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Abstract

We consider the two logarithmic strain measures

ωiso = ‖devn logU‖ = ‖devn log
√

FT F‖ and

ωvol = |tr(logU )| = |tr(log
√

FT F)| = |log(detU )| ,
which are isotropic invariants of the Hencky strain tensor logU , and show that
they can be uniquely characterized by purely geometric methods based on the
geodesic distance on the general linear group GL(n). Here, F is the deformation
gradient, U = √

FT F is the right Biot-stretch tensor, log denotes the principal
matrix logarithm, ‖ . ‖ is the Frobenius matrix norm, tr is the trace operator and
devn X = X − 1

n tr(X) · 1 is the n-dimensional deviator of X ∈ R
n×n . This

characterization identifies the Hencky (or true) strain tensor as the natural nonlinear
extension of the linear (infinitesimal) strain tensor ε = sym∇u, which is the
symmetric part of the displacement gradient ∇u, and reveals a close geometric
relation between the classical quadratic isotropic energy potential

μ ‖devn sym∇u‖2 + κ

2
[tr(sym∇u)]2 = μ ‖devn ε‖2 + κ

2
[tr(ε)]2

in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky
energy

μ ‖devn logU‖2 + κ

2
[tr(logU )]2 = μω2

iso + κ

2
ω2
vol ,

where μ is the shear modulus and κ denotes the bulk modulus. Our deduction
involves a new fundamental logarithmic minimization property of the orthogonal

In memory of Giuseppe Grioli (*10.4.1912 – †4.3.2015), a true paragon of rational
mechanics.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-016-1007-x&domain=pdf


508 Patrizio Neff, Bernhard Eidel & Robert J. Martin

polar factor R, where F = RU is the polar decomposition of F . We also contrast
our approach with prior attempts to establish the logarithmic Hencky strain tensor
directly as the preferred strain tensor in nonlinear isotropic elasticity.
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1. Introduction

1.1. What’s in a strain?

The concept of strain is of fundamental importance in elasticity theory. In
linearized elasticity, one assumes that the Cauchy stress tensor σ is a linear function
of the symmetric infinitesimal strain tensor

ε = sym∇u = sym(∇ϕ − 1) = sym(F − 1),

where ϕ : � → R
n is the deformation of an elastic body with a given reference

configuration � ⊂ R
n , ϕ(x) = x + u(x) with the displacement u, F = ∇ϕ is

the deformation gradient, sym∇u = 1
2 (∇u + (∇u)T ) is the symmetric part of the

displacement gradient ∇u and 1 ∈ GL+(n) is the identity tensor in the group of
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invertible tensors with positive determinant.1 In geometrically nonlinear elasticity
models, it is no longer necessary to postulate a linear connection between some
stress and some strain. However, nonlinear strain tensors are often used in order
to simplify the stress response function, and many constitutive laws are expressed
in terms of linear relations between certain strains and stresses [15,16,24] (cf.
Appendix A.2 for examples).2

There are many different definitions of exactly what the term “strain” encom-
passes: while Truesdell and Toupin [205, p. 268] consider “any uniquely invert-
ible isotropic second order tensor function of [the right Cauchy-Green deformation
tensor C = FT F]” to be a strain tensor, it is commonly assumed [106, p. 230] (cf.
[23,107,108,160]) that a (material or Lagrangian3) strain takes the form of a pri-
mary matrix functionof the rightBiot-stretch tensorU = √

FT F of the deformation
gradient F ∈ GL+(n), that is an isotropic tensor function E : Sym+(n) → Sym(n)

from the set of positive definite tensors to the set of symmetric tensors of the
form

E(U ) =
n∑

i=1

e(λi ) · ei ⊗ ei for U =
n∑

i=1

λi · ei ⊗ ei (1)

with a scale function e : (0,∞) → R, where ⊗ denotes the tensor product, λi are
the eigenvalues and ei are the corresponding eigenvectors of U . However, there
is no consensus on the exact conditions for the scale function e; Hill (cf. [107,
p. 459] and [108, p. 14]) requires e to be “suitably smooth” and monotone with
e(1) = 0 and e′(1) = 1, whereasOgden [163, p. 118] also requires e to be infinitely
differentiable and e′ > 0 to hold on all of (0,∞).

The general idea underlying these definitions is clear: strain is a measure of
deformation (that is the change in form and size) of a body with respect to a cho-
sen (arbitrary) reference configuration. Furthermore, the strain of the deformation
gradient F ∈ GL+(n) should correspond only to the non-rotational part of F . In
particular, the strain must vanish if and only if F is a pure rotation, that is if and
only if F ∈ SO(n), where SO(n) = {Q ∈ GL(n) | QT Q = 1, det Q = 1} denotes
the special orthogonal group. This ensures that the only strain-free deformations
are rigid body movements:

1 Although F is widely known as the deformation “gradient”, F = ∇ϕ = Dϕ actually
denotes the first derivative (or the Jacobian matrix) of the deformation ϕ.
2 In a short note [32], Brannon observes that “usually, a researcher will select the strain

measure for which the stress-strain curve is most linear”. In the same spirit, Bruhns [33,
p. 147] states that “we should […] always use the logarithmic Hencky strain measure in the
description of finite deformations.”. Truesdell and Noll [204, p. 347] explain: “Various
authors […] have suggested that we should select the strain [tensor] afresh for each material
in order to get a simple form of constitutive equation. […] Every invertible stress relation
T = f (B) for an isotropic elastic material is linear, trivially, in an appropriately defined,
particular strain [tensor f (B)].”
3 Similarly, a spatial orEulerian strain tensor Ê(V ) depends on the left Biot-stretch tensor

V =
√

F FT (cf. [74]).
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FT F ≡ 1 �⇒ ∇ϕ(x) = F(x) = R(x) ∈ SO(n) (2)

�⇒ ϕ(x) = Q x + b for some fixed Q ∈ SO(n), b ∈ R
n ,

where the last implication is due to the rigidity [175] inequality ‖Curl R‖2 �
c+ ‖∇ R‖2 for R ∈ SO(n) (with a constant c+ > 0), cf. [152]. A similar connection
between vanishing strain and rigid body movements holds for linear elasticity:
if ε ≡ 0 for the linearized strain ε = sym∇u, then u is an infinitesimal rigid
displacement of the form

u(x) = A x + b with fixed A ∈ so(n), b ∈ R
n ,

where so(n) = {A ∈ R
n×n : AT = −A} denotes the space of skew symmetric

matrices. This is due to the inequality ‖Curl A‖2 � c+ ‖∇ A‖2 for A ∈ so(n), cf.
[152].

In the following, we will use the term strain tensor (or, more precisely,material
strain tensor) to refer to an injective isotropic tensor function U �→ E(U ) of the
right Biot-stretch tensor U mapping Sym+(n) to Sym(n) with

E(QT U Q) = QT E(U ) Q for all Q ∈ O(n) (isotropy)

and E(U ) = 0 ⇐⇒ U = 1 ;
where O(n) = {Q ∈ GL(n) | QT Q = 1} is the orthogonal group and 1 denotes the
identity tensor. In particular, these conditions ensure that 0 = E(U ) = E(

√
FT F)

if and only if F ∈ SO(n). Note that we do not require the mapping to be of the
form (1).

Among the most common examples of material strain tensors used in nonlinear
elasticity is the Seth-Hill family4 [191]

Er (U ) =
{

1
2 r (U 2r − 1) : r ∈ R\{0}
logU : r = 0

(3)

of material strain tensors,5 which includes the Biot strain tensor E1/2(U ) = U −1,
the Green-Lagrangian strain tensor E1(U ) = 1

2 (C − 1) = 1
2 (U

2 − 1), where
C = FT F = U 2 is the right Cauchy-Green deformation tensor, the (material)
Almansi strain tensor [2] E−1(U ) = 1

2 (1− C−1) and the (material) Hencky strain
tensor E0(U ) = logU , where log : Sym+(n) → Sym(n) is the principal matrix

4 Note that logU = lim
r→0

1
2 r (U2r − 1). Many more examples of strain tensors used

throughout history can be found in [47] and [58], cf. [27, p. 132].
5 The corresponding family of spatial strain tensors

Êr (V ) =
{

1
2 r (V 2r − 1) : r �= 0
log V : r = 0

includes the Almansi-Hamel strain tensor Ê1/2(V ) = V − 1 as well as the Euler-Almansi

strain tensor Ê−1(V ) = 1
2 (1 − B−1), where B = F FT = V 2 is the Finger tensor [69].
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logarithm [105, p. 20] on the set Sym+(n) of positive definite symmetric matrices.
The Hencky (or logarithmic) strain tensor has often been considered the natural
or true strain in nonlinear elasticity [75,88,198,199]. It is also of great importance
to so-called hypoelastic models, as is discussed in [76,211] (cf. Section 4.2.1).6

A very useful approximation of the material Hencky strain tensor was given by
Bažant [17] (cf. [1,49,166]):

Ẽ1/2(U ) := 1
2 [E1/2(U ) + E−1/2(U )] = 1

2 (U − U−1). (4)

Additional motivations of the logarithmic strain tensor were also given byVal-
lée [206,207], Rougée [183, p. 302] and Murphy [142]. An extensive overview
of the properties of the logarithmic strain tensor and its applications can be found
in [210] and [155].

All strain tensors, by the definition employed here, can be seen as equivalent:
since the mapping U �→ E(U ) is injective, for every pair E, E ′ of strain tensors
there exists a mapping ψ : Sym(n) → Sym(n) such that E ′(U ) = ψ(E(U )) for
all U ∈ Sym+(n). Therefore, every constitutive law of elasticity can – in principle
– be expressed in terms of any strain tensor and no strain tensor can be inherently
superior to any other strain tensor.7 Note that this invertibility property also holds if
the definition byHill orOgden is used: if the strain is given via a scale function e, the
strict monotonicity of e implies that the mapping U �→ E(U ) is strictly monotone
[130], that is

〈E(U1) − E(U2), U1 − U2〉 > 0

6 Bruhns [37, p. 41–42] emphasizes the advantages of the Hencky strain tensor over the
other Seth-Hill strain tensors in the one-dimensional case: “The significant advantage of this
logarithmic (Hencky) measure lies in the fact that it tends to infinity as F tends to zero, thus
in a very natural way bounding the regime of applicability to the case F > 0. This behavior
can also be observed for strain [tensors] with negative exponent n. Compared with the latter,
however, the logarithmic measure also goes to infinity as F does, whereas it is evident that
for negative values of n the strain [ 1n (Fn − 1)] is bound to the limit − 1

n .
All measures with positive values of n including the Green strain share the reasonable
property of the logarithmic strain for F going to infinity. For F going to zero, however, these
measures arrive at finite values for the specific strains, e.g. at − 1

2 for n = 2, which would
mean that interpreted from physics a total compression of the rod (to zero length) is related
to a finite value of the strain. This awkward result would not agree with our observation - at
least what concerns the behavior of solid materials.”
7 According to Truesdell and Toupin [205, p. 268], “…any [tensor] sufficient to deter-

mine the directions of the principal axes of strain and the magnitude of the principal stretches
may be employed and is fully general”.Truesdell andNoll [204, p. 348] argue that there “is
no basis in experiment or logic for supposing nature prefers one strain [tensor] to another”.
Nevertheless, “[in] spite of this equivalence, one strain [tensor] may present definite tech-
nical advantages over another one” [47, p. 467]. For example, there is one and only one

spatial strain tensor Ê together with a unique objective and corotational rate d
dt

�
such that

d
dt

�
Ê = sym(Ḟ F−1) = D. Here, d

dt
� = d

dt
log

is the logarithmic rate, D is the unique rate
of stretching and Ê is the spatial Hencky strain tensor Ê0 = log V ; cf. Section 4.2.1 and
[36,86,159,211,217].
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for all U1, U2 ∈ Sym+(n) with U1 �= U2, where 〈X, Y 〉 = tr(X T Y ) denotes
the Frobenius inner product on Sym(n) and tr(X) = ∑n

i=1 Xi,i is the trace of
X ∈ R

n×n . This monotonicity in turn ensures that the mapping U �→ E(U ) is
injective.

In contrast to strain or strain tensor, we use the term strain measure to refer
to a nonnegative real-valued function ω : GL+(n) → [0,∞) depending on the
deformation gradient which vanishes if and only if F is a pure rotation, that is
ω(F) = 0 if and only if F ∈ SO(n).

Note that the terms “strain tensor” and “strain measure” are sometimes used
interchangeably in the literature (for example [108,160]). A simple example of a
strain measure in the above sense is the mapping F �→ ‖E(

√
FT F)‖ of F to an

orthogonally invariant norm of any strain tensor E .
There is a close connection between strain measures and energy functions in

isotropic hyperelasticity: an isotropic energy potential [84] is a function W depend-
ing on the deformation gradient F such that

W (F) � 0, (normalization)

W (QF) = W (F), (frame-indifference)

W (F Q) = W (F) (material symmetry: isotropy)

for all F ∈ GL+(n), Q ∈ SO(n) and

W (F) = 0 if and only if F ∈ SO(n). (stress-free reference configuration)

While every such energy function can be taken as a strain measure, many addi-
tional conditions for “proper” energy functions are discussed in the literature, such
as constitutive inequalities [11,44,106,107,127,203], generalized convexity con-
ditions [10,13] or monotonicity conditions to ensure that “stress increases with
strain” [155, Section 2.2]. Apart from that, the main difference between strain mea-
sures and energy functions is that the former are purely mathematical expressions
used to quantitatively assess the extent of strain in a deformation, whereas the lat-
ter postulate some physical behavior of materials in a condensed form: an elastic
energy potential, interpreted as the elastic energy per unit volume in the undeformed
configuration, induces a specific stress response function, and therefore completely
determines the physical behavior of the modelled hyperelastic material.8 The con-
nection between “natural” strain measures and energy functions will be further
discussed later on.

