
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

Journal of the Mechanics and Physics of Solids 57 (2009) 87–108
0022-50

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jmps
A variational formulation of the quasicontinuum method based on
energy sampling in clusters
Bernhard Eidel a,�, Alexander Stukowski b

a Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Stiepeler Strasse 129, D-44787 Bochum, Germany
b Department of Materials Science, TU Darmstadt, Petersenstr. 23, D-64287 Darmstadt, Germany
a r t i c l e i n f o

Article history:

Received 31 October 2007

Accepted 26 September 2008

Keywords:

Multiscale modeling

Atomistic–continuum bridging

Quasicontinuum

Nanoindentation

Dislocation microstructure
96/$ - see front matter & 2008 Elsevier Ltd. A

016/j.jmps.2008.09.017

responding author. Tel.: +49 234 32 29380; fax

ail address: bernhard.eidel@ruhr-uni-bochum
a b s t r a c t

This contribution presents a novel quasicontinuum (QC) approach aiming at a seamless

transition from the atomistic to the continuum description of crystalline solids at zero

temperature, which heavily draws on the framework proposed by Knap and Ortiz [2001.

An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49, 1899–1923].

Opposed to Knap and Ortiz, the energy instead of forces is subject to a cluster-based

sampling scheme with adaptive resolution. We show that only the present ansatz

endows the QC theory with a variational structure leading to conservative forces and

symmetric stiffnesses. Equally, we show the strict symmetry in atomic interactions. This

approach allows for the direct application of standard minimization methods and

guarantees the existence of an equilibrium state provided that the total potential

exhibits a minimum. A special focus is on the numerical error in the cluster-based

summation rule for energy sampling. We compare two strategies to improve the

accuracy, which are also particularly useful to account for surface effects. The fully

nonlocal methodology is assessed in nanoindentation into an fcc single crystal.

Compared with lattice statics good agreement is achieved with respect to the

force–displacement curve, the load level and locus of dislocation nucleation and the

dislocation microstructure for a small fraction of the computational costs.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The main aim of the present paper is threefold:
(I) First, we propose a novel version of the quasicontinuum (QC) method for zero temperature, which heavily draws on

the framework of Knap and Ortiz (2001). We aim to improve it in some notable aspects while maintaining favorable
characteristics.

The QC method is an example of a bottom-up, concurrent multiscale method aiming at a seamless link of atomistic with
continuum length scales. This aim is achieved by (i) a coarse-graining from fully atomistic resolution via kinematic
constraints along with (ii) a sampling of state variables (energy or forces) in coarse-grained regions along with numerical
quadrature, where (iii) adaptivity, i.e. spatially adaptive resolution, is governed by a suitable indicator. Properties (i) and (ii)
introduce continuum assumptions into the QC method. The first version was proposed by Tadmor et al. (1996a, b) and in a
series of papers exemplary problems for multiscale modeling and simulation have been analyzed such as nanoindentation
(Phillips et al., 1999; Tadmor et al., 1999; Picu, 2000; Shenoy et al., 2000; Knap and Ortiz, 2001, 2003; Hayes et al., 2005).
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Furthermore, the simulation of stress-induced phase transformations has been considered in Smith et al. (2000, 2001), the
simulation of crack-tip deformation in single crystalline materials by Miller et al. (1998a, b), nanovoid cavitation by Marian
et al. (2004), and grain boundaries in Sansoz and Molinari (2005). For an overview of the QC method and applications we
refer to Miller and Tadmor (2002). A comparison of QC with other atomistic–continuum coupling methods is presented in
Curtin and Miller (2003).

The first version of QC is faced with ghost forces defined as spurious forces arising at the boundary between local and
nonlocal regions. These forces thus follow from the duality in atomic interactions, where the motion of representative
atoms (or rep-atoms) in the local region subject to the Cauchy–Born–Rule (CBR) will effect the energy of nonlocal rep-
atoms, while the converse may not be true. A remedy against ghost forces is to introduce static correction forces, which
exhibit the drawback, that they are not derivable from a ‘correction potential energy’, i.e. they are nonconservative, see
Shenoy et al. (1999). This may lead to serious problems with energy conservation during a molecular-dynamics (MD)
simulation, as reported in Shimokawa et al. (2004). In order to cure the problem of ghost forces without new shortcomings
this reference introduces a buffer layer between the two regions of space, where atoms are subject to specific rules, how
they interact with their local and nonlocal neighborhood. In a similar spirit is the contribution of E et al. (2006), where the
approach of local reconstruction schemes is generalized.

One benefit of the fully-nonlocal QC (QC-FNL) version of Knap and Ortiz (2001) is to overcome the force mismatch
between local and nonlocal regions in a most simple and elegant manner by avoiding the CBR and thus to enable the
seamless scale transition between fully atomistic resolution and coarse-graining. This means that the scale transition in
QC-FNL is realized in a continuous manner by gradual coarse-graining, in QC-CBR it is realized at the discrete interface,
where different physical models are in direct neighborhood. In the above structure of QC building blocks, (i)–(iii), QC-FNL
introduces for property (ii) the use of summation rules for the sampling of forces in spherical clusters in the sense of
representative crystallites in order to compute the effective equilibrium equations. Effective means, that instead of
minimizing the total energy—as it is done in QC-CBR—a surrogate problem is solved, namely equilibrium of an approximate

force function. This is based on the fact that energy minimization physically corresponds to solving for the configuration for
which the force on each degree of freedom is zero.

At this point the present work elucidates a key new aspect and discusses its consequences; we show that the stiffness
matrix derived from the approximate force function in QC-FNL is not symmetric, thus indicating nonconservative
forces. This is an unexpected turn, since all forces acting on sampling atoms within the cluster are derived from a well-
defined interatomic potential. Based on this analysis we propose a novel QC method that introduces the approximation
step of sampling at the energy level instead of the force level, termed QC-eFNL. We show that this ansatz endows the
QC-FNL with a variational structure and we discuss its theoretical and numerical advantages. Moreover, we compare
the energy-based sampling with the force-based sampling in view of the principle of symmetry in atomic interactions.
Furthermore, we discuss for both fully nonlocal QC versions an implication when applying the embedded atom method
(EAM).

(II) Second, we present an error analysis which elucidates the quality and assesses the quantity of the error in numerical
quadrature within QC-eFNL. The starting point is the observation that the relaxation of a perfect, infinite single-crystal on a
nonuniform mesh leads to an inhomogeneous deformation state, where zero displacement is the correct solution. A similar
result is reported in E et al. (2006). This example is an important test case in concurrent multiscale modeling, since the
exact solution is known a priori. As a consequence, if for the sake of a scale transition an interface is introduced, that
couples regions of different physical description, then the corresponding error in terms of spurious relaxation/forces can
directly be identified and can be seen as a measure for the departure from a seamless scale transition. In QC-CBR, the
interface separates local and nonlocal regions and the observed spurious forces are dubbed ghost forces as mentioned
above. For QC-eFNL we identify the error leading to spurious relaxation as the error in numerical quadrature and discuss
two different concepts to control it and finally to reduce it to identically zero. Furthermore, we show by analytical means in
a one-dimensional (1D) setting that the exact solution to this particular problem of a homogeneous deformation state can
also be obtained, if a centro symmetry condition for the mesh is fulfilled, which means that each representative atom, i.e.
mesh node, must see an identical environment. It bears emphasis that for a suchlike scenario, i.e. relaxation of an infinite
perfect crystal under the additional assumption of homogeneous deformations, Kulkarni et al. (2008) have recently shown
that the QC energy equals the exact energy.

(III) Third, we simulate 3D nanoindentation as a benchmark problem for multiscale modeling and simulation in order
to assess the main features of QC-eFNL. Nanoindentation is a paradigm for concurrent multiscale methods, since it
contains a critical region of confined size, that requires fully atomistic resolution enabling dislocation nucleation and,
on the other hand, a coarse-graining for an efficient representation of elastic regions in the crystal. In this setting, the
mesh-adaption abilities controlled by a suitable refinement indicator are crucial to balance efficiency and accuracy of
the method. Moreover, for nanoindentation into single crystalline material there is a wealth of investigations applying
MD, for ball-indentation into (0 0 1) fcc single crystalline material see e.g. Saraev and Miller (2005). It bears emphasis,
that nanoindentation is of utmost importance for materials science, since it offers the possibility to understand the
fundamental behavior of solids and to extract material properties. For a state-of-the-art review of the recent progress
in instrumented indentation we refer to Cheng et al. (2004) and Gouldstone et al. (2007). Experimental results con-
cerning nanoindentation into (0 0 1) oriented fcc single crystals are reported in e.g. Gerberich et al. (1996), Rodríguez
de la Fuente et al. (2002) and in Minor et al. (2006). In the present work, however, the reference for comparison will be
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the results of fully atomistic lattice statics simulation. More specifically, we aim to answer the following questions
concerning:

(i) The efficiency: How much can the present multiscale framework reduce the computational costs of fully atomistic
resolution?

