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Abstract

A constitutive model for orthotropic elastoplasticity at finite plastic strains is discussed and basic concepts of its

numerical implementation are presented. The essential features are the multiplicative decomposition of the deformation

gradient in elastic and inelastic parts, the definition of a convex elastic domain in stress space and a representation of the

constitutive equations related to the intermediate configuration. The elastic free energy function and the yield function

are formulated in an invariant setting by means of the introduction of structural tensors reflecting the privileged di-

rections of the material. The model accounts for kinematic and isotropic hardening. The associated flow rule is inte-

grated using the so-called exponential map which preserves exactly the plastic incompressibility condition. The

constitutive equations are implemented in a brick-type shell element. Representative numerical simulations demonstrate

the suitability of the proposed formulations.
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1. Introduction

Many elastoplastic materials exhibit anisotropic

behavior due to their textured or generally orien-

tation dependent structure. The response of aniso-
tropic materials can be described with scalar-valued

functions in terms of several tensor variables, usual

deformation or stress tensors and additional

structural tensors, which reflect the symmetries of

the considered material. Based on representation
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theorems for tensor functions the general forms can

be derived and the type and minimal number of the

scalar variables entering the constitutive equations

can be given. These forms are automatically in-

variant under coordinate transformations of ele-
ments of the material symmetry group. For an

introduction to the invariant formulation of an-

isotropic constitutive equations based on the con-

cept of structural tensors and their representations

as isotropic tensor functions see [1–3].

For a state-of-the-art review of the recent pro-

gress in the theory and numerics of anisotropic

materials at finite strains we refer to the papers
published in a special issue of the International

Journal of Solids and Structures, vol. 38, 2001,
ed.

mail to: eidel@iwmb.tu-darmstadt.de
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EUROMECH Colloquium 394, and the references

therein.

The essential features of this paper are sum-

marized as follows:

ii(i) In our formulation the multiplicative decom-

position of the deformation gradient in elastic

and inelastic parts is assumed to apply. A

yield function, related to the intermediate

configuration is expressed in terms of the so-

called Mandel stress tensor and a back stress

tensor for kinematic hardening.

i(ii) The constitutive equations for elastoplastic
orthotropy are formulated in an invariant set-

ting. So-called structural tensors describe the

symmetries of the material in the elastic free

energy function and the yield condition. The

latter is expressed in terms of the invariants

of the deviatoric part of the relative Mandel

stresses and of the structural tensors.

(iii) The set of constitutive equations is solved by
applying a general return method based on

an operator split into an elastic predictor

and a following corrector step. Plastic incom-

pressibility is fulfilled exactly by means of the

exponential map.

(iv) For finite element simulations of engineering

problems in structural mechanics we use a for-

mulation of a brick-type shell element, docu-
mented in [4], that overcomes artificial

stiffening effects, called locking, by means of

special interpolation techniques. Thus, the el-

ement is well suited for the numerical analysis

of thin structures.

i(v) We investigate two representative numerical

examples: The necking of a circular bar for el-

astoplastic isotropy; for orthotropic material
behavior we consider the bending of a circular

plate.
2. Kinematics and constitutive framework

The considered body in the reference configu-

ration is denoted by B � R3. It is parametrized in
X and the current configuration S � R3 is para-

metrized in x. The nonlinear deformation map

ut : B ! S at time t 2 Rþ maps points X 2 B
onto points x 2 S. Hence, the deformation gra-

dient F is defined by FðXÞ :¼ GradutðXÞ with the

Jacobian JðXÞ :¼ detFðXÞ > 0. The index nota-

tion of F is F a
A :¼ oxa=oXA. Next, the right Cau-

chy–Green tensor is introduced by C ¼ FTF with
coefficients CAB ¼ F a

A F
b
B gab, where gab denotes the

coefficients of the covariant metric tensor in the

current configuration.
2.1. Multiplicative elastoplasticity

Motivated by a micromechanical view of plastic

deformations one postulates a multiplicative de-
composition of the deformation gradient

FðXÞ ¼ FeðXÞFpðXÞ ð1Þ
with the elastic and plastic parts Fe and Fp, re-

spectively. Eq. (1) implies a stress-free intermediate

configuration, which is in general not compatible.