In particular, we will be interested in energy potentials which can be expressed
in terms of certain strain measures. Note carefully that, in contrast to strain tensors,
strain measures cannot simply be used interchangeably: for two different strain
measures (as defined above) ω1, ω2, there is generally no function f : R+ → R

+
such that ω2(F) = f (ω1(F)) for all F ∈ GL+(n). Compared to “full” strain
tensors, this can be interpreted as an unavoidable loss of information for strain
measures (which are only scalar quantities).

8 The specific elasticity tensor further depends on the particular choice of a strain and a
stress tensor in which to express the constitutive law.
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Sometimes a strain measure is employed only for a particular kind of defor-
mation. For example, on the group of simple shear deformations (in a fixed plane)
consisting of all Fγ ∈ GL+(3) of the form

Fγ =
( 1 γ 0
0 1 0
0 0 1

)
, γ ∈ R,

we could consider the mappings

Fγ �→ 1

2
γ 2, Fγ �→ 1√

3
|γ | or Fγ �→ 2√

3
ln

⎛

⎝γ

2
+
√

1 + γ 2

4

⎞

⎠ .

We will come back to these partial strain measures in Section 3.2.
In the following we consider the question of what strain measures are appro-

priate for the theory of nonlinear isotropic elasticity. Since, by our definition,
a strain measure attains zero if and only if F ∈ SO(n), a simple geometric
approach is to consider a distance function on the group GL+(n) of admissible
deformation gradients, that is a function dist : GL+(n) × GL+(n) → [0,∞) with
dist(A, B) = dist(B, A) which satisfies the triangle inequality and vanishes if and
only if its arguments are identical.9 Such a distance function induces a “natural”
strain measure on GL+(n) by means of the distance to the special orthogonal group
SO(n):

ω(F) := dist(F,SO(n)) := inf
Q∈SO(n)

dist(F, Q). (5)

In this way, the search for an appropriate strain measure reduces to the task of
finding a natural, intrinsic distance function on GL+(n).

1.2. The search for appropriate strain measures

The remainder of this article is dedicated to this task: after some simple (Euclid-
ean) examples in Section 2, we consider the geodesic distance onGL+(n) in Section
3. Our main result is stated in Theorem 3.3: if the distance on GL+(n) is induced
by a left-GL(n)-invariant, right-O(n)-invariant Riemannian metric on GL(n), then
the distance of F ∈ GL+(n) to SO(n) is given by

dist2geod(F,SO(n)) = dist2geod(F, R) = μ ‖devn logU‖2 + κ

2
[tr(logU )]2,

where F = RU withU = √
FT F ∈ Sym+(n) and R ∈ SO(n) is the polar decom-

position of F . Section 3 also contains some additional remarks and corollaries
which further expand upon this Riemannian strain measure.

9 A distance function is more commonly known as a metric of a metric space. The term
“distance” is used here and throughout the article in order to avoid confusion with the
Riemannian metric introduced later on.
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In Section 4, we discuss a number of different approaches towards motivating
the use of logarithmic strain measures and strain tensors, whereas applications of
our results and further research topics are indicated in Section 5.

Our main result (Theorem 3.3) has previously been announced in a Comptes
Rendus Mécanique article [148] as well as in Proceedings in Applied Mathematics
and Mechanics [149].

The idea for this paper was conceived in late 2006. However, a number of
technical difficulties had to be overcome (cf. [29,118,129,146,157]) in order to
prove our results. The completion of this article might have taken more time than
was originally foreseen, but we adhere to the old German saying: Gut Ding will
Weile haben.

2. Euclidean Strain Measures

2.1. The Euclidean strain measure in linear isotropic elasticity

An approach similar to the definition of strain measures via distance functions
onGL+(n), as stated in equation (5), can be employed in linearized elasticity theory:
let ϕ(x) = x +u(x)with the displacement u. Then the infinitesimal strain measure
may be obtained by taking the distance of the displacement gradient ∇u ∈ R

n×n to
the set of linearized rotations so(n) = {A ∈ R

n×n : AT = −A}, which is the vector
space of skew symmetric matrices.10 An obvious choice for a distance measure on
the linear space Rn×n ∼= R

n2 of n × n-matrices is the Euclidean distance induced
by the canonical Frobenius norm

‖X‖ =
√
tr(X T X) =

√
n∑

i, j=1

X2
i j .

We use the more general weighted norm defined by

‖X‖2μ,μc,κ
= μ ‖devn sym X‖2 + μc ‖skew X‖2 + κ

2
[tr(X)]2, μ, μc, κ > 0,

(6)
which separatelyweights thedeviatoric (or trace free) symmetric part devn sym X =
sym X − 1

n tr(sym X) ·1, the spherical part 1
n tr(X) ·1, and the skew symmetric part

skew X = 1
2 (X − X T ) of X ; note that ‖X‖μ,μc,κ

= ‖X‖ for μ = μc = 1, κ = 2
n ,

and that ‖ . ‖μ,μc,κ
is induced by the inner product

〈X, Y 〉μ,μc,κ = μ 〈devn sym X, devn sym Y 〉+μc 〈skew X, skew Y 〉+ κ
2 tr(X) tr(Y )

(7)

10 Note that so(n) also corresponds to the Lie algebra of the special orthogonal group
SO(n).
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Fig. 1. Scale functions er , ẽr associated with the strain tensors Er and Ẽr = 1
2 (Er − E−r )

via eigenvalue λ

on Rn×n , where 〈X, Y 〉 = tr(X T Y ) denotes the canonical inner product.11 In fact,
every isotropic inner product on R

n×n , that is every inner product 〈·, ·〉iso with

〈QT X Q, QT Y Q〉iso = 〈X, Y 〉iso

for all X, Y ∈ R
n×n and all Q ∈ O(n), is of the form (7), cf. [50]. The suggestive

choice of variables μ and κ , which represent the shear modulus and the bulk mod-
ulus, respectively, will prove to be justified later on. The remaining parameter μc

will be called the spin modulus.

Of course, the element of best approximation in so(n) to ∇u with respect to
the weighted Euclidean distance distEuclid,μ,μc,κ (X, Y ) = ‖X − Y‖μ,μc,κ

is given
by the associated orthogonal projection of ∇u to so(n), cf. Fig. 2. Since so(n) and
the space Sym(n) of symmetric matrices are orthogonal with respect to 〈·, ·〉μ,μc,κ ,
this projection is given by the continuum rotation, that is the skew symmetric part
skew∇u = 1

2 (∇u − (∇u)T ) of ∇u, the axial vector of which is curl u. Thus the

11 The family (7) of inner products on Rn×n is based on the Cartan-orthogonal decompo-
sition

gl(n) =
(
sl(n) ∩ Sym(n)

)
⊕ so(n) ⊕ R · 1

of the Lie algebra gl(n) = R
n×n . Here, sl(n) = {X ∈ gl(n) | tr X = 0} denotes the Lie

algebra corresponding to the special linear group SL(n) = {A ∈ GL(n) | det A = 1}.
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Fig. 2. The Euclidean distance dist2Euclid,μ,μc,κ
(∇u, so(n)) = μ ‖devn ε‖2 + κ

2 [tr(ε)]2 of
∇u to so(n) in R

n×n in the infinitesimal strain setting. The strain tensor ε = sym∇u is
orthogonal to the infinitesimal continuum rotation skew∇u

distance is12

distEuclid,μ,μc,κ (∇u, so(n)) := inf
A∈so(n)

‖∇u − A‖μ,μc,κ

= ‖∇u − skew∇u‖μ,μc,κ
= ‖sym∇u‖μ,μc,κ

. (8)

We therefore find

dist2Euclid,μ,μc,κ
(∇u, so(n)) = ‖sym∇u‖2μ,μc,κ

= μ ‖devn sym∇u‖2 + κ

2
[tr(sym∇u)]2

= μ ‖devn ε‖2 + κ

2
[tr(ε)]2 = Wlin(∇u)

for the linear strain tensor ε = sym∇u, which is the quadratic isotropic elastic
energy, that is the canonical model of isotropic linear elasticity with

σ = D∇u Wlin(∇u) = 2μ devn ε + κ tr(ε) · 1. (9)

This shows the aforementioned close connection of the energy potential to
geometricallymotivatedmeasures of strain. Note also that the so computed distance
to so(n) is independent of the parameter μc, the spin modulus, weighting the skew-
symmetric part in the quadratic form (6). We will encounter the (lack of) influence
of the parameter μc subsequently again.

12 The distance can also be computed directly: since

‖∇u − A‖2μ,μc,κ
= μ ‖devn sym(∇u − A)‖2 + μc ‖skew(∇u − A)‖2 + κ

2
[tr(∇u − A)]2

= μ ‖devn sym∇u‖2 + μc ‖(skew∇u) − A‖2 + κ

2
[tr(∇u)]2

for all A ∈ so(n), the infimum inf
A∈so(n)

‖∇u − A‖μ,μc,κ = μ ‖devn sym∇u‖2 +
κ
2 [tr(∇u)]2 is obviously uniquely attained at A = skew∇u.
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Fig. 3. The “flat” interpretation of GL+(n) ⊂ R
n×n endowed with the Euclidean distance.

Note that ‖F − R‖ = ‖R (U − 1)‖ = ‖U − 1‖ by orthogonal invariance of the Frobenius
norm, where F = RU is the polar decomposition of F

Furthermore, this approach motivates the symmetric part ε = sym∇u of the
displacement gradient as the strain tensor in the linear case: instead of postulating
that our strainmeasure should dependonly on ε, the above computationsdeductively
characterize ε as the infinitesimal strain tensor from simple geometric assumptions
alone.

2.2. The Euclidean strain measure in nonlinear isotropic elasticity

In order to obtain a strain measure in the geometrically nonlinear case, we must
compute the distance

dist(∇ϕ,SO(n)) = dist(F,SO(n)) = inf
Q∈SO(n)

dist(F, Q)

of the deformation gradient F = ∇ϕ ∈ GL+(n) to the actual set of pure rota-
tions SO(n) ⊂ GL+(n). It is therefore necessary to choose a distance function on
GL+(n); an obvious choice is the restriction of the Euclidean distance on R

n×n to
GL+(n). For the canonical Frobenius norm ‖ . ‖, the Euclidean distance between
F, P ∈ GL+(n) is

distEuclid(F, P) = ‖F − P‖ =
√
tr[(F − P)T (F − P)].

Now let Q ∈ SO(n). Since ‖ . ‖ is orthogonally invariant, that is ‖Q̂ X‖ =
‖X Q̂‖ = ‖X‖ for all X ∈ R

n×n , Q̂ ∈ O(n), we find

distEuclid(F, Q) = ‖F − Q‖ = ‖QT (F − Q)‖ = ‖QT F − 1‖. (10)

Thus the computation of the strain measure induced by the Euclidean distance
on GL+(n) reduces to the matrix nearness problem [104]

distEuclid(F,SO(n)) = inf
Q∈SO(n)

‖F − Q‖ = min
Q∈SO(n)

‖QT F − 1‖.
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By a well-known optimality result discovered by Giuseppe Grioli [82] (cf.
[31,83,131,151]), also called “Grioli’s Theorem” by Truesdell and Toupin [205,
p. 290], this minimum is attained for the orthogonal polar factor R.

Theorem 2.1. (Grioli’s Theorem [82,151,205]) Let F ∈ GL+(n). Then

min
Q∈SO(n)

‖QT F − 1‖ = ‖RT F − 1‖ = ‖
√

FT F − 1‖ = ‖U − 1‖,

where F = RU is the polar decomposition of F with R = polar(F) ∈ SO(n) and
U = √

FT F ∈ Sym+(n). The minimum is uniquely attained at the orthogonal
polar factor R.

Remark 2.2. The minimization property stated in Theorem 2.1 is equivalent to
[132]

max
Q∈SO(n)

tr(QT F) = max
Q∈SO(n)

〈QT F,1〉 = 〈RT F,1〉 = 〈U,1〉.

Thus for nonlinear elasticity, the restriction of the Euclidean distance to GL+(n)

yields the strain measure

distEuclid(F,SO(n)) = ‖U − 1‖.
In analogy to the linear case, we obtain

dist2Euclid(F,SO(n)) = ‖U − 1‖2 = ‖E1/2‖2, (11)

where E1/2 = U − 1 is the Biot strain tensor. Note the similarity between this
expression and the Saint-Venant-Kirchhoff energy [117]

‖E1‖2μ,μc,κ
= μ ‖dev3 E1‖2 + κ

2
[tr(E1)]2, (12)

where E1 = 1
2 (C − 1) = 1

2 (U
2 − 1) is the Green-Lagrangian strain.

The squared Euclidean distance of F to SO(n) is often used as a lower bound
for more general elastic energy potentials. Friesecke, James and Müller [78],
for example, show that if there exists a constant C > 0 such that

W (F) � C · dist2Euclid(F,SO(3)) (13)

for all F ∈ GL+(3) in a large neighborhood of 1, then the elastic energy W shows
some desirable properties which do not otherwise depend on the specific form of
W . As a starting point for nonlinear theories of bending plates, Friesecke et al. also
use the weighted squared norm

‖
√

FT F − 1‖2μ,μc,κ
= μ ‖dev3(U − 1)‖2 + κ

2
[tr(U − 1)]2

= μ ‖U − 1‖2 + λ

2
[tr(U − 1)]2,
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where λ is the first Lamé parameter, as an energy function satisfying (13). The
same energy, also called the Biot energy [150], has been recently motivated by
applications in digital geometry processing [43].