(ii) The material’s global response: How accurate can QC-eFNL match the material’s global response in terms of the
characteristic force–depth (F–h) curve? The focus here is on the elastic branch up to the event of defect nucleation, marked
by a force-drop. As a second indicator we use the accuracy for the resolution of free surface effects. Although this behavior
is already reflected by the F–h curve, it addresses a particular problem of the nonlocal QC method, namely to generally
suffer from a significant overestimate of surface effects, see e.g. the review paper of Miller and Tadmor (2002). A rep-atom
at the corner of a cubic specimen sees three free surfaces and therefore will be of high-energy. If this considered corner rep-
atom is part of a coarse-grained region, it will represent a large volume and therefore its weighting factor in numerical
quadrature will be large. The resulting energy will be as though that entire volume of material is located close to free
surfaces leading to a considerable overestimate of the energetic contribution of the corner and therefore to spurious
relaxation. Thus, to accurately account for surface effects is a challenge within QC simulations. Here, we show that both
strategies for error control discussed in this paper are well suited to tackle this problem in nanoindentation.

(iii) The material’s microstructural evolution: Can QC-eFNL simulations faithfully capture significant details of initial
stages of plasticity in terms of the type of evolving dislocation microstructure? Since the energy is not convex, the solution
to minimization is highly nonunique, such that many variants of microstructure may evolve beyond the elastic limit. This
aspect has been addressed by Knap and Ortiz (2001), where in a 3D simulation of nanoindentation the microstructure for
QC differed from lattice statics. Under these adverse circumstances it is an open question, how faithful a concurrent
multiscale method can capture microstructures in all details.

According to these aims, the route of the paper is as follows: To put things into perspective we summarize in Section 2
the basic results of lattice statics, since the present QC approach and its precursor of Knap and Ortiz (2001) are direct
offsprings of lattice statics, such that a comparison of corresponding force and stiffness expressions will be instrumental.
Section 3 summarizes the main features of QC-FNL and ends up in an analysis of the approximate force function by means
of the stiffness matrix. Based on this, we present in Section 4 the novel version of QC based on energy sampling and discuss
its properties. Section 5 presents an error analysis for QC-eFNL and a comparison QC-FNL and QC-CBR. This leads to the
description of different strategies for error control in Section 6. The method is applied in Section 7 to a nanoindentation
experiment before we close with a summary in Section 8.

2. Basic lattice statics

Considering here the case of one-atomic systems the initial configuration of each atom in a single crystalline material
can be identified by its lattice coordinates l ¼ ðlð1Þ; . . . ; lðdÞÞ 2 Zd, where d denotes the dimensions of space. The set L � Zd

contains each of the altogether N atoms in the considered crystal. The spatial initial position Xl of an atom with lattice
coordinates l is defined by

Xl ¼
Xd

i¼1

lðiÞai, (1)

where the basis vectors ai span a simple d-dimensional Bravais lattice. The displacement vector of the lth atom is
defined as

ul ¼ xl � Xl, (2)

where xl denotes its current position.
It is assumed that the total potential energy Etot of the system can be additively computed as the sum of energies of each

atom

Etot
¼
X
k2L

Ek. (3)

The particular form of the atomic energy Ek depends on the model of atomic interactions. In the sequel the atomic energies
are computed according to the EAM (Daw and Baskes, 1984). The crucial idea of EAM is that each atom is primarily
considered as a foreign atom which must be embedded into the surrounding crystal. This embedding requires a specific
amount of energy Uðr̄Þ depending on the electron density r̄. The second part in EAM potentials is an ion-ion pair potential
term VðjrkljÞ. Under the additional assumption that external forces are derived from a potential Vext, the energy of atom k
follows the general format

Ek ¼ Uðr̄kÞ þ
1

2

X
l

VðjrkljÞ þ Vext
ðxkÞ with (4)

r̄k ¼
X

l

rðjrkljÞ; rkl ¼ xk � xl. (5)
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The electron density r̄k at site k is approximated by the superposition of the contributions of all atoms in the
neighborhood, given by a new functional rðrÞ.

Due to applied loads, defects like vacancies, dislocations, grain boundaries, etc. and the effect of free surfaces, the lattice
system in its initial geometrical definition generally exhibits a state of nonequilibrium and will relax into an equilibrium
configuration, that is a minimizer of the total potential

min Etot
ðfxlgÞ. (6)

Since the total energy is not convex, the solution to Eq. (6) is in general nonunique. Therefore, several local minimizers each
representing different microstructures exist beyond the elastic limit. From this fundamental mathematical property of Etot

it is clear, that any slight perturbation of the system—which might stem e.g. from the chosen numerical solution method or
from peculiarities in the simulation as the magnitude of stepsize in loading or alike—will affect the local state of
equilibrium. This aspect will be recalled in the analysis of the nanoindentation experiment in Section 7.

The force f a acting on atom a is the negative derivative of the total potential energy with respect to the atom’s current
position vector xa

f a ¼ �
qEtot

qxa
¼ �

X
k2L

qEk

qxa

¼ �
X
k2L

grad Vext
ðxkÞ

qxk

qxa
þ

1

2

X
l2L

V 0ðjrkljÞ
qjrklj

qxa
þ U0ðr̄kÞ

qr̄k

qxa

" #

¼ � grad Vext
ðxaÞ �

X
l2L

V 0ðjraljÞ
ral

jralj

� �
� U0 r̄a

� �
�
X
l2L

r0ðjraljÞ
ral

jralj

" #
�
X
k2L

U0ðr̄kÞ � r
0ðjrakjÞ

rak

jrakj

� �
, (7)

where ð�Þ0 denotes the derivative of ð�Þw.r.t. the function’s argument. We use this result as ready reference for a comparison
with the force-expressions of two different variants of the QC method.

The second derivative or Hessian of the total energy is called stiffness matrix. It is required in the solution process if the
Newton–Raphson method is applied. Furthermore, the stiffness matrix contains information about the state of stability in
the crystal. For a system with sufficient displacement boundary conditions, that inhibit rigid body motions, a positive
definite matrix K indicates a stable state of equilibrium of the lattice. Furthermore, the symmetry of the stiffness matrix
indicates, that forces are conservative, i.e. derived from a potential. Equally, its symmetry reflects the symmetry of atomic
interactions.

For the subsequent analysis it is sufficient to focus on pair potentials. In this case, force expression Eq. (7)3 boils down to
the first two terms.

The stiffness matrix K 2 RNd�Nd is composed of submatrices kab 2 R
d�d. According to the definition, they have for pair

potentials the following format

kab ¼
q2Etot

qxaqxb
¼

q
qxb

qEtot

qxa

� �
(8)

¼ Hess Vext
ðxaÞ

qxa

qxb
þ
X
l2L

q
qxb

V 0ðjraljÞ
ral

jralj

� �

¼ Hess Vext
ðxaÞdab1þ

X
l2L

dab � dlbð Þ
V 0ðjraljÞ

jralj
1þ

V 00ðjraljÞ

jralj
2
�

V 0ðjraljÞ

jralj
3

� �
ral � ral

� �
. (9)

We denote by a� b the tensorial (dyadic) product of two vectors a and b. Moreover, 1 denotes the d� d unity matrix. Eq.
(9) can be decomposed into diagonal- and off-diagonal elements

kab ¼ �
V 0ðjrabjÞ

jrabj
1�

V 00ðjrabjÞ

jrabj
2
�

V 0ðjrabjÞ

jrabj
3

� �
rab � rab for aab, (10)

kaa ¼ Hess Vext
ðxaÞ �

X
l2Ln af g

kal, (11)

where the representation of kaa according to Eq. (11) reflects translational invariance, see e.g. Wallace (1998, Chapter 2).
3. Fully nonlocal QC based on force sampling in clusters: QC-FNL

Knap and Ortiz (2001) have proposed a fully nonlocal QC formulation, termed QC-FNL. Conceptually it starts from fully
atomistic resolution of lattice statics and introduces two approximations, which can be seen as continuum assumptions.
The first is kinematical in nature aiming at a reduction of degrees of freedom by coarse-graining via FE-shape functions, the
second applies sampling of forces in clusters of confined size along with summation rules in the spirit of numerical
quadrature.
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3.1. Reduction of the degrees of freedom by kinematic constraints

The reduction of degrees of freedom is accomplished by the introduction of kinematic constraints. Some judiciously
selected atoms, called representative atoms or rep-atoms, retain their independent degrees of freedom. They form the set
Lh �L. Following the idea of the finite element method, see e.g. Hughes (2000) and Brenner and Scott (2002), a
triangulation of the crystal is performed with representative atoms being mesh nodes. Tetrahedral elements are well suited
to fill up a nonregular domain. The nodal displacements are used along with shape functions as kinematic constraints to
define a displacement field, all other atoms are forced to follow. The current position xl of a constrained atom l 2Lh :¼