It is well known that the decomposition is uniquely
determined except for a rigid body rotation su-

perposed on the intermediate configuration. Ori-

ginal references dealing with (1) can be found in

the textbook [5]. Furthermore, the plastic incom-

pressibility constraint

detFpðXÞ ¼ 1 ð2Þ

is assumed to hold. The constitutive equations are

restricted by the second law of thermodynamics in

the form of the Clausius–Duhem-inequality, which

reads under the assumption of isothermal defor-

mations with uniform temperature distribution

D ¼ S : _EE� _wwP 0: ð3Þ
In this local form the dissipation D denotes the

difference between the stress power and the rate of

the free energy per unit volume in the reference

configuration. S and _EE are the Second Piola–Kir-

chhoff stress tensor and the material time deriva-

tive of the Green–Lagrangian strain tensor

E ¼ 1
2
ðC� 1Þ, respectively. Here and in the fol-

lowing 1 denotes the second order unit tensor.
Introducing the free energy w ¼ wðCe; vÞ as a

function of the elastic Right Cauchy–Green tensor

Ce :¼ FeTFe and the internal variables v––consid-

ered to be in general a set of tensors and scalars

and represented as a vector––the associated rate is

given by
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_ww ¼ ow
oCe :

_CCe þ ow
ov

� _vv: ð4Þ

The strain rate _EE ¼ 1
2
_CC is derived by considering

the multiplicative decomposition (1). One obtains,
see e.g. [5],

_CC ¼ FpT½ _CCe þ 2ðCeLpÞs�F
p with Lp ¼ _FFpFp�1;

ð5Þ

where Lp denotes the plastic velocity gradient and

ð Þs describes the symmetric part of a tensor. Since

inequality (3), considering (4) and (5), must hold

for all admissible processes in the material, stan-

dard arguments in rational thermodynamics with

internal state variables yield the constitutive

equations

bSS ¼ 2
ow
oCe ; N ¼ ow

ov
: ð6Þ

Here, bSS ¼ FpSFpT denotes the Second Piola–Kirch-

hoff stress tensor relative to the intermediate con-

figuration and N the internal stress vector

conjugate to v. Furthermore, one obtains the re-

duced local dissipation inequality

D ¼ R : Lp � N � _vvP 0; ð7Þ
where we call R :¼ CebSS the Mandel stress tensor,

which for anisotropic elasticity is in general non-

symmetric.

The evolution equations for the inelastic strain

tensors can be derived by using the principle of

maximum plastic dissipation. If the elastic domain
E defined by the yield function U6 0 is convex, a

standard result in convex analysis shows, that,

along with the loading–unloading conditions, the

following normality rules for the rate equations of

inelastic strains must hold:

Lp ¼ k
oU
oR

; _vv ¼ �k
oU
oN

: ð8Þ

In the following we specify the vector N by intro-

ducing the scalar, stress-like hardening variable n
and the back stress tensor b̂b for isotropic and ki-

nematic hardening, respectively. Furthermore, we

assume that the free energy function is additively

decoupled in an elastic part we, a plastic part wp;iso

due to isotropic hardening and wp;kin due to kine-

matic hardening of Melan–Prager type. The yield
criterion U is formulated in terms of the relative

stresses r̂r :¼ R� b̂b and the isotropic hardening

stress n. According to (8) the evolution of the

plastic deformation gradient Fp and of the internal
variables v are given with U as a plastic potential.

Here, v contains the tensor valued a, conjugate to

the back stress b̂b as well as the scalar-valued

equivalent plastic strain ep, conjugate to n.

2.2. Isotropic tensor functions for the representation

of anisotropic material response

In case of anisotropy we introduce a material

symmetry group Gk characterizing the anisotropy

class of the material. Gk is defined with respect to

the reference configuration, and we assume that it

remains unchanged during plastic deformations.