However, the resulting strainmeasureω(U ) = distEuclid(F,SO(n)) = ‖U −1‖
does not truly seem appropriate for finite elasticity theory: forU → 0 we find ‖U −
1‖ → ‖1‖ = √

n < ∞, thus singular deformations do not necessarily correspond
to an infinite measure ω. Furthermore, the above computations are not compatible
with the weighted norm introduced in Section 2.1: in general [70,71,150],

min
Q∈SO(n)

‖F − Q‖2μ,μc,κ
�= min

Q∈SO(n)
‖QT F − 1‖2μ,μc,κ

�= ‖
√

FT F − 1‖2μ,μc,κ
,

(14)
thus the Euclidean distance of F to SO(n) with respect to ‖ . ‖μ,μc,κ

does not equal

‖√FT F − 1‖μ,μc,κ
in general. In these cases, the element of best approximation

is not the orthogonal polar factor R = polar(F).
In fact, the expression on the left-hand side of (14) is not even well defined

in terms of linear mappings F and Q [150]: the deformation gradient F = ∇ϕ

at a point x ∈ � is a two-point tensor and hence, in particular, a linear mapping
between the tangent spaces Tx� and Tϕ(x)ϕ(�). Since taking the norm

‖X‖μ,μc,κ
= μ ‖devn sym X‖2 + μc ‖skew X‖2 + κ

2
[tr(X)]2

of X requires the decomposition of X into its symmetric and its skew symmetric
part, it is only well defined if X is an endomorphism on a single linear space.13

Therefore ‖F − Q‖μ,μc,κ
, while being a valid expression for arbitrary matrices

F, Q ∈ R
n×n , is not an admissible term in the setting of finite elasticity.

We also observe that the Euclidean distance is not an intrinsic distance measure
on GL+(n): in general, A − B /∈ GL+(n) for A, B ∈ GL+(n), hence the term
‖A − B‖ depends on the underlying linear structure of Rn×n . Since it is not a
closed subset of Rn×n , GL+(n) is also not complete with respect to distEuclid; for
example, the sequence

( 1
n · 1)n∈N is a Cauchy sequence which does not converge.

Most importantly, because GL+(n) is not convex, the straight line {A + t (B −
A) | t ∈ [0, 1]} connecting A and B is not necessarily contained14 inGL+(n), which
shows that the characterization of the Euclidean distance as the length of a shortest
connecting curve is also not possible in a way intrinsic to GL+(n), as the intuitive
sketches in Figs. 4 and 5 indicate.15

13 If X : V1 → V2 is a mapping between two different linear spaces V1, V2, then X T is a
mapping from V2 to V1, hence sym X = 1

2 (X + X T ) is not well-defined.
14 The straight line connecting F ∈ GL+(n) to its orthogonal polar factor R (that is the
shortest connecting line from F to SO(n)), however, lies in GL+(n), which easily follows
from the convexity of Sym+(n): for all t ∈ [0, 1], t U + (1 − t)1 ∈ Sym+(n) and thus

R + t (F − R) = R (t U + (1 − t)1) ∈ R · Sym+(n) ⊂ GL+(n).

15 Note that the representation of GL+(n) as a sphere only serves to visualize the curved
nature of themanifold and that further geometric properties of GL+(n) should not be inferred
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Fig. 4. The Euclidean distance as an extrinsic measure on GL+(n)

AGL+(n) B
dist2euclid(A,B) = ‖A − B‖2

dist2geod(A,B)

Fig. 5. The geodesic (intrinsic) distance compared to the Euclidean (extrinsic) distance

These issues amplydemonstrate that theEuclideandistance canonlybe regarded
as an extrinsic distance measure on the general linear group. We therefore need to
expand our view to allow for a more appropriate, truly intrinsic distance measure
on GL+(n).

3. The Riemannian Strain Measure in Nonlinear Isotropic Elasticity

3.1. GL+(n) as a Riemannian manifold

In order to find an intrinsic distance function on GL+(n) that alleviates the
drawbacks of the Euclidean distance,we endowGL(n)with aRiemannian metric.16

Such a metric g is defined by an inner product

gA : TA GL(n) × TA GL(n) → R

on each tangent space TA GL(n), A ∈ GL(n). Then the length of a sufficiently
smooth curve γ : [0, 1] → GL(n) is given by

L(γ ) =
∫ 1

0

√
gγ (t)(γ̇ (t), γ̇ (t)) dt,

Footnote 15 continued
from the figures. In particular, GL+(n) is not compact and the geodesics are generally not
closed.
16 For technical reasons, we define g on all of GL(n) instead of its connected component
GL+(n); for more details, we refer to [129], where amore thorough introduction to geodesics
on GL(n) can be found. Of course, our strain measure depends only on the restriction of g
to GL+(n).
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Fig. 6. The shortest connecting (geodesic) curves in GL+(n) with respect to the Euclidean
metric are straight lines, thus not every pair A, B ∈ GL+(n) can be connected by curves of
minimal length. The length of the straight line γ : t �→ A + t (B − A) connecting A to B is

given by
∫ 1
0

√
ǧγ (t)(γ̇ (t), γ̇ (t)) dt = ‖B − A‖, whereas the curve γ̂ connecting A to C is

not contained in GL+(n); its length is therefore not well defined

where γ̇ (t) = d
dt γ (t), and the geodesic distance (cf. Fig. 5) between A, B ∈

GL+(n) is defined as the infimum over the lengths of all (twice continuously dif-
ferentiable) curves connecting A to B:

distgeod(A, B) = inf{L(γ ) | γ ∈ C2([0, 1];GL+(n)), γ (0) = A, γ (1) = B}.
Our search for an appropriate strain measure is thereby reduced to the task of

finding an appropriate Riemannian metric on GL(n). Although it might appear as
an obvious choice, the metric ǧ with

ǧA(X, Y ) := 〈X, Y 〉 for all A ∈ GL+(n), X, Y ∈ R
n×n (15)

provides no improvement over the already discussedEuclidean distance onGL+(n):
since the length of a curve γ with respect to ǧ is the classical (Euclidean) length

L(γ ) =
∫ 1

0

√
ǧγ (t)(γ̇ (t), γ̇ (t)) dt =

∫ 1

0
‖γ̇ (t)‖ dt,

the shortest connecting curves with respect to ǧ are straight lines of the form
t �→ A + t (B − A) with A, B ∈ GL+(n). Locally, the geodesic distance induced
by ǧ is therefore equal to the Euclidean distance. However, as discussed in the
previous section, not all straight lines connecting arbitrary A, B ∈ GL+(n) are
contained within GL+(n), thus length minimizing curves with respect to ǧ do not
necessarily exist (cf. Fig. 6). Many of the shortcomings of the Euclidean distance
therefore apply to the geodesic distance induced by ǧ as well.

In order to find a more viable Riemannian metric g on GL(n), we consider the
mechanical interpretation of the induced geodesic distance distgeod: while our focus
lies on the strainmeasure induced by g, that is the geodesic distance of the deforma-
tion gradient F to the special orthogonal group SO(n), the distance distgeod(F1, F2)

between two deformation gradients F1, F2 can also be motivated directly as a mea-
sure of difference between two linear (or homogeneous) deformations F1, F2 of the
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Fig. 7. The distance dist(ϕ1, ϕ2) := ∫
� distgeod(∇ϕ1(x),∇ϕ2(x)) dx measures how much

two deformationsϕ1, ϕ2 of a body� differ from each other via integration over the pointwise
geodesic distances between ∇ϕ1(x) and ∇ϕ2(x)

same body �. More generally, we can define a difference measure between two
inhomogeneous deformations ϕ1, ϕ2 : � ⊂ R

n → R
n via

dist(ϕ1, ϕ2) :=
∫

�

distgeod(∇ϕ1(x),∇ϕ2(x)) dx (16)

under suitable regularity conditions for ϕ1, ϕ2 (example if ϕ1, ϕ2 are sufficiently
smooth with det∇ϕi > 0 up to the boundary). This extension of the distance to
inhomogeneous deformations is visualized in Fig. 7.

In order to find an appropriate Riemannian metric g on GL(n), we must discuss
the required properties of this “difference measure”. First, the requirements of
objectivity (left-invariance) and isotropy (right-invariance) suggest that the metric
g should be bi-O(n)-invariant, that is satisfy

gQ A(Q X, QY ) = gA(X, Y )
︸ ︷︷ ︸

objectivity

isotropy︷ ︸︸ ︷
= gAQ(X Q, Y Q) (17)

for all Q ∈ O(n), A ∈ GL(n) and X, Y ∈ TA GL(n), to ensure that distgeod(A, B) =
distgeod(Q A, Q B) = distgeod(A Q, B Q).

However, these requirements donot sufficiently determine a specificRiemannian
metric. For example, (17) is satisfied by themetric ǧ defined in (15) as well as by the
metric ˇ̌g with ˇ̌g A(X, Y ) = 〈AT X, AT Y 〉. In order to rule out unsuitable metrics,
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Fig. 8. The distance between two deformations should not be changed by the composition
with an additional homogeneous transformation B: dist(ϕ1, ϕ2) = dist(B · ϕ1, B · ϕ2)

we need to impose further restrictions on g. If we consider the distance measure
dist(ϕ1, ϕ2) between two deformations ϕ1, ϕ2 introduced in (16), a number of fur-
ther invariances can be motivated: if we require that the distance is not changed by
the superposition of a homogeneous deformation, that is that

dist(B · ϕ1, B · ϕ2) = dist(ϕ1, ϕ2)

for all constant B ∈ GL(n), then g must be left-GL(n)-invariant, that is

gB A(B X, B Y ) = gA(X, Y ) (18)

for all A, B ∈ GL(n) and X, Y ∈ TA GL(n). The physical interpretation of this
invariance requirement is readily visualized in Fig. 8.

It can easily be shown [129] that aRiemannianmetric g is left-GL(n)-invariant17

as well as right-O(n)-invariant if and only if g is of the form

gA(X, Y ) = 〈A−1X, A−1Y 〉μ,μc,κ , (19)

where 〈·, ·〉μ,μc,κ is thefixed inner product on the tangent spacegl(n) = T1GL(n) =
R

n×n at the identity with

〈X, Y 〉μ,μc,κ =μ 〈devn sym X, devn sym Y 〉+μc〈skew X, skew Y 〉+ κ
2 tr(X) tr(Y )

(20)

for constant positive parameters μ,μc, κ > 0, and where 〈X, Y 〉 = tr(X T Y )

denotes the canonical inner product on gl(n) = R
n×n .18 A Riemannian metric

g defined in this way behaves in the same way on all tangent spaces: for every

17 Of course, the left-GL(n)-invariance of a metric also implies the left-O(n)-invariance.
18 If μ = μc = 1 and κ = 2

n , then the inner product 〈·, ·〉μ,μc,κ is the canonical inner
product, and the corresponding metric g is the canonical left-invariant metric on GL(n)with
gA(X, Y ) = 〈A−1X, A−1Y 〉 = tr(X T A−T A−1Y ). Note that this metric differs from the
trace metric g̃A(X, Y ) = tr(A−1X A−1Y ), cf. [55].
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Fig. 9. A left-GL(n)-invariant Riemannian metric on GL(n) transforms the tangent space at
A ∈ GL+(n) to the tangent space T1 GL+(n) = gl(n) at the identity and applies a fixed inner
product on gl(n) to the transformed tangents. Thus no tangent space is treated preferentially

A ∈ GL+(n), g transforms the tangent space TA GL+(n) at A to the tangent space
T1 GL+(n) = gl(n) at the identity via the left-hand multiplication with A−1 and
applies the fixed inner product 〈·, ·〉μ,μc,κ on gl(n) to the transformed tangents, cf.
Fig. 9.

In the following, we will always assume that GL(n) is endowed with a Rie-
mannian metric of the form (19) unless indicated otherwise.

In order to find the geodesic distance

distgeod(F,SO(n)) = inf
Q∈SO(n)

distgeod(F, Q)

of F ∈ GL+(n) to SO(n), we need to consider the geodesic curves on GL+(n). It
has been shown [5,87,129,134] that every geodesic on GL+(n) with respect to the
left-GL(n)-invariant Riemannian metric induced by the inner product (20) is of the
form

γ
ξ
F (t) = F exp(t (sym ξ − μc

μ
skew ξ)) exp(t (1 + μc

μ
) skew ξ) (21)

with F ∈ GL+(n) and some ξ ∈ gl(n), where exp denotes thematrix exponential.19

These curves are characterized by the geodesic equation

19 The mapping ξ �→ expgeod(ξ) := γ
ξ
F (1) = F exp(sym ξ − μc

μ skew ξ) exp((1 +
μc
μ ) skew ξ) is also known as the geodesic exponential function at F . Note that in general

expgeod(ξ) �= F · exp(ξ) if ξ is not normal (that is if ξξT �= ξT ξ ), thus the geodesic
curves are generally not one-parameter groups of the form t �→ F exp(t ξ), in contrast to
bi-invariant metrics on Lie groups (for example SO(n)with the canonical bi-invariant metric
[136]).
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Fig. 10. The Lagrangian and the Eulerian point of view are equivalently represented by the
geodesic strain measure: distgeod(F,SO(n)) = distgeod(F−1, SO(n))

ζ̇ = μ+μc
2μ (ζ T ζ − ζ ζ T ), ζ := γ −1γ̇ . (22)

Since the geodesic curves are defined globally, GL+(n) is geodesically complete
with respect to the metric g. We can therefore apply the Hopf-Rinow theorem
[111,129] to find that for all F, P ∈ GL+(n) there exists a length minimizing
geodesic γ

ξ
F connecting F and P . Without loss of generality, we can assume that

γ
ξ
F is defined on the interval [0, 1]. Then the end points of γ

ξ
F are

γ
ξ
F (0)= F and P =γ

ξ
F (1)= F exp(sym ξ− μc

μ
skew ξ) exp((1+ μc

μ
) skew ξ),

and the length of the geodesic γ
ξ
F starting in F with initial tangent F ξ ∈ TF GL+(n)

(cf. (21) and Fig. 11) is given by [129]

L(γ
ξ
F ) = ‖ξ‖μ,μc,κ

.