LnLh is defined according to its initial position Xl within an element and the displacements of the corresponding mesh
nodes. The most general requirements to the discretization are first, to reduce the number of representative atoms Nh ¼

jLhj such that Nh5N, and second, to ensure high density of rep-atoms up to fully atomistic resolution in regions of interest,
where defects nucleate and evolve, like dislocation cores, crack tips among others. To consolidate these two opposite
requirements is a trade-off between efficiency and accuracy. The density of representative atoms is controlled by a criterion
that measures, how strong the deformations spatially vary. The most simple way to realize the kinematic constraint is via
linear finite element shape functions

xl ¼
X

j2Lh

xjjjðXlÞ; l 2Lh. (12)

The finite element shape functions fjjg exhibit the propertiesX
j2Lh

jjðXiÞ ¼ 1 8 i 2L, (13)

jjðX
0
jÞ ¼ djj0 8 j; j0 2Lh. (14)

According to Eq. (13) shape functions are a partition of unity over L, which ensures the exact representation of constant
fields. Nodal shape functions jj vanish in all elements, where vertex j is not a mesh node (compact support). This property
reduces the sum Eq. (12) to dþ 1 terms, which belong to the nodes of the corresponding simplex element of dimension d.
The total potential Etot, which depends in lattice statics on each and every atom in the crystal, exhibits less arguments after
this coarse-graining or discretization

Etot
ðfxij i 2LgÞ�!Etot

ðfxiji 2LhgÞ ¼: Etot;h. (15)

Thus, kinematical constraints imply that the search for a minimizer is now restricted to a subspace of the original lattice
statics configurational space.

Applying the kinematic constraints Eq. (12) to the distance vector rkl between two atoms k and l, Eq. (5)2, reads

rkl ¼ xk � xl ¼
X
j2Lh

xj½jjðXkÞ �jjðXlÞ	. (16)

Applying Eq. (16) and the derivative of rkl with respect to the position vector xa, a 2Lh, yields the summed-up force acting
on the FE-mesh node a

f h
a ¼ �

qEtot;h

qxa
¼
X
k2L

f kjaðXkÞ (17)

¼ �
X
k2L

1

2

X
l2L

V 0ðjrkljÞ
rkl

jrklj
½jaðXkÞ �jaðXlÞ	

" #
(18)

¼ �
X
k2L

X
l2L

V 0ðjrkljÞ
rkl

jrklj

" #
jaðXkÞ, (19)

where the last identity exploits rkl ¼ �rlk and the fact that k and l run over L. Note that Eq. (17) contains a sum over all
atoms k 2L and therefore does not gain efficiency compared with the fully atomistic resolution of lattice statics apart
from the reduced number of degrees of freedom. It requires an additional approximation concerning the energy or force
calculation to reduce the computational burden.

3.2. Cluster-based summation rule for forces

Energy minimization physically corresponds to solving for the configuration for which the force on each degree of
freedom is zero. This fact suggests, that equilibrium can be sought by directly working from an approximate expression for
the forces f h

a

f h
a ¼ 0 8 a 2Lh (20)

rather than from the explicit differentiation of an energy functional.
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Fig. 1. Schematic representation of sampling clusters. Atomic forces are calculated only for atoms within a sphere of radius Rc around a representative

atom. The cluster summation rule Eq. (21) yields the nodal forces. For overlapping clusters, as in (a), the sampling atoms in the intersection are attributed

to the nearest representative atom. For exactly the same distance to two or more representative atoms the choice is random. A seamless transition of a

coarse-grained region to a region of fully atomistic resolution is illustrated in (b).
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Consequently, Knap and Ortiz (2001) apply numerical quadrature for force calculation as the second approximation step
of their QC method. Force calculation is no longer performed at each lattice site in the entire crystal but in spherical
sampling clusters in the sense of representative crystallites, see Fig. 1. A representative atom is the center of a cluster of
radius Rc, hence cluster Ci is defined as Ci ¼ fk : jXk � XijpRcðiÞg. Omitting here and in the sequel the contribution of an
external potential Vext the cluster summation rule reads, cf. Knap and Ortiz (2001, Eq. (30))

f h
a ¼

X
i2Lh

ni

X
k2Ci

f kjaðXkÞ

¼ �
X
i2Lh

ni

X
k2Ci

X
l2L

V 0ðjrkljÞ
rkl

jrklj

" #
jaðXkÞ. (21)

The cluster weights ni, i 2Lh are calculated under the requirement, that the summation over all linear interpolation functions
must be exact, see Knap and Ortiz (2001). When the clusters shrink to the size of the rep-atoms, i.e. Ci ¼ fig 8 i 2Lh, it holds
jaðXkÞ ¼ dak, and the cluster summation rule boils down to a node-based summation rule f h

a ¼
P

k2Lh
nkf kjaðXkÞ ¼ naf a. In

this case the weighting factor nk is the number of atoms represented by rep-atom k, thus nk ¼
P

l2LjkðXlÞ 8 k 2Lh, which
implies nk ¼ 1 for fully atomistic resolution, i.e. l 2L, and which makes sure, that

P
k2Lh

nk ¼ jLj is fulfilled.
Knap and Ortiz (2001) report two advantages of the cluster-based summation rule compared with the node-based

summation rule. First, the node-based summation leads to a rank-deficiency of the finite element stiffness matrix. Besides the
six admissible zero eigenvalues corresponding to rigid body motions there exists an additional zero eigenvalue corresponding
to a spurious zero energy mode. This deficiency is overcome by an increased cluster size. The second advantage is that
increasing the cluster size improves the accuracy, which implies the feasibility of error estimation. In the present work this
property will be exploited for the construction of an effective concept to improve the accuracy, see Section 6.3.

3.3. Force sampling implies unsymmetric stiffness matrices

In the sequel we further analyze force expression Eq. (21) via the corresponding stiffness matrix.
The stiffness matrix K 2 RNhd�Nhd of the static system is composed of the block submatrices kab 2 R

d�d, where the latter
are defined according to Eq. (8)1. In the approach of Knap and Ortiz (2001) the total potential is not directly at hand,
because sampling is performed at the force level. For that reason the calculation of the stiffness matrix must resort to the
force expression Eq. (21)

kh
ab ¼ �

qf h
a

qxb
¼
X
i2Lh

ni

X
k2Ci

�
qf k

qxb

¼
X
i2Lh

ni

X
k2Ci

jaðXkÞ
X
l2L

jbðXkÞ �jbðXlÞ
� 	 V 0ðjrkljÞ

jrklj
1þ

V 00ðjrkljÞ

jrklj
2
�

V 0ðjrkljÞ

jrklj
3

� �
rkl � rkl

� �
. (22)
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The stiffness matrix according to Eq. (22) generally is unsymmetric since the product ½jbðXkÞ �jbðXlÞ	jaðXkÞ is not
invariant with respect to an interchange of a and b. This indicates that the forces according to Eq. (21) are nonconservative
and that a corresponding total potential does not exist. This is true, although forces f k acting on sampling atoms are derived
from interatomic potentials. If a total potential exists that matches the force expression of Eq. (21) in a variational relation,
the stiffness matrix is symmetric due to Eq. (8)1 and the equality of mixed partial derivatives. The reason is that the
approximation step of sampling along with the cluster summation rule is introduced at the force level, which cuts off the
variational link between the potential and corresponding forces.

4. The novel ansatz of sampling at the energy level: QC-eFNL

Based on the finding in the previous section, we strive to improve the force-based ansatz of QC-FNL while preserving the
beneficial properties to enable a seamless transition between disparate length-scales.

The key aspect is to apply the approximation step of sampling at the energy level instead of the force level.

4.1. Energy sampling leads to conservative forces and symmetric stiffnesses

Applying the cluster summation rule at the energy level yields the approximated total energy EQC

EQC
¼
X
i2Lh

ni

X
k2Ci

Ek 
 Etot;h (23)

with Etot;h according to Eq. (15). Again, each representative atom i 2Lh is the center of a spherical cluster Ci of
sampling atoms. For each of them an explicit energy calculation is performed according to interactions within the cut-off
radius. The weighting factor niX1 of each representative atom i represents the contribution of this cluster to the total
energy EQC.

In search of a state of equilibrium, a local minimizer of the approximated total potential has to be calculated by
appropriate numerical means. This task generally requires both, the value of the functional itself and its first derivatives as
it is the case for the computationally efficient conjugate gradient (CG) method, see e.g. Luenberger (1989, Chapter 8), or
Shewchuk (1994).

