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Abstract In computational viscoelasticity, the spatial finite
element discretization for the global solution of the weak
form of the balance of momentum is coupled to the tem-
poral discretization for solving local initial value problems
(IVP) of viscoelastic flow. In this contribution we show that
this global-local or space-time coupling is consistent, if the
total strain tensor as the coupling quantity exhibits the same
approximation order p in time as the Runge–Kutta (RK)
integration algorithm. To this end we construct interpola-
tion polynomials, based on data at tn+1, tn , . . ., tn+2−p,
p ≥ 2, which provide consistent strain data at RK stages.
This is a generalization of the idea proposed in (Eidel and
Kuhn, Int J Numer Methods Eng 87(11):1046–1073, 2011).
For lower-order strain interpolation, time integration exhibits
order reduction and therefore low efficiency. For consistent
strain interpolation, the adapted RK methods up to p = 4
obtain full convergence order and thus approve the novel
concept of consistency. High speed-up factors substantiate
the improved efficiency compared with Backward-Euler.
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1 Introduction

Time integration algorithms are the numerical workhorses
in computational inelasticity, since they largely determine
accuracy and efficiency. The very standard in time integration
for inelastic constitutive laws is Backward–Euler (BE). It
exhibits nice stability properties and along with its relative
ease in implementation it is attractive, although it is only
linear, [39].

Viscoelasticity models describe the material behavior of
great many organic materials and biological substances like
flesh, skin, bones and cells to name but a few, [41]. But
also technical materials such as rubber, or polymers in gen-
eral, exhibit viscoelastic characteristics, [2,3,6,33,35]. In
younger scientific disciplines like e.g. in biomechanics, vis-
coelastic material models have already entered the patient-
specific treatment via predictive finite element simulations.
Here and in many other applications of viscoelastic finite
element calculations, the simulations are time-critical and
accuracy counts. For that aim, stable, fast and accurate time
integration algorithms are of utmost importance.

Higher-order time integration methods are appealing,
since they promise higher accuracy, and at best, higher effi-
ciency than BE. That rises the following question.

1. What is an advantageous algorithmic embedding of
higher-order time integration methods p ≥ 2 for vis-
coelasticity into nonlinear finite element frameworks?
What has to be done, if the point of departure is BE?

The choice of BE as the point of departure is adequate
for at least two reasons. It is the very standard in inelastic
finite element methods1. Moreover, diagonally implicit RK

1 That applies to BE as the integrator for inelastic rate equations, but
not for integrating the equations of structural dynamics.
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Fig. 1 Scheme for the coupling
of spatio-temporal
discretizations in viscoelastic
finite element simulations for
BE. In this representation, F is
the deformation gradient, z
denotes the set of internal
variables, P is the First
Piola–Kirchhoff stress tensor,
C

ve
n+1 denotes the

algorithmically consistent
tangent.

(DIRK) methods, which are used in the present work, have
the same algorithmic structure as BE making the upgrade to
higher-order DIRK methods feasible with ease.

The answer to the first question shall be given from a fresh,
new look onto the standard algorithmic structure of finite ele-
ment frameworks for the solution of inelastic problems, cf.
[8]. Following this structure, the space-discrete, variational
form of the balance of momentum leads to a set of non-
linear algebraic equations, which are solved on the global
level for the primary unknowns, typically displacements (in
mixed methods stresses as well). Total strains as derived
from displacements are passed over to and serve as input
for the solution of the initial value problems (IVP) of inelas-
tic flow on quadrature-point (typically Gauss-point) level,
which is termed the local level in this context. This kind of
global-local or space-time coupling with a total deformation
measure (here: the deformation gradient F) as the coupling
quantity is schematically displayed in Fig. 1. Time integra-
tion of the viscoelastic evolution equations yield an update of
viscoelastic strains (here: z) and the total stresses (here: P).
Since Newton’s method is typically used for the solution of
the set of nonlinear algebraic equations on the global level,
linearizations are necessary for the sake of quadratic conver-
gence. Within this solution framework employing lineariza-
tions, the classical meaning of consistency is that the tangent
is consistent with the chosen time integration method, there-
fore called algorithmically consistent tangent moduli, which
goes back to [36,40]. The tangent C

ve
n+1 and the updated

stresses Pn+1 are passed over to new iterations of the varia-
tional form of the balance of momentum until equilibrium is
fulfilled, see Fig. 1 and its caption.

Two algorithmic variants can be distinguished. The first
one, termed the partitioned ansatz, is the classical approach
in computational inelasticity. It solves for equilibrium only at
tn , tn+1, but not in the interior of the time interval at the stages
of a multi-stage method like the midpoint-rule, or generally,
any RK method.

Ellsiepen and Hartmann [12,20] have opened a door to
higher-order methods in inelasticity by their proposal of a dif-
ferent concept, termed DAE/MLNA, for Differential Alge-
braic Equations along with a Multi-Level Newton Algorithm.
This novel approach solves for global equilibrium addition-
ally at the RK stages of the time interval. Although this pro-
cedure increases the computational costs compared with the
traditional partitioned ansatz, the benefits of the achieved
high order are predominant in that they lead to a consider-
ably improved speed-up compared with BE, see the work of
Hartmann for viscoelasticity, [20]. This approach is theoreti-
cally sound and a viable solution and thus answers the above
first question.

Notwithstanding, the question naturally arises, whether
the partitioned ansatz as described above and schematically
displayed for BE in Fig. 1 can also be used along with higher-
order RK methods. If so, a combination of the benefits from
higher order and the lower complexity compared with the
DAE/MLNA-approach could be realized. As it will turn out
in the paper, the sketch for BE in Fig. 1 is not complete to
realize this goal.

Instead, a novel, nonstandard aspect comes into play,
which, if neglected for p ≥ 2, leads to low accuracy, to
a reduced convergence order compared with the nominal
order (so-called order reduction), and, as a consequence,
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to an inferior efficiency. It will be shown in Sect. 5, that
these severe drawbacks can lead to an overall performance
of higher-order RK methods, which can be even worse than
BE.

To obtain full convergence order in the partitioned ansatz,
a completion of the scheme in Fig. 1 with respect to the
consistency in coupling is necessary. The addressed consis-
tency is intimately related to the characteristic of inelasticity,
that RK methods, which are one-step, multi-stage schemes,
require the calculation of total strains at the RK-stages. These
RK stages are indicated in Fig. 1 by the mark for tni on the
time axis. This leads to the next main question:

2. In which format shall the total strain tensor be plugged
into the RK stages for higher-order p ≥ 2? Is a constant
total strain in the time step sufficient, like for BE? If not,
why not - and what else is correct?

In [9] it is analyzed that the order of time integration cru-
cially relies on the approximation order of total strain in time.
More precisely, RK methods of order 3 require total strains
of the approximation order 3. Complementary, linear inter-
polation of strain, based on tn and tn+1 data, thus introducing
an approximation error of order 2, leads to an order reduction
of time integration to order 2.

The objective of the present contribution is a generaliza-
tion of the ideas in [9] with the aim to achieve full conver-
gence order in time integration for viscoelastic constitutive
models at finite strains. This doing we focus on DIRK meth-
ods up to order 4. DIRK methods are particularly efficient RK
methods with nice stability properties also for stiff problems.

The ultimate question to be answered in the present work
is this.

3. Do higher-order RK-methods significantly improve the
efficiency in viscoelastic finite element simulations?

If the full convergence order is obtained, RK methods
which exhibit A- and S-stability allow for much larger time
step sizes than BE, the stable but sedate standard for inelas-
tic time integration. While RK methods are well known for
their higher accuracy based on higher convergence order, a
recommendation to use them must be based on a significant
speed-up in simulations compared with BE.

The structure of the present paper follows the main objec-
tives:

(i) Presentation of the algorithmic structure of finite ele-
ment methods for the solution of inelastic initial bound-
ary value problems (IBVP). Here, the focus is on the
coupling of the global BVP with the local IVPs via total
strains as coupling agencies. The aspect of consistency
of coupling is crucial for the way of constructing total
strains at the stages of higher-order RK methods. The
generalization of the introductory picture in Fig. 1 is the

content of Sect. 4 and will answer the above questions
1.) and 2.).