The geodesic distance between F and P can therefore be characterized as

distgeod(F, P) = min{‖ξ‖μ,μc,κ
| ξ ∈ gl(n) : γ

ξ
F (1) = P},

that is the minimum of ‖ξ‖μ,μc,κ
over all ξ ∈ gl(n) which connect F and P , that

is satisfy

exp(sym ξ − μc
μ
skew ξ) exp((1 + μc

μ
) skew ξ) = F−1P. (23)

Although some numerical computations have been employed [216] to approxi-
mate the geodesic distance in the special case of the canonical left-GL(n)-invariant
metric, that is for μ = μc = 1, κ = 2

n , there is no known closed form solution to
the highly nonlinear system (23) in terms of ξ for given F, P ∈ GL+(n) and thus
no known method of directly computing distgeod(F, P) in the general case exists.
However, this parametrization of the geodesic curves will still allow us to obtain a
lower bound on the distance of F to SO(n).
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Fig. 11. The geodesic (intrinsic) distance to SO(n); neither the element Q̂ of best approx-
imation nor the initial tangent F ξ ∈ TF GL+(n) of the connecting geodesic is known
beforehand

3.2. The geodesic distance to SO(n)

Having defined the geodesic distance on GL+(n), we can now consider the
geodesic strain measure, which is the geodesic distance of the deformation gradient
F to SO(n):

distgeod(F,SO(n)) = inf
Q∈SO(n)

distgeod(F, Q). (24)

Without explicit computation of this distance, the left-GL(n)-invariance and
the right-O(n)-invariance of the metric g immediately allow us to show the inverse
deformation symmetry of the geodesic strain measure:

distgeod(F, SO(n))= inf
Q∈SO(n)

distgeod(F, Q) = inf
Q∈SO(n)

distgeod(F−1F, F−1Q)

= inf
Q∈SO(n)

distgeod(1, F−1Q)= inf
Q∈SO(n)

distgeod(QT Q, F−1Q)

= inf
Q∈SO(n)

distgeod(QT , F−1)= distgeod(F−1,SO(n)). (25)

This symmetry property demonstrates at once that theEulerian (spatial) and the
Lagrangian (referential) points of view are equivalent with respect to the geodesic
strain measure: in the Eulerian setting, the inverse F−1 of the deformation gradi-
ent appears more naturally, whereas F is used in the Lagrangian frame (cf. Fig.
10).20 Equality (25) shows that both points of view can equivalently be taken if the
geodesic strain measure is used. As we will see later on (Remark 3.5), the equality
distgeod(B,SO(n)) = distgeod(C,SO(n)) also holds for the right Cauchy-Green
deformation tensor C = FT F = U 2 and the Finger tensor B = F FT = V 2,

20 Note that Cauchy originally introduced the tensors C−1 and B−1 in his investigations
of the nonlinear strain [41,42,77,183], where C = FT F = U2 is the right Cauchy-Green
deformation tensor [77,81] and B = F FT = V 2 is the Finger tensor. Piola also formulated
an early nonlinear elastic law in terms of C−1, cf. [204, p. 347].
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further indicating the independence of the geodesic strain measure from the chosen
frame of reference. This property is, however, not unique to geodesic (or logarith-
mic) strain measures; for example, the Frobenius norm

‖Ẽ1/2(U )‖ = 1
2‖U − U−1‖ = 1

2‖V − V −1‖
of the Bažant approximation Ẽ1/2 = 1

2 (U − U−1), cf. (4) and [17], which can
be considered a “quasilogarithmic” strain measure, fulfils the inverse deformation
symmetry aswell.21 However, it is not satisfied for the Euclidean distance to SO(n):
in general,

‖U − 1‖ = distEuclid(F,SO(n)) �= distEuclid(F−1,SO(n)) = ‖V −1 − 1‖. (26)

Now, let F = RU denote the polar decomposition of F with U ∈ Sym+(n)

and R ∈ SO(n). In order to establish a simple upper bound on the geodesic dis-
tance distgeod(F,SO(n)), we construct a particular curve γR connecting F to its
orthogonal factor R ∈ SO(n) and compute its length L(γR). For

γR(t) := R exp((1 − t) logU ),

where logU ∈ Sym(n) is the principal matrix logarithm of U , we find

γR(0) = R exp(logU ) = RU = F and γR(1) = R exp(0) = R ∈ SO(n).

It is easy to confirm that γR is in fact a geodesic as given in (21) with ξ = logU ∈
Sym(n). Since

γ −1
R (t)γ̇R(t) = (R exp((1 − t) logU ))−1 R exp((1 − t) logU ) · (− logU )

= − logU,

the length of γR is given by

L(γR) =
∫ 1

0

√
gγR(t)(γ̇R(t), γ̇R(t)) dt (27)

=
∫ 1

0

√
〈γR(t)−1γ̇R(t), γR(t)−1γ̇R(t)〉μ,μc,κ dt

=
∫ 1

0

√〈− logU,− logU 〉μ,μc,κ dt =
∫ 1

0
‖logU‖μ,μc,κ

dt

= ‖logU‖μ,μc,κ
.

We can thereby establish the upper bound

dist2geod(F,SO(n)) = inf
Q∈SO(n)

dist2geod(F, Q) � dist2geod(F, R) (28)

� L2(γR) = ‖logU‖2μ,μc,κ

= μ ‖devn logU‖2 + κ

2
[tr(logU )]2 (29)

21 The quantity 1√
2
‖U − U−1‖ is suggested as a measure of strain magnitude by Trues-

dell and Toupin [205, p. 266].
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for the geodesic distance of F to SO(n).
Our task in the remainder of this section is to show that the right hand side of

inequality (29) is also a lower bound for the (squared) geodesic strain measure,
that is that, altogether,

dist2geod(F,SO(n)) = μ ‖devn logU‖2 + κ

2
[tr(logU )]2.

However, while the orthogonal polar factor R is the element of best approxi-
mation in the Euclidean case (for μ = μc = 1, κ = 2

n ) due to Grioli’s Theorem,
it is not clear whether R is indeed the element in SO(n) with the shortest geodesic
distance to F (and thus whether equality holds in (28)). Furthermore, it is not even
immediately obvious that the geodesic distance between F and R is actually given
by the right hand side of (29), since a shorter connecting geodesic might exist [and
hence inequality might hold in (29)].

Nonetheless, the following fundamental logarithmic minimization property of
the orthogonal polar factor, combined with the computations in Section 3.1, allows
us to show that (29) is indeed also a lower bound for distgeod(F,SO(n)).22

Proposition 3.1. Let F = R
√

FT F be the polar decomposition of F ∈ GL+(n)

with R ∈ SO(n) and let ‖ . ‖ denote the Frobenius norm on R
n×n. Then

inf
Q∈SO(n)

‖sym Log(QT F)‖ = ‖sym log(RT F)‖ = ‖log
√

FT F‖,

where

inf
Q∈SO(n)

‖sym Log(QT F)‖:= inf
Q∈SO(n)

inf{‖sym X‖ | X ∈R
n×n, exp(X)= QT F}

is defined as the infimum of ‖sym . ‖ over “all real matrix logarithms” of QT F.

Proposition 3.1, which can be seen as the natural logarithmic analogue of Gri-
oli’s Theorem (cf. Section 2.2), was first shown for dimensions n = 2, 3 byNeff et
al. [157] using the so-called sum-of-squared-logarithms inequality [29,30,48,171].
A generalization to all unitarily invariant norms and complex logarithms for arbi-
trary dimension was given by Lankeit, Neff and Nakatsukasa [118]. We also
require the following corollary involving the weighted Frobenius norm, which is
not orthogonally invariant.23

22 Of course, the application of such minimization properties to elasticity theory has a long
tradition: Leonhard Euler, in the appendix “De curvis elasticis” to his 1744 book “Methodus
inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis
isoperimetrici latissimo sensu accepti” [62,165], already proclaimed that “[…] since the
fabric of the universe is most perfect, and is the work of a most wise creator, nothing
whatsoever takes place in the universe in which some rule of maximum and minimum does
not appear.”
23 While ‖QT X Q‖μ,μc,κ = ‖X‖μ,μc,κ for all X ∈ R

n×n and Q ∈ O(n), the orthogonal
invariance requires the equalities ‖Q X‖μ,μc,κ = ‖X Q‖μ,μc,κ = ‖X‖μ,μc,κ , which do not
hold in general.
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Corollary 3.2. Let

‖X‖2μ,μc,κ
= μ ‖devn sym X‖2 + μc ‖skew X‖2 + κ

2
[tr(X)]2, μ, μc, κ > 0,

for all X ∈ R
n×n, where ‖ . ‖ is the Frobenius matrix norm. Then

inf
Q∈SO(n)

‖sym Log(QT F)‖μ,μc,κ
= ‖log

√
FT F‖μ,μc,κ

.

Proof. We first note that the equality det exp(X) = etr(X) holds for all X ∈ R
n×n .

Since det Q = 1 for all Q ∈ SO(n), this implies that for all X ∈ R
n×n with

exp(X) = QT F ,

tr(sym X) = tr(X) = ln(det(exp(X))) = ln(det(QT F)) = ln(det F).

Therefore24

‖sym X‖2μ,μc,κ
= μ ‖devn sym X‖2 + κ

2
[tr(sym X)]2

= μ ‖sym X‖2 + n κ − 2μ

2n
[tr(sym X)]2

= μ ‖sym X‖2 + n κ − 2μ

2n
(ln(det F))2

and finally

inf
Q∈SO(n)

‖sym Log(QT F)‖2μ,μc,κ

= inf
Q∈SO(n)

inf{‖sym X‖2μ,μc,κ
| X ∈ R

n×n, exp(X) = QT F}

= inf
Q∈SO(n)

inf{μ ‖sym X‖2 + n κ − 2μ

2n
(ln(det F))2 | X ∈ R

n×n, exp(X) = QT F}

= μ inf
Q∈SO(n)

inf{‖sym X‖2 | X ∈ R
n×n, exp(X) = QT F} + n κ − 2μ

2n
(ln(det F))2

= μ‖log
√

FT F‖2 + n κ − 2μ

2n
(ln(det F))2

= μ‖log
√

FT F‖2 + n κ − 2μ

2n
[tr(log

√
FT F)]2

= μ ‖devn log
√

FT F‖2 + κ

2
[tr(log

√
FT F)]2 = ‖log

√
FT F‖2μ,μc,κ

. (30)

��
Note that Corollary 3.2 also implies the slightly weaker statement

inf
Q∈SO(n)

‖Log(QT F)‖μ,μc,κ
= ‖log

√
FT F‖μ,μc,κ

by using the simple estimate ‖X‖2μ,μc,κ
� ‖sym X‖2μ,μc,κ

.
We are now ready to prove our main result.

24 Observe that μ ‖devn Y‖2 + κ
2 [tr(Y )]2 = μ ‖Y‖2 + n κ−2μ

2n [tr(Y )]2 for all Y ∈ R
n×n .
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Theorem 3.3. Let g be the left-GL(n)-invariant, right-O(n)-invariant Riemannian
metric on GL(n) defined by

gA(X, Y ) = 〈A−1X, A−1Y 〉μ,μc,κ , μ, μc, κ > 0,

for A ∈ GL(n) and X, Y ∈ R
n×n, where

〈X, Y 〉μ,μc,κ =μ 〈devn sym X, devn sym Y 〉+μc〈skew X, skew Y 〉+ κ
2 tr(X) tr(Y ).

(31)
Then for all F ∈ GL+(n), the geodesic distance of F to the special orthogonal

group SO(n) induced by g is given by

dist2geod(F,SO(n)) = μ ‖devn logU‖2 + κ

2
[tr(logU )]2, (32)

where log is the principal matrix logarithm, tr(X) = ∑n
i=1 Xi,i denotes the trace

and devn X = X − 1
n tr(X) · 1 is the n-dimensional deviatoric part of X ∈ R

n×n.
The orthogonal factor R ∈ SO(n) of the polar decomposition F = RU is the
unique element of best approximation in SO(n), that is

distgeod(F,SO(n)) = distgeod(F, R) = distgeod(RT F,1) = distgeod(U,1).

In particular, the geodesic distance does not depend on the spin modulus μc.

Remark 3.4. (Uniqueness of themetric)We remark oncemore that theRiemannian
metric considered in Theorem 3.3 is not chosen arbitrarily: every left-GL(n)-
invariant, right-O(n)-invariant Riemannian metric on GL(n) is of the form given
in (31) for some choice of parameters μ,μc, κ > 0 [129].

Remark 3.5. Since the weighted Frobenius norm on the right hand side of equation
(32) only depends on the eigenvalues of U = √

FT F , the result can also be
expressed in terms of the left Biot-stretch tensor V = √

F FT , which has the
same eigenvalues as U :

dist2geod(F,SO(n)) = μ ‖devn log V ‖2 + κ

2
[tr(log V )]2. (33)

Applying the above formula to the case F = P with P ∈ Sym+(n), we find√
PT P = √

P PT = P and therefore

dist2(P,SO(n)) = dist2(P, 1) = μ ‖devn log P‖2 + κ

2
[tr(log P)]2, (34)

since1 is the orthogonal polar factor of P . For the tensorsU andV , the rightCauchy-
Green deformation tensorC = FT F = U 2 and the Finger tensor B = F FT = V 2,
we thereby obtain the equalities

distgeod(B,SO(n)) = distgeod(B, 1) = distgeod(B−1, 1) (35)

= distgeod(C, 1) = distgeod(C
−1, 1) = distgeod(C,SO(n))

and distgeod(V,SO(n)) = distgeod(V, 1) = distgeod(V −1, 1) (36)

= distgeod(U, 1) = distgeod(U
−1, 1) = distgeod(U,SO(n)).
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Note carefully that, although (34) for P ∈ Sym+(n) immediately follows from
Theorem 3.3, it is not trivial to compute the distance distgeod(P, 1) directly: while
the curve given by exp(t log P) for t ∈ [0, 1] is in fact a geodesic [87] connecting
1 to P with squared length μ ‖devn log P‖2 + κ

2 [tr(log P)]2, it is not obvious
whether or not a shorter connecting geodesic might exist. Our result ensures that
this is in fact not the case.

