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SUMMARY

Time integration is the numerical kernel of inelastic finite element calculations, which largely determines their
accuracy and efficiency. If higher order Runge–Kutta (RK) methods, p�3, are used for integration in a standard
manner, they do not achieve full convergence order but fall back to second-order convergence. This deficiency
called order reduction is a longstanding problem in computational inelasticity. We analyze it for viscoelasticity,
where the evolution equations follow ordinary differential equations. We focus on RK methods of third order.
We prove that the reason for order reduction is the (standard) linear interpolation of strain to construct data
at the RK-stages within the considered time interval. We prove that quadratic interpolation of strain based
on tn , tn+1 and, additionally, tn−1 data implies consistency order three for total strain, viscoelastic strain and
stress. Simulations applying the novel interpolation technique are in perfect agreement with the theoretical
predictions. The present methodology is advantageous, since it preserves the common, staggered structure
of finite element codes for inelastic stress calculation. Furthermore, it is easy to implement, the overhead of
additional history data is small and the computation time to obtain a defined accuracy is considerably reduced
compared with backward Euler. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The formulation of higher order time integration schemes in computational inelasticity without
order reduction is a longstanding problem of numerical analysis and computational mechanics.
Order reduction in this context means that the application of higher order (p�3) one-step, multistage
methods of the Runge–Kutta (RK) family for integrating inelastic evolution equations fails to
achieve the theoretical order of convergence. Instead, these methods result in second-order accuracy
at best. Order reduction was mainly observed for elasto-(visco)-plastic constitutive models. These
models typically exhibit the format of differential algebraic equations (DAE), where the evolution
equations of plastic flow are described by ordinary differential equations (ODE) which are subjected
to the yield condition as the algebraic constraint.

Backward Euler is well established due to its simplicity and excellent stability properties,
although it is only linear, [1]. Second-order methods (p=2) like midpoint rule, [2–6], achieve
full order of convergence in elasto-plastic stress calculations, if the formulation is stiffly accurate.
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Similarly, the Backward Difference Formula (BDF-2), [7–9], equally does not exhibit order reduc-
tion. Third-order or higher order methods (p�3) have been found to exhibit an order reduction to
second order, [4, 5, 10–13], which seems to be inevitable for rate-independent elasto-plasticity. In
more detail, the state of the art can be summarized as follows. In [5], Ellsiepen reports for Prandtl–
Reuss plasticity an order reduction to second order for a stiffly accurate, diagonally implicit RK
method (SDIRK) of third order [14]. Based on these results the conclusion in [5] and [10] is that
for suchlike numerical hard problems third-order methods do not pay off. A similar result is found
in [4]. However, in [13] it is found that hardening does not cure order reduction for p�3. Further
attempts to regularize the problem of elasto-plasticity via viscosity of Perzyna-type models failed,
third-order methods achieve second order at best. An exception to this rule is the case where an
unphysically large viscosity was used, which may avoid order reduction in some cases, see [13].
Similarly, order reduction is reported in [11] and [12] where a third-order Radau IIa scheme, a
stiffly accurate RK method, is applied to von–Mises plasticity.

In computational viscoelasticity, linear backward Euler is mainly used for time integration and
is for constant step size a good choice, cf. [15–19]. Higher order methods (p�2) are rarely used so
far. An exception is the work of Hartmann and coworkers, [20, 21], which follows the algorithmic
structure of the method of vertical lines (MOL) to be described in Section 1.1. In [21] Rosenbrock-
type methods up to order four have been successfully used for viscoelasticity. As will be shown
in the present contribution, order reduction equally occurs for the ODE case of viscoelasticity, if
the classical algorithmic structure of implicit finite element methods is preserved; this structure
according to a partitioned or staggered ansatz will be described in Section 1.1.

Summarizing, the problem of order reduction is still an open issue. Despite considerable research
efforts the reason for order reduction in computational inelasticity for both, viscoelasticity and
elasto-plasticity, is not well understood, a solution of this problem within the classical finite element
approach of a staggered algorithmic scheme is still missing. For this case, the present paper
aims to analyze and solve this issue for computational viscoelasticity. In detail, the main aim is
threefold:

(i) First, the mathematical structure of inelastic stress calculation in the finite element method
will be presented which is the basis for this paper.

In Section 2, we introduce a three-parameter viscoelastic constitutive model which serves
the purpose of a prototype model in geometrically non-linear finite element calculations.
Based on a generalization of the initial value problem (IVP) for viscoelasticity we describe
in Section 3 the application of RK methods for time integration. For stiffly accurate RK
methods—here we employ a two-stage, third-order Radau IIa version—we adapt the solu-
tion algorithm to the chosen viscoelasticity model.

(ii) Second, we solve the problem of order reduction; we explain why it occurs, propose a
simple yet effective concept to overcome it, and prove that it is true, Sections 4 and 5.

Our hypothesis, why order reduction happens, is based on an obvious fact and a very
simple idea: in inelastic structures the displacement/strain path in time is in general non-
linear at arbitrary material points. Multistage methods require the construction of strain
at stages within the time interval where evolution equations are integrated. If, for that
aim, standard linear interpolation is used, an approximation error is introduced. It is our
hypothesis that this error in interpolation is passed to the order of convergence of time
integration implying order reduction to second order if the RK method exhibits order p�3.
If this claim is true, then quadratic interpolation for strain introducing an approximation
error of third order should cure the problem. The corresponding proof is based on Taylor
series expansions of the numerical solution on one hand and the exact solution on the other
hand. The comparison of both solutions amounts to conditions for the RK scheme, which
turn out to be implicitly fulfilled by RK methods by their very construction.

(iii) Third, we assess the present methodology in representative, geometrically non-linear finite
element simulations, where the viscoelastic evolution equations are integrated by the third-
order RK method of Radau IIa, Section 6.
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1048 B. EIDEL AND C. KUHN

1.1. Structure of finite element methods for inelasticity

The numerical simulation of structures undergoing inelastic (viscoelastic or elasto-plastic) material
behavior isastandard task incomputationalmechanicsandengineering.For theapplicationof thefinite
element method in implicit quasi-static simulations two different approaches can be distinguished.

The partitioned/staggered approach. In standard (commercial) finite element codes the corre-
sponding numerical solution exhibits mostly the same structure: the IVP of inelastic flow is solved
on a local (Gauss-point) level where the evolution equations are integrated by stress-update algo-
rithms. The non-linear algebraic equations resulting from the spatial discretization of the weak
form of the balance of momentum is typically solved by Newton’s method on the global level.
In the following we call this the partitioned ansatz or the staggered ansatz.

The method of lines (MOL)/DAE approach. Another, more recent approach of inelasticity in
finite element analysis is the application of the MOL, see [10, 20–23].

Within this concept, the spatial discretization is followed by the temporal discretization. The
spatial discretization using finite elements is standard and leads to a system of non-linear algebraic
equations—the algebraic part of a DAE-system—with nodal displacements and internal variables
at spatial integration points (Gauss-points) as unknowns. The differential part of the DAE-system
consists of ODEs of first order describing the evolution of the internal variables. Both, the non-
linear algebraic equations and the system of ODEs form a semi-explicit system of DAEs of first
order. This applies to the broad class of rate-dependent constitutive models like viscoelasticity and
viscoplasticity described by ODEs. For more details we refer to [10, 20].