Applying Eq. (23) to force calculation at node a we get

f h
a ¼ �

qEQC

qxa
¼ �

X
i2Lh

ni

X
k2Ci

qEk

qxa
¼ �

X
i2Lh

ni

X
k2Ci

1

2

X
l2L

V 0ðjrkljÞ
rkl

jrklj
½jaðXkÞ �jaðXlÞ	

� �
(24)

and after some algebra we arrive at the stiffness matrix

kh
ab ¼

q2EQC

qxaqxb

¼
X
i2Lh

ni

X
k2Ci

1

2

X
l2L

½jaðXkÞ �jaðXlÞ	½jbðXkÞ �jbðXlÞ	
V 0ðjrkljÞ

jrklj
1þ

V 00ðjrkljÞ

jrklj
2
�

V 0ðjrkljÞ

jrklj
3

� �
rkl � rkl

� �
. (25)

Since the present QC-eFNL approach starts sampling at the primary level of the potential energy, a consistent derivation
leads to forces which are conservative and to corresponding stiffness matrices which are strictly symmetric. For this reason
the present ansatz of energy sampling along with cluster summation rules endows the theory with a variational structure.

4.2. Symmetry and asymmetry of atomic interactions across the cluster

Force expression Eq. (24) deserves careful interpretation to enrich it with physical insight and to explain source and
consequences of the difference to the nodal force expression Eq. (21) from the force-based QC ansatz. Furthermore,
factor 1/2 is at odds with familiar results for forces derived from pair potentials. Nevertheless, it exhibits a similar structure
as Eq. (18), but for k 2 Ci �Lh a simplification as in Eq. (19) does not apply.

First, we point out the equality of Eqs. (24) and (21), if we restrict to force contributions to f h
a due to the interaction of

two atoms, k and l, when they are both sampling atoms. Next, we consider the atomic interactions of a sampling atom k
with a nonsampling atom l as illustrated in Fig. 2. It is instrumental to explicitly separate all four force terms for this type of
interaction and sticking therein to the lattice statics terms for pair potentials:
(I)
 Force on atom k due to energy contribution of atom l to Ek:

f̃ k ¼ �
qEk l

qxk
¼ �

1

2
V 0ðjrkljÞ

rkl

jrklj
.
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Fig. 2. Illustration of the summation rule for the nodal forces, Eq. (24), within the energy-based ansatz.
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(II)
 Force on atom l due to energy contribution of atom l to Ek:

f̃ l ¼ �
qEk l

qxl
¼ þ

1

2
V 0ðjrkljÞ

rkl

jrklj
.

(III)
 Force on atom k due to energy contribution of atom k to El:

˜̃
f k ¼ �

qEl k

qxk
¼ �

1

2
V 0ðjrkljÞ

rkl

jrklj
.

(IV)
 Force on atom l due to energy contribution of atom k to El:

˜̃
f l ¼ �

qEl k

qxl
¼ þ

1

2
V 0ðjrkljÞ

rkl

jrklj
.

In the sequel we consider force terms captured by energy sampling, afterwards we deal with force sampling. The nonlocal
action of energy Ek l induces a force on atom k within the cluster, expression (I), and on atom l outside the cluster,
expression (II). These two forces are equal up to the opposite sign, Newton’s third law holds, actio ¼ reactio, which implies
symmetric stiffnesses, Eq. (25). The interaction of atom k with atom l is schematically illustrated in Fig. 2. Both forces are
distributed according to their barycentric coordinates from k and l to adjacent nodes a–c; for atom a the distribution is
mediated by factor ½jaðXkÞ �jaðXlÞ	 in Eq. (24). This distribution to adjacent nodes is complete by virtue of Eq. (13).
Moreover, since energy sampling is conceptually restricted to clusters, forces at site k and site l due to the energy
contribution El k, expressions (III) and (IV), are missing in Eq. (24); this explains the factor 1=2 therein. It is the function of
properly defined weighting factors ni to account for the energy contribution of nonsampling atoms. The calculation of ni

and the rationale behind it is described in Knap and Ortiz (2001).
The application of the force-based ansatz, Eq. (21), gives full account of forces acting on cluster atom k, summing up

expressions (I) and (III). Contrary to the present ansatz however, Eq. (21) does not consider the opposite force acting on
atom l, since l is not a sampling atom. This lack of symmetry in the interaction of sampling atoms with nonsampling atoms
breaks the symmetry of the stiffness matrix, Eq. (22).

In QC-CBR the symmetry in atomic interactions is lost at the interface between local and nonlocal regions, since the
motion of rep-atoms in the local region subject to the CBR will effect the energy of nonlocal rep-atoms, while the converse
may not be true. This asymmetry is an instance for lacking compatibility which induces ghost forces.

A final remark on the spectral properties of the stiffness matrix Eq. (25) is in order. Computations have shown that the
stiffness matrix based on energy sampling exhibits merely the six admissible zero eigenvalues, even for the node-based
summation rule. This is in contrast to the already mentioned finding of Knap and Ortiz (2001), where a rank-deficiency of
the stiffness matrix derived from force sampling is reported.
4.3. Consequences for the application of EAM-potentials

Next, we focus on EAM-potentials along with the cluster-based summation rule and point out a significant difference
between the present, energy-based sampling and the force-based ansatz. Applying an EAM-potential scheme to Eq. (21),
we get the nodal force in the force-based sampling approach

f h
a ¼ �

X
i2Lh

ni

X
k2Ci

jaðXkÞ grad Vext
ðxkÞ þ

X
l2L

fV 0ðjrkljÞ þ ½U
0
ðr̄kÞ þ U0ðr̄lÞ	r

0ðjrkljÞg
rkl

jrklj

( )
. (26)
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Fig. 3. Explanation of Eq. (26): When the forces acting on atoms in region 1 (sampling cluster) are to be calculated, not only the influence of each atom in

region 2, i.e. within the range of interaction Rcut must be considered, but additionally the positions of atoms within an extended cut-off radius, that

defines region 3.
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By contrast, the present energy-based ansatz yields the nodal force

f h
a ¼ �

qEQC

qxa
¼ �

X
i2Lh

ni

X
k2Ci

grad Vext
ðxkÞjaðXkÞ þ

X
l2L

V 0 jrkljð Þ

2
þ U0ðr̄kÞr

0
lðjrkljÞ

� �
rkl

jrklj
½jaðXkÞ �jaðXlÞ	


 �" #
. (27)

Note that the electron density r̄l appears in Eq. (26) but not in Eq. (27). Since index l represents atoms that interact with
sampling atoms k, nodal force calculation for the force-based sampling requires to evaluate the electron density even for
nonsampling atoms, cf. definition of r̄ in Eq. (5)1. Compared with the energy-based sampling this implies an extra
numerical effort, since the position of additional atoms subject to kinematic constraints have to be calculated and
corresponding distance vectors have to be considered, see Fig. 3 for an illustration. The energy-based QC approach,
however, does not require this extra numerical effort.

5. Error analysis

The numerical errors in the QC method compared with lattice statics as its fully atomistic counterpart can be classified
as follows:
(1)
 Discretization error: only a subset of all atoms are representative atoms, i.e. mesh nodes, that exhibit independent
degrees of freedom; the position of all other atoms is determined by the kinematic constraint of interpolation via linear
shape functions.
(2)
 Error of numerical quadrature:
(a) The energy is sampled in clusters of confined size Ci �L.
(b) Weighting factors are determined such that they are exact, only if the energy is piecewise linear (Knap and Ortiz,

2001).
The discretization error in the present work is reduced by an adaptive refinement strategy based on a heuristic refinement
indicator. The construction of a mathematical sound error estimator for the discretization error is beyond the scope of the
present paper. Adaptivity is a key feature in concurrent multiscale frameworks and largely determines its efficiency. Here,
after each relaxation step a refinement indicator �ðKÞ is calculated for each simplex K to check the mesh and to detect
critical regions, where finer resolution is necessary. If �ðKÞ is larger than a prescribed tolerance TOL, the element will be
refined, otherwise its size is maintained. Here we follow the proposal in Knap and Ortiz (2001) and define this indicator
�ðKÞ according to

�ðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jIIEðKÞj

p
� hðKÞ=b, (28)

where IIEðKÞ is the second invariant of the Green–Lagrange strain tensor E in simplex K, and hðKÞ is the size of K. Since b

denotes the length of the smallest Burgers vector for the given crystal, the criterion, though heuristic, reflects physical
reasoning, since the current deformation is compared with the smallest unit of plastic deformation.
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Fig. 4. Cross-sectional view into a perfect fcc crystal, ð0 0 1Þ-plane, with periodic boundary conditions and fully atomistic resolution in its center. The

contour plot of displacement component ux after relaxation reveals nonvanishing displacements.
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5.1. Motivation: relaxation of a perfect infinite crystal on a nonuniform mesh yields an inhomogeneous deformation state

We consider the relaxation of an infinite, perfect fcc single crystal in 3D using periodic boundary conditions and an
EAM-potential for Al. Applying QC-eFNL in the calculation on a nonuniform mesh (cluster size Rc ¼ 1:0a0), a somewhat
surprising effect is observed. Without applying external forces the crystal exhibits nonzero displacements, see Fig. 4, where
the correct solution is zero displacements in the entire crystal. Two references should be mentioned, that consider by
analytical means a suchlike perfect crystal for the application of the QC method under different aspects each. For the
additional assumption of a homogeneous deformation, Kulkarni et al. (2008) prove that in this scenario the QC energy
equals the exact total energy. In this reference the (homogeneous) deformation state thus is part of a priori assumptions,
whereas here, the (inhomogeneous) deformation is the result. In a 1D setting of a perfect monatomic chain E et al. (2006)
show that forces arise at the interface of regions that exhibit different densities of representative atoms. In that reference
these forces are called ghost forces.