Proof. (Proof of Theorem 3.3) Let F ∈ GL+(n) and Q̂ ∈ SO(n). Then according
to our previous considerations (cf. Section 3.1) there exists ξ ∈ gl(n) with

exp(sym ξ − μc
μ
skew ξ) exp((1 + μc

μ
) skew ξ) = F−1 Q̂ (37)

and

‖ξ‖μ,μc,κ
= distgeod(F, Q̂). (38)

In order to find a lower estimate on ‖ξ‖μ,μc,κ
(and thus on distgeod(F, Q̂)), we

compute

exp(sym ξ − μc
μ
skew ξ) exp((1 + μc

μ
) skew ξ)= F−1 Q̂

�⇒ exp((1+ μc
μ

) skew ξ)−1 exp(sym ξ − μc
μ
skew ξ)−1 = Q̂T F

�⇒ exp(− sym ξ+ μc
μ
skew ξ)=exp( (1+ μc

μ
) skew ξ

︸ ︷︷ ︸
∈so(n)

) Q̂T F.

Since exp(W ) ∈ SO(n) for all skew symmetric W ∈ so(n), we find

exp(− sym ξ + μc
μ
skew ξ

︸ ︷︷ ︸
=:Y

) = QT
ξ F (39)

with Qξ = Q̂ exp(−(1 + μc
μ

) skew ξ ) ∈ SO(n); note that sym Y = − sym ξ .

According to (39), Y = − sym ξ + μc
μ
skew ξ is “a logarithm” of QT

ξ F .25 The

weighted Frobenius norm of the symmetric part of Y = − sym ξ + μc
μ
skew ξ is

therefore bounded below by the infimum of ‖sym X‖μ,μc,κ
over “all logarithms”

X of QT
ξ F :

‖sym ξ‖μ,μc,κ
= ‖sym Y‖μ,μc,κ

(39)
� inf{‖sym X‖μ,μc,κ

| X ∈ R
n×n, exp(X) = QT

ξ F}
� inf

Q∈SO(n)
inf{‖sym X‖μ,μc,κ

| X ∈ R
n×n, exp(X) = QT F}

= inf
Q∈SO(n)

‖sym Log(QT F)‖μ,μc,κ
. (40)

25 Loosely speaking, we use the term “a logarithm of A ∈ GL+(n)” to denote any (real)
solution X of the matrix equation exp X = A.
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We can now apply Corollary 3.2 to find

dist2geod(F, Q̂) = ‖ξ‖2μ,μc,κ
= μ ‖devn sym ξ‖2 + μc ‖skew ξ‖2 + κ

2
[tr(sym ξ)]2

� μ ‖devn sym ξ‖2 + κ

2
[tr(sym ξ)]2

= ‖sym ξ‖2μ,μc,κ

(40)
� inf

Q∈SO(n)
‖sym Log(QT F)‖2μ,μc,κ

Corollary 3.2= μ ‖log
√

FT F‖2μ,μc,κ

= μ ‖devn logU‖2 + κ

2
[tr(logU )]2 (41)

for U = √
FT F . Since this inequality is independent of Q̂ and holds for all

Q̂ ∈ SO(n), we obtain the desired lower bound

dist2geod(F,SO(n)) = inf
Q̂∈SO(n)

dist2geod(F, Q̂) � μ ‖devn logU‖2 + κ

2
[tr(logU )]2

on the geodesic distance of F to SO(n). Together with the upper bound

dist2geod(F,SO(n)) � dist2geod(F, R) � μ ‖devn logU‖2 + κ

2
[tr(logU )]2

already established in (29), we finally find

dist2geod(F,SO(n)) = dist2geod(F, R) = μ ‖devn logU‖2 + κ

2
[tr(logU )]2. (42)

By equation (42), apart from computing the geodesic distance of F to SO(n),
we have shown that the orthogonal polar factor R = polar(F) is an element of
best approximation to F in SO(n). However, it is not yet clear whether there exists
another element of best approximation, that is whether there is a Q̂ ∈ SO(n) with
Q̂ �= R and distgeod(F, Q̂) = distgeod(F, R) = distgeod(F,SO(n)). For this pur-
pose, we need to compare geodesic distances corresponding to different parameters
μ,μc, κ . We therefore introduce the following notation: for fixed μ,μc, κ > 0, let
distgeod,μ,μc,κ denote the geodesic distance on GL+(n) induced by the left-GL(n)-
invariant, right-O(n)-invariant Riemannian metric g [as introduced in (19)] with
parametersμ,μc, κ . Furthermore, the length of a curve γ with respect to thismetric
will be denoted by Lμ,μc,κ (γ ).

Assume that Q̂ ∈ SO(n) is an element of best approximation to F with respect
to g for some fixed parametersμ,μc, κ > 0. Then there exists a length minimizing
geodesic γ : [0, 1] → GL+(n) connecting Q̂ to F of the form

γ (t) = Q̂ exp(t (sym ξ − μc
μ
skew ξ)) exp(t (1 + μc

μ
) skew ξ)

with ξ ∈ R
n×n , and the length of γ is given by

L2
μ,μc,κ

(γ ) = ‖ξ‖2μ,μc,κ
= μ ‖devn sym ξ‖2 + μc ‖skew ξ‖2 + κ

2
[tr(ξ)]2.
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We first assume that skew ξ �= 0. We choose μ̃c > 0 with μ̃c < μc and find

dist2geod,μ,μ̃c,κ
(F,SO(n)) = inf

Q∈SO(n)
dist2geod,μ,μ̃c,κ

(F, Q) (43)

� dist2geod,μ,μ̃c,κ
(F, Q̂) � L2

μ,μ̃c,κ
(γ ),

since γ is a curve connecting F to Q̂ ∈ SO(n); note that although γ is a shortest
connecting geodesic with respect to parameters μ,μc, κ by assumption, it need
not necessarily be a length minimizing curve with respect to parameters μ, μ̃c, κ .
Obviously, ‖ξ‖μ,μ̃c,κ

< ‖ξ‖μ,μc,κ
if skew ξ �= 0, and therefore

L2
μ,μ̃c,κ

(γ ) = ‖ξ‖2μ,μ̃c,κ
< ‖ξ‖2μ,μc,κ

= L2
μ,μc,κ

(γ ) = dist2geod,μ,μc,κ
(F, Q̂).

(44)

By assumption, Q̂ is an element of best approximation to F in SO(n) for parameters
μ,μc, κ , thus

dist2geod,μ,μc,κ
(F, Q̂) = dist2geod,μ,μc,κ

(F,SO(n)) (45)

= μ ‖devn logU‖2 + κ

2
[tr(logU )]2

= dist2geod,μ,μ̃c,κ
(F,SO(n)),

where the last equality utilizes the fact that the distance from F to SO(n) is inde-
pendent of the second parameter (μc or μ̃c). Combining (43), (44) and (45), we
thereby obtain the contradiction

dist2geod,μ,μ̃c,κ
(F,SO(n)) � L2

μ,μ̃c,κ
(γ ) < dist2geod,μ,μc,κ

(F, Q̂)

= dist2geod,μ,μ̃c,κ
(F,SO(n)),

hence we must have skew ξ = 0. But then

γ (1) = Q̂ exp(sym ξ − μc
μ
skew ξ) exp((1 + μc

μ
) skew ξ) = Q̂ exp(sym ξ),

and since exp(sym ξ) ∈ Sym+(n), the uniqueness of the polar decomposition
F = RU yields exp(sym ξ) = U and, finally, Q̂ = R. ��

The fact that the orthogonal polar factor R = polar(F) is the unique element of
best approximation to F in SO(n)with respect to the geodesic distance corresponds
directly to the linear case [cf. equality (8) in Section 2.1], where the skew symmetric
part skew∇u of the displacement gradient∇u is the element of best approximation
with respect to the Euclidean distance: for F = 1 + ∇u we have

U = 1 + sym∇u + O(‖∇u‖2) and R = 1 + skew∇u + O(‖∇u‖2),
hence the linear approximation of the orthogonal and the positive definite factor
in the polar decomposition is given by skew∇u and sym∇u, respectively. The
geometric connection between the geodesic distance on GL+(n) and the Euclidean
distance on the tangent space Rn×n = gl(n) at 1 is illustrated in Fig. 12.
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Fig. 12. The isotropic Hencky energy of F measures the geodesic distance between F and
SO(n). The linear Euclidean strain measure is obtained as the linearization via the tangent
space gl(n) at 1

Remark 3.6. Using a similar proof, exactly the same result can be shown for the
geodesic distance distgeod,right induced by the right-GL(n)-invariant, left-O(n)-
invariant Riemannian metric [208]

gright
A (X, Y ) = 〈X A−1, Y A−1〉μ,μc,κ

on GL(n):

dist2geod,right(F,SO(n))=dist2geod(F,SO(n))=μ ‖devn logU‖2+ κ

2
[tr(logU )]2.

The right-GL(n)-invariant Riemannianmetric can bemotivated in away similar
to the left-GL(n)-invariant case: it corresponds to the requirement that the distance
between two deformations F1 and F2 should not depend on the initial shape of
�, meaning it should not be changed if � is homogeneously deformed before-
hand (cf. Fig. 13). A similar independence from prior deformations (and so-called
“pre-stresses”), called “elastic determinacy” by Prandtl [172], was postulated by
Hencky in the deduction of his elasticity model; cf. [100, p. 618], [147, p. 19] and
Section 4.2.

According to Theorem 3.3, the squared geodesic distance between F and SO(n)

with respect to any left-GL(n)-invariant, right-O(n)-invariant Riemannian metric
on GL(n) is the isotropic quadratic Hencky energy

WH(F) = μ ‖devn logU‖2 + κ

2
[tr(logU )]2,

where the parameters μ, κ > 0 represent the shear modulus and the bulk modulus,
respectively. The Hencky energy function was introduced in 1929 by Hencky
[101], who derived it from geometrical considerations as well: his deduction was
based on a set of axioms including a law of superposition (cf. Section 4.2) for
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Fig. 13. The right-GL(n)-invariance of a distance measure on GL(n): the distance between
two homogeneous deformations F1, F2 is not changed by a prior homogeneous deformation
B, that is distgeod(F1, F2) = distgeod(F1 · B, F2 · B)

the stress response function [147], an approach previously employed by Becker
[18,153] in 1893 and later followed in amore general context byRichter [177], cf.
[176,178,179].26 A different constitutivemodel for uniaxial deformations based on
logarithmic strain had previously been proposed by Imbert [114] andHartig [89].
While Ludwik is often credited with the introduction of the uniaxial logarithmic
strain, his ubiquitously cited article [124] (which is even referenced by Hencky
himself [102, p. 175]) does not provide a systematic introduction of such a strain
measure.

While the energy function WH(F) = dist2geod(F,SO(n)) already defines a
measure of strain as described in Section 1.1,we are also interested in characterizing
the two terms ‖devn logU‖ and |tr(logU )| as separate partial strain measures.

Theorem 3.7. (Partial strain measures) Let

ωiso(F) := ‖devn log
√

FT F‖ and ωvol(F) := |tr(log
√

FT F)|.

26 Hencky’s approach is often misrepresented as empirically motivated. Truesdell claims
that “Hencky himself does not give a systematic treatement” in introducing the logarithmic
strain tensor [200, p. 144] and attributes the axiomatic approach to Richter [177] instead
[205, p. 270]. Richter’s resulting deviatoric strain tensors dev3 logU and dev3 log V are
disqualified as “complicated algebraic functions” by Truesdell and Toupin [205, p. 270].
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Then

ωiso(F) = distgeod,SL(n)

(
F

det F1/n , SO(n)

)

and

ωvol(F) = √
n · distgeod,R+·1

(
(det F)1/n · 1, 1

)
,

where the geodesic distances distgeod,SL(n) and distgeod,R+·1 on the Lie groups
SL(n) = {A ∈ GL(n) | det A = 1} and R

+ · 1 are induced by the canonical
left-invariant metric

ḡA(X, Y ) = 〈A−1X, A−1Y 〉 = tr(X T A−T A−1Y ).

Remark 3.8. Theorem 3.7 states that ωiso and ωvol appear as natural measures of
the isochoric and volumetric strain, respectively: if F = Fiso Fvol is decomposed
multiplicatively [73] into an isochoric part Fiso = (det F)−1/n · F and a volumetric
part Fvol = (det F)1/n · 1, then ωiso(F) measures the SL(n)-geodesic distance of
Fiso to SO(n), whereas 1√

n
ωvol(F) gives the geodesic distance of Fvol to the identity

1 in the group R
+ · 1 of purely volumetric deformations.