The elements of Gk are denoted by the unimodular

tensors iQji¼1;...;n. Here, the concept of material

symmetry will be formulated for an orthotropic
elasticity law, which is related to the intermediate

configuration and therefore is expressed in terms

of the elastic Green strain tensor bEEe ¼ ðCe � 1Þ=2.
Based on our assumption this concept requires

that the elastic material response must be invariant

under transformations on the intermediate con-

figuration with elements of the symmetry group Gk

ŵweðQTbEEeQÞ ¼ ŵweðbEEeÞ 8Q 2 Gk; bEEe: ð9Þ
We call the function we a Gk-invariant function.

Without any restrictions for solid materials we set

Gk � SOð3Þ. Based on the mapping bXX ! QT bXX,
applied to the intermediate configuration bXX, for

arbitrary rotation tensors Q 2 SOð3Þ we have,

in view of a coordinate free representation, to

fulfill the transformation rule QTbSSðbEEe; �ÞQ ¼bSSðQTbEEeQ; �Þ 8Q 2 SOð3Þ, where (�) denotes ad-

ditional tensor arguments. In order to construct an

isotropic tensor function for the anisotropic con-

stitutive behavior, the Gk-invariant function must
be extended in a manner, that it becomes invariant

under the special orthogonal group; this is done by

the introduction of the so-called structural tensors

reflecting the material symmetries. Recall here,

that a second order tensor M is a structural tensor

of an anisotropic material characterized by a

symmetry group Gk if Q
TMQ ¼ M for all Q 2 Gk.

Orthotropic materials can be characterized by
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three symmetry planes, described by three struc-

tural tensors iMji¼1;2;3. Thus, the constitutive

equation can be expressed as an isotropic scalar-

valued tensor function in the arguments
ðbEEe; 1M; 2M; 3MÞ in the form

ŵweðbEEe; iMji¼1;2;3Þ ¼ ŵweðQTbEEeQ;QTiMQji¼1;2;3Þ
8Q 2 SOð3Þ; ð10Þ

which fulfills the above postulated transformation
rule for the stresses.
2.3. Orthotropic elastic free energy function

The material symmetry group of the considered

orthotropic material is defined by Go :¼
fI;S1;S2;S3g, where S1, S2, S3 are the reflections

with respect to the basis planes ð2a; 3aÞ, ð3a; 1aÞ and
ð1a; 2aÞ, respectively. Here, ð1a; 2a; 3aÞ represents

an orthonormal privileged frame. Based on this,

we obtain for this symmetry group the three

structural tensors

1M :¼ 1a� 1a; 2M :¼ 2a� 2a and

3M :¼ 3a� 3a; ð11Þ

which represent the orthotropic material symme-

try. Due to the fact that the sum of the three
structural tensors yields

P3

i¼1
iM ¼ 1 we may dis-

card 3M from the set of structural tensors (11). The

integrity basis is given by P :¼ fJ1; . . . ; J7g. The
invariants J1, J2, J3 are defined by the traces of

powers of bEEe, i.e.,

J1 :¼ tr bEEe; J2 :¼ tr½ðbEEeÞ2�; J3 :¼ tr½ðbEEeÞ3�:
ð12Þ

The irreducible mixed invariants are given by

J4 :¼ tr½1MbEEe�; J5 :¼ tr½1MðbEEeÞ2�
J6 :¼ tr½2MbEEe�; J7 :¼ tr½2MðbEEeÞ2�

)
; ð13Þ

see e.g. [3]. For we we assume a quadratic form,

viz.,

we ¼ 1
2
kJ 2

1 þ lJ2 þ 1
2
a1J 2

4 þ 1
2
a2J 2

6 þ 2a3J5

þ 2a4J7 þ a5J4J1 þ a6J6J1 þ a7J4J6: ð14Þ
For the Second Piola–Kirchhoff stresses related to

the intermediate configuration we have

bSS ¼ kJ11þ 2lbEEe þ a1J41Mþ a2J62Mþ 2a3 bEEe1Mþ 1MbEEe
� �

þ2a4 bEEe2Mþ 2MbEEe
� �

þ a5ðJ11Mþ J41Þ
þa6ðJ12Mþ J61Þ þ a7ðJ42Mþ J61MÞ

9>>=>>;:

ð15Þ

In this special case the second derivative of we

yields the constant fourth-order elasticity tensor

Ce ¼ k1� 1þ 2lIþ a11M� 1Mþ a22M� 2M

þ2a3K1 þ 2a4K2 þ a5ð1M� 1þ 1� 1MÞ
þa6ð2M� 1þ 1� 2MÞ þ a7ð2M� 1Mþ 1M� 2MÞ

9=;
ð16Þ

with IIJKL ¼ dIKdJL, K
1
IJKL ¼ dIK 1MJL þ dJL1MIK and

K2
IJKL ¼ dIK 2MJL þ dJL2MIK . The elasticity parame-

ters ðk; l; aiji ¼ 1; . . . ; 7Þ can be identified using the

matrix notation

bSS11bSS22bSS33bSS12bSS13bSS23

26666664

37777775 ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

26666664

37777775

bEEe
11bEEe
22bEEe
33

2bEEe
12

2bEEe
13

2bEEe
23

266666664

377777775
ð17Þ

with the elasticity constants Cij. Choosing the

preferred directions as 1a ¼ ð1; 0; 0ÞT and
2a ¼ ð0; 1; 0ÞT we obtain the material parameters k,
l, a1, a2, a3, a4, a5, a6 in terms of components Cij.

In case of isotropy the only remaining constants

are k and l.

2.4. Orthotropic yield criterion

In the following, we consider an orthotropic

pressure insensitive yield condition using isotropic

tensor functions. It is assumed that U depends on

the symmetric part of the relative stresses

r̂rs :¼ ðR� b̂bÞs only. As a consequence the follow-

ing relations hold for the plastic velocity gradients:

Lp ¼ LpT; Dp :¼ symðLpÞ ¼ Lp;

Wp :¼ skewðLpÞ ¼ 0: ð18Þ

This assumption and its implications will be dis-
cussed below.
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The integrity basis in terms of the deviatoric

part of the relative stresses dev r̂rs and the struc-

tural tensors 1M and 2M is given by

I1 :¼ tr½ðdev r̂rsÞ2�; I2 :¼ tr½1Mðdev r̂rsÞ2�;
I3 :¼ tr½2Mðdev r̂rsÞ2�; I4 :¼ tr½1Mdev r̂rs�;
I5 :¼ tr½2Mdev r̂rs�; I6 :¼ tr½ðdev r̂rsÞ3�:

9=;
ð19Þ

The orthotropic flow criterion is formulated as an

isotropic tensor functionbUUðdev r̂rs;
1M; 2MÞ ¼ bUUðQT dev r̂rsQ;QT1MQ;QT2MQÞ

8Q 2 SOð3Þ: ð20Þ

Discarding the cubic invariant I6 in U we arrive at

a quadratic form in terms of the invariants and six

independent material parameters giji¼1;...;6, respec-

tively

U ¼ g1I1 þ g2I2 þ g3I3 þ g4I
2
4 þ g5I

2
5 þ g6I4I5

� 1

 
þ n̂nðepÞ

Y 0
11

!2

: ð21Þ
Remark. It can be shown, see [6–8], that under

rigid body rotations Q superposed on the current
configuration and––simultaneously––rigid body

rotations Q on the intermediate configuration the

following transformation rules apply

F ! F� ¼ QF ¼ QFeQ
T
QFp ¼ QF

e
F
p
;

ð Þ ! ð Þ� ¼ Qð ÞQT
for Ce; bSS;R;Dp;

Lp ! Lp� ¼ QLpQ
T þ _QQQ

T
;

ð22Þ

where we have restricted ourselves to tensorial

quantities of the intermediate configuration play-

ing an eminent role in the present formulation.

Invariance of constitutive equations under rigid

body rotations superposed on the current config-

uration is generally required by the principle of

material frame indifference, the latter invariance

requirement is due to the well known fact, that the
multiplicative decomposition is uniquely defined

except for a rigid body rotation superposed on the

intermediate configuration; the identity Q
T
Q can

always be inserted, in between Fe and Fp, see (22)1.

As a consequence of the constitutive assumption,

that only the symmetric part r̂rs enters the yield
function, the flow rule reads Dp ¼ koRs
U, which is,

see (22)2, invariant with respect to the arbitrary

choice of Q, whereas this is not true for the plastic

velocity gradient Lp due to the expression _QQQ
T
in

(22)3.

