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e Motivation

Homogenization theory is concerned with the macroscopic de-
scription of a microscopically heterogeneous system. Homoge-
nization is necessary since the impacts of the small scales of
such systems at a macroscale are considerable, but the nu-
merical costs of fully resolved microscale information are pro-
hibitive. FE-HMM, developped in [1-3], exhibits a sound math-
ematical basis that allows for a priori estimates, error con-
trolled mesh-refinement, and optimal micro-macro refinements
achieving the full convergence order for minimal costs.

e Main Aims

(i) The development of the FE-HMM for problems of solid me-
chanics, here for the case of elasticity in a linear setting.

(ii) A parallel solution strategy with favorable scaling on HPC

machines.
—H

HoOoE|®E @|E @ QKE EZ}, Ks)| 1 R N
T, B @@ #lm @ & T

& e @ B e ° J

s w w5/ 8 |ls @ B B

— h —

(a) macro discretization with sampling domains  (b) microproblems (c) example of quadrature

(microproblems)

Concept of FE-HMM, picture from A. Abdulle, A. Nonnenmacher
Comput. Methods Appl. Mech. Engrg. 198 (2009).

for a microproblem

e Variational form of the macro FE-HMM problem
Find v € Sap (Q, Ta) such that

Bu(u",v") = / f~dew+/ gvds Yo' € Soa,, (Q, Th) .
Q a0

e The modified macro bilinear form
In the absence of explicit knowledge of A°(z), we approximate
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where Ks, = s, +¢[—1/2, +1/2]% is a sampling domain, wx,
is the quadrature weight, |Ks, | the volume of Ks,.
The macro element stiffness matrix is obtained according to
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where Tk, is a micro-macro stiffness transfer operator contain-
ing micro solution vectors d"1®i) a5 columns:

where Ti, = [[[d""")]iz1,ali=1,... Ny pue)s
T h(I,z; h(I,x; h(I,x; h(I,z;
with @"("71) = (d1,(x1 ) dl( ) »dy <:):3 L 1\/57,m,>x3)T

e Solution of the micro-problem. The Lagrange func-
tional J(d"!*) \(1:#)) is minimized under the constraints
of macro-micro coupling and micro-periodicity. Solve for each
nodal unit displacement state (I, ;) at a macro finite element

node [ in z;-direction for d"Iwi) gnd \ei)

K;(n,;; G7T dahdzq) B 0
G 0 )\(I,zi) - GdH(I Vi) :
Matrix G contains the coupling conditions, AY*®9): vector

of Lagrange-multipliers, d B0 Gector of prescribed micro-
displacments from a macro unit displacement state.

o A-priori estimates in the H'- and the L%-norm
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p/q macro/micro shape function polynomial order, p = ¢ = 1.
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e Benchmark problem for optimal mic-mac refinement

A7 350
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Set h/e = 1/Npic, and H = l/Nmac. Nmac (Nmic) is the num-
ber of macro (micro) nodes per dimension.

3.5 - sin(2mzy /€))]

A% () = 3.5 - cos(2mx1/€)))

Optimal convergence for minimal costs is obtained,
if Nimic = Nimac, i.e. h/e = H in the L?-norm,
if Noic = vV Niac, i.e. h/e = VH in the H'-norm.
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o Conclusions

(i) First FE-HMM formulation for a vector-valued field prob-
lem thus opening the door to solid mechanics.

(ii) Numerical results for the convergence order are in excellent
agreement with a priori estimates.

(iii) Optimal micro-macro uniform refinement strategies from
theory are underpinned by simulations to full extent.
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