(ii) Description of the algorithmic treatment of a finite-
strain viscoelasticity model as outlined in Sect. 2.2 using
DIRK methods up to order 4, see the Appendix Section,
along with our novel concept of consistent strain inter-
polation.

(iii) Numerical assessment of the presented methodology to
check accuracy, convergence order and efficiency. This
is carried out in Sect. 5 and the results answer the above
third question.

2 Constitutive framework

We consider a body � ⊂ R
3 undergoing a viscoelastic

deformation ϕ : � → R
3 with the deformation gradient

F = ∂Xϕ(X) and the Jacobian J = detF > 0, where X is
a material point in the reference configuration.

2.1 Decompositions of deformation

The deformation gradient F can be decomposed into

F = F̂ F̄ (1)

with the volumetric part F̂ and the isochoric part F̄ defined
as

F̂ = J 1/3 1, detF̂ = detF = J , (2)

F̄ = J−1/3 F, detF̄ = 1. (3)

Various material models are based on the decomposition
(1), since it allows to introduce stress tensors, which exhibit
the same decomposition as the deformations.

From (1), the unimodular Right-Cauchy-Green tensor is
motivated as

C̄ = F̄
T

F̄ = Ū
2 = J−2/3C , det C̄ = 1. (4)

The main invariants of C̄ are

IC̄ = tr C̄ , I I C̄ = 1

2

(
(tr C̄)2 − tr C̄

2
)

,

I I I C̄ = det C̄ = 1. (5)

The multiplicative decomposition of the deformation gra-
dient

F = Fe Fv (6)

into the elastic part Fe and the inelastic part Fv was originally
introduced for metal plasticity, cf. Kröner and Lee [28,30].
This decomposition has been equally used for the modeling
of viscoelasticity at finite strains for a variety of non-metallic
materials, [3,2,6,7,14,20,26,27,33,35,38].
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Table 1 Constitutive model of
finite strain viscoelasticity Split of deformation F = Fe Fv, C = FT F, C̄ = J−1/3 F (7)

Decomposition of stress S = Seq
vol + Seq

iso + Sov (8)

Equilibrium stress Seq
vol = JU ′(J )C−1 , with U ′(J ) = K

10
(J 4 − J−6) (9)

Seq
iso = ϕ1 1 + ϕ2 C̄ + ϕ3 C̄

−1
(10)

ϕ1 = 2(det C)−1/3(w1 + w2 IC̄ ) (11)

ϕ2 = −2(det C)−1/3w2 (12)

ϕ3 = −2

3
(det C)−1/3(w1 IC̄ + 2w2 I I C̄ ) (13)

w1 = ∂weq

∂ IC̄
= c10 + 3c30(IC̄ − 3)2 (14)

w2 = ∂weq

∂ I I C̄
= c01 (15)

Overstress Sov = 2μ
(det Cv)1/3

(det C)1/3

(
Cv−1 − 1

3
(C : Cv−1)C−1

)
(16)

Flow rule Ċ
v = 4μ

η

(det Cv)1/3

(det C)1/3

(
C − 1

3
(C : Cv−1)Cv

)
(17)

2.2 A viscoelasticity model at finite strains

In the following, the finite strain viscoelasticity model as
proposed in [20] is briefly described. In the context of the
present paper, the model serves the purpose to prove, that our
novel algorithmic contributions can empower RK schemes
to achieve full convergence order up to p = 4 in time inte-
gration of viscoelastic flow. For a comprehensive analysis of
continuum viscoelasticity models we refer to the monographs
[25,29]. Algorithmic aspects for the treatment of viscoelas-
ticity in the finite element method can be found in e.g. [31],
[22] and with a particular focus on structural dynamics in
[15].

The assumptions for the material model to be introduced
are the following, [20]. The material is isotropic and exhibits
quasi-incompressible behavior. Hydrostatic stresses exclu-
sively arise from elasticity. The deformations extend into the
regime of finite strains, which requires a geometrically non-
linear theory. The material exhibits velocity-dependent, non-
linear phenomena. A hysteresis of equilibrium stress states
is negligible, such that viscoelasticity is adequate. The equi-
librium stresses are derived from a hyperelasticity relation.
All processes considered are isothermal. For extensions to
non-isothermal processes, see e.g. [32] or [38]; for the con-
sideration of the Payne effect, see [33].

The model is summarized in Table 1. The total stress tensor
S in (8) is the 2nd Piola–Kirchhoff stress tensor, which can
be additively decomposed into an equilibrium part Seq and
an overstress part Sov. According to (9), Seq

vol is the volumet-
ric part of the equilibrium stress tensor; its isochoric part is

defined according to (10) in terms of 1, C̄, C̄
−1

and in terms
of the scalar functions ϕ1, ϕ2, ϕ3 according to (11)–(13).
Therein, the variables w1 and w2 are defined as derivatives of
weq with respect to the invariants IC̄ and I I C̄ , respectively.

The evolution equation for the viscoelastic strain Cv is given
in (17), for the overstress Sov in (16).

The isotropic viscoelasticity model exhibits the following
set of material parameters; the compression modulus K , the
shear modulus μ, the elastic constants c10, c30, c01 and the
viscosity η.

The above viscoelastic model falls into the general class
of constitutive equations of the type

S = h(C, z) (18)

ż = f (C, z) , z(t0) = z0 , (19)

where (18) denotes an elasticity relation and z ∈ R
nz defines

a set of internal variables describing viscoelastic material
behavior. Here, z = {Cv} with nz = 6 for the 3D case of
symmetric strain measures.

3 Time Integration

To put things into perspective, we briefly recall in the Appen-
dix basic equations for the numerical solution of an IVP by
implicit RK (IRK) methods, cf. e.g. [17–19]. Moreover, the
characteristics and benefits of the class of Diagonally Implicit
RK (DIRK) methods are reiterated to keep the paper self-
contained.

3.1 Application of DIRK schemes to finite strain
viscoelasticity

In the following, DIRK schemes are applied to the evolution
equations of viscoelasticity. Note, that the choice for DIRK
schemes as a particular class of RK schemes as well as the
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choice for the viscoelasticity model is without loss of gener-
ality for our framework.

The evolution equation for the viscoelastic Right Cauchy-
Green strain tensor reads as

Ċ
v = 4μ

η

(det Cv)1/3

(det C )1/3

(
C − 1

3
(C : Cv−1)Cv

)
. (20)

After discretization in time, the application of a DIRK
method yields the update formula for Cv

ni at stage i in the
time interval �tn = [tn, tn+1]

Cv
ni = �v

ni + �tnaii Ċ
v
ni , (21)

with �v
ni = Cv

n + �tn

i−1∑
j=1

ai j Ċ
v
nj , (22)

where Cv
n ≈ Cv(tn). With (20) a reformulation of (21) yields

Cv
ni − �v

ni

�tnaii
− 4μ

η

(det Cv
ni )

1/3

(det C(tni ))1/3 (23)

×
(

C(tni ) − 1

3
(C(tni ) : C(tni )

v−1)Cv
ni

)
= 0.

In order to reduce the numerical effort for the solution
of 6 nonlinear algebraic equations for Cv

ni , the following
reformulation as proposed in the work of [22] is instrumental

Cv
ni = 1

g(Cv
ni )

ξ(Cv
ni ) (24)

with the scalar function g(Cv
ni ) and the tensorial function

ξ(Cv
ni ) according to

g(Cv
ni ) = 1 + 4

3

�tnaiiμ

η

(det Cv
ni )

1/3

(det C(tni ))1/3 (C(tni ) : Cv−1
ni ) ,

(25)

ξ(Cv
ni ) = �v

ni + 4�tnaiiμ

η

(det Cv)1/3

(det C(tni ))1/3 C(tni ). (26)

Two scalars can be identified in the update formula

x1 := (det Cv
ni )

1/3 (27)

x2 := C(tni ) : Cv−1
ni (28)

which are used as unknowns in the following replacing the 6
components of Cv

�m(x1, x2) = 0 m = 1, 2 (29)

with

�1(x1, x2) := x1 − g−1(det ξ)1/3 , (30)

�2(x1, x2) := x2 − g ξ−1 : Cni , (31)

where we use the abbreviations

g = g(x1, x2) = 1 + k̂

3

x1x2

η
, (32)

ξ = ξ(x1, x2) = �v
ni + k̂

x1

η
Cni , (33)

and k̂ = 4μ�tnaii

(det Cni )1/3 . (34)

The application of Newton’s method for the solution of
this set of nonlinear equations yields for each iteration step
(r) the following set of linear equations

[
�1,1 �1,2

�1,2 �2,2

](r) [
�x1

�x2

]
= −

[
�1

�2

](r)

(35)

with increments �xm = x (r+1)
m − x (r)

m .
For the last stage i = s, which coincides with the end

of the time interval tn+1, the solution x1, x2 is used for the
computation of the viscoelastic overstress

Sov
n+1 = 2μ x1

(det Cni )1/3

(
g(x1, x2) ξ−1(x1, x2) − 1

3
x2 C−1

ns

)
.