As a further consequence of the yield function
in terms of r̂rs the six independent material pa-

rameters giji¼1;...;6 can be experimentally identified

by three tension tests and three shear tests, re-

spectively, which are independent of each other.

Each test leads to a set of values for the invar-

iants. Evaluating the flow criterion for all six dis-

tinct tests yields a system of linear equations with

the solution giji¼1;...;6, which are each functions in
terms of the physical yield stresses.

The constitutive equations are now summarized

as follows:

elastic strains Ce ¼ FpT�1CFp�1;

free energy w ¼ ŵweðJ1; . . . ; J6Þ

þ ŵwp;isoðepÞ þ ŵwp;kinðaÞ;

stresses bSS ¼ 2oCewe; R ¼ CebSS;
back stresses b̂b ¼ oaw

p;kin;

isotropic hardening n ¼ oepw
p;iso;

relative stresses r̂rs ¼ Rs � b̂bs;

yield function U ¼ ÛUðI1; . . . ; I5; nÞ;
associated flow rule Dp ¼ koRs

U;

evolution of a _aa ¼ �kob̂bsU;

evolution of ep _eep ¼
ffiffiffi
2

3

r
kDpk;

optimization conditions kP 0; U6 0; kU ¼ 0:

ð23Þ

Now we consider pure isotropy as a special case

of orthotropy. For isotropic elasticity R ¼ RT

holds and therefore Lp ¼ Dp. In this case our

constitutive assumption for U being a function

merely of the symmetric part of R is fulfilled by the

elasticity law itself. If we set for the yield normal

stresses Y 0
ii ¼ Y 0 for i ¼ 1; 2; 3 and for the yield

shear stresses Y 0
ij ¼ Y 0=

ffiffiffi
3

p
for i 6¼ j with i; j ¼

1; 2; 3 we arrive at the isotropic von Mises yield

criterion
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ÛUðdev r̂r; nÞ ¼ 3

2

kdev r̂rk
Y 0

 !2

� 1

 
þ n̂nðepÞ

Y 0

!2

6 0:

ð24Þ
In one of the computational benchmark problems

in Section 5 we apply a nonlinear isotropic hard-

ening function well suited for a fitting of experi-

mental data

n̂nðepÞ ¼ hep þ ðY1 � Y 0Þð1� expð�depÞÞ; ð25Þ
where h is the linear hardening parameter and

where the expression in terms of Y1, Y 0 and d in

(25) is of saturation type.
3. Integration algorithm and algorithmic elasto-

plastic moduli

To solve the set of constitutive equations at a

local level, a so-called operator split along with a

general return mapping is applied; for time inte-

gration a backward Euler scheme with an expo-

nential map is used. For the solution of the

nonlinear finite element equations on a global level

a Newton iteration scheme is used, which requires

the consistent tangent matrix. For this reason a
simple numerical differentiation technique is ap-

plied.

Based on the definition (5)2 of Lp, and taking

Lp ¼ Dp into account, we write the flow rule (23)8
for Dp as

_FFp ¼ DpFp ¼ kNFp with N :¼ oU
oRs

: ð26Þ

Within a typical time step ½tn; tnþ1� with time

increment Dt :¼ tnþ1 � tn we integrate (26) by the

implicit backward Euler algorithm along with an
exponential shift

Fp
nþ1 ¼ exp½coRs

Unþ1�Fp
n ; ð27Þ

where c :¼ Dtknþ1 denotes the consistency param-
eter. For N we use the corresponding tensor of the

trial step defined below. For deviatoric N, i.e.

tr½N� ¼ 0, and applying the identity detðexp½N�Þ ¼
exp½trðNÞ�, it is obvious that the exponential map

(27) preserves plastic incompressibility in the cur-

rent time step, given that detFp
n ¼ 1 holds for the
previous step. The rate equations for a and ep are

integrated using a standard backward Euler algo-

rithm. Thus, the procedure for time integration is

first order accurate and unconditionally stable.
Considering the multiplicative decomposition we

obtain for the update of the elastic Cauchy–Green

tensor

Ce
nþ1 ¼ FpT�1

nþ1 Cnþ1F
p�1
nþ1

¼ expT ½�cnþ1N
trial
nþ1�C

e trial
nþ1 exp½�cnþ1N

trial
nþ1�;