Proof. First, observe that the canonical left-invariant metrics on SL(n) and R+ · 1
are obtained by choosingμ = μc = 1 and κ = 2

n and restricting the corresponding
metric g on GL+(n) to the submanifolds SL(n),R+ ·1 and their respective tangent
spaces. Then for this choice of parameters, every curve in SL(n) orR+ ·1 is a curve
of equal length in GL+(n) with respect to g. Since the geodesic distance is defined
as the infimal length of connecting curves, this immediately implies

distgeod,SL(n) (Fiso, SO(n)) � distgeod,GL+(n) (Fiso, SO(n))

as well as

distgeod,R+·1 (Fvol, 1) � distgeod,GL+(n) (Fvol, 1) � distgeod,GL+(n) (Fvol, SO(n))

for Fiso := (det F)−1/n · F and Fvol := (det F)1/n ·1. We can therefore use Theorem
3.3 to obtain the lower bounds

dist2geod,SL(n) (Fiso, SO(n))

� dist2geod,GL+(n)
(Fiso, SO(n))

= ‖devn log
(√

FT
isoFiso

)
‖2 + 1

n

[
tr
(
log

√
FT
isoFiso

)]2

= ‖log
((

det
√

FT
isoFiso

)−1/n√
FT
isoFiso

)
‖2 + 1

n

[
ln
(

=1︷ ︸︸ ︷

det
√

FT
isoFiso

)]2

= ‖log
(√

FT
isoFiso

)
‖2 = ‖log

(
(det F)−1/n

√
FT F

)
‖2 = ω2

iso(F) (46)
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and27

dist2geod,R+·1 (Fvol, 1) � dist2geod,GL+(n)
(Fvol, SO(n))

= ‖devn log

(√
FT
volFvol

)
‖2 + 1

n
[tr(log

(√
FT
volFvol

)
)]2

= ‖devn
(
ln((det F)1/n) · 1)‖2+ 1

n
[ln(det ((det F)1/n · 1))]2

= 1

n
[ln(det

√
FT F)]2= 1

n
[tr(log

√
FT F)]2= 1

n
ω2
vol(F).

(47)

To obtain an upper bound on the geodesic distances, we define the two curves

γiso : [0, 1] → SL(n), γiso(t) = R exp(t devn logU )

and

γvol : [0, 1] → R
+ · 1, γvol(t) = e

t
n tr(logU ) · 1,

where F = RU with R ∈ SO(n) and U ∈ Sym+(n) is the polar decomposition of
F . Then γiso connects (det F)−1/n · F to SO(n):

γiso(0) = R ∈ SO(n),

γiso(1) = R exp(devn logU ) = R exp(logU − tr(logU )
n · 1)

= R exp(logU ) exp(− tr(logU )
n · 1)

= R U exp(− ln detU
n · 1) = (detU )−1/n · F

= (det F)−1/n · F,

while γvol connects (det F)1/n · 1 and 1:

γvol(0) = 1,

γvol(1) = e
1
n tr(logU ) · 1 = e

1
n ln(detU ) · 1 = (detU )1/n · 1 = (det F)1/n · 1.

The lengths of the curves compute to

L(γiso) =
∫ 1

0
‖γiso(t)−1γ̇iso(t)‖ dt

=
∫ 1

0
‖(R exp(t devn logU ))−1 R exp(t devn logU ) devn logU‖ dt

=
∫ 1

0
‖devn logU‖ dt = ‖devn log

√
FT F‖ = ωiso(F) (48)

27 For some of the rules of computation employed here involving the matrix logarithm, we
refer to Lemma A.1 in the appendix.
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as well as

L(γvol) =
∫ 1

0
‖γvol(t)−1γ̇vol(t)‖ dt

=
∫ 1

0
‖(e t

n tr(logU ) · 1)−1 · tr(logU )
n · e

t
n tr(logU ) · 1‖ dt

=
∫ 1

0
‖ tr(logU )

n · 1‖ dt = |tr(logU )|
n

· ‖1‖ = 1√
n

|tr(log
√

FT F)|

= 1√
n

ωvol(F), (49)

showing that

dist2geod,SL(n)

(
(det F)−1/n · F, SO(n)

)
� L2(γiso) = ω2

iso(F)

and

dist2geod,R+·1
(
(det F)1/n · 1, 1

)
� L2(γvol) = 1

n
· ω2

vol(F),

which completes the proof. ��

Remark 3.9. In addition to the isochoric (distortional) part Fiso = (det F)−1/n · F
and the volumetric part Fvol = (det F)1/n · 1, we may also consider the cofactor
Cof F = (det F) · F−T of F ∈ GL+(n). Theorem 3.3 allows us to directly compute
(cf. Appendix A.4) the distance

dist2geod(Cof F,SO(n)) = μ ‖devn logU‖2 + κ (n − 1)2

2
[tr(logU )]2.

4. Alternative Motivations for the Logarithmic Strain

4.1. Riemannian geometry applied to Sym+(n)

Extensive work on the use of Lie group theory and differential geometry in
continuum mechanics has already been done by Rougée [181–184], Moakher
[137,139], Bhatia [26] and, more recently, by Fiala [64–68] (cf. [119,120,164,
167,168]). They all endowed the convex cone Sym+(3) of positive definite sym-
metric (3 × 3)-tensors with the Riemannian metric

g̃C (X, Y )= tr(C−1XC−1Y ) = 〈XC−1, C−1Y 〉 = 〈C−1/2 X C−1/2, C−1/2 Y C−1/2〉,
(50)
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where C ∈ Sym+(3) and X, Y ∈ Sym(3) = TC Sym+(3).28 Fiala and Rougée
deduced a motivation of the logarithmic strain tensor logU via geodesic curves
connecting elements of Sym+(n). However, their approach differs markedly from
our method employed in the previous sections: the manifold Sym+(n) already
corresponds to metric states C = FT F , whereas we consider the full set GL+(n)

of deformation gradients F (cf. Appendix A.3 and Table 1 in Section 6). This
restriction can be viewed as the nonlinear analogue of the a priori restriction to
ε = sym∇u in the linear case, which means that the nature of the strain measure
is not deduced but postulated. Note also that the metric g̃ cannot be obtained by
restricting our left-GL(3)-invariant, right-O(3)-invariant metric g to Sym+(3).29

Furthermore, while Fiala and Rougée aim to motivate the Hencky strain tensor
logU directly, our focus lies on the strain measures ωiso, ωvol and the isotropic
Hencky strain energy WH.

The geodesic curves on Sym+(n) with respect to g̃ are of the simple form

γ (t) = C1/2
1 exp(t · C−1/2

1 M C−1/2
1 ) C1/2

1 (51)

with C1 ∈ Sym+(n) and M ∈ Sym(n) = TC1Sym
+(n).30 These geodesics are

defined globally, that is Sym+(n) is geodesically complete. Furthermore, for given
C1, C2 ∈ Sym+(n), there exists a unique geodesic curve connecting them; this eas-
ily follows from the representation formula (51) or from the fact that the curvature
of Sym+(n) with g̃ is constant and negative [25,65,116]. Note that this implies
that, in contrast to GL+(n) with our metric g, there are no closed geodesics on
Sym+(n).

An explicit formula for the corresponding geodesic distance was given by
Moakher:31

distgeod,Sym+(n)(C1, C2) = ‖log(C−1/2
2 C1 C−1/2

2 )‖. (52)

28 Note the subtle difference with our metric gC (X, Y ) = 〈C−1X, C−1Y 〉. Pennec
[167, p. 368] generalizes (50) by using the weighted inner product 〈X, Y 〉∗ = 〈X, Y 〉 +
β tr(X) tr(Y ) with β > − 1

n .
29 Since Sym+(n) is not a Lie group with respect to matrix multiplication, the metric g̃
itself cannot be left- or right-invariant in any suitable sense.
30 While Moakher gives the parametrization stated here, Rougée writes the geodesics in
the form γ (t) = exp(t · Log(C2C−1

1 )) C1 with C1, C2 ∈ Sym+(n), which can also be

written as γ (t) = (C2C−1
1 )t C1; a similar formulation is given by Tarantola [198, eq.

(2.78)]. For a suitable definition of a matrix logarithm Log on GL+(n), these representations

are equivalent to (51) with M = log(C−1/2
2 C1 C−1/2

2 ) ∈ Sym(n).
31 Moakher [137, eq. (2.9)] writes this result as ‖Log(C−1

2 C1)‖ =
√∑n

i=1 ln
2 λi ,

where λi are the eigenvalues of C−1
2 C1. The right hand side of this equation is identi-

cal to the result stated in (52). However, since C−1
2 C1 is not necessarily normal, there is

in general no logarithm Log(C−1
2 C1) whose Frobenius norm satisfies this equality. Note

that the eigenvalues of the matrix C−1
2 C1 are real and positive due to its similarity to

C1/2
2 (C−1

2 C1)C
−1/2
2 = C−1/2

2 C1C−1/2
2 ∈ Sym+(n).
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In the special case C2 = 1, this distance measure is equal to our geodesic
distance on GL+(n) induced by the canonical inner product: Theorem 3.3, applied
with parameters μ = μc = 1 and κ = 2

n to R = 1 and U = C1, shows that

distgeod,GL+(n)(C1,1) = ‖logC1‖ = distgeod,Sym+(n)(C1,1).

More generally, assume that the twometric statesC1, C2 ∈ Sym+(n) commute.
Then C−1

2 C1 ∈ Sym+(n), and the left-GL(n)-invariance of the geodesic distance
implies

distgeod,GL+(n)(C1, C2) = distgeod,GL+(n)(C
−1
2 C1,1) = ‖log(C−1

2 C1)‖
= ‖log(C−1/2

2 C−1/2
2 C1)‖ = ‖log(C−1/2

2 C1 C−1/2
2 )‖ (53)

= distgeod,Sym+(n)(C1, C2).

However, since C−1
2 C1 /∈ Sym+(n) in general, this equality does not hold on

all of Sym+(n).
A different approach towards distance functions on the set Sym+(n) was sug-

gested byArsigny et al. [7–9] who, motivated by applications of geodesic and log-
arithmic distances in diffusion tensor imaging, directly define their Log-Euclidean
metric on Sym+(n) by

distLog-Euclid(C1, C2) := ‖logC1 − logC2‖, (54)

where ‖ . ‖ is the Frobenius matrix norm. If C1 and C2 commute, this distance
equals the geodesic distance on GL+(n) as well:

distgeod,GL+(n)(C1, C2) = ‖log(C−1
2 C1)‖

= ‖log(C−1
2 ) + log(C1)‖ (55)

= ‖logC1 − logC2‖ = distLog-Euclid(C1, C2),

where equality in (55) holds due to the fact that C1 and C−1
2 commute. Again, this

equality does not hold for arbitrary C1 and C2.
Using a similar Riemannian metric, geodesic distance measures can also be

applied to the set of positive definite symmetric fourth-order elasticity tensors,
which can be identified with Sym+(6). Norris andMoakher applied such a distance
function in order to find an isotropic elasticity tensorC : Sym(3) → Sym(3)which
best approximates a given anisotropic tensor [138,158].

The connection between geodesic distances on themetric states in Sym+(n) and
logarithmic distancemeasures was also investigated extensively by the lateAlbert
Tarantola [198], a lifelong advocate of logarithmic measures in physics. In his
view [198, 4.3.1], “…the configuration space is the Lie group GL+(3), and the only
possible measure of strain (as the geodesics of the space) is logarithmic.”
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4.2. Further mechanical motivations for the quadratic isotropic Hencky model
based on logarithmic strain tensors

“At the foundation of all elastic theories lies the definition of strain, and
before introducing a new law of elasticity we must explain how finite strain
is to be measured.”

Heinrich Hencky: The elastic behavior of vulcanized rubber [103].

Apart from the geometric considerations laid out in the previous sections, the
Hencky strain tensor E0 = logU can be characterized via a number of unique
properties.

For example, the Hencky strain is the only strain tensor (for a suitably narrow
definition, cf. [153]) that satisfies the law of superposition for coaxial deformations:

E0(U1 · U2) = E0(U1) + E0(U2) (56)

for all coaxial stretches U1 and U2, that is U1, U2 ∈ Sym+(n) such that U1 · U2 =
U2 ·U1. This characterization was used byHeinrich Hencky [97,102,103,197] in
his original introduction of the logarithmic strain tensor [99–101,147] and, indeed
much earlier, by the geologist George Ferdinand Becker [133], who postulated
a similar law of superposition in order to deduce a logarithmic constitutive law of
nonlinear elasticity [18,153] (cf. Appendix A.2).

In the case n = 1, this superposition principle simply amounts to the fact that
the logarithm function f = log satisfies Cauchy’s [40] well-known functional
equation

f (λ1 · λ2) = f (λ1) + f (λ2), (57)

or, in other words, that the logarithm is an isomorphism between the multiplica-
tive group (R+, ·) and the additive group (R,+). This means that for a sequence
of incremental one-dimensional deformations, the logarithmic strains ei

log can be

added in order to obtain the total logarithmic strain etotlog of the composed deforma-
tion [72]:

e1log + e2log + · · · + en
log = log

L1

L0
+ log

L2

L1
+ · · · + log

Ln

Ln−1
= log

Ln

L0
= etotlog,

where Li denotes the length of the (one-dimensional) body after the i-th elon-
gation. This property uniquely characterizes the logarithmic strain elog among all
differentiable one-dimensional strain mappings e : R+ → R with e′(1) = 1.

Since purely volumetric deformations of the form λ ·1with λ > 0 are coaxial to
every stretch U ∈ Sym+(n), the decomposition property (56) allows for a simple
additive volumetric-isochoric split of the Hencky strain tensor [177]:

logU = log

[
U

(detU )1/n
︸ ︷︷ ︸
isochoric

· (detU )1/n · 1
︸ ︷︷ ︸

volumetric

]
= log

[
U

(detU )1/n

]
+ log

[
(detU )1/n · 1

]

= devn logU
︸ ︷︷ ︸

isochoric

+ 1

n
tr(logU ) · 1

︸ ︷︷ ︸
volumetric

.
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In particular, the incompressibility condition det F = 1 can be easily expressed
as tr(logU ) = 0 in terms of the logarithmic strain tensor.