(36)

Remarks

1. The coefficients of the DIRK-matrix A = [ai j ]i, j=1,...,s

in (21) and (22) are chosen from Table 17 in the Appen-
dix. The weighting factors bi remain hidden for stiffly
accurate DIRK methods due to asi = bi , and the coef-
ficients ci from Table 17 in the Appendix enter Cv

ni via
tni = tn + ci�tn .
There is no ambiguity nor free choice for the quantities
in time integration except of for the stage values C(tni ).
How to approximate them Cni ≈ C(tni ) in a consistent
manner is the key question and will be answered in the
following Sect. 4.

2. Note that the update of DIRK methods for each decoupled
stage solution according to (21) and (22) covers BE as a
special case (BE is a DIRK method with p = 1). This
fact underlines the relative ease of implementing higher
order DIRK methods for a viscoelastic constitutive law,
if BE is already implemented.

4 Space-time coupling

4.1 General idea

According to the finite element solution of inelasticity the
variational form of the balance of momentum is solved on
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Fig. 2 The exact, unknown deformation path in time (black, full line)
and its approximations via constant deformation F = Fn+1 (red, dotted
line) and via linear (blue, dashed line), and quadratic (green, dashed-
dotted line) interpolation

the global level for displacements as primary unknowns. Dis-
placements as kinematical quantities are required as input for
the solution of the IVP of inelastic flow on the local quadra-
ture point (typically Gauss-point) level in each finite element.
Since RK methods are one-step, multiple-stage schemes,
their use in time integration requires the calculation of the
total strain values at the RK-stages, see (23) and remark 1 in
Sect. 3.1.

The most simple way to provide total strains at RK stages
is to use throughout constant strain values in the time interval,
say values at tn+1. This is the way how it is done for BE, cf.
F(t) = Fn+1 = const. for t ∈ [tn, tn+1], cf. Fig. 1.

Figure 2 illustrates, that the exact strain path in time is
typically nonlinear for viscoelastic problems. Obviously, the
approximation of deformation by a constant value is very
inaccurate. The strain path can be better approximated by
means of quadratic interpolation compared with linear inter-
polation.

In [9] it was analyzed that the approximation order of
total strains in time rules the consistency order of viscoelastic
time integration. More precisely it was shown, that a linear
representation of strains based on tn and tn+1 data introduces
an approximation error of order 2 and therefore bounds the
order of convergence in time integration to order 2. Similarly,
quadratic strain interpolation to approximate the values at the
RK stages introduces an approximation error of O(�t3) and
enables a corresponding consistency and convergence order
of 3 in time integration. Furthermore, it is shown in [9] that the
construction of a third-order polynomial can be effectively
based on time data tn , tn+1 and additionally tn−1 as shown
in Fig. 2. Of course, the accuracy of strain approximation
in time by higher-order polynomials crucially relies on the
smoothness of the strain path in time. For elasto-plasticity
quite in contrast to viscoelasticity, the smoothness of strain

paths depends on material parameters, which was analyzed
for the first time in [10].

4.2 Consistency

The choice of the correct interpolation polynomial follows
from a consistency analysis, which was proposed in [8]. The
ODE

ż = f (F(t), z(t)) (37)

describing viscoelastic flow is solved by a time integration
algorithm of the nominal order p. Since the time-dependent
deformation gradient F(t) serves as argument in (37), its
approximation order in time does influence the order of
time integration. This dependency is obvious but has been
neglected in previous works with the exception of [9].

An interpolation polynomial of degree q − 1 for the total
strain introduces a corresponding approximation error of the
order

F = O(�tq) (38)

which implies that due to (37) q is an upper bound for the con-
vergence order in time integration. More generally, it holds,
cf. [8]

z = O(�tmin{p,q}). (39)

Two conclusions are obvious. First, to empower time inte-
gration to its full order, the order of strain approximation and
the order of time integration must be consistent, q = p. Sec-
ond, a polynomial of lower order q = p − m, m ≥ 1 will
reduce the consistency order of the differential variable z and,
as a consequence, of the stress tensor P as well.

Hence, the concept of consistency of space-time (or
global-local) coupling in viscoelasticity, which was dis-
played in Fig. 1 in the introduction section, must be aug-
mented according to Fig. 3; the novel condition q = p
ensures, that the nominal consistency order2 in time inte-
gration can be obtained, while the standard condition of
the algorithmically consistent tangent moduli C

ve
n+1 =

∂ Pn+1/∂ Fn+1 ensures quadratic convergence in the solution
of the linearized algebraic equations following from FEM-
discretization of the weak form. The latter concept was intro-
duced into computational inelasticity by Nagtegaal in [36]
and generalized by Simó and Taylor in [40].

2 To obtain the same convergence order as the consistency order, the
stability of the time integrator has to be shown. Here we postpone the
consideration of the convergence order to explicit numerical tests in
Sect. 5.
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Fig. 3 Augmented scheme for
the consistent coupling of
spatio-temporal discretizations
in viscoelastic finite element
simulations for higher order
methods p ≥ 2 according to [8].
In this representation, F is the
deformation gradient, z denotes
the set of internal variables, P is
the First Piola–Kirchhoff stress
tensor, C

ve
n+1 denotes the

algorithmic tangent, which is
consistent to the time integrator.

4.3 Constructing interpolation polynomials for consistent
coupling

Returning to the viscoelastic model of the present work, we
adapt the above considerations to the present setting. Hence,
the set {z, F, P} is replaced by the quantities {Cv, C, S}.
In the following, the above consistency requirement for total
strain approximation is fulfilled by interpolation polynomials
of degree q − 1 with q = p.

4.3.1 The case p = 1: stage values for constant total strain

The simplest way to determine the stage values at time t =
tni = tn + ci�t is via a constant approximation of the total
strain tensor C(t) = Cn+1. Introducing a new time scale t̃ :=
t − tn in the time interval t ∈ [tn, tn+1] and a corresponding
polynomial p0(t) yields the approximation of C(t)

C(t = tni ) ≈ p0(t̃ = ci�t) = Cn+1. (40)

Under the assumption that the strains in the time interval t ∈
[tn, tn+1] and t̃ ∈ [0,�t] are continuously differentiable, the
interpolation error in the strains is |C(t̃)− p0(t̃)| ≤ M1(�t)
with M1 = max{|C ′(t̃)| : t̃ ∈ [0,�t]}.
Remark BE fulfils the condition q = p, since the constant
strain approximation F = Fn+1 implying q = 1 is consis-
tent with the linear order, p = 1.

4.3.2 The case p = 2: stage values via linear interpolation

With the new time scale t̃ := t − tn , the linear interpola-
tion polynomial, supported by (0, Cn) and (�t, Cn+1), reads
p1(t̃) = Cn + t̃/�t(Cn+1 − Cn), which leads to the approx-
imation of C(t) at time t = tni = tn + ci�t

C(t = tni ) ≈ p1(t̃ = ci�t) = Cn + ci (Cn+1 − Cn). (41)

Under the assumption that total strains in the time interval
t ∈ [tn, tn+1] and t̃ ∈ [0,�t] are twice continuously differen-
tiable, the interpolation error in the strains is |C(t̃)− p1(t̃)| ≤
M2/2(�t)2 with M2 = max{|C ′′(t̃)| : t̃ ∈ [0,�t]}.
Remark The calculation of stage values via linear interpo-
lation was applied in [4] for elasto-plasticity. In this work
however, an order reduction of a fully implicit, 3rd order RK
method to order 2 was observed, which is in agreement to the
consistency to the consistency considerations in Sect. 4.2.