The present work follows the partitioned/staggered ansatz. All statements and conclusions
exclusively apply to that standard approach in classical finite element codes.

2. CONSTITUTIVE MODEL OF VISCOELASTICITY

In the following we introduce a 3D and geometrical non-linear generalization of the standard three-
parameter viscoelastic material model as depicted in its 1D, geometrical linear rheological format in
Figure 1. For viscoelastic constitutive models see e.g. [24, 25]. The chosen model is used to showcase
the numerical solution of the corresponding evolution equations of ODE-type within the partitioned
ansatz.

decomposition of strain E=Ee +Ev (1)

decomposition of stress S=Seq +Sov (2)

equilibrium stress Seq = K∞tr(E)1+2�∞ED (3)

overstress Sov =2�(E−Ev)D (4)

flow rule Ė
v,D = 2�

�
(E−Ev)D = 1

�
Sov (5)

The model is based on the assumption that the Green–Lagrangean strain tensor E can be
additively decomposed into an elastic part Ee and a viscous part Ev, (1). For 3D viscoelasticity,
the springs in Figure 1 are replaced by elastic bodies with bulk modulus K∞, and shear moduli �
and �∞, respectively. In the decomposition

E=ED + 1
3 tr(E)1 (6)

ED is the strain deviator, tr(E)= Eii is the trace operator and 1 denotes the second-order unit tensor
with components �i j . Assuming Ev to be deviatoric the constitutive relations for the equilibrium
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Figure 1. Rheological 1D representation of a 3-parameter viscoelasticity model.

stress Seq and for the overstress Sov read (3) and (4). With the initial bulk modulus K0 = K∞ and
the initial shear modulus �0 =�∞+� the constitutive relation for S can be rewritten as

S= K0tr(E)1+2�0ED −2�Ev,D (7)

where the material parameter � is the viscosity. The reciprocal value of the scalar prefactor in (5),
�=�/2�, is the relaxation time.

The above viscoelastic model falls into the general class of constitutive equations of the type

S = h(E,z) (8)

ż = f(E,z), z(t0)=z0 (9)

where (8) denotes an elasticity relation and z∈Rnz defines a set of internal variables describing
inelastic material behavior. Here, z={Ev} with nz =6 holds for the 3D case.

3. TIME DISCRETIZATION BY IMPLICIT RK METHODS

3.1. Basic equations

To put things into perspective we briefly recall some basic equations for the solution of an IVP by
implicit RK (IRK) methods, cf. e.g. [26–28]. The IVP exhibits the format

ż= f(z), z(t0)=z0, t ∈ [t0,T ] (10)

which consists of an ODE, (10)1, along with initial conditions, (10)2. In (10) we drop for notational
convenience the argument E but keep in mind that in computational inelasticity the IVP is embedded
in a boundary value problem (BVP) that is solved by finite elements resulting in displacements u
and total strains E. The total time interval is decomposed into subintervals t0 < t1 < · · ·< tn < · · ·<
tn+1 < · · ·< tN =T , the time steps with time step size �tn+1 = tn+1 − tn , 0�n�N . Assuming that
the exact solution at tn is given as z(tn), the solution at tn+1 is searched

z(tn+1)=z(tn)+
∫ tn+1

tn
f(t,z(t))dt. (11)

For the numerical solution zn+1 ≈z(tn+1) the integral is calculated by a quadrature rule consisting
of s stages

zn+1 =z(tn)+�tn+1

s∑
i=1

bi f(tn +ci�tn+1,z(tn +ci�tn+1)) (12)
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1050 B. EIDEL AND C. KUHN

Table I. Butcher arrays for (left) implicit RK (IRK) methods, (center) for
backward-Euler, (right) for Radau IIa, s =2.

with weighting factors bi , i =1, . . . ,s and the coefficients ci , i =1, . . . ,s where the latter define new
time stages ti = tn +ci�tn+1. The unknowns z(tn +ci�tn+1) are calculated by a second integration
step in analogy to (12) employing the same stages ci but along with the weighting factors ai j
building the Runge–Kutta-Matrix A= (ai j )i, j=1,. . .,s , hence

z(tn +ci�tn+1)≈Zi =z(tn)+�tn+1

s∑
j=1

ai j f(t j ,Z j ), i =1, . . . ,s. (13)

With Ż j := f(t j ,Z j ), the stage derivatives, we can rewrite (13) as

Zi =z(tn)+�tn+1

s∑
j=1

ai j Ż j , i =1, . . . ,s. (14)

Hence, Zi and Żi are two sets of unknowns which are related by (14). After the calculation of the
stage derivatives Żi the update for zn+1 reads as

zn+1 =zn +�tn+1

s∑
i=1

bi Żi . (15)

A typical representation of RK methods is the Butcher-array, see Table I. For RK methods the
relation

ci =
s∑

j=1
ai j (16)

holds between the lines ai. of A and the stages ci . If the coefficients fulfil the two conditions

(i) bi � 0, i =1, . . . ,s,

(ii) M := (bi ai j +b j a ji −bi b j )i, j=1,. . .,s is positive semidefinite,

the scheme is called algebraic stable, [26]. It can be shown that algebraic stable, implicit RK-
methods are B-stable (and for that reason A-stable as well), [26]. This is especially true for schemes
of the Radau IIa class, where coefficients for s ∈{1,2} are summarized in Table I. For a survey on
stability properties of time integration algorithms of elasto-plasticity we refer to [29]. An s-stage
RK method of Radau IIa class is of the order p=2s−1 for the ODE case, cf. Table VII.4.1 in [26].
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In summary, the solution of the IVP of the format (10) by a fully implicit RK method is obtained
in the following steps:

(I) Solve the generally non-linear set of equations for the stage solutions Zi

Zi =zn +�t
s∑

j=1
ai j f(t j ,Z j ), i =1, . . . ,s. (17)

(II) Compute the stage derivatives Żi

Żi = f(ti ,Zi ), i =1, . . . ,s. (18)

(III) Calculate the approximation of z at time tn+1

zn+1 =zn +�t
s∑

i=1
bi Żi . (19)

3.2. Stiffly accurate RK schemes

For a stiffly accurate RK-scheme, step (II) can be skipped (i.e. the stage derivatives Żi need not be
calculated) as these schemes meet the requirement asi =bi for all i =1, . . . ,s and the approximate
solution zn+1 of step (III) coincides with the last-stage solution Zs

zn+1 =zn +�t
s∑

j+1
b j Ż j =zn +�t

s∑
j=1

as j Ż j =Zs . (20)

Next, we explain the application of stiffly accurate RK-methods like those of the Radau IIa
family to the evolution equations of viscoelasticity (5). Introducing the stage solutions Ev,D

i at
ti = tn +ci�t the system of equations for the stage solutions (17) reads as

Ev,D
i =Ev,D

n + �t

�

s∑
j=1

ai j (E(t j )−Ev
j )

D. (21)

As the flow rule is linear, the same is true for (21). This set of linear equations exhibits 6s
unknowns, which is an increase in numerical effort compared to e.g. backward Euler, where Ev,D

n+1
can be computed explicitly from Ev,D

n and ED
n+1.