4.2.1. From Truesdell’s hypoelasticity to Hencky’s hyperelastic model As
indicated in Section 1.1, the quadratic Hencky energy is also of great importance
to the concept of hypoelasticity [83, Chapter IX]. It was found that the Truesdell
equation32 [76,200–202]

d

dt

�
[τ ] = 2μ D + λ tr(D) · 1, D = sym(Ḟ F−1), (58)

with constant Lamé coefficients μ, λ > 0, under the assumption that the stress rate
d
dt

�
is objective33 and corotational, is satisfied if and only if d

dt
�

is the so-called

logarithmic corotational rate d
dt
log

and τ = 2μ log V + λ tr(log V ) · 1 [159,173,
174,210,212–215], that is if and only if the hypoelastic model is exactly Hencky’s
hyperelastic constitutive model. Here, τ = det F · σ(V ) denotes the Kirchhoff
stress tensor and D is the unique rate of stretching tensor (that is the symmetric

part of the velocity gradient in the spatial setting). A rate d
dt

�
is called corotational

if it is of the special form

d

dt

�
[X ] = Ẋ − �X + X� with � ∈ so(3), (59)

which means that the rate is computed with respect to a frame that is rotated.34 This
extra rate of rotation is defined only by the underlying spins of the problem. Upon
specialization, for μ = 1, λ = 0 we obtain [34, eq. (71)]

d

dt

log

[log V ] = D

as the unique solution to (58) with a corotational rate.35 Note that this characteriza-
tion of the spatial logarithmic strain tensor log V is by no means exceptional. For
example, it is well known that [90, p. 49, Theorem 1.8] (cf. [35])

d

dt

�
[A] = Ȧ + LT A + AL = D,

32 It is telling to see that equation (58) had already been proposed by Hencky himself in
[100] for the Zaremba-Jaumann stress rate [cf. (62)]. Hencky’s work, however, contains a
typographical error [100, eq. (10) and eq. (11e)] changing the order of indices in his equa-
tions (cf. [33]). The strong point of writing (58) is that no discussion of any suitable strain
tensor is necessary.
33 A rate d

dt
�

is called objective if d
dt

�[
S(Q B Q̇T )

] = Q ( d
dt

�[S(B)])QT for all (not
necessarily constant) Q = Q(t) ∈ O(n), where S is any objective stress tensor, and if
d
dt

�[S] = 0 ⇔ S = 0, that is the motion is rigid if and only if d
dt

�[S] ≡ 0.
34 Corotational rates are also special cases of Lie derivatives [112,127].
35 Cf. Xiao, Bruhns and Meyers [211, p. 90]: “…the logarithmic strain [does] possess

certain intrinsic far-reaching properties [which] establish its favoured position in all possible
strain measures”.
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where A = Ê−1 = 1
2 (1 − B−1) is the spatial Almansi strain tensor and d

dt
�
is the

upper Oldroyd rate [as defined in (63)].
The quadratic Hencky model

τ = 2μ log V + λ tr(log V ) · 1 = Dlog V WH(log V ) (60)

was generalized in Hill’s generalized linear elasticity laws [108, eq. (2.69)]

Tr = 2μ Er + λ tr(Er ) · 1 (61)

with work-conjugate pairs (Tr , Er ) based on the Lagrangian strain measures given
in (3); cf. Appendix A.2 for examples.36 The concept of work-conjugacy was intro-
duced by Hill [106] via an invariance requirement; the spatial stress power must
be equal to its Lagrangian counterpart:

det F · 〈σ, D〉 = 〈Tr , Ėr 〉, (work-conjugacy)

by means of which a material stress tensor is uniquely linked to its (material rate)
conjugate strain tensor. Hence it generalizes the virtual work principle and is the
foundation of derived methods like the finite element method.

For the case of isotropic materials,Hill [106, p. 242] (cf. [109]) shows by spec-
tral decomposition techniques that the work-conjugate stress to logU is the back-
rotated Cauchy stress σ multiplied by det F , hence 〈σ, D〉 = 〈RT σ R, d

dt logU 〉,
which is a generalization of Hill’s earlier work [106,108]. Sansour [186] addi-
tionally found that the Eshelby-like stress tensor � = C S2 is equally conjugate to
logU ; here, S2 denotes the second Piola-Kirchhoff stress tensor. For anisotropy,
however, the conjugate stress exists but follows a much more complex format than
for isotropy [109]. The logarithm of the left stretch log V in contrast exhibits a
work conjugate stress tensor only for isotropic materials, namely the Kirchhoff
stress tensor τ = det F · σ [109,163].

While hyperelasticity in its potential format avoids rate equations, the use of
stress rates (that is stress increments in time) may be useful for the description of
inelastic material behavior at finite strains. Since the material time derivative of an
Eulerian stress tensor is not objective, rates for a tensor X were developed, like the
(objective and corotational) Zaremba-Jaumann rate

d

dt

◦
[X ] = Ẋ − W X + X W, W = skew L , L = Ḟ F−1, (62)

or the (objective but not corotational) lower and upper Oldroyd rates

d

dt

�
[X ] = Ẋ + LT X + X L and

d

dt

�
[X ] = Ẋ − L X − X LT , (63)

36 Hooke’s law [110] (cf. [141]) famously states that the strain in a deformation depends
linearly on the occurring stress (“ut tensio, sic vis”). However, for finite deformations,
different constitutive laws of elasticity can be obtained from this assumption, depending
on the choice of a stress/strain pair. An idealized version of such a linear relation is given
by (60), that is by choosing the spatial Hencky strain tensor log V and the Kirchhoff stress
tensor τ . Since, however, Hooke speaks of extension versus force, the correct interpretation
of Hooke’s law is TBiot = 2μ (U − 1) + λ tr(U − 1) · 1, that is the case r = 1

2 in (61).
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to name but a few (cf. [90, Section 1.7] and [187]). Which one of these or the great
number of other objective rates should be used seems to be rather a matter of taste,
hence of arbitrariness37 or heuristics,38 but not a matter of theory.

The concept of dual variables39 as introduced by Tsakmakis and Haupt in
[91] into continuum mechanics overcame the arbitrariness of the chosen rate in
that it uniquely connects a particular (objective) strain rate to a stress tensor and,
analogously, a stress rate to a strain tensor. The rational rule is that, when stress
and strain tensors operate on configurations other than the reference configurations,
the physically significant scalar products 〈S2, Ė1〉, 〈Ṡ2, E1〉, 〈S2, E1〉 and 〈Ṡ2, Ė1〉
(with the second Piola-Kirchhoff stress tensor S2 and its work-conjugate Green
strain tensor E1) must remain invariant, see [90,91].

4.2.2. Advantageous properties of the quadraticHencky energy Formodeling
elasticmaterial behavior there is no theoretical reason to prefer one strain tensor over
another one, and the same is true for stress tensors.As discussed inSection1.1, stress
and strain are immaterial.40 Primary experimental data (forces, displacements) in
material testing are sufficient to calculate any strain tensor and any stress tensor
and to display any combination thereof in stress-strain curves, while only work-
conjugate pairs are physically meaningful.

However, for modeling finite-strain elasticity, the quadratic Hencky model

WH = μ ‖devn log V ‖2 + κ

2
[tr(log V )]2 = μ ‖devn logU‖2 + κ

2
[tr(logU )]2,

τ = 2μ devn log V + κ tr(log V )1, (64)

exhibits a number of unique, favorable properties, including its functional simplicity
and its dependency on only two material parameters μ and κ that are determined in
the infinitesimal strain regime and remain constant over the entire strain range. In
view of the linear dependency of stress from logarithmic strain in (64), it is obvious
that any nonlinearity in the stress-strain curves can only be captured in Hencky’s
model by virtue of the nonlinearity in the strain tensor itself. There is a surprisingly
large number of different materials, where Hencky’s elasticity relation provides a
very good fit to experimental stress-strain data, which is true for different length

37 Truesdell and Noll [204, p. 404] declared that “various such stress rates have been
used in the literature. Despite claims and whole papers to the contrary, any advantage
claimed for one such rate over another is pure illusion”, and that “the properties of a material
are independent of the choice of flux [that is of the chosen rate], which, like the choice of a
[strain tensor], is absolutely immaterial” [204, p. 97].
38 For a shear test in Eulerian elasto-plasticity using the Zaremba-Jaumann rate (62), an
unphysical artefact of oscillatory shear stress was observed, first in [122]. A similar oscilla-
tory behavior was observed for hypoelasticity in [52].
39 Hill [108] used the terms conjugate and dual as synonyms.
40 Cf. Truesdell [200, p. 145]: “It is important to realize that since each of the several

material tensors […] is an isotropic function of any one of the others, an exact description of
strain in terms of any one is equivalent to a description in terms of any other” orAntman [6,
p. 423]: “In place of C, any invertible tensor-valued function of C can be used as a measure
of strain.” Rivlin [180] states that strain need never be defined at all, cf. [204, p. 122].
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Fig. 14. The Biot stress TBiot corresponding to uniaxial stretches by factor λ of incom-
pressible materials fitted to experimental measurements by Jones and Treloar [115]. The
curvature in λ = 1 suggests negative third order constants (b < 0), which has also been
postulated by Grioli [84, eq. (32)]

scales and strain regimes. In the following we substantiate this claim with some
examples.

Nonlinear elasticity on macroscopic scales for a variety of materials. Anand
[3,4] has shown that the Hencky model is in good agreement with experiments on
a wide class of materials, as for example vulcanized natural rubber, for principal
stretches between 0.7 and 1.3. More precisely, this refers to the characteristic that
in tensile deformation the stiffness becomes increasingly smaller compared with
the stiffness at zero strain, while for compressive deformation the stiffness becomes
increasingly larger.

Nonlinear elasticity in the very small strain regime. We mention in passing
that a qualitatively similar dependency of material stiffness on the sign of the strain
has been made much earlier in the regime of extremely small strains (10−6–10−3).
In Hartig’s law [89] from 1893 this dependency was expressed as dσ

dε = E0 + b σ ,
where E0 is the elasticity modulus at zero stress and b < 0 is a dimensionless
constant, cf. the book of Bell [19] and [126] in the context of linear elasticity with
initial stress.41 Hartig also observed that the stress-stretch relation should have
negative curvature in the vicinity of the identity, as shown in Fig. 14.42

41 The negative curvature (b < 0) was already suggested by Jacob Bernoulli [21] (cf.
[20, p. 276]): “Homogeneous fibers of the same length and thickness, but loaded with different
weights, neither lengthen nor shorten proportional to these weights; but the lengthening or
the shortening caused by the small weight is less than the ratio that the first weight has to
the second.”
42 As Bell insists [19, p. 155], a purely linear elastic response to finite strain, corresponding
to zero curvature of the stress-strain curve at the identity 1, is never exhibited by any physical
material: “The experiments of 280 years have demonstrated amply for every solid substance
examined with sufficient care, that the [finite engineering] strain [U −1] resulting from small
applied stress is not a linear function thereof.”
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Crystalline elasticity on the nanoscale. Quite in contrast to the strictly stress-
based continuum constitutive modeling, atomistic theories are based on a concept
of interatomic forces. These forces are derived from potentials V according to
the potential relation fa = −∂xaV , which endows the model with a variational
structure.43 A further discussion of hybrid, atomistic-continuum coupling can be
found in [60]. Thereby the discreteness ofmatter at the nanoscale and the nonlocality
of atomic interactions are inherently captured. Here, atomistic stress is neither a
constitutive agency nor does it enter a balance equation. Instead, it optionally can
be calculated following the virial stress theorem [196, Chapter 8] to illustrate the
state of the system.

With their analyses in [53] and [54],DŁuzewski and coworkers aim to link the
atomistic world to the macroscopic world of continuum mechanics. They search
for the “best” strain measure with a view towards crystalline elasticity on the
nanoscale. The authors consider the deformation of a crystal structure and compare
the atomistic and continuum approaches. Atomistic calculations are made using the
Stillinger-Weber potential. The stress-strain behavior of the best-known anisotropic
hyperelastic models are compared with the behavior of the atomistic one in the uni-
axial deformation test. The result is that the anisotropic energy based on the Hencky
strain energy 1

2 〈C. logU, logU 〉, where C is the anisotropic elasticity tensor from
linear elasticity, gives the best fit to atomistic simulations.More in detail, this best fit
manifests itself in the observation that for considerable compression (up to≈20 %)
the material stiffness is larger than the reference stiffness at zero strain, and for
considerable tension (up to≈20 %) it is smaller than the zero-strain stiffness, again
in good agreement with the atomistic result. This is also corroborated by comparing
tabulated experimentally determined third order elastic constants [53].44

Elastic energy potentials based on logarithmic strain have also recently been
motivated via molecular dynamics simulations [93] by Henann and Anand [94].

5. Applications and Ongoing Research

5.1. The exponentiated Hencky energy

As indicated in Section 1.1 and shown in Sections 2.1 and 3, strain measures
are closely connected to isotropic energy functions in nonlinear hyperelasticity:
similarly to how the linear elastic energy may be obtained as the square of the

43 For molecular dynamics (MD) simulations, a well-established level of sophistication
is the modeling by potentials with environmental dependence (pair functionals like in the
embedded atom method (EAM) account for the energy cost to embed atomic nuclei into
the electron gas of variable density) and angular dependence (like for Stillinger-Weber or
Tersoff functionals).
44 Third order elastic constants are corrections to the elasticity tensor in order to improve
the response curves beyond the infinitesimal neighborhood of the identity. They exist as
tabulated values for many materials. Their numerical values depend on the choice of strain
measure used which needs to be corrected. DŁuzewski [53] shows that again the Hencky-
strain energy 1

2 〈C. logU, logU 〉 provides the best overall approximation.
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Euclidean distance of ∇u to so(n), the nonlinear quadratic Hencky strain energy is
the squared Riemannian distance of ∇ϕ to SO(n). For the partial strain measures
ωiso(F) = ‖devn log

√
FT F‖ and ωvol(F) = |tr(log√

FT F)| defined in Theorem
3.7, the Hencky strain energy WH can be expressed as

WH(F) = μω2
iso(F) + κ

2
ω2
vol(F). (65)

However, it is not at all obvious why this weighted squared sum should be
viewed as the “canonical” energy associated with the geodesic strain measures:
while it is reasonable to view the elastic energy as a quantity depending on some
strain measure alone, the specific form of this dependence must not be determined
by purely geometric deductions, but must take into account physical constraints as
well as empirical observations.45

For a large number of materials, the Hencky energy does indeed provide a
very accurate model up to moderately large elastic deformations [3,4], that is up
to stretches of about 40 %, with only two constant material parameters which can
be easily determined in the small strain range. For very large strains, however, the
subquadratic growth of the Hencky energy in tension is no longer in agreement
with empirical measurements.46 In a series of articles [80,154–156], Neff et al.
have therefore introduced the exponentiated Hencky energy

WeH(F) = μ

k
ek ω2

iso(F) + κ

2k̂
ek̂ ω2

vol(F) = μ

k
ek ‖ devn logU‖2 + κ

2k̂
ek̂ [tr(logU )]2

(66)

with additional dimensionless material parameters k � 1
4 and k̂ � 1

8 , which for all
values of k, k̂ approximates WH for deformation gradients F sufficiently close to
the identity 1, but shows a vastly different behavior for ‖F‖ → ∞, cf. Fig. 15.