ð28Þ

where we have introduced by definition Ce trial
nþ1 :¼

FpT�1
n Cnþ1F

p�1
n as elastic trial strains. It is well

known that for the case of isotropic elasticity Nnþ1

and Ce
nþ1 commute, i.e. they have the same prin-

cipal directions, which allows for a stress update

formula that is identical to the classical return

mapping algorithm of the geometrically linear

theory, see [9,10].

With the trial values for the Mandel stresses

Rtrial
nþ1 ¼ 2Ce trial

nþ1 oCe trial
nþ1

we, and for the internal vari-

ables, i.e. the back stresses b̂btrial
nþ1 ¼ oanw

p;kin and the

equivalent plastic strain ep trial
nþ1 ¼ onnw

p;iso we obtain

a trial value for the yield criterion in terms of the

deviatoric part of the symmetric relative stresses
dev r̂rs as follows:

Utrial
nþ1 ¼ ÛUðdev r̂rtrial

s ; iM; epnÞ
trial

nþ1: ð29Þ

The time discrete consistency condition reads in

the case of plastic loading Unþ1 ¼ 0, which can be

solved for cnþ1 by applying a Newton solution
scheme. At the end of each local iteration the in-

termediate configuration, described by Fp
nþ1, and

the internal variables anþ1 and epnþ1 have to be

updated. A summary of the general return map-

ping algorithm is given in (33).

As we use a Lagrangian formulation of the

weak form, which is outlined in Section 4, the

Second Piola–Kirchhoff stress tensor must be de-
termined by pull back transformation S ¼
Fp�1bSSFpT�1. The nonlinear finite-element equa-

tions are solved by using a Newton iteration

scheme. For this purpose the so-called consistent

tangent matrix

Cep ¼ 2oS=oC ¼ CABCDeA � eB � eC � eD ð30Þ
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is approximated by numerical differentiation. To

this end a simple perturbation technique is applied

using the forward difference formula

CABCD � 2

�
SABðC�

ðCDÞÞ
h

� SAB
i
: ð31Þ

The perturbed Cauchy–Green tensor is computed as

C�
ðCDÞ :¼ Cþ DC�

ðCDÞ with

DC�
ðCDÞ ¼

�

2
ðeC � eD þ eD � eCÞ; ð32Þ

where eI , I ¼ A;B;C;D denotes a fixed Cartesian

basis. Computations have shown, that � ¼ 10�7

provides a good choice for the perturbation pa-

rameter. As the numerical differentiation requires

six additional stress computations, it costs more

CPU time than the analytical computation of the

moduli. Nevertheless, the numerical determination
of consistent algorithmic moduli is advantageous

for its simplicity, robustness and for being inde-

pendent of the material model. It serves as an in-

terface for implementing complicated constitutive

models without tedious analytical derivations of

tangent operators.

1: Trial step : elastic predictor

Ce trial
nþ1 ¼ FpT�1

n Cnþ1F
p�1
n

Rtrial
nþ1 ¼ 2Ce trial

nþ1

owe

oCe trial
nþ1

; b̂btrial
nþ1 ¼

owp;kin

oan

r̂rtrial
nþ1 :¼ Rtrial

nþ1 � b̂btrial
nþ1; Ntrial

nþ1 ¼
oU

oRtrial
s nþ1

2: Check yield condition

if bUUðdev r̂rtrial
s nþ1;

iM; epnÞ > 0 go to 3:

else exit

3: Return mapping : corrector step

set cð0Þnþ1 ¼ 0; epð0Þnþ1 ¼ epn ; a
ð0Þ
nþ1 ¼ an

ðaÞ CeðlÞ
nþ1 ¼ expT ½�cðlÞnþ1N

trial
nþ1�C

e trial
nþ1 exp½�cðlÞnþ1N

trial
nþ1�

epðlÞnþ1 ¼ epn þ cðlÞnþ1

ffiffiffi
2

3

r
kNtrial

nþ1k;

a
ðlÞ
nþ1 ¼ an þ cðlÞnþ1N

trial
nþ1

ðbÞ RðlÞ
nþ1 ¼ 2C

eðlÞ
nþ1

owe

oC
eðlÞ
nþ1

; b̂b
ðlÞ
nþ1 ¼

owp;kin

oa
ðlÞ
nþ1

;

nðlÞnþ1 ¼
owp;iso

oepðlÞnþ1
ðcÞ UðlÞ
nþ1 ¼ UðcðlÞnþ1Þ;