Since only stiffly accurate schemes are used in this paper, data at tn+1 are the stage values of
the last stage s

Ev,D
n+1 =Ev,D

s . (22)

Within the partitioned/staggered approach, see Section 1.1, displacements and strains fulfilling
the weak form of the balance of momentum are calculated at tn , tn+1 as well as at former times
tn−1, . . . . At RK stages c j in the interior of each time interval, displacements and strains have to
be approximated by interpolation. These approximated strains as obtained from the global finite
element solution serve as input for the local problem of time integration. In the following we
will analyze in detail, how the construction of stage values of strains via linear or higher order
polynomials for interpolation does affect the accuracy of time integration.

4. HYPOTHESIS, WHY ORDER REDUCTION OCCURS AND HOW TO OVERCOME IT

4.1. The standard ansatz: stage values via linear interpolation

The easiest way to determine the stage values is via linear interpolation, as applied e.g. in [12].
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1052 B. EIDEL AND C. KUHN

Figure 2. The exact, unknown strain path in time (full line) and its approximations via
linear (dashed line) versus quadratic (dashed-dotted line) interpolation.

Introducing a new time scale t̃ := t − tn in the time interval t ∈ [tn, tn+1], the linear interpolation
polynomial, supported by (0,En) and (�t,En+1), reads as

p1(t̃)=En + t̃

�t
(En+1 −En) (23)

which leads to the approximation of E at time t = ti = tn +ci�t

E(t = ti )≈p1(t̃ =ci�t)=En +ci (En+1 −En). (24)

Under the assumption that the strains in time interval t ∈ [tn, tn+1] and t̃ ∈ [0,�t] are twice contin-
uously differentiable, the interpolation error in the strains is

|E(t̃)−p1(t̃)|� M2

2
(�t)2 (25)

with M2 =max{|E′′(t̃)| : t̃ ∈ [0,�t]}, [30].

4.2. The novel ansatz: stage values via quadratic interpolation

Figure 2 aims to illustrate that for viscoelastic problems the exact strain path in time is non-
linear in general. As a consequence, the strain path can be better approximated by means of
quadratic interpolation compared with linear interpolation. Of course, this statement is based on
the assumption that the strain path is smooth, which is justified for viscoelasticity but does not
apply for elasto-plasticity in general.

The fact that the error for linear interpolation is of the order O(�t2) according to (25) suggests
that this low-order approximation is a candidate to cause order reduction in viscoelastic stress
computation when higher order methods, p�3 are used. Based on this hypothesis we propose a
quadratic interpolation polynomial p2(t̃), which is based on the data set (−�t,En−1), (0,En) and
(�t,En+1).
Given that E(t̃) is three times continuously differentiable in [−�t,�t], it holds for the interpolation
error

|E(t̃)−p2(t̃)|� M3

6
(�t)3 (26)

with M3 =max{|E′′′(t̃)| : t̃ ∈ [−�t,�t]}, [30]. The interpolation polynomial p2 reads as

p2(t̃)= En−1 −2En +En+1

2(�t)2
t̃2 + En+1 −En−1

2(�t)
t̃ +En. (27)
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With (27) it follows for the stage values of E at t = ti = tn +ci�t and t̃ =ci�t

E(t = ti )≈p2(t̃ =ci�t)= ci

2
(ci −1)En−1 +(1−c2

i )En + ci

2
(ci +1)En+1. (28)

It is the core hypothesis of the present work that the order of convergence in stress computation
directly depends on the approximation error in strain interpolation. We verify this hypothesis, first
by a proof concerning the consistency order in Section 5, second by numerical means measuring
the convergence order in Section 6.

4.3. Algorithmic consistent tangent moduli

The algorithmic consistent tangent moduli Cv
n+1 =�Sn+1/�En+1 are derived to achieve quadratic

convergence in global equilibrium iterations using the Newton–Raphson algorithm. These moduli
incorporate the chosen interpolation scheme for strain calculation at RK stages. Let P be the
fourth-order deviatoric tensor,

P :=Id− 1
3 1⊗1 (29)

such that P :E=ED. Then, (7) can be rewritten as

S=C0 :E−2�Ev,D (30)

with

C0 = K0(1⊗1)+2�0P . (31)

The algorithmic consistent tangent moduli are given by

Cv
n+1 = �Sn+1

�En+1
=C0 −2�

�Ev,D
n+1

�En+1
. (32)

The term �Ev,D
n+1/�En+1 can be derived from equation system (21), if it is transformed into

s∑
j=1

(
�i j + �t

�
ai j

)
Ev,D

j =Ev,D
n + �t

�

s∑
j=1

ai j ED
j , i =1, . . . ,s. (33)

The partial derivative of (33) with respect to En+1 yields

s∑
j=1

(
�i j + �t

�
ai j

) �Ev,D
j

�En+1
= �t

�

s∑
j=1

ai j
�ED

j

�En+1
, i =1, . . . ,s

= �t

�

s∑
j=1

ai j c̄ j P (34)

where c̄ j =c j , if the stage values ED
j are computed via linear interpolation and c̄ j = (c j/2)(c j +1)

for the novel ansatz using quadratic interpolation, respectively.
As a final step, the linear equation system (34) for �Ev,D

j /�En+1 has to be solved to obtain

�Ev,D
n+1/�En+1 =�Ev,D

s /�En+1.

4.4. General format of the equations within the partitioned ansatz

As already explained, the key idea of the present contribution is to replace linear interpolation for
the construction of stage values for u (or equally: E) by quadratic interpolation, thus increasing the
order of the corresponding approximation error to third order. The ultimate aim of this procedure
is to achieve consistency order three in time integration.
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1054 B. EIDEL AND C. KUHN

Equations (35) are the general form of problem sets, where the IVP for the ODE ż= f(u,z),
see (9), is solved by RK methods within the partitioned ansatz.

un+1 = P(zn+1)

zi = zn +�t
s∑

j=1
ai j f(u j ,z j )

lin. : ui = un +ci (un+1 −un)

quad. : ui = ci

2
(ci −1)un−1 +(1−c2

i )un + ci

2
(ci +1)un+1

zn+1 = zn +�t
s∑

i=1
bi f(ui ,zi )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i =1, . . . ,s (35)

Remark
The compact expression (35)1 in terms of the operator P shall be explained. For that aim we start
out with the space-discrete format of the weak form of the balance of momentum. For notational
convenience we choose here the geometrical linear case.

0 =
∫

�h
BTCBd�u+

∫
��h

u

BTCLūd�−
∫

�h
BTCev d�−

∫
�h

NTfd�−
∫

��h
�

NTr̄d�� (36)

= Ku−R(z) (37)

where we use in (37) the definition of the stiffness matrix K and R(z) for the remainder integrals

K :=
∫

�h
BT CBd�, (38)

R := −
∫

�h
BT Cev d�−

∫
�h

NTfd�−
∫

��h
�

NTr̄d��+
∫

��h
u

BT CLūd� . (39)

Body forces in � are denoted by f, external loads on boundary ��h
� by r̄, prescribed displacements

on boundary ��h
u by ū. Finite element shape functions are denoted by N, and L is a differential

operator calculating strains from displacements, L :=sym(�)=1/2(�+�T), hence e=Lu. All
integrals in (36) are calculated by numerical quadrature, typically by the scheme of Gauss–
Legendre. Here, we focus on the first integral in (39)

∫
�h

BT Cevd�≈
ngauss∑
i=1

�i BT(�i )Cev(�i ) (40)

with Gauss-points �i and Gauss-weights �i . Hence, (40) and (36) highlight the staggered/partitioned
nature in computational inelasticity where the weak form is solved for u on a global level and the
solution of the evolution equations for ev is solved on a local, Gauss-point level.

