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Symmetry of Molecules and Crystals 

 
What does symmetry mean? 
 

Symmetry (Greek = harmony, regularity) means the repetition of a motif and 

thus the agreement of parts of an ensemble (Fig. 1). 

 
 

 

 

 

 

 

 

 

Precession pattern of LiAlSiO4 
(a*b* plane, symmetry 6mm) 

Ice crystal 
(symmetry ~6mm) 

Rotation of ClH2C-CH2Cl 
(symmetry C2, C2v or C2h) 

 

 

 
 

 

 
 

Matrix for a vector rotation J.S. Bach, „Die Kunst der Fuge“ Anti-symmetry 

 

 

 

 

 

 
 

 

Radiolarian shell (Circogonia 

icodaedra) with icosaeder symmetry 
Normal modes of XeF4 

(symmetry group D4h) 

3D object 
(csi.chemie.tu-darmstadt.de/ak/immel/) 

 

Fig.1 Examples of symmetric objects 

 

Symmetry can also mean harmony of proportions, or stability, order, and 

beauty. 



2 

Definition: 
 

An object is symmetric if it is left invariant by a transformation, i.e., cannot 

be distinguished before and after transformation. 
 

 

Symmetry transformations, operations, elements are: 
 
 

Symbol* Symmetry operation 

Sch HM 
* Notation of symmetry elements after Schönflies (Sch for moleculs) 

and International Notation after Hermann/Mauguin (HM for crystals) 

E (1) identity (E from “Einheit” = unity, an object is left unchanged) 

Cn (n) properrotation through an angle of 2/n rad. 

Sn  
improperrotation through an angle of 2/n rad. 

followed by a reflection in a plane perpendicular to the axis 

(rotation-reflection axis) 

 n  

improperrotation through an angle of 2/n rad. 

followed by a reflection through a point on the axis (rotation-

inversion axis) 

i 1  
inversion (point reflection) ( 1  ≡ S2) → 

(x, y, z →-x, -y, -z in Cartesian coordinates) 

 m mirror plane (from “Spiegel”) 

h  
horizontal reflection in a plane passing through the origin and 

perpendicular to the axis with highest symmetry 

v  
vertical reflection in a plane passing through the origin and the 

axis with highest symmetry 

d  
diagonal reflection in a plane as vand bisecting the angle 

between the two-fold axis perpendicular to the axis of highest 

symmetry 

    translation    = n1  + n2    + n3   

  1. column: notation after Schönflies (molecules) 

  2. column: notation after Hermann/Mauguin (crystals) 

 

Symmetry classes and combinations  point groups (see Table 1) 

(in a point group at least one point in space is left invariant by the operation) 
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Table 1 Point groups of molecules and polyhedra* 

 
Point gr. Sym elements* h*** Point gr. Sym elements* h*** 

C1  E 1 Ci i 2 

Cs σ 2 Cn Cn n 

Sn Sn n Cnv Cn, nσv 2n 

Cnh Cn, σh 2n Dn Cn, nC2Cn  

Dnd Cn, nC2Cn, nσd 4n Dnh Cn, nC2Cn, σh, nσv 4n 

C∞v linear no i ∞ D∞h linear with i ∞ 

T 

Td 

Th 

tetrahedral 12 

24 

24 

O 

Oh 

oktahedral 

(cubic) 

24 

48 

I 

Ih 

ikosahedral 60 

120 

Kh spherical ∞ 

 

 * Schoenflies notation, ** Important symmetry elements, *** Order h (number of repetitions) 

 

The point groups of some inorganic and organic compounds and the 

schematic representation of the symmetries of some important objects and 

polyhedra with their orders (repetitions) n = 2, 3, 4, 5, 6 and ∞ are shown in 

Figs. 2a und 2b. 
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Abb. 2a Point groups of some inorganic and organic molecules 
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Fig. 2b Schematic representation of some figures and polyhedra with their 

symmetry properties, orders n and point groups 

 

The point group notation after Hermann-Mauguin is given in the part Crystal 

symmetry.  

 

As exercise (find, note and systematize), the symmetry elements and point 

groups of some molecules (without electron pairs) are listed in Fig. 3. 