4.3.3 The case p = 3: stage values via quadratic
interpolation

The fact that the error for linear interpolation is of the
order O(�t2) suggests that this low-order approximation
is a candidate to cause order reduction in viscoelastic
stress computation when higher-order methods, p ≥ 3
are used. Based on this hypothesis we propose a quadratic
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interpolation polynomial p2(t̃), which is based on the data
set (−�t, Cn−1), (0, Cn) and (�t, Cn+1). Given that C(t̃) is
three times continuously differentiable in [−�t,�t], it holds
for the interpolation error |C(t̃)− p2(t̃)| ≤ M3/6(�t3) with
M3 = max{|C ′′′(t̃)| : t̃ ∈ [−�t,�t]}.

The interpolation polynomial p2 reads

p2(t̃) = 1

2�t2 (Cn−1 − 2Cn + Cn+1) t̃2 (42)

+ 1

2�t
(Cn+1 − Cn−1) t̃ + Cn .

With (42) it follows for the stage values of C at t = tni =
tn + ci�t and t̃ = ci�t

C(t = tni ) ≈ p2(t̃ = ci�t) (43)

= ci

2
(ci − 1) Cn−1 + (1 − c2

i ) Cn + ci

2
(ci + 1) Cn+1.

4.3.4 The case p = 4: stage values via cubic interpolation

For convergence order 4 in time integration, the consis-
tent interpolation polynomial for total strain is of degree
3. Hence, 4 data points are necessary. They are chosen to
be (−�tn−2, Cn−2), (−tn−1, Cn−1), (0, Cn), (�tn, Cn+1).
Given that C(t̃) is four times continuously differentiable
in [−2�t,�t], it holds for the interpolation error |C(t̃) −
p3(t̃)| ≤ M4/24(�t4), with M4 = max{|C ′′′′(t̃)| : t̃ ∈
[−2�t,�t]}.

p3(t) =
3∑

i=0

f (tni )l i (tni ) (44)

where

l0 = (tni − tn−1)(tni − tn)(tni − tn+1)

(tn−2 − tn−1)(tn−2 − tn)(tn−2 − tn+1)
Cn−2 (45)

l1 = (tni − tn−2)(tni − tn)(tni − tn+1)

(tn−1 − tn−2)(tn−1 − tn)(tn−1 − tn+1)
Cn−1 (46)

l2 = (tni − tn−2)(tni − tn−1)(tni − tn+1)

(tn − tn−2)(tn − tn−1)(tn − tn+1)
Cn (47)

l3 = (tni − tn−2)(tni − tn−1)(tni − tn)

(tn+1 − tn−2)(tn+1 − tn−1)(tn+1 − tn)
Cn+1. (48)

Remark Note that for p ≥ 3 a change in the step size affects
the total strain interpolation due to its multi-step characteris-
tic. General aspects of mathematical interpolation have to be
considered like the distance between the nodes of interpola-
tion in order to avoid artifacts like oscillatoric effects. In the
present analysis we keep the time step size fixed, since only
in that case the uniform convergence order shows up.

Table 2 displays the time integration algorithm using
DIRK schemes of order p =2-4 along with the novel concept
of consistent strain interpolation.

4.4 Conceptual comparison with DAE/MLNA

The perspective onto the IBVP of inelasticity as a global
set of differential algebraic equations (DAE) and its solu-
tion by higher-order RK methods was introduced for rate-
independent elasto-plasticity in [12], for viscoelasticity in
[20,21] and applied to viscoelastic high-porosity foams in
[34]. The solution method is termed DAE/MLNA for Differ-
ential Algebraic Equation/Multi-Level Newton Approach. It
was shown that this method can achieve full convergence
order up to order 3 and that it can considerably improve
the efficiency compared with BE. The gain in efficiency of
DAE/MLNA was observed, although it requires a solution
of the global algebraic equations for equilibrium not only at
tn and tn+1 but also, additionally, in the RK-stages of time
integration.

The advantage of the present methodology compared to
the aforementioned one is, that it restricts the (global) finite
element solutions for equilibrium to the ends of a time inter-
val �t = tn+1 − tn . Making the solutions in the RK stages
dispensable implies considerable compuational savings.

The difference between DAE/MLNA and the present
framework can also be visualized in the schematic repre-
sentation of Fig. 3 for the space-time coupling or global-
local coupling. If, for example, a DIRK3 is used, the present
methodology requires only one single, global equilibrium
solution per time step. DAE/MLNA in contrast, requires 3
global finite element solutions at tni , i = 1, 2, 3 for the same
time step. Therefore, we can expect for the same accuracy
an approximate speed-up of the present approach by a factor
of 3 (generally we expect for an s-stage method a speed-up
factor of s if the last stage coincides with the end of the time
interval) compared with DAE/MLNA.

Put different, the present approach can generate strain data
at RK stages by interpolation, which are of the same qual-
ity in terms of their consistency order, as those strains in
the DAE/MLNA approach satisfying equilibrium but for a
fraction of the computational costs of the latter method.

Of course, the storage of total strain data for interpolation
creates an additional computational overhead in the present
approach, but it is far less time-consuming than additional
solutions for global equilibrium in the RK stages.

5 Numerical examples

In this section, the performance of different DIRK schemes
as listed in Table 3 is analyzed.
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Table 2 Time integration
algorithm for viscoelasticity
using DIRK methods of order
p ∈ {2, 3, 4} along with a
consistent total strain
interpolation of order p

The algorithm can be used
within the partitioned solution
framework for inelastic finite
element computations, which
requires equilibrium solutions
only at tn and tn+1 but not in the
RK stages

(I) Compute the start values �ni for time integration (ai j , c j from Table 17 in the Appendix:
For i = 1 : �v

ni = Cv
n . For i ≥ 2 : �v

ni = Cv
n + �tn

∑i−1
j=1 ai j Ċ

v
nj (49)

(II) Approximation of the total strain by polynomials of consistent degree p − 1:
for p ∈ {2, 3, 4} : Cni = Ĉni (ci , Cn+1, . . . , Cn−p+2) (50)
according to (41) for p = 2, (43) for p = 3, and (44) for p = 4.

(III) Compute the stage solutions Cv
ni :

Cv
ni = �v

ni + �tnaii Ċ
v
ni (51)

with Ċ
v
ni = 4μ

η

(det Cv
ni )

1/3

(det Cni )1/3

(
Cni − 1

3
(Cni : Cv−1

ni )Cv
ni

)
(52)

Solution of the nonlinear algebraic equations �m = 0, m = 1, 2, according to (30)

and (31) for xi , i = 1, 2 with x1 = (
det Cv

ni

)1/3, x2 = Cni : Cv−1
ni yielding the stage solutions:

Cv
ni =

[
1 + k̂x1x2

3η

]−1 [
Cv

ni−1 + k̂
x1

η

]
(53)

with k̂ = 4μ�tnaii

(det Cni )1/3 (54)

(IV) Compute the stage derivatives Ċ
v
ni :

Ċ
v
ni = Cv

ni − �v
ni

�tnaii
(55)

If i < s then i = i + 1, goto (I), else continue
(V) Update viscoelastic strain Cv

n+1 and overstress Sov
n+1:

Cv
n+1 = Cv

ns

Sov
n+1 = 2μ

(det Cv
ns)

1/3

(det Cns)1/3

(
Cv−1

ns − 1

3
(Cns : Cv−1

ns )C−1
ns

)
(56)

Table 3 Different DIRK methods, their abbreviation, the number of stages s, the expected order in time integration min{p, q} versus the nominal
order p, and the approximation order of total strain q

Method/abbreviation No. of stages s min{p, q} vs. p q Strain approx

DIRK1/BE 1 1 = 1 p constant
DIRK2l 2 2 = 2 p linear
DIRK3cons 3 1 < 3 p − 2 constant
DIRK3l 3 2 < 3 p − 1 linear
DIRK3q 3 3 = 3 p quadratic
DIRK4c 5 4 = 4 p cubic

The methods with consistent strain interpolation are italicised

Table 3 reflects one of the main statements of the present
work. A time integration method of a nominal order p
requires a consistent approximation of the total strain ten-
sor C(t) of order q = p to obtain full order of convergence.
DIRK methods, which conceptually fulfil this requirement,
are italicised in Table 3. If, however, strain interpolation of
the order p − m with m ≥ 1 is used, then order reduction to
the reduced order p − m must be expected.