Discretization in time for (36) along with �t = tn+1 − tn as time interval of interest yields the
solution for the unknown displacements u at tn+1 according to (35)1, where P :=K−1R.
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HOW TO OVERCOME ORDER REDUCTION IN COMPUTATIONAL VISCOELASTICITY 1055

5. PROOF, WHY ORDER REDUCTION OCCURS AND HOW TO OVERCOME IT

The main aim of this section is to analyze the influence of the polynomial order of strain interpo-
lation in time on the consistency order of the internal variables z and of the displacements u. The
result of the analysis is summarized in the following theorem.

Theorem 1
For the partitioned system (35)1,2 the consistency order for u and z is 3, if quadratic interpolation
for ui according to (35)4 is used and if the RK method fulfils the following conditions:

s∑
i=1

bi =1,
s∑

i=1
bi ci = 1

2
,

s∑
i=1

bi c
2
i = 1

3
,

s∑
i=1

bi

s∑
j=1

ai j c j = 1

6
. (41)

Linear interpolation for ui according to (35)3 results in a consistency order of 2 for u and z.

Proof
The proof is based on Taylor series expansions of the exact solution and the numerical solution
employing either linear or quadratic interpolation of u. A comparison of coefficients in the two
solutions for the requirement of consistency order 3 amounts to conditions (41) for ai j , bi and c j
of the RK scheme. Since these conditions are basic order conditions for RK schemes ((41)1 for
order 1, (41)1,2 for order 2 and (41)1−4 for order 3), they do not impose additional requirements
but are fulfilled by the very construction of any third-order RK method like the considered Radau
IIa scheme with s =2, see e.g. [26]. We start with the proof for u, after that, for z.

For convenience we slightly simplify the notation in the following. We write u for u, f for f, z
for z, P for P and use h :=�t and for partial derivatives the notation Pz :=�z P .

5.1. Taylor series expansion of the numerical solution

Taylor expansion of the numerical solution un+1 at zn with time increment h :=�t = tn+1 − tn
yields

un+1 = P(zn+1)= P

(
zn +h

s∑
i=1

bi f (ui , zi )

)
(42)

= P(zn)+h

(
s∑

i=1
bi f (ui , zi )

)
Pz(zn)

+h2

2

(
s∑

i=1
bi f (ui , zi )

)2

Pzz(zn)+ h3

6

(
s∑

i=1
bi f (ui , zi )

)3

Pzzz(zn)+O(h4). (43)

An expansion of the terms f (ui , zi ) centered at (un, zn) follows next. The second term in (43)
is expanded to O(h3), the third term in (43) to O(h2) and the fourth term in (43) to order O(h).
In the following we introduce Taylor expansions for f := f (un, zn) and drop for convenience the
argument for function evaluations at (un, zn). With �ui :=ui −un =O(h) and �zi := zi −zn =O(h)
it holds

f (ui , zi ) = f +O(h) (44)

f (ui , zi ) = f +�ui fu +�zi fz +O(h2) (45)

f (ui , zi ) = f +�ui fu +�zi fz + �u2
i

2
fuu +�ui�zi fuz + �z2

i

2
fzz +O(h3). (46)
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For (45) and (46) we need Taylor expansions of �ui and �zi up to O(h2) and O(h3), respectively.
With

un+1 = P(zn+1)= P(zn +�zn)

= P +�zn Pz + �z2
n

2
Pzz +O(h3) (47)

un−1 = P(zn−1)= P(zn −�zn−1)

= P −�zn−1 Pz + �z2
n−1

2
Pzz +O(h3) (48)

we apply quadratic interpolation of u according to (35)4 and arrive for �ui at

�ui = ui −un

= ci

2
(ci −1)un−1 +(1−c2

i )un + ci

2
(ci +1)un+1 −un

= ci

2

[
ci (un+1 +un−1)+(un+1 −un−1)

]−c2
i un

= ci

2

[
((ci +1)�zn +(1−ci )�zn−1) Pz + 1

2

(
(ci +1)�z2

n +(ci −1)�z2
n−1

)
Pzz

]

+O(h3) (49)

where we used (47) and (48) for the last identity in (49). Up to now, stage solutions refer to
the current time interval [tn, tn+1] and are denoted by index i . For the following, we introduce
superscript n for stage variables of the current time interval [tn, tn+1] in order to distinguish them
from stage quantities in the previous time interval [tn−1, tn], which are denoted by superscript n−1.

�zn−1 := zn −zn−1 = h
s∑

i=1
bi f n−1

i

= h
s∑

i=1
bi { f n

i +O(h)}

= h
s∑

i=1
bi f n

i +O(h2)=�zn +O(h2) (50)

Calculating the difference of �zn−1 and �zn yields

�2zn :=�zn−1 −�zn =O(h2) (51)

and for �ui it holds (again with only one single index for the stage values in the current time
interval [tn, tn+1])

�ui =ci

⎡
⎣
(

h

(∑
j

b j f j

)
+ 1−ci

2
�2zn

)
Pz +ci

h2

2

(∑
j

b j f j

)2

Pzz

⎤
⎦+O(h3).

This result is quite similar to the expression which follows from linear interpolation. Introducing
the notation

c̃i :=
{

1 for linear interpolation

ci for quadratic interpolation
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allows to embrace both cases all at once, thus

�ui =ci

⎡
⎣(h

(∑
j

b j f j

)
+ 1− c̃i

2
�2zn

)
Pz + c̃i

h2

2

(∑
j

b j f j

)2

Pzz

⎤
⎦+O(h3). (52)

For �zi it holds

�zi = zi −zn =h
∑

j
ai j f j

= h
∑

j
ai j { f +�u j fu +�z j fz +O(h2)}

= h
∑

j
ai j { f +�u j fu +�z j fz}+O(h3). (53)

Taylor series expansions up to O(h2) read for �ui and for �zi

�ui = ci h

(∑
j

b j { f +O(h)}
)

Pz +O(h2)

= ci h

(∑
j

b j

)
f Pz +O(h2) (54)

�zi = h
∑

j
ai j { f +O(h)}+O(h2)

= h

(∑
j

ai j

)
f +O(h2). (55)

Series expansion to O(h3) yields: (The term with �2zn will be expanded at the end.)