In the remainder of this section we analyze the source of the observed residual forces in QC-eFNL and discuss their
properties compared with the notion of ghost forces, which originally are defined as spurious forces at the interface
between a local and a nonlocal description, see Miller et al. (1998a) and Shenoy et al. (1999).
5.2. Analysis in a 1D model

In order to analyze this effect in a system of reduced complexity, we apply the energy sampling method a 1D crystal for
a certain discretization. Suchlike 1D considerations are advantageous since quantities of interest cannot only be calculated
by numerical means but are also within analytical reach.

Example 1. In the 1D model let the crystal consist of an infinite chain of atoms (set L) with initial spacing d, which
denotes the distance of equilibrium, that minimizes the energy of each atom. The chosen model of atomic interactions in
this analysis is the popular Lennard-Jones (LJ) pair-potential (Lennard-Jones, 1924), of the form

VðrÞ ¼ 4�
s
r

 �12
� 2

s
r

 �6
� �

. (29)
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Fig. 5. Example 1: Discretization of a one-dimensional atomic chain with periodic boundary conditions. The interpolation function j0 adjacent to node x0

is displayed. Red atoms: sampling atoms, white atoms: nonsampling atoms, fat black circles designate representative atoms.
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Fig. 6. Example 1: Displacements uðXÞ in the atomic chain for the minimizer of EQC.
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Herein, parameter � is the well-depth, s is the separation, at which the interaction force in an infinite chain vanishes. Since
interactions exceed the distance to the nearest neighbor, the equilibrium separation d is not equal with the minimum of
VðrÞ. For the numerical simulation of the considered infinite system, a supercell along with periodic boundary conditions is
used. The supercell contains N atoms and its size is N � d. The current position vector of an atom during relaxation is
denoted by xi (i ¼ 0 � � � ðN � 1Þ), the initial position vector by Xi ¼ i � d. The corresponding displacements are defined
according to ui ¼ xi � Xi. The set of representative atoms Lh and the associated FE-mesh also exhibit the period length
N � d. In the 1D case, each finite element with linear shape functions consists of two representative atoms at its nodal ends.
The position of each atom in between the nodes is obtained via interpolation. In the first step of analysis we choose a
supercell of size N ¼ 3, which contains two representative atoms (x0 and x1) and a kinematically constrained atom (x2). The
corresponding FE-mesh is displayed in Fig. 5. This system exhibits two degrees of freedom. Note that the mesh is not
symmetric with respect to each representative atom.

The total potential of the supercell for QC-eFNL with node-based summation according to Eq. (23) yields:

EQC
¼
X

k2Lh

nkEk ¼
X

k¼0;1

nk

2

X
l2L

Vðjxk � xljÞ. (30)

Minimizing the total energy with respect to the two degrees of freedom ends up in the inhomogeneous deformation state
displayed in Fig. 6. Both representative atoms move aside for a small amount breaking the initial periodicity of the crystal.
Let us note that if the same system is calculated by means of three representative atoms, Eq. (30) coincides with the fully
atomistic lattice statics energy, Eq. (3), and every atom rests at its initial position, since the initial configuration already
represents an energetic minimum.

Now we draw our attention to the aforementioned case: each representative atom of the present supercell represents
itself and one half of the remaining, kinematically constrained atom. For that reason nk ¼ 1:5 holds for all k 2Lh. Since
both rep-atoms have an identical environment, it is sufficient to analyze the behavior of only one of them.

Starting from the initial configuration before relaxation, a variation of the nodal position x0 of the first representative
atom keeping the second x1 fixed (uh

1 ¼ 0) results in an energy behavior displayed in Fig. 7. Since the initial state obviously
does not represent the energetic minimum, the nodal forces consequently do not vanish. This behavior can also be studied
in terms of the force formula Eq. (24); for the considered system it has the format

f h
0 ¼ �

qEQC

qx0
¼ �

X
k¼0;1

3

4

Xþ1
l¼�1

V 0ðjxk � xljÞ
xk � xl

jxk � xlj
½j0ðXkÞ �j0ðXlÞ	.

Exploiting xi ¼ Xi ¼ i � d for the initial state and j0ðXÞ as displayed in Fig. 5, the above equation can be transformed to

qEQC

qx0

�����
x0¼0

¼
3

4

X
k¼0;1

Xþ1
l¼�1

V 0ðjk� ljdÞ
k� l

jk� lj
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¼
3

4

X
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Xþ1
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k� l

jk� lj
j0ðkdÞ
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Fig. 7. Total energy change in terms of the displacement of the first degree of freedom. The energy of the real ground state for uh
0 ¼ 0 is exactly captured,

but the energy function EQC exhibits a different minimum below the ground state of the energy.
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¼
3

4

X
k¼0;1

Xþ1
l¼�1

V 0ðjljdÞ
l

jlj
j0ððkþ lÞdÞ

¼
3

4

Xþ1
l¼�1

V 0ðjljdÞ
l

jlj
½j0ðldÞ þj0ððlþ 1ÞdÞ	. (31)

Obviously, the sum in Eq. (31)4 vanishes for arbitrary potentials V, only if the term ½j0ðldÞ þj0ððlþ 1ÞdÞ	 is identical for l and�l.
This is a symmetry condition for each rep-atom, which does not hold in general. In other words, it requires that each rep-atom
sees an identical environment in each direction which is a centro symmetry condition and can be fulfilled by a uniform mesh.

For this specific system it has been shown that the initial state of equidistant atoms is not a state of equilibrium, when
the exact energy Etot is replaced by the approximated energy EQC, cf. Eq. (15). The approximated energy obviously exhibits a
different minimum than the exact energy. This fact is remarkable since in this example the approximated energy value
matches the true energy exactly in the undeformed state, see Fig. 7.

5.3. Residual forces compared with ghost forces

The findings in Example 1 in terms of the spurious relaxation due to residual forces give insight into their source, their
characteristics and finally suggest remedies to control them. So this example is an appropriate point of departure to
elaborate these properties in comparison with spurious forces in the first version of the QC method (Tadmor et al., 1996b). In
order to avoid confusion we distinguish by name between residual forces in the present QC-formulation (QC-eFNL) and
ghost forces in QC-CBR. It will turn out to be justified and necessary in view of some remarkable differences.

First, from a phenomenological point of view the observed forces have a similar effect as spurious forces in QC-CBR.
Sticking to Example 1, they both lower the energy compared with the exact solution. But already on the phenomenological
level of their effects a first difference can be observed; ghost forces in QC-CBR are confined to the local/nonlocal interface,
residual forces in QC-eFNL are distributed. This reflects that the scale transition in QC-CBR is realized at discrete interfaces
of confined size, in the fully nonlocal QC versions, QC-FNL and the present QC-eFNL, it is realized in a continuous manner
by gradual coarse-graining.

Ghost forces in QC-CBR have been thoroughly analyzed and different concepts have been investigated to lower them
(Shenoy et al., 1999; Miller and Tadmor, 2002; Curtin and Miller, 2003) and even to avoid them (Shimokawa et al., 2004; E
et al., 2006). In QC-CBR the motion of rep-atoms in the local region subject to CBR will effect the energy of nonlocal rep-
atoms, while the converse may not be true. Hence, it is this asymmetry in atomic interactions which defines ghost forces as
spurious forces at the interface between these regions (Shenoy et al., 1999). Briefly, they arise due to different propositions
on how atoms interact, which is a lack of compatibility and can be classified as a modeling error.

The fully nonlocal quasicontinum version of Knap and Ortiz (2001) (QC-FNL) avoids the CBR by sticking to a unified,
fully nonlocal description of atomic interactions and therefore a priori overcomes ghost forces in the above sense in that it
avoids discrete interfaces. Since QC-FNL employs summation rules at the level of forces, it is free from spurious forces and
free from corresponding relaxation in the case of the perfect infinite crystal.