The main focus is on the following aspects:

1. Convergence order Measuring the convergence order
checks the validity of the novel, generalized concept.
The convergence order is calculated for the total strain
tensor C as a primary unknown (note that C and u have
the same order in time) and for quantities following from
time integration like viscoelastic strain Cv and stress Sov.
Consequently, an accurate reference solution Xex for ten-
sor X with X = {C, Cv, Sov} is calculated by numeri-

cal overkill using a very small time step size where the
accuracy of the results is in the range of machine preci-
sion. Based on this reference solution, a relative, global
error for finite time step sizes is calculated according to

e(X) = 1

Nel · Ngauss

Nel∑
i=1

Ngauss∑
j=1

||X(i j)(�t) − X (i j)ex||
||X(i j)ex|| ,

(57)

where X(i j)(�t) is the result for a time step size �t , Nel

is the number of elements in the domain and Ngauss is the
number of Gauss-points per element.
In the following, the relative error versus the time step
size �t is displayed in doubled logarithmic scaling. The
mean order of convergence is calculated by means of
linear regression, if convergence is uniform.
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Table 4 Radial contraction of an annulus: viscoelastic material parameters

c01(N/mm2) c10(N/mm2) c30(N/mm2) K (N/mm2) μ(N/mm2) η0(N s/mm2)

0.5 0.264 0.19 1000.0 0.2 200.0

Note, that uniform convergence will only show up, if
the time step size is constant. This is the reason why we
abaondon—here—the attractive option for varying time
step sizes within an adaptive solution strategy3.

2. Efficiency The efficiency is measured in terms of the
error as a function of the overall computation time. This
test will provide a fair comparison of different time
integration schemes. Moreover, the actual speed-up of
different methods compared with BE is measured for a
prescribed global error tolerance.
Note, that taking only fixed time step sizes into account
neatly separates the improved efficiency of higher-order
RK methods by virtue of the present space-time cou-
pling concept from the additional benefit of embedded
RK methods to enable higher efficiency via adaptivity.

3. Reliability In order to achieve reliable conclusions con-
cerning the performance of the time integrators, the sim-
ulations are carried out for different test sets. In [9] it is
observed, that time integration methods perform much
better in test sets with uniform deformations (like simple
shear or biaxial tension) compared with inhomogeneous
deformation states. For that reason we consider the fol-
lowing sets of simulations:

(a) Radial contraction of an annulus. Material Parame-
ters according to Table 4.

(b) Quadratic plate with a hole subject to (i) linearly
increasing, tensile load, (ii) sinusoidal loading, and
(iii) superposition of (i) and (ii). Material Parameters
according to Table 4.

(c) Variation of material parameters for the set (b). The
isochoric case is considered by setting ν = 0.499239.
In a second set of material parameters, the isochoric
constraint is relaxed to ν = 0.33.
The Poisson contraction follows from the relation, cf.
[22],

ν = 3K − 4(c10 + c01)

6K + 2(c10 + c01)
(58)

where for the case ν = 0.33 the compression modu-
lus K is changed, and all other material parameters
c10, c01, c30, η of Table 4 are held fixed.

The DIRK schemes along with the finite strain viscoelas-
ticity model of Sect. 2.2 have been implemented into an

3 Embedded RK methods provide an error estimate and therefore enable
an automatic step-size control.

extended version of the finite element code FEAP, [42]. The
finite element that is used in the simulations is a Q1P0 ele-
ment.

Remark Since the total strain calculation has the character-
istic of a multistep method for p ≥ 3 (i.e. at least quadratic
strain interpolation), it requires a starting procedure. In the
first time step, linear interpolation of total strain (hence
q = 2) is the most accurate approximation that can be
obtained. As a consequence, for p ≥ 3 the condition q = p
is necessarily violated in the very first time interval. For e.g.
the 4th-order DIRK method total strain data from 4 points
tn−2, tn−1, tn , tn+1 are necessary for calibrating a polynomial
of degree 3. These data, however, are available not earlier
than in the 3rd overall time step. As a consequence, ”under-
interpolation” must be used in the first two time steps using
linear, then quadratic strain interpolation.

We anticipate already here, that this necessarily inconsis-
tent starting procedure has no negative effect on the conver-
gence order of time integration.

5.1 Radial contraction of an annulus

In the first test set we consider the radial contraction of an
annulus, which exhibits radii ri = 20 mm, ro = 40 mm
and thickness t = 1 mm as displayed in Fig. 4. Two sym-

Fig. 4 Radial contraction of a viscoelastic annulus by displacement
control applied to the inner rim: geometry, loading, and the finite ele-
ment mesh of the quarter system.
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Table 5 Radial contraction of
an annulus: order of
convergence for different DIRK
methods

The results for consistent strain
approximation are italicised

Time t = 1.5 s
Error e(C) e(Cv) e(Sov) e(S)

BE 1.01 1.00 1.00 1.00

DI RK 2l 1.94 1.93 1.93 1.94

DIRK3cons 1.01 1.00 1.00 1.00

DIRK3l 2.14 1.76 1.73 1.94

DI RK 3q 2.82 2.96 2.95 2.91

DIRK4q 2.82 2.96 2.95 2.91

DI RK 4c 2.80 2.93 2.93 2.89

metry planes are exploited in the simulation, such that the
simulation is performed at a quarter system. The plate is
supported in z-direction at z = 0. As shown in Fig. 4, the
quarter system is discretized by 10 elements in circumferen-
tial direction, 10 elements in radial direction and one element
over the thickness.

Starting from t = 0 s the inner rim is continuously
pulled inwards in radial direction by displacement control
up to a total displacement of ur = 1.5 mm at t = 1.5 s,
hence ur (t) = 1mm/s · t . The time step sizes are �t =
{0.025, 0.05, 0.075, 0.1, 0.125, 0.25}s. The reference solu-
tion is calculated by DIRK4c using a time step size of
�t =1.0E-04 s.

Results and discussion The convergence behavior is doc-
umented in Table 5 and in the diagrams of Fig. 5. It reveals
that the 3rd order DIRK3 obtains full convergence order only
for a quadratic, hence consistent interpolation of total strain
(DIRK3q). Linear strain interpolation (DIRK3l) in contrast,
induces a local approximation error for total strains of order
2, which propagates to an order reduction to order 2. In line
with the previous results is the order reduction to order 1,
if total strains are held constant (DIRK3cons) in the time
interval, here C(t) := Cn+1.

The simulation results are in agreement with the order
considerations in Sect. 4; the approximation order in time of

Fig. 6 Radial contraction of an annulus: efficiency for linearly increas-
ing load in terms of the overall error e(S) vs. the computation time (s)
for evaluations at time t = 1.5 s.

the total strain tensor C(t) is (approximately) an upper bound
for the convergence order of Cv, Sov and S.

The only result which seems not to fit to our predictions
is the fact that DIRK4c shows convergence order 3, although
cubic strain interpolation is employed. In the next test set we
will introduce a pronounced nonlinearity via sinusoidal load-

Fig. 5 Radial contraction of an annulus: error versus time step-size evaluated at t = 1.5 s for different time integrators. Left e(C), right e(Sov).
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Table 6 Radial contraction of an annulus: speed-up factors of DIRK
methods compared with BE for different error tolerances

Speed-up factor

Error tol. e(Sov) 1.0E−04 1.0E−06

BE 1.0 1.0

DIRK2l 31.7 250.3

DIRK3cons 0.5 0.5

DIRK3q 19.0 327.8

DIRK4c 13.6 225.7

Error calculations for e(Sov) are carried out at time t = 1.5 s

X
Y

Z

0.0001 0.0017 0.0033 0.0059 0.0075 0.0200

X
Y

Z

0.0005 0.007 0.028 0.042 0.065 0.15

Fig. 7 Radial contraction of an annulus at t = {0.5, 1.0, 5.0, 15.0} s
from top to bottom. Left overstress component Sov

xy (N/mm2). Right total

stress component Sxy(N/mm2)

ing in time instead of the linearly increasing load as chosen
here.

