes.

They are used for the description of the morphology of crystals and repre-
sented e.g. in form of stereographic projections (Fig 13).
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Fig. 13 Stereographic representation of the 32 crystal classes
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Lattice symmetry (holoedric classes, crystal systems)

Also crystal lattices and the related parallelepipeds (unit cells) have a special
symmetry (exactly 7 possibilities) — holoedric classes and crystal systems
with different orientations/relations of the crystal axes (Figs. 14, 15).

b
a/
B
c 4
a
a a / a
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Figure 3-2
Shriver & Atkins Inorganic Chemistry, Fourth Edition
2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Fig. 14 Crystal systems and lattice constants

. Number of | Nature of unit- | Lengths and
System l lattices in | Lattice symbols cell axes and angles to be S}' ;2:':-"3,
| system anglesV specified s
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- 1 F® a=p£=9%0°
Hexagonal ' ] y=120° f
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Fig. 15 Crystal systems, unit cell axes and angles of the 7 holoedric classes
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Bravais lattices (centered cells/lattices)

Normally there is only 1 lattice point per unit cell (P), but for special axis
relations (£,-(£,-t;)) a higher symmetry (with orthogonal axes) is possible
under increase of the lattice point number per unit cell to 2 or 4 — centered
cellsC(2), 1(2), R(2), F(4) — 14 Bravais lattices.

Fig. 16 The 14 Bravais lattices with their coordinate systems, lattice constants,
and space group symbols
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Space groups (3D symmetry groups)

Inclusion of translation t results in further symmetry elements, the so-called
translation symmetry elements, the screw axis and glide planes (Fig. 17)

xY.2 Glerthomponente x*‘(;, ;|é
Glide plane

Fig. 17 Effect of an inversion center, a screw axis, and a glide plane
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Translation symmetry elements are:

a) screw axis: ny,
Rotation by 2nt/n and translation 11 to the screw axis by m/n-|¢|
(24, 31, 35, 44, 43, 45, 64, 65, 6,, 64, 65 are possible, see Fig. 18).

l

i = A " b

24

Fig. 18 Crystallographic screw axes ny,

b) glide planes: a, b, ¢, n, d
Reflection and translation parallel to the mirror plane

by d@/2 11 @ for a; b/2 1l b forb; é/2 11 ¢ for c
by |@+b|/2, |b+¢|/2, |d+¢|/2 parallel d+b, b+¢,
by |@+b|/4, |b+E|l4, |d+E/4 parallel G+b, b+¢,
(for I and F cells only)

a+c forn
a+c ford

Combination of axes/planes and translations are restricted by the 3D
periodicity of the crystal lattices.

Combination of the 14 Bravais lattices with the “space filling” point groups/
symmetry elements results in the 230 (3D) space groups (e.g. Fig. 19).

Point groups:  describe the symmetry of crystal faces.
Space groups: describe the symmetry of crystal bulks.

17



A summary of all symmetry elements of the 230 space groups are given in
the International Tables for Crystallography, Vol. A (see e.g. Fig. 19).

P 221/ m kBl P112m 2/m  Monoclinic
Can
-k ~Di+
/ — f ] ]
/ / $ (]
/ § >3
- +O- 3/
1st SETTING Origin at T; unique axis ¢
Number of positions, Co-ordinates of equivdlent positions Conditions limiti
l g poos‘;ibiom;;%
General:
4 F 1 xpz %52 Z7i+z xpi-z hki: Wo conditions
hk0: No conditions
00 I=2n

Special: as above, plus

- e m xyi; Zii ' ‘ no extra conditions

2 d T 430, 343

2 ¢ T 040 034

= hkl: 1=2n
2 b I 300; 0.1
2 a 1 000; 00}
Symmetry of special projections
(001) p2; a'=a, b'~b (100) pgrm; b'=b,c'=¢ (010) pmg; c'=c¢,d'=a

Fig. 19 Example of space group information

Atomic coordinates, equivalent positions
There are 3 possibilities for the description of crystal structures:

1. Every (translatorial) independent type of atom has its own crystal lattice
and the total crystal structure is given as the sum of all the (shifted)
“atomic translation lattices” all with the same basic translations d, b, C.

2. The crystal structure is given as the sum of the motiv or basis and the
translation or Bravais lattice.

3. Basis and lattice translations are represented/extracted by/from the
parallel epiped (unit cell: P, C, I, F, R) built by the basic lattice
translations d, b, ¢.

18



The best and simplest description/representation of a crystal structure is the

unit cell with its basic translations (@, b, ¢) or the lattice constants (a, b, ¢, o,
B, v) and its content (atoms, ions, molecules etc.).

The atomic positions in the unit cell are given by the position vectors
rj=Xd,+yb+2zcC
or (abbreviated) by their (contravariant) vector components x, v, z.

If the space group is known, the non-symmetric part of the unit cell, i.e. the
asymmetric unit, is sufficient for describing the complete (ideal) crystal
structure by using the equivalent positions listed in the International Tables.

Lattice planes, sets (families) of lattice planes, Miller indices

Parallel planes through all the points of a crystal lattice form sets of planes
with equidistant atoms and spacings (distances d of the planes of such a set of
planes), where the atomic distances and spacings depend on the orientation of

those planes with respect to the lattice/unit cell vectors a, b,and ¢ (Fig. 20).