Applying energy sampling in the fully nonlocal QC as advocated in the present paper yields residual forces in a
distributed manner, if the above requirement of centro symmetry is violated, i.e. if there is a gradient in the discretization.
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If the infinite crystal is discretized by a uniform mesh, no matter of the element size, residual forces are identically zero for
QC-eFNL. As we will show right below and prove by numerical means in Section 6, residual forces also can be reduced to
identically zero on a nonuniform mesh as it is displayed in Fig. 4.

The perfect infinite crystal is an important and popular test case, since it is most simple and the exact solution is known
a priori. As a consequence, spurious forces, distributed or confined, directly can be identified and measured as the deviation
from a seamless scale transition. However, the result of this test case should not lead to generalizations or
misinterpretations; the first caveat is that apart from this example spurious forces will also be present in QC-FNL in
general, since they are an error indicator for numerical quadrature, cf. Knap and Ortiz (2001, Section 4.2). In mechanical
settings different from the infinite crystal these forces remain hidden, but become apparent if—in a second calculation—

a larger cluster size is chosen for comparison. The same is true for QC-eFNL, as will be shown below.
The result of QC-eFNL in this test case might be misleading, if the choice of a uniform mesh to suppress spurious forces

suggests that spurious forces generally stem from a kind of a discretization error.
In contrast, they merely arise due to the approximation of the total energy for a fixed mesh, Etot;h, by its QC counterpart

EQC, Eq. (23). Consequently, these forces obey the format

f � ¼ �grad fEQC
� Etot;h

g, (32)

where the energy error is transformed to a force residual via the grad-operator. This means that residual forces in QC-eFNL
stem from the error in numerical quadrature, i.e. cluster-based summation rules, cf. Eq. (23).

As a consequence, QC-eFNL conceptually enables the free choice of the level of accuracy for EQC by means of the chosen
cluster size, which clearly will be a trade-off between accuracy and numerical costs. In the limiting case of EQC

! Etot;h,
where each and every atom is covered by a sampling cluster, the error in numerical quadrature identically vanishes and
thus residual forces vanish as well, see Example 3 below.

Eq. (32) also alludes to the inherent property of QC-eFNL to estimate the error in numerical quadrature, simply by
calculating the energy twice, but each time applying a different cluster size. This fact will be exploited in Section 6, where
different concepts for error reduction are discussed.

Moreover, Eq. (32) reveals that residual forces in QC-eFNL are conservative in nature, they can be derived from a unified
total potential and as a consequence, they are symmetric. Ghost forces in QC-CBR are not conservative, since they do not
derive from a unified potential and consequently, they are not symmetrical, i.e. the motion of rep-atoms in the local region
subject to CBR will effect the energy of nonlocal rep-atoms, while the converse may not be true (Shenoy et al., 1999; Miller
and Tadmor, 2002; Curtin and Miller, 2003).

Summarizing, residual forces in QC-eFNL indicate a type of error, that is numerical and—opposed to ghost forces—not a
consequence of inconsistencies in physical modeling, i.e. inconsistent a priori assumptions on how atoms interact. For that
reason, the problem of unphysical forces equally exists in other concurrent multiscale methods coupling different levels of
physical accuracy and has already been reported in Kohlhoff et al. (1991) and even in the early work of Mullins and
Dokainish (1982).

6. How to reduce the numerical error

In the sequel we focus on the error due to the cluster summation rule only. Three different concepts are discussed, that
aim to reduce this numerical error:
(i)
 Increasing the cluster size.

(ii)
 Introducing a correction force field calculated by means of Eq. (32).
(iii)
 Combining schemes (i) and (ii) for a novel, hybrid method.
6.1. Increasing the number of sampling atoms

The first concept aims to improve the energy approximation by increasing the number of sampling atoms. This concept
proposed and assessed by Knap and Ortiz (2001) improves the approximation while keeping the number of representative
atoms fixed. For that reason the additional numerical effort arises due to the energy calculation for additional sampling
atoms. Fig. 8 exemplary illustrates the effect of additional sampling atoms onto the erroneous displacements in the atomic
chain. The chosen discretization is realistic for QC in that it has a local region of interest with an increasing coarse-graining
away from it. Obviously, an increase in the cluster size decreases the error for the cost of an additional computation effort.
This effort is approximately proportional to the number of sampling atoms Nh and consequently scales cubic with the
cluster size in three dimensions.

6.2. Introduction of static correction forces

The second concept is to directly apply static correction forces to reduce the residual forces. A quite similar method was
chosen in QC-CBR in order to correct ghost forces, see Shenoy et al. (1999). The underlying rationale for calculating static
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Fig. 8. Example 2: Influence of the cluster size Rc onto the state variables in a perfect single crystal after relaxation. The total system contains 78 atoms

with periodic boundary conditions. The central region exhibits fully atomistic resolution and the outer regions are increasingly coarse-grained forming

altogether a realistic scenario for typical QC simulations. The initial ground state with equidistant atomic positions is changing during relaxation due to a

shift of the minimum of the approximated total energy. The diagrams display weighting factors nk , displacements uðXÞ, displacement gradients grad uðXÞ

and atomic energies Ek of the relaxed crystal. Inserting additional sampling atoms (red), (a)!(b), reduces the numerical error in terms of the spurious

displacements more than one order of magnitude. (a) Cluster radius Rc ¼ 0 atomic distance. (b) Cluster radius Rc ¼ 1 atomic distance.

B. Eidel, A. Stukowski / J. Mech. Phys. Solids 57 (2009) 87–108100
corrective forces in this reference is to demand that forces acting on any atom be computed using only the formulation
which corresponds to its status, a local status or a nonlocal status in the transition zone.

In the context of the present work the residual forces are calculated once at the beginning of the simulation for all nodes
in the undeformed state and corresponding static correction forces are applied to the nodes. These correction forces are
kept constant during relaxation. Formally, this measurement calculates a corrected potential EQC

c by adding a constant force
field to EQC:

EQC
c ¼ EQC

� f h�
0 � u

h where f h�
0 ¼ grad fEQC

� Etot;h
gjuh¼0. (33)

This strategy ensures, that grad EQC
c ðu

h ¼ 0Þ ¼ grad Etot;h
ðuh ¼ 0Þ holds. The correction via constant force terms is

schematically displayed in Fig. 9. A drawback arises following this strategy. It requires once the calculation of the exact
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Fig. 9. Schematic illustration for the correction of residual forces by applying a static force field. EQC approximates the exact energy Etot. The minimum of
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both minima coincide.
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energy of the system for a given mesh at the simulation start. This may require a prohibitive numerical effort, since the QC
method generally aims to simulate very large systems comprising a huge number of atoms, which is the very reason for
energy sampling in clusters of confined size. Note that the correction potential �f h�

0 � u
h has the undesired effect of

deteriorating the energy function far from the initial state, see Fig. 9. This may induce an undesired shift of the minima in
some cases.

6.3. Putting it together—a hybrid correction strategy

Each of the two concepts inherently is accompanied by specific drawbacks. A promising method is proposed, that
combines both concepts in order to reduce the numerically induced residual forces to an acceptable error bound at
moderate costs. The main idea is to calculate the static correction forces not exactly but to approximate them. This requires
two energy calculation before relaxation.
(1)
 Calculate EQC with cluster size Rc for the initial configuration.

(2)
 Calculate for the same configuration EQC� with improved accuracy by means of an increased cluster size, R�c4Rc, which

also requires a second calculation of weighting factors.

(3)
 The gradient of the energy difference with respect to the current nodal position vector at the beginning of a loading/

time step renders an estimate of the residual forces. Corresponding static correction forces are applied for the ensuing
relaxation process.
Thus we have replaced in Eq. (33) Etot;h by EQC� leading to

EQC
c ¼ EQC

� f h�
0 � u

h where f h�
0 ¼ grad fEQC

� EQC�
gjuh¼0. (34)

Example 3. In order to assess the efficiency of this hybrid approach and the concept of increasing the number of sampling
atoms, we design a simple 3D test problem. It consists of an fcc single crystal entailing 32� 32� 32 Bravais-lattice cells
with periodic boundary conditions, in order to avoid surface effects. The exact solution to this problem is zero
displacements in the entire crystal. It can simply be obtained by means of a uniform mesh, independent of the element
size, since this discretization fulfills the mesh centro symmetry condition as elaborated in Example 1. In order to check the
scale transition via continuous coarse-graining, we use a nonuniform distribution of representative atoms, which is the
same as in Fig. 4. Again, an EAM potential for Al is applied. For the definition of an appropriate error measure we choose the
displacements as the quantity of interest. Consequently, the error measure is defined as the root mean square of nodal
displacements:

�RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i

u2
i

vuut . (35)