U0ðlÞ
nþ1 � ½UðcðlÞnþ1 þ �Þ � UðcðlÞnþ1Þ�=�

if jUðlÞ
nþ1j6 tol go to 4:

ðdÞ cðlþ1Þ
nþ1 ¼ cðlÞnþ1 � UðlÞ

nþ1=U
0ðlÞ
nþ1 go to ðaÞ

4: Update intermediate configuration

and internal variables

F
p
nþ1 ¼ exp½cðlÞnþ1N

trial
nþ1�Fp

n ; epnþ1 ¼ epðlÞnþ1;

anþ1 ¼ a
ðlÞ
nþ1 ð33Þ
Remark. For an efficient computation of the ex-

ponential function of a (generally nonsymmetric)

second order tensor we use an recursive algorithm,
see [11,12].
4. Variational formulation

Let B be the reference body of interest which is

bounded by the surface oB. The surface is parti-

tioned into two disjoint parts oB ¼ oBu
S
oBt

with oBu
T
oBt ¼ ;. The equation of balance of

linear momentum for the static case is governed by

the First Piola–Kirchhoff stresses P ¼ FS and the

body force b̂b in the reference configuration

Div½FS� þ b̂b ¼ 0: ð34Þ
The Dirichlet and Neumann boundary conditions
are given by u ¼ �uu on oBu and t ¼ t̂t ¼ PN on oBt.

With standard arguments of variational calculus

we arrive at

Gðu; duÞ ¼
Z
B

S : dEdV þ Gext ð35Þ

with

GextðduÞ :¼ �
Z
B

b̂b � dudV �
Z
oBt

t̂t � dudA; ð36Þ

where dE :¼ 1
2
ðdFTFþ FTdFÞ characterizes the

virtual Green–Lagrangian strain tensor in terms of

the virtual deformation gradient dF :¼ Grad du.
The equation of principle of virtual work (35) for a

static equilibrium state of the considered body

requires G ¼ 0. For the solution of this nonlinear
equation a standard Newton iteration scheme is



y

x

z

Rb

L

R

Fig. 1. Geometry and finite-element mesh.
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applied, which requires the consistent linearization

of (35) in order to guarantee quadratic conver-

gence rate near the solution. Since the stress tensor

S is symmetric, the linear increment of G denoted
by DG is given by

DGðu; du;DuÞ :¼
Z
B

ðdE : DSþ DdE : SÞdV ; ð37Þ

where DdE :¼ 1
2
ðDFTdFþ dFTDFÞ denotes the lin-

earized virtual Green–Lagrange strain tensor as a

function of the incremental deformation gradient

DF :¼ GradDu. The incremental Second Piola–
Kirchhoff stress tensor DS can be derived as

DS ¼ CepDE with DE :¼ 1
2
ðDFTFþ FTDFÞ and the

consistent tangent matrix Cep.
5. Numerical examples

The algorithmic formulation of the orthotropic
constitutive model is implemented in an extended

version of FEAP, a finite-element code docu-

mented in [13]. Two sets of simulations are con-

ducted to test the behavior of the proposed

orthotropic model as well as the robustness of the

numerical methods. The simulations were run with

an 8-node brick-type shell element using the ANS-

method and a 5-parameter EAS concept
(Q1A3E5), see [4].