�ui = ci

[
h

(∑
j

b j { f +�u j fu +�z j fz +O(h2)}
)

Pz + 1− c̃i

2
�2zn Pz

+c̃i
h2

2

(∑
j

b j { f +O(h)}
)2

Pzz

⎤
⎦+O(h3)

= ci

[
h

(∑
j

b j

{
f +

(
c j h

(∑
r

br

)
f Pz +O(h2)

)
fu +

(
h

(∑
r

a jr

)
f +O(h2)

)
fz

})
Pz

+1− c̃i

2
�2zn Pz + c̃i

h2

2

(∑
j

b j f

)2

Pzz

⎤
⎦+O(h3)

= ci

[
h

(∑
j

b j

{
f +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

})
Pz + 1− c̃i

2
�2zn Pz

+c̃i
h2

2

(∑
j

b j

)2

f 2 Pzz

⎤
⎦+O(h3) (56)
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and

�zi = h
∑

j
ai j

{
f +

(
c j h

(∑
r

br

)
f Pz +O(h2)

)
fu +

(
h

(∑
r

a jr

)
f +O(h2)

)
fz

}
+O(h3)

= h
∑

j
ai j

{
f +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

}
+O(h3). (57)

Inserting the above expressions into the Taylor expansion of the numerical solution un+1, we
finally arrive at

un+1 = un

+h
∑
i

bi

{
f +h

[∑
j

ai j

{
f +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

}]
fz

+ci

[
h
∑

j
b j

{
f +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

}
Pz + c̃i

h2

2

(∑
r

br

)
f 2 Pzz

]
fu

+ci

[
1− c̃i

2
�2zn Pz

]
fu

+c2
i

h2

2

(∑
r

br

)2

f 2 fuu P2
z +ci h

2
(∑

r
br

)(∑
r

air

)
f 2 fuz Pz + h2

2

(∑
r

air

)2

f 2 fzz

}
Pz

+h2

2

((∑
i

bi

)2

f 2 +2h

(∑
i

bi

)(∑
i

bi ci

)(
f 2 fu Pz + f 2 fz

))
Pzz

+h3

6

(∑
r

br

)3

f 3 Pzzz +O(h4). (58)

5.2. Taylor series expansion of the exact solution

The Taylor series expansion of the exact solution up to O(h4) reads as

u(tn +h)=u+hu̇+ h2

2
ü+ h3

6

.. .
u +O(h4). (59)

Applying the chain rule and the product rule yields the time derivatives of u in (59).

u̇ = Pz f (60)

ü = Pzz f 2 + P2
z f fu + Pz f fz (61)

.. .
u = Pzzz f 3 +4Pzz Pz f 2 fu +3Pzz f 2 fz +2P2

z f fu fz +2P2
z f 2 fuz

+P3
z f f 2

u + P3
z f 2 fuu + Pz f f 2

z + Pz f 2 fzz (62)

A comparison of coefficients in Taylor expansions (58) and (59) will result in conditions for
the RK method to achieve consistency order 2 and order 3, respectively.

Conditions for consistency order 2. A comparison of coefficients of h-terms and h2-terms
yields the same conditions for consistency order 2 as in [12], since c̃i (stemming from quadratic
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interpolation) merely appears in h3-terms. Hence, the conditions stemming from a comparison of
h- and h2-terms read as

s∑
i=1

bi =1 and
s∑

i=1
bi ci = 1

2
. (63)

Conditions for consistency order 3. Next, a comparison of coefficients of h3-terms is due. First
of all, we list all terms which do not impose additional conditions—going beyond (63)—for the
coefficients in the RK scheme. Then, we consider terms without c̃i , which are equal for linear and
quadratic interpolation and which impose additional conditions. Finally, we consider terms which
contain c̃i .

h3 Pzzz f 3 :
1

6

(∑
i

bi

)3

= 1

6
⇒∑

i
bi =1 in agreement with (63)

h3 Pzz f 2 fz :
1

2
2
∑
i

bi
∑
i

bi ci = 3

6
⇒
(∑

i
bi

)(∑
i

bi ci

)
= 1

2
in agreement with (63)

Additional conditions are generated by the following terms:

h3 P3
z f 2 fuu :

(∑
i

bi c
2
i

)
1

2

(∑
r

br

)
= 1

6
with (63)⇒∑

i
bi c

2
i = 1

3

h3 P2
z f 2 fuz :

∑
i

bi ci

(∑
r

br

)(∑
r

air

)
= 2

6
with (16), (63)⇒∑

i
bi c

2
i = 1

3

h3 Pz f 2 fzz :
∑
i

bi
1

2

(∑
r

air

)2

= 1

6
with (16)⇒∑

i
bi c

2
i = 1

3

h3 Pz f f 2
z :

∑
i

bi
∑

j
ai j
∑
r

a jr = 1

6
with (16)⇒∑

i
bi
∑

j
ai j c j = 1

6

Summarizing, compared with (63), two additional conditions for a consistency order of 3 must
be fulfilled by the RK method:

s∑
i=1

bi c
2
i = 1

3
and

s∑
i=1

bi

s∑
j=1

ai j c j = 1

6
. (64)

These conditions are basic conditions for the construction of third-order RK methods, see [26],
and therefore are in particular fulfilled by the coefficients of Radau IIa-schemes with s�2, see the
Butcher tableau on the right of Table I.

Next, terms containing c̃i are compared:

h3 Pzz Pz f 2 fu :
1

2

(∑
i

bi ci c̃i

)
+ 1

2
2

(∑
i

bi

)(∑
i

bi ci

)
= 4

6
with (63)⇒∑

i
bi ci c̃i = 1

3
(65)

For the case of linear interpolation (c̃i =1), (65) is in contradiction to the second requirement
in (63); for the case of quadratic interpolation (c̃i =ci ); however, (65) coincides with the first
condition for third order in (64).
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In the case of linear interpolation, a comparison of coefficients of terms containing h3 P3
z f f 2

u and
h3 P2

z f fu fz results in conditions which are in contradiction to (63) and to (64):

h3 P3
z f f 2

u :
∑
i

bi ci
∑

j
b j c j

∑
r

br = 1

6
⇒
(∑

i
bi ci

)2

= 1

6
in contradiction to (63)2

h3 P2
z f fu fz :

∑
i

bi
∑

j
ai j c j

(∑
r

br

)
+∑

i
bi ci

∑
j

b j
∑
r

a jr = 2

6

⇒∑
i

bi
∑

j
ai j c j +

(∑
i

bi ci

)2

= 1

3

⇒∑
i

bi
∑

j
ai j c j = 1

12
in contradiction to (64)2

In order to examine the case of quadratic interpolation, the expressions �2zn =�zn−1 −�zn have
to be expanded up to O(h3).

�zn = zn+1 −zn =h
∑

j
b j f j

= h
∑

j
b j
{

f +�u j fu +�z j fz
}+O(h3)

= h
∑

j
b j

{
f +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

}
+O(h3) (66)

Very similar to this result we obtain for �zn−1

�zn−1 = h
∑

j
b j

{
f n−1 +c j h

(∑
r

br

)
f n−1 f n−1

u Pn−1
z +h

(∑
r

a jr

)
f n−1 f n−1

z

}
+O(h3)

= h
∑

j
b j

{
f n−1 +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

}
+O(h3) (67)

with

f n−1 = f +O(h)

f n−1
u = fu +O(h)

f n−1
z = fz +O(h)

Pn−1
z = Pz +O(h)

Next, the Taylor series of f n−1 up to order O(h2) must be calculated. It holds

f n−1 = f −�un−1 fu −�zn−1 fz +O(h2).