Figure 5 shows, that all DIRK methods with consis-
tent strain approximation significantly excel the convergence
order of BE. For a fair comparison of the methods we mea-
sure their efficiency in terms of the error in stress versus the
overall computation time. As a result, higher order DIRK
methods are much more efficient than BE. Figure 6 reveals,
that DIRK3q is for small error tolerances the most efficient
method. Since the convergence order seems to be limited
in this particular example to order 3, DIRK4c cannot excel

DIRK3q; it shows the same convergence order as DIRK3q
but exhibits two more stages (5 instead of 3) and therefore it
is less efficient than DIRK3q.

The improvement in efficiency is measured by speed-up
factors shown in Table 6; DIRK2l is the winner with a speed-
up of more than factor 30 compared with BE for an error
tolerance of 1.0E −04. DIRK4c and DIRK3q show speed-up
factors of 13.6 and 19, respectively. The speed-up becomes
much more pronounced for smaller error tolerances. Speed-
up factors well above 200 are obtained by all DIRK variants
for an error tolerance of 1.0E − 06.

If DIRK3 is used along with a total strain held constant
in the time interval, C(t) := Cn+1, then the results are the
worst. Since the convergence order falls back to order 1 and
the computational effort is for this 3-stage method much
larger than for BE, the overall performance is even worse
than BE, see Fig. 6 and Table 6.

The deformation of the annulus at different stages is dis-
played in Fig. 7.

5.2 Quadratic plate with a hole

5.2.1 Linearly increasing load

In the present example we consider the stretch of a quadratic
plate with a hole, see Fig. 8. The geometry of the structure
is given by length l = 100 mm and thickness t = 2 mm. The
plate exhibits a hole of radius r = 3 mm.

Starting at t = 0 s the plate is stretched by linearly increas-
ing displacements up to a total displacement of u = 15mm
at t = 1.5 s at two opposite edges, hence u(t) = 10mm/s · t .

The strip is supported in its midsurface in thickness-
direction, and supported orthogonal to the symmetry planes
in width direction and in length direction, respectively.
Exploiting three symmetry planes allows for a simulation

Fig. 8 FE-model of the quadratic plate with a hole; geometry, loading,
discretization of one eighth using symmetries.
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Table 7 Quadratic plate with a hole for linearly increasing load: order
of convergence of different quantities for variants of DIRK methods

Time t = 1.5 s
Error e(C) e(Cv) e(Sov) e(S)

BE 1.00 1.00 1.00 1.00

DI RK 2l 1.78 1.56 1.91 1.73

DIRK3cons 1.00 1.00 1.00 1.00

DIRK3l 1.78 1.55 1.91 1.69

DI RK 3q 2.61 2.50 2.94 2.72

DIRK4q 2.61 2.50 2.94 2.67

DI RK 4c 2.69 2.47 2.94 2.67

The results for consistent strain approximation are italicised

of one eighth system, the resulting structure is discretized by
30 × 10 × 2 elements, see Fig. 8.

The same viscoelastic material parameters as in the previ-
ous example are used, see Table 4. Time step sizes considered
in the simulations are �t = {0.025, 0.05, 0.075, 0.1, 0.125,

0.25}s, the reference values are calculated using DIRK4c
along with �t =1.0E-04 s.

Results and discussion The analysis of the convergence
order is summarized in Table 7 and in the diagrams of
Fig. 9. It can be observed that DIRK3 is of order 3, if strain
interpolation is quadratic. Similarly, DIRK2 is of order 2,
if strain interpolation is linear. This underpins the ratio-
nale of the present work, that time integration of order
p requires an approximation of total strains of the same
order p. If polynomials of lower order q < p are used,
then the approximation order of total strain C is an upper
bound for the convergence order of viscoelastic strain Cv

and for total stress Sov, respectively. This case is called
order reduction. In line with the previous results is the
order reduction to order 1, if total strains are held constant
(DIRK3cons).

Fig. 10 Quadratic plate with a hole for linearly increasing load: effi-
ciency in terms of the overall error e(Sov)versus the overall computation
time (s) at time t = 1.5 s.

Remarkably, DIRK4c shows again not more than conver-
gence order 3. The obtained order 2.7 for total strains indi-
cates, that cubic polynomials are not superior to quadratic
polynomials for total strain interpolation in this particular
problem. In the next test set we will see that a more pro-
nounced nonlinearity in the loading can change the conver-
gence order.

Figure 9 shows that all DIRK methods with consistent
strain approximation significantly improve the convergence
order of BE. The efficiency of the methods is measured in
terms of the error in the overstress versus the overall compu-
tation time, see Fig. 10.

Table 8 reveals, that for an error tolerance of 1.0E-
04 a relation for the speed-up factors holds according
to 11.8 (DIRK2l) > 7.6 (DIRK3q) > 5.5 (DIRK4c). This

Fig. 9 Quadratic plate with a hole for linearly increasing load: error versus time step size evaluated at t = 1.5 s for different time integrators. Left
e(C), right e(Sov).
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Table 8 Quadratic plate with a
hole for linearly increasing load:
speed-up factors of DIRK
methods compared with BE for
different error tolerances

Error calculations are carried
out at time t = 1.5 s for e(Sov)

speed-up factor

Error tol. e(Sov) 1.0E-04 1.0E-06

BE 1.0 1.0

DIRK2l 11.8 179.2

DIRK3cons 0.7 0.7

DIRK3q 7.6 226.2

DIRK4c 5.5 164.3

X
Y

Z

-0.0001 0.00012 0.00034 0.00056 0.00078 0.001

X
Y

Z

-0.004 -0.0016 0.0008 0.0032 0.0056 0.008

Fig. 11 Quadratic plate with a hole for linearly increasing load at t =
{0.5, 1.0, 5.0, 15.0} s from top to bottom. Left overstress component
Sov

xy (N/mm2). Right total stress component Sxy (N/mm2)

relation indicates, that here, the increasing computational
complexity due to more stages is predominant for the per-
formance of the method. Notwithstanding, all methods show
a speed-up beyond factor 5 compared with BE. For a smaller
error tolerance of 1.0E-06, the higher order of DIRK3q leads
to a superior speed-up compared with DIRK2l. DIRK4c is
still behind DIRK2l due to its higher numerical effort of 5
stages instead of 2. But all higher order DIRK methods show
for this error tolerance a drastic speed-up in the range of
164–226 compared with BE. The deformed plate at different
stages is shown in Fig. 11.

5.2.2 Sinusoidal loading—incompressible material
parameters

Next, we replace for the same setting as in Sect. 5.2.1 the
linearly increasing load by a sinusoidal load of the form

Fig. 12 Sinusoidal loading in time

u(t) = 10 mm/s · sin (2/3π t), see Fig. 12. This kind of
loading introduces a stronger nonlinearity in the strain path
compared with a loading that linearly increases.

The reference solution is calculated using DIRK4c with a
time step size of �t = 0.0001 s, for error calculations step
size is between �t = 0.003125 s and �t = 0.125 s.

Results and discussion The convergence results are shown
in Fig. 13 and in Table 9. In contrast to the previous setting,
the convergence order of Cv, Sov and S for DIRK4c is well
above 3 but still below 4. It is much better for cubic strain
interpolation than for quadratic interpolation.

Similarly, all other methods show the predicted conver-
gence behavior as summarized in Table 3. Furthermore, as in
the previous examples, all quantities C, Cv, Sov and S show
approximately the same error patterns, see Table 9.

The diagram in Fig. 14 displays the numerical efficiency
in terms of the error in the overstress versus the overall com-
putation time.

Table 10 gives explicit numbers for the speed-up in com-
putation of higher order DIRK methods compared with BE.
The speed-up for an error tolerance of 1.0E-04 (1.0E-06,
respectively) is considerable and throughout in the range of
factor 5 (factors 25–53 respectively) for the DIRK methods
with p ≥ 2.
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Fig. 13 Quadratic plate with a hole for sinusoidal loading and incompressible viscoelasticity: error versus time step size evaluated at t = 17.25 s
for different DIRK methods. Left e(C), right e(Sov).