A symmetry flow chart is given in Fig. 4. 
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Point-

group 
Symmetry elements  Structure/shape Example(s) 

 
 

Fig. 3 Point groups and symmetry elements of some molecules 
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Fig. 4 Symmetry flow chart for the determination of point groups 
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Representation/demonstration of symmetry properties 

 

To demonstrate the symmetry properties of three-dimensional (spatial) 

objects (e.g. molecules, optional figures or frames, polyhedra, crystals) in a 

plane, projections like e.g. the stereographic projection are used (Fig. 5). 

 

Equatorial plane =

plane of projection

Reference sphere

of radius 1

North pole

South pole
Center of projection

 
 

Fig. 5 Principle of a stereographic projection 

 

The treated object, polyhedron, crystal etc. is positioned at the center of a 

sphere so that his main symmetry axis (axis of highest symmetry) is oriented 

perpendicularly to the equatorial plane. Its surface normals or center beams 

will meet the surface of the sphere at the so called point or plane pole P. 

The connecting line of the point or plane pole P with the opposite sphere pole 

(north or south pole) will meet the equatorial (projection) plane at the 

projection point P’ of the point or plane pole P. 

The angle between two point or plane poles corresponds to the angle between 

two center beams or the normal angles of two of the figure or crystal faces 

(normal angle = 180° - plane angel), respectively, and gives the equatorial 

angle (azimuth β) and the vertical angle (90° - pole altitude α). 

I.e., the stereographic projection is isogonal (s. Fig. 6 und 7). 
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Fig. 6 Stereographic projection of a tetragonal prism (a) and tetragonal 

pyramid (b). The angle coordinates φ = β and δ = α of the planes of the 

pyramid are also given. 

 

 
 

Fig. 7 Plane poles and stereographic projection of a galenite crystal 

 

The plane poles of a crystal mostly are positioned on few great circles. The 

corresponding planes belong to so called crystal zones. The zone axis is 

oriented perpendicularly to the plane of the respective great circle. 

With the help of stereographic projections one can show/demonstrate, point 

or plane poles, plane angles, and thus the symmetry properties of molecules, 

polyhedra, or crystals. 

 



9 

Symmetry and geometry of crystals 
 

The basic feature of the crystalline state is (idealized) the high degree of 

order, i.e., the components of crystals (atoms, molecules, ions) are repeated in 

a regular way, i.e., are 3D periodic (Kepler, 1611; Hooke, 1665; Bergmann, 

1773; Haüy, 1782) 

 

Unit cell(s)

 
 

Fig. 8 Representation of a (2D) crystal structure 

 

Crystals can be described as consisting of a structural motif (one or more 

atoms, molecules, ions) belonging to one lattice point and being repeated by a 

3D lattice translation (Fig. 8). 

Structural motiv (basis) + 3D translation (crystal lattice)  Crystal structure 

Unit cell: Parallelepiped representing crystal lattice+crystal structure (Fig. 9) 

 

a

c b

 
 

Fig. 9 Unit cells with unit cell vectors (lattice translations)   ,    ,   . 
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Motif (basis), unit cell, crystal lattice and crystal structure have a definite, 

combined symmetry (Fig. 9). 

 

 
 

Fig. 9 Translational repetitions of symmetric motifs. 

 

The asymmetric unit is repeated by symmetry m (a) and 4 (b), resulting in 2D 

lattice arrangements of symmetry m (a) and 4 (b), respectively. 
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Crystallographic symmetry elements/operations 

 

Since crystals are 3D translational subjects, only space filling symmetry 

elements are allowed. Besides a mirror plane (m) and an inversion center ( 1 ), 

those space filling symmetry elements are the rotation axes 1, 2, 3, 4, and 6 

only (Figs. 10, 11, 12). 

 

 
 

rotation axes: 1,2,3,4,6 mirror plane: m translations:   ,    ,    

as well as their combinations including 1  (Hermann/Mauguin) 

 

Fig. 10 Space filling symmetry elements (n = 5, 7, 8, … not allowed) 
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Fig. 11 Demonstration, designation, and stereographic projections of proper 

and improper crystallographic (space filling) axes 
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Fig. 12 The 10 crystallographic (space filling) point group elements 

 

Crystal classes (crystallographic point groups) 
 

Omitting translations, there are exactly 32 combinations possible for crystals, 

resulting inexactly 32 crystallographic point groups or crystal classes. 