5.1. Necking of a circular bar

The necking of a circular bar is an example

widely investigated in the literature, see e.g. [14] or

[4]. The geometrical data are R ¼ 6:413 mm,

Rb ¼ 0:982R and L ¼ 26:667 mm. To initialize the
necking process we use the reduced radius Rb at

z ¼ 26:667 mm as a geometrical imperfection. The

material data for isotropic elasticity and the iso-

tropic von Mises yield condition (24) with non-

linear isotropic hardening (25) are given as

follows: E ¼ 206:9 GPa, m ¼ 0:29, Y 0 ¼ 0:45 GPa,

Y1 ¼ 0:715 GPa, d ¼ 16:93.
The finite element discretization of half the bar is

depicted in Fig. 1. At z ¼ Lwe impose the symmetry

boundary conditions w ¼ 0 mm, whereas in a dis-

placement controlled computation the axial elon-

gationwðz ¼ 0 mmÞ is prescribed. Furthermore, we
consider symmetry conditions in the cross-section

of the plane. Thus, one eighth of the entire bar of

total length 2L is discretized with 960 elements. Fig.

2 displays the deformed structure at w ¼ 7 mm and

the equivalent plastic strain, which concentrate in
the necking zone. The results are in very good

agreement with the computational reference solu-

tions in [4,14] (see Fig. 2). Before the onset of

necking the result of our finite-element analysis is in

accurate accordance with the experimental results

reported in [15]; it captures pretty well the load

bearing capacity of the bar of 79.2 kN, whereas for

elongations w > 4 mm it is somewhat too weak.

5.2. Simply supported circular plate with uniform

load

We now consider the elastoplastic deformation

of a circular plate under dead load. The plate is

simply supported in the z-direction at the bottom

of the edges so that horizontal displacements and
rotations at the edges may occur. Fig. 3 depicts the

geometry of the problem and its finite-element

discretization. With respect to symmetry only one

quarter of the plate is discretized. The mesh is

chosen with one element through the thickness and

192 elements in plane for each quadrant. The

material is assumed to be isotropic in elasticity

(l ¼ 80:19 GPa and k ¼ 110:74 GPa) but ortho-
tropic in its yield properties. The x- and y-axes of
the coordinate system in Fig. 3 coincide with the

axes of orthotropy. Two different materials are

considered for orthotropic yielding. For material

A the shear stresses dominate in the yield criterion,
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we set Yxy ¼ 0:5 � Yxx=
ffiffiffi
3

p
. In contrast to A, for

material B the normal stresses are predominant in

yielding: for the shear yield stress we choose
Yxy ¼ 2:0 � Yxx=

ffiffiffi
3

p
which is twice the isotropic value.

For both materials Yxx ¼ Yyy ¼ 0:45 GPa holds.

Fig. 3 (right) depicts the load deflection curves

where the load factor �kk in pzð�kkÞ ¼ �kkpz0 is plotted as

a function of the vertical displacement of the

center point of the circular plate. Remarkably, the

results of the proposed multiplicative model and
those obtained by a theory based on generalized

stress–strain measures for parameter m ¼ 0, which

leads to logarithmic strains and conjugate stresses,
are in very good agreement. For details of the

latter formulation, we refer to [16]. The deflection

of the plate at the load levels �kk ¼ 400 for material

A and �kk ¼ 600 for material B is shown in Fig. 4.

As expected the plastic strains concentrate for

material A at a 45� angle in the (x; y)-plane and for

material B along the x- and y-axes. Our finite-



Fig. 4. Equivalent plastic strain on deformed structures from perspective view for material A at �kk ¼ 400 (left) and for material B at
�kk ¼ 600 (right).
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element simulation renders physically reasonable

results concerning loci and number of the ears.
6. Conclusions

In this paper a multiplicative formulation of
orthotropic elastoplasticity at finite inelastic

strains is presented and aspects of its finite-element

implementation are addressed. The governing

constitutive equations, formulated in an invariant

setting by the introduction of structural tensors,

are formulated relative to the intermediate con-

figuration. A quadratic yield function is expressed

in terms of the symmetric part of the Mandel
stresses. A general return algorithm along with an

exponential map is applied, the latter fulfills plastic

incompressibility exactly. In a representative nu-

merical example we demonstrate the predictive

capacity of our finite-element simulations to cap-

ture anisotropic phenomena such as �earing� clo-
sely related to deep-drawing processes of sheet

metals.
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