Inserting

�zn−1 = h
∑
r

br f n−1 =h
∑
r

br { f +O(h)}=h

(∑
r

br

)
f +O(h2)

�un−1 = un −un−1

= [P(zn−1)+�zn−1 Pz(zn−1)+O(h2)]− P(zn−1)
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=
(

h

(∑
r

br

)
f +O(h2)

)
(Pz +O(h))+O(h2)

= h

(∑
r

br

)
f Pz +O(h2)

yields

f n−1 = f −h

(∑
r

br

)
f fu Pz −h

(∑
r

br

)
f fz +O(h2)

and with this result it follows for the difference

�2zn =h
∑

j
b j

{
−h

(∑
r

br

)
f fu Pz −h

(∑
r

br

)
f fz

}
+O(h3). (68)

A comparison of coefficients with h3 P3
z f f 2

u and h3 P2
z f fu fz for quadratic interpolation finally

results in the following conditions.

h3 P3
z f f 2

u :

(∑
i

bi ci

)2

+∑
i

bi ci
1−ci

2

∑
j

b j

(
−∑

r
br

)
= 1

6

⇒
(∑

i
bi ci

)2

+ 1

2

(∑
i

bi c
2
i −∑

i
bi ci

)
= 1

6
(69)

h3 P2
z f fu fz :

∑
i

bi
∑

j
ai j c j +

∑
i

bi ci
1−ci

2

∑
j

b j

(
−∑

r
br

)
= 2

6

⇒ ∑
i

bi
∑

j
ai j c j +

(∑
i

bi ci

)2

+ 1

2

(∑
i

bi c
2
i −∑

i
bi ci

)
= 1

3
(70)

It can be easily verified that RK methods, which fulfil standard order 3 conditions, (63) and (64),
equally fulfil conditions (69) and (70), which completes the proof for consistency order 3 of u for
quadratic interpolation. �

The proof for the consistency order of z is similar to that for u and is readily obtained by virtue
of the preliminary results.

The Taylor series expansion of the numerical solution of zn+1 = zn +�zn reads as

zn+1 = zn +h
∑
i

bi

(
f +�ui fu +�zi fz + �u2

i

2
fuu +�ui�zi fuz + �z2

i

2
fzz +O(h3)

)
. (71)

Taylor series expansion of the exact solution of z(tn +h) yields

z(tn +h)= z+hż+ h2

2
z̈+ h3

6

.. .
z +O(h4). (72)

Applying the chain rule and the product rule yields the time derivatives of z in (72)

ż = f (73)

z̈ = Pz f fu + f fz (74)

.. .
z = P2

z f 2 fuu +2Pz f 2 fuz + f 2 fzz + Pzz f 2 fu + P2
z f f 2

u +2Pz f fu fz + f f 2
z (75)
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Inserting equations (54), (55), (56), (57) and (68) into (71) yields

zn+1 = zn

+h
∑
i

bi

{
f +ci

[
h

(∑
j

b j

{
f +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

})
Pz

+1− c̃i

2
h
∑

j
b j

{
−h

(∑
r

br

)
f fu Pz −h

(∑
r

br

)
f fz

}
+ c̃i

h2

2

(∑
j

b j

)2

f 2 Pzz

⎤
⎦ fu

+h
∑

j
ai j

{
f +c j h

(∑
r

br

)
f fu Pz +h

(∑
r

a jr

)
f fz

}
fz + 1

2

(
ci h

(∑
j

b j

)
f Pz

)2

fuu

+1

2

(
h

(∑
j

ai j

)
f

)2

fzz +
(

ci h

(∑
j

b j

)
f Pz

)(
h

(∑
j

ai j

)
f

)
fuz

⎫⎬
⎭+O(h4). (76)

A comparison of coefficients in (76) with coefficients in (72) yields for the

• h-term:

f :
∑
i

bi =1 (77)

• h2-terms:

Pz f fu :
∑
i

bi ci
∑

j
b j = 1

2
(78)

f fz :
∑
i

bi
∑

j
ai j = 1

2

⇒∑
i

bi ci = 1

2
(79)

• h3-terms:

P2
z f 2 fuu :

∑
i

bi c
2
i

(∑
j

b j

)2

= 1

3
(80)

Pz f 2 fuz :
∑
i

bi ci
∑

j
b j
∑

j
ai j = 1

3

⇒∑
i

bi c
2
i
∑

j
b j = 1

3
(81)

f 2 fzz :
∑
i

bi

(∑
j

ai j

)2

= 1

3

⇒∑
i

bi c
2
i = 1

3
(82)

Pzz f 2 fu :
∑
i

bi ci c̃i

(∑
j

b j

)2

= 1

3
(83)
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P2
z f f 2

u :
∑
i

bi ci
∑

j
b j c j

∑
r

br −∑
i

bi ci

(
1− c̃i

2

)∑
j

b j
∑
r

br = 1

6

⇒
(∑

i

bi ci

)2(∑
r

br

)
−
(∑

bi ci (
1− c̃i

2
)

)(∑
r

br

)2

= 1

6
(84)

f f 2
z :

∑
i

bi
∑

j
ai j
∑
r

a jr = 1

6

⇒∑
i

bi
∑

j
ai j c j = 1

6
(85)

Pz f fu fz :
∑
i

bi ci
∑

j
b j
∑
r

a jr +∑
i

bi
∑

j
ai j c j

∑
r

br +∑
i

bi ci

(
1− c̃i

2

)∑
j

b j (−1)
∑
r

br = 1

3

⇒
(∑

i

bi ci

)2

+
∑

i

bi

∑
j

ai j c j

∑
r

br −
∑

i

bi ci

(
1− c̃i

2

)(∑
r

br

)2

= 1

3
(86)

It can be readily verified that conditions (77)–(86) are fulfilled by RK-standard order conditions
(41)1−4. For conditions (83), (84) and (86) however, this is true, if c̃i =ci holds, i.e. if quadratic
interpolation of strains is applied. Hence, in that case z exhibits consistency order 3. In contrast,
consistency order 3 cannot be obtained for z, if c̃i =1, i.e. if linear interpolation is used. �

Several conclusions and remarks are due.

(i) Since the total strain tensor E is derived from displacements u by differentiation with
respect to spatial variables, E exhibits the same consistency order as u in time; here, for
quadratic interpolation, it is of order 3. As a consequence of this fact and the statement
of Theorem 1, that the differential variable z, here: viscous strain Ev exhibits consistency
order 3, it can be concluded from Equations (3) and (4) that equilibrium stress Seq as well
as the overstress Sov equally exhibit order 3.

(ii) The above proof deals with the consistency order and therefore addresses the local error
in time. The conclusion from local consistency order to global convergence order must
be based on stability considerations. Here we have shown that the use of linear interpo-
lation for the strains implies a reduction in consistency order to 2. As a consequence,
a convergence order beyond 2 cannot be expected. For quadratic interpolation however,
consistency order 3 has been shown, which is necessary for convergence order 3. It is left
to the numerical assessment in Section 6, whether convergence order 3 for the considered
ODE of viscoelasticity is obtained.

(iii) The proof is based on problems of the format (10), which is an ODE. For the broad
class of computational inelasticity this applies to constitutive equations either of (rate
dependent) viscoelasticity or to models of elasto-plasticity without yield surfaces as an
algebraic constraint like the model of Chan–Bodmer–Lindholm etc. For models of (rate-
independent) elasto-plasticity entailing a yield surface and thus forming a DAE this proof
does not apply.

6. NUMERICAL ASSESSMENT

In this section, the third-order (two-stage) Radau IIa scheme is used to investigate the influence
of quadratic versus linear interpolation of strain on the convergence order. Hence, we verify by
numerical means whether the convergence order of the global errors is the same as the proven
consistency order of the local errors.
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Table II. Uni- and biaxial stretch: viscoelastic material parameters.