Lattice or unit cell vectors @, b, ¢~ Miller indices (hkl) ~ Spacings dg)

Fig. 20 Sets of lattice planes (hkl) with different orientation and spacings d,
(or diwy) for a monoclinic 3D point lattice projected parallel -¢

Each set of planes divide the lattice axes d, b, and ¢ into an integral number of

equal parts (see Fig. 20). These fractional intercepts h (for a), k (for 5), and |
(for ¢) are the so-called Miller index triples or Miller indices (hkl).
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A specific set of planes is characterized by the Miller indices (hkl) and also by
its normal vector 7 (length 1) and the respective spacing d, or dgy (Fig. 21).

v n'; Raumgitter

Fig. 21 Three different sets of lattice planes of a monoclinic 3D point lattice

(lattice vectors d, b, and ¢, projected parallel —¢) with their normal vectors 7;,
spacings d;, and Miller indices (hkl)

Sets of planes, crystal faces, sets of symmetry equivalent planes or faces, and
directions in a crystal or point lattice are described as follows:

(hkl) define sets of lattice planes and crystal faces
e.g. (100) =yz or bc plane, (010) = xz or ac plane, (001) = xy or ab plane

{hkl} define symmetry equivalent sets of planes and crystal faces
e.g. {100} cunic = (100), (010), (001), (-100), (0-10), (00-1)

[uvw] define directions in a crystal lattice and a crystal corresponding to the

components of the translation vector = u-@ + v-b + w-¢ e.g.
[100] =x or a axis, [010] =y or b axis, [001] =z or ¢ axis

Some examples of sets of lattice planes with their spacings dy and of origin
nearest lattice planes representing specific sets of lattice planes and the corre-
sponding Miller indices are given in Fig. 22. For the definition of directions
see Fig. 23.
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the set of lattice the set of lattice

planes (111) / planes (122)
digg=2a . dno="%V2a : dn=%V3a
A
o d —1
mEET dis="e\2 2 L o= /Ba
B
= 4 % NN u
P d;20={zi\/2a ; GV
Origin at lower left front
7/
1M1
o i (001) (100) (010)
| N
" il ’ '
(231) ; (121) (101) (110) o11)
|
| l N
; = ;
(110) (210) - ~
* (111) (111) (111)
Origin at lower left behind Origin at lower left front

Fig. 22 Examples of lattice planes and plane sets with their Miller indices

21



To construct the origin nearest lattice plane of a lattice plane set (hkl) please:

1. select the origin 000,

2. mark intercepts 1/h, 1/k, 1/I of the plane (hkl) on &, b, and &,
3. draw the plane.

For negative indices, first shift the origin accordingly.

[001] 111 [011]

[110]

[010]

Fig. 23 Directions [hKI] in crystal lattices and crystals

Reciprocal lattice (labelling of lattice planes and lattice plane sets)

Lattice plane sets of a crystal or crystal lattice with basis vectors a, b, and
c,are characterized by their plane normals 7, and spacings d .

The endpoints of vectors (1/dy)- 72, or (1/d )" 72wy, Fespectively, form a
point lattice named reciprocal lattice (Fig. 24)

S

L1

Crystal lattice Reciprocal lattice

Fig.24 Relation between crystal lattice (left) and reciprocal lattice (right)

22



The relation between the basis vectors @*, b*, ¢* of the reciprocal lattice and
the basis vectors @, b, and ¢, of the crystal lattice is demonstrated in Fig. 25.

b () Aohoe, Sine = hde 8.5 4 2.2

330
130 230
030
(010)
| 5 S o
t._D . "‘o-"
1 120 22{?&”
0 O/ -
3 ;;0 o M
~\Z
% =y 310
[ - // 210
= 1
o 010
= (25 Pal)
,/_.J ; 4 : 300
. a T 200
000 (010 - Lattice planes and

reciprocal lattice

Fig. 25 Relation between crystal lattice planes and the reciprocal lattice

The respective vector equations are

— bxc F) Cxad | =3 ax
= Cc
1

abxc’ a-bxc

with the reciprocal lattice vectors vectors
Sniy = ha® + kb* + Ic* or Hyy, = ha* + kb* + Ic*
The following relations are valid

a* b*xc =V, d-bxé=V

1
H
~
<

*
Q
Q*l
Il
(w i}

— N

i-b*=d-c"=b-c"

l

-

!
AR

a* - a*- ¢ =

In orthogonal lattice systems (all angles are 90°) one has

a=1/a,b=1/b", c=1/c".
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Relations between the spacings d(hkl), reciprocal spacings 1/d(hkl) and the
lattice constants a, b, and c of the 7 crystal systems are given in Table 2.

Table 2 Reciprocal spacings 1/d((hkl)) and lattice vectors a, b, and ¢

System 1/d%,,
Cubic (h? + 2 + 17)/ &*
Tetragonal h+ K & £

A O
Orthorhombic 2ttt

Hexagonal and
trigonal (P)

Trigonal (R)

Monoclinic

Triclinic

2
—4-2(h2+ K + hk)+—l

3a c2
1 ((h2 + k2 + 1?) sin? a + 2(hk + hl + kl)(cos? a-cos a))
a’ 1+2cos’a—3cos’a
h? K I? 2hl cos B
a’sin’p T2t cTsin? B acsin’p

Y
(1 - cos? @ — cos? B — cos? y + 2 cos & cos f cos y) '(?smza

P P
+-b—2$|n ﬂ+;5sm y+—62(cosﬂcosy—cosa)

+ h (cos y cos a — cos ) + Zf'_k(cos a cos.ff — cos ))
e Y ab 4
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