Table 9 Quadratic plate with a hole for sinusoidal loading and incompressible viscoelasticity: order of convergence for different methods

Error e(C) e(Cv) e(Sov) e(S)

Time t 8.25 s 17.25 s 8.75 s 17.25 s 8.25 s 17.25 s 8.25 s 17.25 s

BE 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01

DI RK 2l 1.92 1.89 2.00 2.00 2.00 2.00 2.00 2.00

DIRK3cons 0.99 1.00 1.01 1.01 1.01 1.01 1.01 1.01

DIRK3l 1.93 1.89 2.00 2.00 2.00 2.00 2.00 2.00

DI RK 3q 2.83 2.61 2.91 2.90 2.94 2.95 2.94 2.95

DIRK4q 2.72 2.61 2.91 2.90 2.94 2.95 2.94 2.95

DI RK 4c 2.49 2.50 3.24 3.24 3.23 3.23 3.24 3.24

The methods with consistent strain interpolation are italicised

Fig. 14 Quadratic plate with a hole for sinusoidal loading and incom-
pressible viscoelasticity: efficiency in terms of the error e(Sov) vs. the
computation time (s) for evaluations at t = 8.25 s.

Table 10 Quadratic plate with a hole for sinusoidal loading and incom-
pressible viscoelasticity: speed-up factors of different methods com-
pared with BE for different error tolerances

Speed-up factor

Error tol. e(Sov) 1.0E−04 1.0E−06

BE 1.0 1.0

DIRK2l 4.4 25.0

DIRK3cons 0.7 0.7

DIRK3q 5.4 52.8

DIRK4c 3.8 46.0

Error calculations at time t = 8.25 s

5.2.3 Sinusoidal loading—compressible material behavior

Next, we study the influence of a supposedly minor change in
the material parameters. The compression modulus is set to
K = 3 N/mm2, which implies according to (58) a Poisson
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Table 11 Quadratic plate with a hole for sinusoidal loading and com-
pressible viscoelasticity, ν = 0.3: order of convergence for different
methods

Error e(C) e(Cv) e(Sov)

Time t 8.25 s 17.25 s 8.75 s 17.25 s 8.25 s 17.25 s

BE 1.02 1.02 1.02 1.02 1.02 1.02

DI RK 2l 2.00 2.00 2.00 2.00 2.00 2.00

DIRK3cons 1.02 1.02 1.02 1.02 1.02 1.02

DIRK3l 2.00 2.00 2.00 2.00 2.00 2.00

DI RK 3q 2.67 2.68 2.94 2.95 2.95 2.95

DIRK4q 2.67 2.68 2.94 2.94 2.94 2.95

DI RK 4c 3.03 2.98 3.58 3.58 3.64 3.64

The methods with consistent strain interpolation are italicised

contraction of ν = 0.3. Hence, we considerably relax the
constraint of quasi-incompressibility.

Results and discussion Concerning the simulation results
we restrict to the differences to the quasi-incompressible
case. For the present case, cubic polynomials turn out to be
much better for strain interpolation than quadratic polyno-
mials, which manifests in the convergence orders of e(C) in
Table 11 for DIRK4c and for DIRK4q. As a consequence,
quantities from viscoelastic time integration, i.e. Cv and Sov

exhibit convergence order of approx. 3.6 for DIRK4c which
is clearly above the observed order (≈3.24 in Table 11) in
the quasi-incompressible case (Fig. 15).

The diagram in Fig. 16 shows the numerical efficiency
in terms of the error in overstress versus the computation
time. Remarkably, DIRK4c can overpower its drawback as an
expensive 5-stage method compared with the 3-stage method
DIRK3q by virtue of its higher convergence order; for small
error tolerances it is the fastest method.

Table 12 gives explicit numbers for the speed-up in com-
putation of higher order DIRK methods compared with BE.
The speed-up is considerable and throughout above factor 4

Fig. 16 Quadratic plate with a hole for sinusoidal loading and com-
pressible viscoelasticity, ν = 0.3: efficiency in terms of the error e(Sov)

vs. the computation time (s) for evaluations at t = 8.25 s.

Table 12 Quadratic plate with a hole for sinusoidal loading and com-
pressible viscoelasticity: speed-up factors of different methods com-
pared with BE for different error tolerances

speed-up factor

error tol. e(Sov) 1.0E-04 1.0E-06

BE 1.0 1.0

DIRK2l 4.4 21.6

DIRK3cons 0.8 0.5

DIRK3q 7.3 48.1

DIRK4c 4.6 48.7

Error calculations at time t = 8.25 s

for all DIRK methods with p ≥ 2 if an error tolerance of
1.0E-04 is set.

Fig. 15 Quadratic plate with a hole for sinusoidal loading and compressible viscoelasticity: error versus time step size evaluated at t = 8.25 s for
different DIRK methods. Left e(C), right e(Sov).
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5.2.4 Superposition of linearly increasing load with
sinusoidal fluctuations

Next, we consider the superposition of a linearly increasing
and a sinusoidal loading as visualized in Fig. 17. The loading
is mediated by displacement control according to

u(t) = 10 (mm/s) · t + 20 (mm/s) · sin

(
2

3
π t

)
. (59)

Fig. 17 Superposition of linearly increasing loading with sinusoidal
fluctuations in time

The material parameters are taken from Table 4 (i.e. the
quasi-incompressible case).

The reference solution was calculated using DIRK4c with
a time step size of �t =1.0E-04 s.

Results and discussion The convergence results are shown
in Fig. 18 and in Table 13. Again, all DIRK methods achieve
full convergence order for consistent strain interpolation.
Table 13 reveals that the approximation order for C is an
upper bound for the convergence order Cv and Sov in that
order reduction is observed for strain interpolation of incon-
sistent order p − m, m ≥ 1. As predicted by theory, this
equally applies for DIRK3cons, DIRK3l and for DIRK4q.

Figure 19 shows the numerical efficiency in terms of
the error in overstress versus the overall computation time.
It reveals that all DIRK methods with p ≥ 2 excel BE
by a speed-up of at least a factor 15, see Table 14. Here,
the speed-up of DIRK4c is due to its numerical costs as a
5-stage method smaller than the speed-up of the 3-stage
method DIRK3q, which holds for an error tolerance of 1.0E-
04. For an error tolerance of 1.0E-06 all DIRK methods with
p ≥ 2 yield a drastic speed-up with factors 127–232 com-
pared with BE.

Fig. 18 Quadratic plate with a hole for superposition of linearly increasing loading with sinusoidal fluctuations: error versus time step size evaluated
at t = 9.0 s for different DIRK methods. Left e(C), right e(Sov).

Table 13 Quadratic plate with a
hole for superposition of linearly
increasing and sinusoidal
loading: order of convergence
for different methods

The methods with consistent
strain interpolation are italicised

error e(C) e(Cv) e(Sov) e(S)

time t 3 s 9 s 3 s 9 s 3 s 9 s 3 s 9 s

BE 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DI RK 2l 1.92 1.95 2.00 2.00 2.00 1.99 1.99 1.99

DIRK3cons 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DIRK3l 1.92 1.95 2.00 2.00 2.00 1.99 1.99 1.99

DI RK 3q 2.42 2.35 2.86 2.75 2.79 2.85 2.80 2.55

DIRK4q 2.43 2.38 2.85 2.76 2.79 2.84 2.79 2.59

DI RK 4c 2.61 2.44 2.90 2.86 2.80 2.67 2.86 2.46
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Fig. 19 Quadratic plate with a hole for superposition of linearly
increasing and sinusoidal loading: efficiency in terms of the error e(Sov)

vs. the total computation time (s) for evaluations at t = 9 s.

Table 14 Quadratic plate with a hole for superposition of linearly
increasing and sinusoidal loading: speed-up factor of DIRK methods
compared with BE for different error tolerances

speed-up factor

error tol. e(Sov) 1.0E-04 1.0E-06

BE 1.0 1.0

DIRK2l 23.6 127.0

DIRK3cons 0.7 0.6

DIRK3q 19.5 232.3

DIRK4c 15.2 186.1

Error calculations at time t = 9 s

6 Summary and conclusions

In this paper we proposed a unified theoretical concept, which
guarantees full convergence order p ≥ 2 of RK-methods
as time integrators for viscoelastic models in finite element
analyses. Here, we have shown the validity of the concept
for a fully-fledged finite-strain viscoelastic model. The key
aspect is that strain-interpolation in time must be consistent
with the order of convergence of the time integrator.

The main results shall be summarized.

