
PD Dr.-Ing. habil. B. Eidel
Heisenberg-Fellow (DFG)
Chair of Computational Mechanics
Department of Mechanical Engineering

B. Eidel, A. Fischer

University of Siegen, Chair of Computational Mechanics

The Heterogeneous Multiscale Finite Element Method (FE-HMM)

for the Homogenization of Microheterogeneous Materials

• Motivation

Homogenization theory is concerned with the macroscopic de-

scription of a microscopically heterogeneous system. Homoge-

nization is necessary since the impacts of the small scales of

such systems at a macroscale are considerable, but the nu-

merical costs of fully resolved microscale information are pro-

hibitive. FE-HMM, developped in [1-3], exhibits a sound math-

ematical basis that allows for a priori estimates, error con-

trolled mesh-refinement, and optimal micro-macro refinements

achieving the full convergence order for minimal costs.

• Main Aims

(i) The development of the FE-HMM for problems of solid me-

chanics, here for the case of elasticity in a linear setting.

(ii) A parallel solution strategy with favorable scaling on HPC

machines.

Concept of FE-HMM, picture from A. Abdulle, A. Nonnenmacher

Comput. Methods Appl. Mech. Engrg. 198 (2009).

• Variational form of the macro FE-HMM problem

Find uH ∈ SΩD (Ω, TH) such that

BH(uH ,vH) =

∫
Ω

f ·vHdx+

∫
∂Ω

g·vHds ∀vH ∈ S∂ΩD (Ω, TH) .

• The modified macro bilinear form

In the absence of explicit knowledge of A0(x), we approximate

BH(uH ,vH) =
∑

K∈TH

Nqp∑
l=1

ωl

(
A0 εh : δεh

)
(xl)

≈
∑

K∈TH

Nqp∑
l=1

ωKl

|Kδl |

∫
Kδl

Aε(x) ε(uh
Kδl

) : δε(vh
Kδl

) dx

where Kδl = xKδl
+ ε[−1/2,+1/2]d is a sampling domain, ωKl

is the quadrature weight, |Kδl | the volume of Kδl .

The macro element stiffness matrix is obtained according to

ke,mac
K = Be

H

[
NH

I , NH
J

]Nnode

I,J=1
=

Nqp∑
l=1

ωKl

|Kδl |
T T
Kl

Kmic
Kl

TKl

where TKl is a micro-macro stiffness transfer operator contain-

ing micro solution vectors dh(I,xi) as columns:

where TKl = [[[dh(I,xi)]i=1,...,d]I=1,...,Nnode ],

with dh(I,xi) = (d
h(I,xi)
1,x1

, d
h(I,xi)
1,x2

, d
h(I,xi)
1,x3

, . . . , d
h(I,xi)
Mmic,x3

)T .

• Solution of the micro-problem. The Lagrange func-

tional J(dh(I,xi), λ(I,xi)) is minimized under the constraints

of macro-micro coupling and micro-periodicity. Solve for each

nodal unit displacement state (I, xi) at a macro finite element

node I in xi-direction for dh(I,xi) and λ(I,xi)[
Kmic

Kδl
GT

G 0

][
dh(I,xi)

λ(I,xi)

]
=

[
0

Gd
H(I,xi)

]
.

Matrix G contains the coupling conditions, λ(I,xi): vector

of Lagrange-multipliers, d
H(I,xi): vector of prescribed micro-

displacments from a macro unit displacement state.

• A-priori estimates in the H1- and the L2-norm

||u0 − uH ||H1(Ω) ≤ C

(
Hp +

(
h

ε

)2q
)

+ emod ,

||u0 − uH ||L2(Ω) ≤ C

(
Hp+1 +

(
h

ε

)2q
)

+ emod ,

p/q macro/micro shape function polynomial order, p = q = 1.

• Benchmark problem for optimal mic-mac refinement

Aε(x) =

[
Aε

11 35 0
35 Aε

22 0
0 0 50

]
,

Aε
11 = [500/(5 + 3.5 · sin(2πx1/ε))]

Aε
22 = [500/(5 + 3.5 · cos(2πx1/ε))]

Set h/ε = 1/Nmic, and H = l/Nmac. Nmac (Nmic) is the num-

ber of macro (micro) nodes per dimension.

Optimal convergence for minimal costs is obtained,

if Nmic = Nmac, i.e. h/ε = H in the L2-norm,

if Nmic =
√
Nmac, i.e. h/ε =

√
H in the H1-norm.

• Conclusions

(i) First FE-HMM formulation for a vector-valued field prob-

lem thus opening the door to solid mechanics.

(ii) Numerical results for the convergence order are in excellent

agreement with a priori estimates.

(iii) Optimal micro-macro uniform refinement strategies from

theory are underpinned by simulations to full extent.
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