Table 1 summarizes the results of the calculations on a nonuniform mesh. Increasing the cluster size reduces the error and
for RcX4a0 the error identically vanishes, which is also reflected by the very short computation time; note that the
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Table 1
Efficiency of different strategies for error control; lines 1–5: increasing the cluster size, lines 6–9: applying the hybrid correction method

Cluster size for EQC Atoms Cluster size for EQC� Error Computation time

Rc ½a0	 R�c ½a0	 �RMS ½a0	 Dt (s)

0 1 – 1:5� 10�1 14

1=
ffiffiffi
2
p

13 – 2:0� 10�2 29

2=
ffiffiffi
2
p

55 – 6:5� 10�3 70

4=
ffiffiffi
2
p

381 – 2:1� 10�3 180

4 1061 – � 0 1

0 1 1=
ffiffiffi
2
p

2:7� 10�2 17

0 1 2=
ffiffiffi
2
p

8:8� 10�3 14

0 1 4=
ffiffiffi
2
p

2:9� 10�3 10

0 1 4 � 0 3

For Rc ¼ 0 ½a0	 the cluster contains only the rep-atom.
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relaxation starts in the configuration which is already the exact solution. In the case RcX4a0 each and every atom is
covered by a cluster and therefore EQC

¼ Etot;h holds, cf. Eq. (23). Hence, it is merely the error in numerical quadrature which
causes the observed spurious forces and the numerical origin suggests to reflect this by the name residual forces rather than
ghost forces.

The hybrid correction strategy exhibits the same convergence as the strategy applying constantly a large number of
sampling atoms and reduces the error to identically zero for R�cX4a0. The reason for the remarkable decrease in
computation time for increasing the cluster size R�c is that less iterations are necessary. The savings in computation time
compared with the variant of a constantly large cluster size is due to the fact that the expensive calculation of EQC� is
performed only once for a loading step and during CG iterations the recalculation is restricted to EQC, which is relatively
cheap. Of course, the hybrid correction strategy is not restricted to the calculation of initial relaxations, but equally
applicable in the general case, where in Eq. (34) uh ¼ 0 is replaced by any uh at the beginning of a loading step.

A final remark is in order to put the error analysis into perspective. The QC method as well as different concurrent
multiscale methods are designed to cope with localized deformations or even with some singular sets in solid mechanics
like dislocation nucleation, crack growth, grain boundaries and alike. The common property of all these phenomena is that
they are confined to small regions with large gradients in the deformation and that these regions are embedded in
environments with slowly varying deformations. Hence, it is the stark contrast to homogeneous deformation states (as the
correct solution for the perfect infinite single crystal), where concurrent multiscale methods are typically applied by virtue
of their atomic coarse-graining with adaptive resolution. The analysis of the observed spurious forces, their different
sources as well as concepts to estimate and control them is fundamental for the sound development of numerical methods.
As such, this analysis serves to foster concurrent multiscale frameworks in its goal to capture significant physical effects
with high fidelity for reduced numerical costs. In this endeavor QC-CBR as well as QC-FNL have proven their predictive
capacity in numerous different applications in solid mechanics and materials science, see the references in Section1. In the
same spirit is the analysis of QC-eFNL in the next section.

7. Nanoindentation

7.1. Problem statement

We choose nanoindentation as a paradigmatic problem for concurrent multiscale methods to showcase the
characteristics of the proposed QC-eFNL method and to validate it by comparison with lattice statics. In this assessment
three criteria are of cardinal importance:
(1)
 Efficiency. How much can the present multiscale framework reduce the computational costs?

(2)
 Material’s global response. How accurate does QC-eFNL match the material’s global response in terms of the

characteristic F–h curve in its elastic branch up to the event of defect nucleation? How accurate can the effect of free
surfaces be resolved?
(3)
 Material’s microstructural evolution. Can QC-eFNL simulations faithfully capture significant details of initial stages of
plasticity in terms of the type of evolving dislocation microstructure?
The material under consideration is fcc single crystalline aluminum. The computational box adopted in the computations
comprises 64� 64� 64 Bravais-lattice cells. Atoms on the lateral faces of the box are fixed in normal direction to the faces,
atoms at the bottom are fixed in z-direction but free to move within the bottom plane. In Fig. 10 the axes of the coordinate
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Fig. 10. Cross-section of the (0 0 1) oriented fcc single crystalline Al sample with initial triangulation and distribution of sampling atoms (green) for

Rc ¼ 1:0a0.
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system correspond to o0 0 14 directions. A spherical indenter of radius R is modeled as an external potential Vext of
the form

Vext
ðxÞ ¼ A � yðR� rÞ � ðR� rÞ3 with r ¼ jx� cj, (36)

where parameter A represents the strength of the repulsive force, yðrÞ the step function, R the indenter radius and c denotes
the position of the midpoint of the indentor. In the simulations the values A ¼ 2000 eV=Å

3
and R ¼ 16a0 with lattice

constant a0 ¼ 4:032 Å are used. The energy of the crystal is modeled using the EAM potential of Ercolessi and Adams
(1994). The ball indenter is driven into the [0 0 1] oriented single crystal in small displacement increments Dh, where at
each loading step a new stable equilibrium configuration of the system is found by a nonlinear version of the CG method.

In order to make the simulations comparable, all details of the lattice statics simulation are maintained for the QC
simulation: boundary conditions, modeling of the indentor, step size in the displacement controlled process and the
extensions of the computational box.

The initial QC triangulation of the cubic computational box is specifically tailored to the nanoindentation geometry.
Fig. 10 shows the initial distribution of representative atoms and the adjacent clusters of size Rc ¼ 1:0a0. In a small region of
the crystal located directly underneath the indenter, fully atomistic resolution is chosen, which enables to resolve defect
nucleation. With increasing distance to this region of interest the triangulation gradually becomes coarser. The initial
discretization for Rc ¼ 1:0a0 contains approx. 48 000 sampling atoms, which is less than 4.5% of the total number of atoms
in the computational box.

A key issue in atomistic simulations in three dimensions is the identification and visualization of defects and
microstructures. For that purpose indicators are necessary, that detect defects, allow to visually extract them from their
undisturbed surroundings and to classify characteristic types of them, see e.g. Li (2005). Here we use the so-called centro

symmetry parameter, introduced by Kelchner et al. (1998). The centro symmetry parameter is defined for each atom in an
fcc crystal according to

P ¼
X6

i¼1

jri þ r�ij
2, (37)

where vectors ri and r�i correspond to the six pairs of next neighbors lying at opposite sites w.r.t. the considered atom in
the lattice. By definition, the centro symmetry parameter is zero for an atom in the bulk of a perfect material subject to
purely homogeneous elastic deformations. The deviation of P from zero therefore measures the strength of disturbed
centro symmetry at a lattice site.

7.2. Surface effects

The very first step in the simulation is an initial relaxation, where no force of the indentor is present, such that the
equilibrium configuration is mainly influenced by surface effects. It is a well-known fact, that the nonlocal QC generally
suffers from a significant overestimate of surface effects, see e.g. the review paper of Miller and Tadmor (2002), which can
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be best illustrated for a representative atom at the corner of a cubic specimen. Since a suchlike atom sees three surfaces, it
generally will be a high-energy atom. If the considered corner rep-atom is part of a coarse-grained region, its cluster will
represent a large volume and therefore its weighting factor ni will be large. The resulting energy will be as though that
entire volume of material is located close to free surfaces. This leads to a considerable overestimate of the energetic
contribution of the corner and therefore to spurious relaxation of the specimen. A possible remedy is to choose fully
atomistic resolution at free surfaces which is computationally expensive.