K∞ (N/mm2) �∞ (N/mm2) � (N/mm2) � (Ns/mm2)

10 000 6.598 28.03 0.075

In order to achieve reliable conclusions concerning the validity of our proposal we carry out
simulations for a variety of test sets: (i) uniaxial and biaxial stretch, i.e. homogeneous deformations,
(ii) radial contraction of an annulus, (iii) stretching of a rectangular plate with a hole.

Since the predictions concerning the consistency order apply to primary quantities such as
displacements u and total strains E but also to derived quantities such as viscoelastic strain Ev

and stress S, we carry out the convergence analysis for each of these quantities in problem sets
(ii) and (iii).

For all test sets an accurate reference solution Xex for tensor X with X∈{E,Ev,S} is calculated
by numerical overkill using a very small time step size where the accuracy of the results is in the
range of machine precision. Based on this reference solution, a relative, global error for finite time
step sizes is calculated according to

e(X)= 1

Nel · Ngauss

Nel∑
i=1

Ngauss∑
j=1

||X(i j)(�t)−X(i j)ex ||
||X(i j)ex || , (87)

where X(�t) is the tensor for a time step size �t , Nel is the number of elements in the domain
and Ngauss is the number of Gauss-points per element.

In the following, the relative error versus the time step size �t is displayed in double logarithmic
scaling. For uniform convergence, the mean order of convergence will be calculated by means of
linear regression.

The Radau IIa scheme has been implemented into an eight-node volume element within an
extended version of FEAP, a general purpose finite element code [31]. The implementation of
the three-parameter viscoelastic material model of Section 2 is simplified employing implicit RK
methods, since the generally non-linear set of equations (21) for the stage solutions becomes linear
in this special case.

Remarks
In viscoelasticity—opposed to elasto-plasticity—loaded structures always exhibit nonzero inelastic
strains from the very first loading step of the deformation history, such that evolution equations
are to be integrated from the very beginning.

Note that the first time step for quadratic interpolation must rely on linear interpolation using
tn and tn+1 data, since tn−1 data are not available at that stage.

6.1. Uni- and biaxial stretch

We study the relaxation of a viscoelastic cube subject to either uni- or biaxial stretch. The cube is
discretized by one eight-node brick-type element of side length L . Material parameters are given
in Table II. Displacement boundary conditions at Y = L/2, for biaxial stretch also at X =−L/2,
are chosen to avoid rigid body motions and to ensure a homogeneous deformation state. The
displacement parameter is set to u =0.003 L at t =0 s, then held fixed for t >0 s, see Figure 3.

The temporal evolution of nonzero stress components is depicted in Figure 4. Strain components
that are not directly given by prescribed displacements exhibit qualitatively the same behavior as the
stress components in Figure 4; they relax from a maximum value—corresponding to the maximum
overstress—to the equilibrium values, see Figure 5. The non-linear strain path in time seems to
be well suited to check the convergence behavior of time integration, when linear or quadratic
interpolation is used. For the convergence analysis we employ eight different time step sizes �t .
The error is calculated at t =0.005 s and at t =0.01 s. The reference solution is calculated by Radau
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Figure 3. Displacement control for the relaxation of a cube subject to
(left:) uni- and (right:) biaxial stretch.
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Figure 4. Relaxation of nonzero stress components in (left:) uniaxial and (right:) biaxial stretch.

time

st
ra
in

0 0.001 0.002 0.003 0.004 0.005 0.006
-0.003008

-0.003006

-0.003004

-0.003002

-0.003

-0.002998

Exx
Ezz

time

st
ra
in

0 0.002 0.004
-0.00901

-0.009

-0.00899

-0.00898

-0.00897

-0.00896

Ezz

Figure 5. Nonzero strain components in the tension tests exhibit a non-linear relaxation behavior.

IIa along with quadratic interpolation and with time step size �t =5.0E–07. The considered time
step sizes are �t ={0.0001,0.000125,0.00025,0.0005,0.001,0.00125,0.0025,0.005}s.

At t =0.005 s and at t =0.01 s (in uni- as well as in biaxial stretch) Radau IIa achieves third order
for both, linear interpolation as well as quadratic interpolation, Tables III, IV and Figures 6 and 7.
There is no order reduction.
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Table III. Relaxation of a cube in uniaxial stretch: order of convergence of e(S) for different methods.

Method Abbrev. t =0.005s t =0.01s

Backward Euler E 1.04 1.40
Radau IIa, s =2, linear interpolation R2l 2.99 2.83
Radau IIa, s =2, quadratic interpolation R2q 2.97 2.80

Table IV. Relaxation of a cube in biaxial stretch: order of convergence of e(S) for different methods.

Method Abbrev. t =0.005s t =0.01s

Backward Euler E 1.03 1.40
Radau IIa, s =2, linear interpolation R2l 3.05 2.88
Radau IIa, s =2, quadratic interpolation R2q 2.97 2.76
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Figure 6. Uniaxial stretch: convergence diagrams for e(S) at t =0.005s (left) and at t =0.01s (right)
for E:backward Euler, R2l:Radau IIa with linear interpolation, R2q:Radau IIa with quadratic

interpolation. �tmax =0.005s, �tmin =0.0001s.

The reason for the full convergence order using linear interpolation might be due to the fact
that the strain path to be interpolated is not strongly non-linear, such that linear interpolation is
sufficient. Remarkably, even linear backward Euler exhibits super-linear convergence, most notably
at t =0.01s. At this stage, we anticipate the results of all further tests in this paper; for linear
interpolation Radau IIa suffers from order reduction to second-order convergence. This fact strongly
suggests that homogeneous deformation states like uni- or biaxial stretch are not sufficient to
arrive at general and reliable conclusions concerning the convergence behavior of time integration
algorithms.

6.2. Radial contraction of an annulus

In the second test set we consider the radial contraction of an annulus, which exhibits radii
ri =20mm, ro =40mm and thickness t =1 mm as displayed in the left of Figure 8. Two symmetry
planes are exploited in the simulation, such that the simulation is performed at a quarter system. As
shown in the right of Figure 8, the quarter system is discretized by 10 elements in circumferential
direction, 10 elements in radial direction and one element over the thickness.

At t =0s the inner rim is radially pulled inwards by displacement �ur =1mm and then, for t >0s,
is kept fixed. The corresponding maximum strain amounts to 0.009. After that, the viscoelastic
structure with material parameters according to Table II relaxes into its equilibrium configuration.
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Figure 7. Biaxial stretch: convergence diagrams for e(S) at t =0.005s (left) and at t =0.01s (right)
for E-backward Euler, R2l-Radau IIa with linear interpolation, R2q-Radau IIa with quadratic

interpolation. �tmax =0.005s, �tmin =0.0001s.

Figure 8. Radial contraction of an annulus by displacement control for ur applied to the inner rim. Left:
geometry and loading, right: finite element mesh.

Again, the calculation of relaxation is geometrically non-linear. The time step sizes are �t =
{0.0001,0.000125,0.00025,0.0005,0.001,0.00125,0.0025}s. The reference solution is calculated
by Radau IIa along with quadratic interpolation using a time step size of �t =5.0E–07.

Figure 9 and Table V reveal that Radau IIa with linear interpolation, R2l, exhibits order reduction
resulting in quadratic convergence, whereas Radau IIa with quadratic interpolation, R2q, achieves
full order of convergence, order 3.