1. RK methods of order p require for full convergence order
an approximation of the total strain via interpolation of a
consistent order p. Interpolation is carried out by poly-
nomials of degree p − 1 based on p collocation points,
which are chosen to be at tn+1, tn , …, tn−(p−2), p ≥ 2. In

agreement with the theoretical predictions in [9], order
reduction inevitably occurs, if total strain interpolation
is of an order less than p. If interpolation is of the order
p − m, m ≥ 1, then the order of time integration falls
back to p − m. Hence, the order of strain interpolation
is an upper bound for the convergence order in time inte-
gration.

2. The concept of consistent strain interpolation allows to
preserve the partitioned ansatz of FEM for solving inelas-
tic problems. Opposed to the DAE/MLNA concept in
[12,20], global equilibrium solutions are not required
at RK stages, which implies considerable computational
savings.

3. The concept applies for arbitrary RK methods. DIRK
methods are particularly efficient, since the RK stage
solutions are decoupled. Hence, for a method with s
stages, the solution is a sequence of s solution steps which
can be treated each as BE.

4. Following the novel concept, the adapted RK time inte-
grators obtain full convergence order in representative
examples and thus approve the concept of consistent
strain interpolation for a finite-strain viscoelastic model
to full extent. Compared with BE, a considerable gain in
efficiency for the same accuracy can be achieved.

In conclusion, the use of the novel concept of consistent
strain interpolation for higher order RK (most notably DIRK)
methods enables a considerable speed-up of viscoelastic
finite element analyses. In view of its performance, relative
ease in implementation and handling, the present framework
can be unconditionally recommended.

Acknowledgments BE thanks DFG for financial support through
the Heisenberg programme (grant no. EI 453/2-1) and acknowledges
support from Mathematisches Forschungsinstitut Oberwolfach for par-
ticipation in the workshop Advanced Computational Engineering in
Feb. 2012. FS acknowledges financial support from Brazilian National
Council for Scientific and Technological Development (CNPq) through
the doctorate scholarship program under process number 290064/2010-
4, which enabled his stay in Essen.

Appendix: Time integration using RK methods

Basic equations

To put things into perspective, we briefly recall some basic
equations for the solution of an IVP by implicit RK (IRK)
methods, cf. e.g. [17–19]. The IVP exhibits the format

ż = f (z) , z(t0) = z0 , t ∈ [t0, T ] (60)

which consists of an ordinary differential equation (ODE),
(60)1 and initial conditions, (60)2.

In (60)1 we discard for notational convenience the argu-
ment C, but keep in mind, that in computational inelasticity
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Table 15 Solution of an ODE
using IRK methods (I) Solve the set of nonlinear equations for the stage solutions Zni

Zni = zn + �t
∑s

j=1 ai j f (tn j , Znj ) i = 1, . . . , s. (66)

(II) Compute the stage derivatives Żni

Żni = f (tni , Zni ) i = 1, . . . , s. (67)

(III) Calculate the approximation of z at time tn+1

zn+1 = zn + �t
∑s

i=1 bi Żni . (68)

the IVP is coupled to the space-discrete, variational form of
a BVP that is solved by finite elements resulting in displace-
ments u and total strains C , cf. Fig. 1.

The total time interval is decomposed into subintervals
t0 < t1 < . . . < tn < . . . < tn+1 < . . . < tN = T , the
time steps with time step size �tn = tn+1 − tn, 0 ≤ n ≤ N .
Assuming that the exact solution at tn is given as z(tn), the
solution at tn+1 is searched

z(tn+1) = z(tn) +
∫ tn+1

tn
f (t, z(t)) dτ. (61)

For the numerical solution zn+1 ≈ z(tn+1) the integral is
calculated by a single-step quadrature rule consisting of s
stages

zn+1 = z(tn) + �tn

s∑
i=1

bi f (tn + ci�tn, z(tn + ci�tn))

(62)

with the weighting factors bi , i = 1, . . . , s and the coeffi-
cients ci , i = 1, . . . , s where the latter define (new) time
stages tni = tn + ci�tn . The unknowns z(tn + ci�tn)
are calculated by a second integration step in analogy to
(62) employing the same stages ci but along with the
weighting factors ai j building the Runge-Kutta-Matrix A =
(ai j )i, j=1,...,s , hence

z(tn + ci�tn) ≈ Zni = z(tn) + �tn

s∑
j=1

ai j f (tn j , Znj ) ,

(63)

i = 1, . . . , s.

With the stage derivatives Żnj := f (tn j , Znj ) we can rewrite
(63) as

Zni = z(tn) + �tn

s∑
j=1

ai j Żnj , i = 1, . . . , s. (64)

Hence, Zni and Żni are two sets of unknowns which are
related by (64). With the stage derivatives Żni the update for
zn+1 is obtained from

Table 16 Butcher arrays for (left) implicit RK (IRK) methods, (center)
for diagonally implicit RK (DIRK) methods, (right) for stiffly accurate
DIRK methods

zn+1 = zn + �tn

s∑
i=1

bi Żni . (65)

In summary, the solution of the IVP of the format (60) by
a fully implicit RK method is obtained by the algorithm of
Table 15.

A typical representation of RK methods is the Butcher-
array, see Table 16. Fully implicit RK methods exhibit an
upper triangle (i.e. j > i) matrix with at least one entry
ai j 
= 0, j > i . This means that all stage values Zni are
coupled. For explicit RK methods it holds ai j = 0, for j ≥ i .

If the coefficients fulfil the two conditions

(i) bi ≥ 0, i = 1, . . . , s
(i i) M := (bi ai j + b j a ji − bi b j )i, j=1,...,s is positive semidefinite,

the scheme is called algebraic stable. It can be shown that
algebraic stable, implicit RK-methods are B-stable (and for
that reason A-stable as well), [19].

Stiffly accurate DIRK schemes

For the particular strength (and the very definition) of DIRK
methods, we cite Alexander in [1]: ’To integrate a system of
n differential equations, an implicit method with full s × s
matrix requires the solution of ns simultaneous implicit (in
general nonlinear) equations in each time step (. . .). One way
to circumvent this difficulty is to use a lower triangular matrix
(ai j ) (i.e. a matrix with ai j = 0 for i < j); the equations
may then be solved in s successive stages with only an n-
dimensional systems to be solved at each stage.’

The lower triangle structure of the matrix A = (ai j ), i, j =
1, . . . , s enables an algorithmic procedure of the multi-stage
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method which is analogous to the single-stage BE; the pro-
cedure is a marching forward through the time interval, from
stage to stage, where the subproblem in each stage is like BE.

Since DIRK methods are strongly S-stable, they can be
applied for inelastic problems, which are typically stiff. The
concept of S-stability was introduced in [37] in view of the
fact, that A-stability turned out to be not sufficient for stiff
problems.

An s-stage DIRK method exhibits consistency order p =
s for p = 1, 2, 3, for order 4 however, at least 5 stages are
necessary. For a comprehensive description of DIRK meth-
ods we refer to [19] and for original papers dealing with
(embedded) DIRK methods to [5,1]. For the application of
DIRK methods within the DAE/MLNA approach we refer to
[11,12,22].

For a stiffly accurate RK-scheme, step (II) in Table 15
can be skipped (i.e. the stage derivatives Żni need not be
calculated) since these schemes meet the requirement asi =
bi for all i = 1, . . . , s and the approximate solution zn+1 of
step (III) in Table 15 coincides with the last stage solution
Zns

zn+1 = zn + �tn

s∑
j+1

b j Żnj . (69)

Of considerable relevance are DIRK methods, which are
stiffly accurate

Zni = zn + �tn

i∑
j=1

ai j Żnj = �ni + �tnaii Żni , (70)

where �ni is the summed-up internal variable serving as
initial value for the stage i

�ni = zn + �tn

i−1∑
j=1

ai j Żnj . (71)

The stage derivatives Żnj in the sum of (71) belong to previ-
ous stages as indicated by the upper limit of the summation
jmax = i − 1. For that reason they can be calculated from
(70) solving for Żni according to

Żni = Zni − �ni

�tnaii
. (72)

Table 17 Butcher arrays for different stiffly accurate DIRK methods
with s: number of stages, p: convergence order

(a)

(b)

(c)

(d)

RK tableaus for DIRK schemes which are used in the
present work, are displayed in Table 17.
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