QC simulations of the initial relaxation are performed on the mesh in Fig. 10. The cluster radius is set to a relatively small
value of Rc ¼ 1:0a0 corresponding to 19 sampling atoms per cluster. In a second simulation Rc ¼ 2

ffiffiffi
2
p

a0 is chosen
corresponding to 381 atoms per cluster. For comparison we perform the initial relaxation in a third calculation on the same
mesh applying the force correction method as proposed in Section 6.2. Necessarily the two energy calculations are
performed with cluster size Rc ¼ a0=

ffiffiffi
2
p

and R�c ¼ 2
ffiffiffi
2
p

a0. Fig. 11 displays the displacements in z-direction after the initial
relaxation for both, lattice statics and the different QC-eFNL-simulations. As predicted by the introductory reasoning QC
largely overestimates the shrinkage in z-direction for Rc ¼ 1:0a0, where the value at the corner of uz ¼ �3:3 Å is 2.5 times
larger than that one of lattice statics, uz ¼ �1:3 Å. For Rc ¼ 2

ffiffiffi
2
p

a0 however, uz ¼ �1:1 Å is very close to the reference value
of lattice statics. The same value of maximum shrinkage during relaxation is obtained by the hybrid force correction
method, see Fig. 11. Hence, in this case QC-eFNL along with the two concepts for error control can accurately account for
Fig. 11. Contours of displacements uz [Å] after initial relaxation for (upper left) lattice statics: minðuzÞ ¼ �1:3 Å, (upper right) QC-eFNL along with hybrid

force correction, Rc ¼ 1=
ffiffiffi
2
p

a0, R�c ¼ 2
ffiffiffi
2
p

a0: minðuzÞ ¼ �1:1 Å, (bottom left) QC-eFNL, Rc ¼ 1:0a0: minðuzÞ ¼ �3:3 Å, (bottom right) Rc ¼ 2
ffiffiffi
2
p

a0:

minðuzÞ ¼ �1:1 Å.
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surface effects even in coarse-grained regions, which effectively overcomes the necessity to choose a fine or even fully
atomistic resolution in the vicinity of free surfaces.
7.3. Force–displacement curve and dislocation nucleation

During the deformation process the force–displacement curve is recorded, see Fig. 12. In the first branch of purely elastic
deformation the force continuously increases. In this range, a large stepsize Dh 
 0:3 Å is chosen. When a critical value of
the indenter force F is reached, the first dislocation nucleates in the single crystal. This onset of plastic deformation is
marked by a discrete force drop in the F–h curve, see Fig. 12. In order to keep track of the evolving microstructure beneath
the indenter, the step size is chosen to be much smaller, Dh ¼ 0:02 Å for the subsequent loading steps.

In the elastic branch QC-eFNL generally well agrees with lattice statics. Increasing the cluster size to Rc ¼ 2
ffiffiffi
2
p

a0 already
yields quantitative agreement between QC-eFNL and lattice statics. The application of static correction forces (Rc ¼ a0=

ffiffiffi
2
p

,
R�c ¼ 2

ffiffiffi
2
p

a0) as outlined in Section 6 and already assessed for the initial relaxation step also results in perfect agreement of
the F–h curve with the reference solution.

The process of applying static correction forces is as follows. Two minimizations of the total energy are performed for
each loading step; in the first run static forces of the former loading step are maintained, for the second relaxation run,
static forces are newly calculated. The latter step implies, that the newly calculated correction forces—though formally
derived from a correction potential—are no longer conservative.

Next, we consider dislocation nucleation beneath the indentor. The corresponding force drop in the F–h curve occurs in
the QC simulations for various cluster radii throughout at a somewhat smaller load level than for lattice statics. Increasing
the cluster size improves the approximation, for Rc ¼ 2

ffiffiffi
2
p

a0 excellent agreement with the fully atomistic resolution is
achieved, see Fig. 12.

The overall good agreement of QC-eFNL in the F–h curve is a nice result, since the computational costs are tremendously
reduced. For cluster radius Rc ¼ 1:0a0 the number of sampling atoms increases during adaptive refinement steps from
initially approx. 48 000 to approx. 86 000, which is still only 8 percent of the number of atoms used in the lattice statics
simulation. The QC simulation for cluster radius Rc ¼ 1:0a0 is approx. eight times faster than lattice statics, for Rc ¼ 2

ffiffiffi
2
p

a0

still two times faster. The efficiency can be arbitrarily improved by increasing the size of the simulation box, since only
large elements are added in lateral and depth direction. Opposed to lattice statics we may now safely use large simulation
boxes without great loss of efficiency to eliminate any undesirable simulation size effects.

Of course, the multiscale framework introduces some computational overhead such that problem sets of a critical size
might be found where the multiscale simulations do not significantly reduce the computational burden of fully atomistic
resolution. In cases however, where the problem characteristics dictate to simulate large systems without modeling
reductions and simplifications as e.g. in systems with more complex geometries and/or boundary conditions, the extra
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Fig. 13. Lattice statics simulation: dislocation microstructure visualized by centro symmetry parameter PX2 Å
2
.
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multiscale effort will be overcompensated by the feature of atomic coarse-graining with adaptive resolution. In that
case QC exhibits a gain in efficiency since it generally scales more favorable with system size than fully atomistic lattice
statics.

7.4. Dislocation microstructure

Fig. 13 displays the dislocation microstructure of lattice statics right after the second force drop in Fig. 12; four
dislocation loops can be observed gliding on the family of {111} planes, i.e. ð1̄ 1 1Þ, ð1 1̄ 1Þ, ð1 1 1̄Þ and ð1̄ 1̄ 1̄Þ. In view of the
directions of plastic slip on {111} planes, the nucleated dislocations are 1=6½1 1 2̄	ð1 1 1Þ Shockley partials.

Among the QC simulations the type of microstructure agrees best with the one of lattice statics for cluster size
Rc ¼ 1:0a0. Again, four dislocation loops are observed gliding on the family of {111} planes, see Fig. 14, first row.
Simulations of higher accuracy by means of force correction or by a larger cluster size, exhibit some deviations in the
evolving microstructure compared with lattice statics.

A possible explanation for this is that the QC method opposed to lattice statics generally exhibits a minimal asymmetry
in the case of overlapping sampling clusters; sampling atoms, which have the same distance to more than one
representative atom are randomly distributed to one of the representative atoms. Of course, this has a direct influence on
the weighting factors of each representative atom. This means that even for a FE mesh of perfect symmetry the weighting
factors may introduce a minimal asymmetry. Given this numerically induced asymmetry or any other slight numerical
perturbation, the nonconvexity of the energy can lead to different results in terms of microstructures, cf. the results for a
similar setup in Knap and Ortiz (2001). For that reason a one-to-one correspondence of the dislocation structures is
generally questionable on fundamental grounds and cannot be expected.

8. Summary and conclusion

We have presented a novel version of a fully nonlocal, 3D quasicontinuum (QC) method, which is inspired by the
seminal work of Knap and Ortiz (2001).
(I)
 Conceptually the novel QC formulation based on energy sampling, QC-eFNL, exhibits advantages compared to its
precursor:
(1) Sampling at the energy level instead of the force level preserves the variational structure of lattice statics in the

fully nonlocal QC method leading to conservative forces, Eq. (24), and to symmetric stiffness matrices, Eq. (25).
(2) More specifically, energy sampling implies the strict symmetry of atomic interactions in all regions, even across

the boundary of clusters, whereas force sampling does not.
(3) Numerical advantages follow from theoretical consistency:

(a) Standard algorithms for the numerical minimization of functionals like CG methods can directly be applied,
since they generally require gradients as well as evaluations of the functional itself.

(b) A minimizer can be found, if the energy exhibits a minimum.
(c) For the widely used EAM potentials the present energy-based sampling method requires the consideration of

less kinematically constrained atoms to calculate the electron density, cf. Eqs. (26) and (27).
(d) The stability of the crystal can be assessed by the eigenvalues of the symmetric stiffness matrix, where an

artificial asymmetry may falsify this analysis.

(II)
 An error analysis has elucidated the quality and has assessed the quantity of error in QC-eFNL, which results in the

proposal of a novel strategy for error control.
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Fig. 14. QC-eFNL simulations: dislocation microstructure visualized by centro symmetry parameter PX2 Å
2
. Rows 1–3: simulations for Rc ¼ 1:0a0;

ffiffiffi
2
p

a0;

2
ffiffiffi
2
p

a0. Row 4: simulation with hybrid force correction applied.
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(4) For residual forces observed in QC-eFNL simulations, the following properties have been shown. Residual forces
are conservative in nature; they do not follow from an asymmetry in atomic interactions as a consequence of
inconsistent a priori assumptions on how atoms interact; they stem from the error in numerical quadrature and
therefore can be reduced (to identically zero) by a sufficiently large cluster size. As such, the present residual forces
differ from ghost forces in QC-CBR by source and property, which is the reason why we distinguish by name.
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(5) For error control a hybrid method based on static corrective forces has been proposed which is more efficient than
increasing the sampling cluster size. Although these forces are derived from a correction potential, they are no
longer conservative, if they are recalculated for an update in a sequence of loading steps. It is shown that both
methods of error control enable QC-eFNL to accurately account for surface effects in the case of nanoindentation
even in coarse-grained surface regions. In order to obtain a definite statement on the method’s capacity to
precisely capture surface effects in e.g. largely strained nanostructures like nanowires, an additional
comprehensive analysis is necessary.
(III)
 The simulation of nanoindentation into an (0 0 1) fcc single crystal has proved the overall efficiency of the method’s
coarse-graining with adaptive resolution. Compared with lattice statics, the F–h curve as well as the load level of
dislocation nucleation can be quantitatively captured by a proper choice of the sampling cluster size. The observed
dislocation microstructures vary in some details, but generally well agree with the result of fully atomistic resolution.
Briefly, the simulations have shown the promising capacity of QC-eFNL to reduce the prohibitive computational expense of
fully atomistic resolution while faithfully simulating the material’s response in significant details.
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