They are used for the description of the morphology of crystals and repre-

sented e.g. in form of stereographic projections (Fig 13). 

 

 
 

Fig. 13 Stereographic representation of the 32 crystal classes 
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Lattice symmetry (holoedric classes, crystal systems) 
 

Also crystal lattices and the related parallelepipeds (unit cells) have a special 

symmetry (exactly 7 possibilities)  holoedric classes and crystal systems 

with different orientations/relations of the crystal axes (Figs. 14, 15). 

 

 
Fig. 14 Crystal systems and lattice constants 

 

 
 

Fig. 15 Crystal systems, unit cell axes and angles of the 7 holoedric classes 
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Bravais lattices (centered cells/lattices) 
 

Normally there is only 1 lattice point per unit cell (P), but for special axis 

relations (  1·(  2-  1)) a higher symmetry (with orthogonal axes) is possible 

under increase of the lattice point number per unit cell to 2 or 4  centered 

cells C (2),  I (2),   R (2),   F (4)      14 Bravais lattices. 

    

 
 

Fig. 16 The 14 Bravais lattices with their coordinate systems, lattice constants, 

and space group symbols 
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Space groups (3D symmetry groups) 
 

Inclusion of translation    results in further symmetry elements, the so-called 

translation symmetry elements, the screw axis and glide planes (Fig. 17) 
 

 
 

 
 
 

 
 

Fig. 17 Effect of an inversion center, a screw axis, and a glide plane 

Screw axes 31 and 32 

Inversion center 

Glide plane 
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Translation symmetry elements are: 
 

a) screw axis: nm 

Rotation by 2/n and translation II to the screw axis by m/n   
(21, 31, 32, 41, 43, 42, 61, 65, 62, 64, 63 are possible, see Fig. 18). 

 

 
 

Fig. 18 Crystallographic screw axes nm 
 

 

b) glide planes: a, b, c, n, d 

         Reflection and translation parallel to the mirror plane 

by   /2 II    for a;    /2 II      for b;   /2 II c for c 

by   +   /2,    +  /2,   +  /2 parallel   +   ,    +  ,   +   for n  

 by   +   /4,    +  /4,   +  /4 parallel   +   ,    +  ,   +   for d 

 (for I and F cells only) 
 
 

Combination of axes/planes and translations are restricted by the 3D 

periodicity of the crystal lattices. 

 

Combination of the 14 Bravais lattices with the “space filling” point groups/ 

symmetry elements results in the 230 (3D) space groups (e.g. Fig. 19). 
 

Point groups:  describe the symmetry of crystal faces. 

Space groups:  describe the symmetry of crystal bulks. 
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A summary of all symmetry elements of the 230 space groups are given in 

the International Tables for Crystallography, Vol. A (see e.g. Fig. 19). 
 

 
 

Fig. 19 Example of space group information  

 

Atomic coordinates, equivalent positions 
 

There are 3 possibilities for the description of crystal structures: 
 

1. Every (translatorial) independent type of atom has its own crystal lattice 

and the total crystal structure is given as the sum of all the (shifted) 

“atomic translation lattices” all with the same basic translations   ,    ,   . 
2. The crystal structure is given as the sum of the motiv or basis and the 

translation or Bravais lattice.  

3. Basis and lattice translations are represented/extracted by/from the 

parallel epiped (unit cell: P, C, I, F, R) built by the basic lattice 

translations   ,    ,   . 
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The best and simplest description/representation of a crystal structure is the 

unit cell with its basic translations (  ,    ,   ) or the lattice constants (a, b, c, , 

, ) and its content (atoms, ions, molecules etc.). 
 

The atomic positions in the unit cell are given by the position vectors 

  j = x  , + y    + z   
or (abbreviated) by their (contravariant) vector components x, y, z. 
 

If the space group is known, the non-symmetric part of the unit cell, i.e. the 

asymmetric unit, is sufficient for describing the complete (ideal) crystal 

structure by using the equivalent positions listed in the International Tables. 

 

Lattice planes, sets (families) of lattice planes, Miller indices 
 

Parallel planes through all the points of a crystal lattice form sets of planes 

with equidistant atoms and spacings (distances d of the planes of such a set of 

planes), where the atomic distances and spacings depend on the orientation of 

those planes with respect to the lattice/unit cell vectors   ,    , and    (Fig. 20). 