The numerical results concerning the convergence order are in agreement with the theoretical
predictions concerning the consistency order. This is true for all analyzed quantities, for total
strains E, for viscoelastic strains Ev and for the stresses S.

Figure 9 indicates that the error of backward Euler employing the smallest time step considered,
�tmin =0.0001s, is in the range of the error of Radau IIa for a time step which is 25 times larger
than �tmin.

Finally, the overall performance of the time integration methods shall be measured and compared
by means of the accuracy of stresses versus the total computation time. The diagrams in Figure 10
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Figure 9. Radial contraction of an annulus: error versus time step-size evaluated at t =0.005s (left column)
and at t =0.01s (right column) for different time integrators, �tmax =0.0025s, �tmin =0.0001s. First row:

e(E), second row: e(Ev), third row: e(S).
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Table V. Radial contraction of an annulus: order of convergence for different methods.

e(E) e(Ev) e(S)

Error t =0.005s t =0.01s t =0.005s t =0.01s t =0.005s t =0.01s

E 0.96 1.06 1.02 1.09 0.97 1.06
R2l 1.83 1.85 1.93 1.85 1.85 1.85
R2q 2.76 2.97 2.91 2.97 2.83 2.96
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Figure 10. Biaxial stretch: error e(S) versus computation time (s); evaluation at t =0.005s
(left) and at t =0.01s (right) for E-backward Euler, R2l-Radau IIa with linear interpolation,

R2q-Radau IIa with quadratic interpolation.

display the results for time step sizes of �t ={0.0001,0.000125,0.00025,0.0005,0.001,0.00125,

0.0025}s. It turns out that Radau IIa is significantly faster than backward Euler to obtain a defined
accuracy, which is already visible for the version suffering of order reduction, but becomes even
more prominent for Radau IIa with full order of convergence.

Furthermore, the diagrams in Figure 10 show that the overall computation time for a certain
time step size is roughly the same for all methods, in particular, that Radau IIa is somewhat more
expensive than backward Euler, but the difference between linear and quadratic interpolation for
Radau IIa is negligible.

6.3. Tension strip with hole

In the present example we consider the creep of a quadratic strip with a hole. The geometry of
the structure is given by 40×40×1 mm for the length l, width l and thickness t , respectively. The
plate exhibits a hole of radius r =3 mm. The traction load �̄=0.1 (N/mm) is applied at t =0 s and
then kept fixed for t >0 s in geometrically non-linear calculations.

The strip is supported in its midsurface in thickness-direction, and supported orthogonal to the
symmetry planes in the width direction and in the length direction, respectively. Exploiting three
symmetry planes allows a simulation of one-eighth system, the resulting structure is discretized
by 30×20×2 elements, see Figure 11.

The three-parameter viscoelastic material law of Section 2 is used along with the same material
parameters as in the former two examples, see Table II. Time step sizes considered in the simula-
tions are �t ={0.0003,0.000375,0.00075,0.0015,0.003,0.00375}s, reference values are calculated
using Radau IIa with quadratic interpolation for �t =5.0E–07.

Similar to the previous example, time integration applying the two-stage Radau IIa-method
along with linear interpolation obtains not more than second order. For quadratic interpolation of
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l

r
l

Figure 11. FE-model of the quadratic tension strip with a hole, loading, symmetry conditions applied.

Table VI. Tension strip with hole: order of convergence for different methods.

e(E) e(Ev) e(S)

Error t =0.015s t =0.03s t =0.015 s t =0.03s t =0.015 s t =0.03s

E 0.97 1.06 0.97 1.06 0.99 1.13
R2l 1.83 1.86 1.83 1.86 1.83 1.87
R2q 2.62 2.90 2.62 2.90 2.85 2.94

the strain tensor however, results close to third order are achieved. This is true for all analyzed
quantities, E, Ev and S, see Table VI and Figure 12. These results are in agreement with the
analytical predictions of Theorem 1.

Moreover, the diagrams in Figure 12 show that the error of backward Euler employing the
smallest time step considered, �tmin =0.0003s, is still larger than the error of Radau IIa for a time
step which is 12 times larger than �tmin.

For a fair comparison of the methods their performance shall be compared, i.e. their accuracy
versus the numerical cost in terms of the overall computation time. The diagrams in Figure 13
underpin that Radau IIa is significantly faster than linear backward Euler to achieve a defined
accuracy.

7. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the problem of order reduction in computational inelasticity, when
evolution equations exhibit the format of an ODE as it is the case for the broad class of viscoelastic
material models. For the classical, staggered structure of finite element algorithms dealing with
inelasticity we have identified the reason and have proposed a solution to the problem by simple
and effective means. The main findings shall be summarized:

(i) The reason for order reduction in computational viscoelasticity within the classical struc-
ture of finite element algorithms is a low-order (typically: linear) approximation of the
displacement/strain path in time for the calculation of stage values in the RK scheme.

(ii) For RK methods with p�3 we have proven that quadratic interpolation of the displace-
ments/strains for the construction of stage values within the considered time interval is a
sufficient condition to achieve a consistency order of 3. Here, we have chosen tn , tn+1, and
additionally, tn−1 data for the construction of a quadratic polynomial. Complementarily, we
have proven that standard linear approximation inevitably leads to a reduced consistency
order of 2. These order statements apply for different quantities, for displacements/total
strains, for viscoelastic strains and for stresses.
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Figure 12. Tension strip with hole: error versus time step size evaluated at t =0.015s (left column) and
for t =0.03s (right column) for different time integrators, �tmax =0.00375s, �tmin =0.0003s. First row:

e(E), second row: e(Ev), third row: e(S).
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Figure 13. Tension strip with hole: error e(S) versus computation time (s); evaluation at t =0.015s
(left) and at t =0.03s (right) for E-backward Euler, R2l-Radau IIa with linear interpolation,

R2q-Radau IIa with quadratic interpolation.

(iii) Numerical tests have been carried out applying a fully implicit, two-stage, third-order
RK-version of Radau IIa class. For the newly proposed quadratic interpolation scheme all
simulations result in full order of convergence for displacements/total strains, viscoelastic
strains and stresses. For linear interpolation we observed an order reduction to second order
for the same quantities. Hence, the numerical results concerning the convergence order of
the global error are in agreement with the theoretical predictions for the consistency order,
i.e. the local error.

(iv) Compared with standard backward Euler, a main advantage of the present RK integration
algorithm is its considerable speed-up of simulations to achieve the same level of accuracy,
which has been shown in simulations for viscoelastic structures subject to creep as well as
relaxation.

(v) Another key advantage of the present approach is that it neatly fits into the standard finite
element approach to deal with inelastic constitutive models, i.e. the staggered solution
algorithm where the weak form of the BVP is solved on a global level and the IVP is
solved on the local level of quadrature points. As a consequence, the present approach can
easily be implemented into finite element codes. The additional computational overhead is
restricted to history data at time tn−1, which equals the number of the strain components
along with eventually additional variables depending on the material model.

In conclusion, we believe that the present analysis of the reason for order reduction and its
solution opens the door to the usage of accurate and efficient higher order RK methods in compu-
tational viscoelasticity while maintaining the staggered algorithmic structure as realized in lots of
research and commercial finite element codes.
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