 

 
 

 

Fig. 20 Sets of lattice planes (hkl) with different orientation and spacings dn 

(or d(hkl)) for a monoclinic 3D point lattice projected parallel -   
 

Each set of planes divide the lattice axes   ,    , and    into an integral number of 

equal parts (see Fig. 20). These fractional intercepts h (for   ), k (for    ), and l 

(for   ) are the so-called Miller index triples or Miller indices (hkl). 

Lattice or unit cell vectors   ,    ,        Miller indices (hkl)     Spacings d(hkl) 
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A specific set of planes is characterized by the Miller indices (hkl) and also by 

its normal vector     (length 1) and the respective spacing dn or d(hkl) (Fig. 21). 

 

 
 

Fig. 21 Three different sets of lattice planes of a monoclinic 3D point lattice 

(lattice vectors   ,    , and   , projected parallel –  ) with their normal vectors    i, 

spacings di, and Miller indices (hkl) 

 

Sets of planes, crystal faces, sets of symmetry equivalent planes or faces, and 

directions in a crystal or point lattice are described as follows: 

 

(hkl)   define sets of lattice planes and crystal faces 

 e.g. (100) ≡ yz or bc plane, (010) ≡ xz or ac plane, (001) ≡ xy or ab plane 
 

{hkl}  define symmetry equivalent sets of planes and crystal faces 

 e.g. {100}cubic ≡ (100), (010), (001), (-100), (0-10), (00-1) 
 

[uvw]  define directions in a crystal lattice and a crystal corresponding to the  

    components of the translation vector     = u   + v    + w    e.g.  

            [100] ≡ x or a axis, [010] ≡ y or b axis, [001] ≡ z or c axis 

 

Some examples of sets of lattice planes with their spacings d(hkl) and of origin 

nearest lattice planes representing specific sets of lattice planes and the corre-

sponding Miller indices are given in Fig. 22. For the definition of directions 

see Fig. 23. 



21 

 
 

 
 

  

 

 
 

Origin at lower left front 

 

 

 

Origin at lower left behind Origin at lower left front 

 

Fig. 22 Examples of lattice planes and plane sets with their Miller indices 
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To construct the origin nearest lattice plane of a lattice plane set (hkl) please: 
 

 1. select the origin 000, 

 2. mark intercepts 1/h, 1/k, 1/l of the plane (hkl) on   ,    , and   , 
 3. draw the plane. 
 

For negative indices, first shift the origin accordingly. 

 

 
 

Fig. 23 Directions [hkl] in crystal lattices and crystals 

 

Reciprocal lattice (labelling of lattice planes and lattice plane sets) 
 

Lattice plane sets of a crystal or crystal lattice with basis vectors   ,    , and 

  ,are characterized by their plane normals    (hkl) and spacings d(hkl). 

The endpoints of vectors (1/dn)∙    n or (1/d(hkl))∙     (hkl), respectively, form a 

point lattice named reciprocal lattice (Fig. 24)  
 
 

 
 
 

Fig.24 Relation between crystal lattice (left) and reciprocal lattice (right) 

Crystal lattice Reciprocal lattice 
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The relation between the basis vectors   *,    *,     * of the reciprocal lattice and 

the basis vectors   ,    , and   , of the crystal lattice is demonstrated in Fig. 25. 

 

 
 

Fig. 25 Relation between crystal lattice planes and the reciprocal lattice 

 

The respective vector equations are 
 

        
      

          
 ;           

      

          
 ;          

       

          
 

 

with the reciprocal lattice vectors vectors 
 

     
                                    or      

                                    
 

The following relations are valid 
 

                       = V
*
,             = V = 1/V

*
,                                          

 

                                                                          = 0. 

 

In orthogonal lattice systems (all angles are 90°) one has 
 

a = 1/a
*
,
  
b = 1/b

*
,
 
 c = 1/c

*
. 

Lattice planes and 

reciprocal lattice 
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Relations between the spacings d(hkl), reciprocal spacings 1/d(hkl) and the 

lattice constants a, b, and c of the 7 crystal systems are given in Table 2. 

 

Table 2 Reciprocal spacings 1/d((hkl)) and lattice vectors a, b, and c 
 

 
 

 

 
 

 