The exponentiated Hencky energy has many advantageous properties over the
classical quadratic Hencky energy; for example, WeH is coercive on all Sobolev
spaces W 1,p for 1 � p < ∞, thus cavitation is excluded [12,143]. In the planar
case n = 2, WeH is also polyconvex [80,156] and thus Legendre-Hadamard-elliptic
[10], whereas the classical Hencky energy is not even LH-elliptic (rank-one convex)
outside a moderately large neighborhood of 1 [36,145] (see also [113], where the

45 Leibniz, in a letter to Jacob Bernoulli [123, p. 572], stated as early as 1690 that
“the [constitutive] relation between extension and stretching force should be determined by
experiment”, cf. [19, p. 10].
46 The elastic range of numerous materials, including vulcanized rubber or skin and other
soft tissues, lies well above stretches of 40 %. While the behavior of elasticity models for
extremely large strainsmight not seem important due to physical restraints and intermingling
plasticity effects outside a narrow range of perfect elasticity, it is nevertheless important to
formulate an idealized law of elasticity over the whole range of deformations; cf. Hencky
[99, p. 215] (as translated in [147, p.2]): “It is not important that such an idealized elastic
[behavior] does not actually exist and our ideally elastic material must therefore remain an
ideal. Like so many mathematical and geometric concepts, it is a useful ideal, because once
its deducible properties are known it can be used as a comparative rule for assessing the
actual elastic behavior of physical bodies.”
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Fig. 15. The one-dimensional Hencky energy WH compared to the exponentiated Hencky
energy WeH and the corresponding Cauchy stresses σH, σeH for very large uniaxial stretches
λ. Observe the non-convexity of WH and the non-invertibility of σH

Fig. 16. The equation of state (EOS), that is the trace of the Cauchy stress corresponding to
a purely volumetric deformation (cf. [169]), for the quadratic and the exponentiated Hencky
model (with parameter k̂ = 4)

loss of ellipticity for energies of the form ‖dev3 logU‖β with hardening index
0 < β < 1 are investigated). Therefore, many results guaranteeing the existence
of energy-minimizing deformations for a variety of boundary value problems can
be applied directly to WeH for n = 2.

Furthermore, WeH satisfies a number of constitutive inequalities [155] such as
the Baker-Ericksen inequality [127], the pressure-compression inequality and the
tension-extension inequality as well as Hill’s inequality [107,161,162], which is
equivalent to the convexity of the elastic energy with respect to the logarithmic
strain tensor [193].47

47 Hill’s inequality [162] can be stated more generally as 〈 d
dt

◦[τ ]−m [τ D − D τ ], D〉 � 0

in the hypoelastic formulation, where d
dt

◦
is the Zaremba-Jaumann stress rate (62) and τ is

the Kirchhoff stress tensor. For m = 0, as Šilhavý explains, “Hill’s inequalities […] require
the convexity of [the strain energy W ] in [terms of the strain tensor log V ] …This does not
seem to contradict any theoretical or experimental evidence [194, p. 309].”
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Moreover, for WeH, the Cauchy-stress-stretch relation V �→ σeH(V ) is invert-
ible (a property hitherto unknown for other hyperelastic formulations) and pure
Cauchy shear stress corresponds to pure shear strain, as is the case in linear elas-
ticity [155]. The physical meaning of Poisson’s ratio [79,170] ν = 3κ−2μ

2(3κ+μ)
is also

similar to the linear case; for example, ν = 1
2 directly corresponds to incompress-

ibility of the material and ν = 0 implies that no lateral extension or contraction
occurs in uniaxial tensions tests.

5.2. Related geodesic distances

The logarithmic distance measures obtained in Theorems 3.3 and 3.7 show a
strong similarity to other geodesic distance measures on Lie groups. For exam-
ple, consider the special orthogonal group SO(n) endowed with the canonical bi-
invariant Riemannian metric

ĝQ(X, Y ) = 〈QT X, QT Y 〉 = 〈X, Y 〉
for Q ∈ SO(n) and X, Y ∈ TQ SO(n) = Q ·so(n).48 Then the geodesic exponential
at 1 ∈ SO(n) is given by the matrix exponential on the Lie algebra so(n), that is
all geodesic curves are one-parameter groups of the form

γ̂ (t) = Q · exp(t A)

with Q ∈ SO(n) and A ∈ so(n) (cf. [136]). It is easy to show that the geodesic
distance between Q, R ∈ SO(n) with respect to this metric is given by

distgeod,SO(n)(Q, R) = ‖log(QT R)‖,
where ‖ . ‖ is the Frobenius matrix norm and log : SO(n) → so(n) denotes the
principal matrix logarithm on SO(n), which is uniquely defined by the equality
exp(log Q) = Q and the requirement λi (log Q) ∈ (−π, π ] for all Q ∈ SO(n) and
all eigenvalues λi (log Q).

This result can be extended to the geodesic distance on the conformal special
orthogonal group CSO(n) consisting of all angle-preserving linear mappings:

CSO(n) := {c · Q | c > 0, Q ∈ SO(n)},
where the bi-invariant metric gCSO(n) is given by the canonical inner product:

gCSO(n)
A (X, Y ) = 〈A−1X, A−1Y 〉. (67)

Then

dist2geod,CSO(n)(c · Q, d · R) = ‖log(QT R)‖2 + 1

n

[
ln
( c

d

)]2
,

48 Note thatμc · ĝ is the restriction of our left-GL(n)-invariant, right-O(n)-invariant metric
g (as defined in Section 3.1) to SO(n).
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where log again denotes the principal matrix logarithm on SO(n). Note that the
punctured complex plane C\{0} can be identified with CSO(2) via the
mapping

z = a + i b �→ Z ∈ CSO(2) =
{(

a b
−b a

) ∣
∣
∣
∣ a2 + b2 �= 0

}
.

5.3. Outlook

While first applications of the exponentiated Hencky energy, which is based
on the partial strain measures ωiso, ωvol introduced here, show promising results,
including an accurate modeling of so-called tire-derivedmaterial [140,144], a more
thorough fitting of the new parameter set to experimental data is necessary in order
to assess the range of applicability of WeH towards elastic materials like vulcanized
rubber. A different formulation in terms of the partial strain measuresωiso andωvol,
that is an energy function of the form

W (F) = �(ωiso(F), ωvol(F)) = �(‖dev3 logU‖, |tr(logU )|) (68)

with � : [0,∞)2 → [0,∞), might even prove to be polyconvex in the three-
dimensional case. The main open problem of finding a polyconvex (or rank-one
convex) isochoric energy function F �→ �̃(‖dev3 logU‖) has also been considered
by Sendova and Walton [190].49 Note that while every isotropic elastic energy
W can be expressed as W (F) = h(K1, K2, K3) with Criscione’s invariants50

[45,46,51,209]

K1 = tr(logU ), K2 = ‖dev3 logU‖ and K3 = det

(
dev3 logU

‖dev3 logU‖
)

,

(69)
not every elastic energy has a representation of the form (68); for example, (68)
implies the tension-compression symmetry51 W (F) = W (F−1), which is not

49 Ideally, the function �̃ should also satisfy additional requirements, such asmonotonicity,
convexity and exponential growth.
50 The invariants K1 and K 2

2 = tr
(
(dev3 logU )2

)
as well as K̃3 = tr

(
(dev3 logU )3

)
had

already been discussed exhaustively by Richter in a 1949 ZAMM article [177, §4], while
K1 and K2 have also been considered by Lurie [125, p. 189]. Criscione has shown that
the invariants given in (69) enjoy a favorable orthogonality condition which is useful when
determining material parameters.
51 The tension-compression symmetry is often expressed as τ(V −1) = −τ(V ), where

τ(V ) is the Kirchhoff stress tensor corresponding to the left Biot stretch V . This condition,
which is the natural nonlinear counterpart of the equality σ(−ε) = −σ(ε) in linear elasticity,
is equivalent to the condition W (F−1) = W (F) for hyperelastic constitutive models.
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ϕ

Ω ϕ(Ω)

ϕ
−1

Fig. 17. The tension-compression symmetry for incompressiblematerials: if det∇ϕ ≡ 1 and
W (F−1) = W (F) for all F ∈ SL(n), then

∫
� W (∇ϕ(x)) dx = ∫

ϕ(�) W (∇(ϕ−1)(x)) dx

necessarily satisfied by energy functions in general.52 In terms of the Shield trans-
formation53 [39,192]

W ∗(F) := det F · W (F−1),

the tension-compression symmetry amounts to the requirement 1
det F W ∗(F) =

W (F) or, for incompressible materials, W ∗(F) = W (F). Moreover, under the
assumption of incompressibility, the symmetry can be immediately extended to
arbitrary deformations ϕ : � → ϕ(�) and ϕ−1 : ϕ(�) → �: if det∇ϕ ≡ 1, we
can apply the substitution rule to find

∫

ϕ(�)

W (∇(ϕ−1)(x)) dx =
∫

�

W (∇(ϕ−1)(ϕ(x))) · |det∇ϕ(x)| dx

=
∫

�

W (∇ϕ(x)−1) dx =
∫

�

W (∇ϕ(x)) dx

if W (F−1) = W (F) for all F ∈ SL(n), thus the total energies of the deformations
ϕ, ϕ−1 are equal, cf. Fig. 17.

Since the function

F �→ e‖dev2 logU‖2 = e
dist2geod,SL(2)

(
F

det F1/2 , SO(2)
)

52 Truesdell and Noll [204, p. 174] argue that “…there is no foundation for the wide-
spread belief that according to the theory of elasticity, pressure and tension have equal but
opposite effects”. Examples for isotropic energy functions which do not satisfy this sym-
metry condition in general but only in the incompressible case can be found in [92]. For an
idealized isotropic elastic material, however, the tension-compression symmetry is a plau-
sible requirement (with an obvious additive counterpart in linear elasticity), especially for
incompressible bodies.
53 Further properties of the Shield transformation can be found in [194, p.288]; for example,
it preserves the polyconvexity, quasiconvexity and rank-one convexity of the original energy.
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in planar elasticity is polyconvex [80,156], it stands to reason that a similar formu-
lation in the three-dimensional case might prove to be polyconvex as well. A first
step towards finding such an energy is to identify where the function W with

W (F) = e‖dev3 logU‖2 = e
dist2geod,SL(3)

(
F

det F1/3 , SO(3)
)

, (70)

which is not rank-one convex [155], loses its ellipticity properties. For that purpose,
it may be useful to consider the quasiconvex hull of W . There already are a number
of promising results for similar energy functions; for example, the quasiconvex hull
of the mapping

F �→ dist2Euclid(F,SO(2)) = ‖U − 1‖2

can be explicitly computed [56,57,195], and the quasiconvex hull of the similar
Saint-Venant-Kirchhoff energy WSVK(F) = μ

4 ‖C −1‖2+ λ
8 [tr(C −1)]2 has been

given by Le Dret and Raoult [121]. For the mappings

F �→ dist2Euclid(F,SO(3)) or F �→ dist2geod(F,SO(n))

with n � 2, however, no explicit representation of the quasiconvex hull is yet
known, although it has been shown that both expressions are not rank-one convex
[24].

It might also be of interest to calculate the geodesic distance distgeod(A, B) for
a larger class of matrices A, B ∈ GL+(n):54 although Theorem 3.3 allows us to
explicitly compute the distance distgeod(1, P) for P ∈ Sym+(n) and local results
are available for certain special cases [129], it is an open question whether there is a
general formula for the distance distgeod,GL+(n)(Q, R) between arbitrary rotations
R, Q ∈ SO(n) for all parameters μ,μc, κ > 0. Since restricting our left-GL(n)-
invariant, right-O(n)-invariant metric on GL(n) to SO(n) yields a multiple of the
canonical bi-SO(n)-invariant metric on SO(n), we can compute

dist2geod,GL+(n)
(Q, R) = μc · dist2geod,SO(n)(Q, R) = μc ‖log(QT R)‖2

if for all Q, R ∈ SO(n) a shortest geodesic inGL+(n) connecting Q and R is already
contained within SO(n), cf. Fig. 18. However, whether this is the case depends on
the chosen parameters μ,μc; a general closed-form solution for distgeod,GL+(n) on
SO(n) is therefore not yet known [128].

Moreover, it is not known whether our result can be generalized to anisotropic
Riemannian metrics, that is if the geodesic distance to SO(n) can be explicitly com-
puted for a larger class of left-GL(n)-invariant Riemannian metrics which are not
necessarily right-O(n)-invariant. A result in this direction would have immediate
impact on the modeling of finite strain anisotropic elasticity [14,188,189]. The dif-
ficulties with such an extension are twofold: one needs a representation formula for
Riemannian metrics which are right-invariant under a given symmetry subgroup of
O(n), as well as an understanding of the corresponding geodesic curves.

54 An improved understanding of the geometric structure of mechanical problems could,
for example, help to develop new discretization methods [85,185].
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Fig. 18. If SO(n) contains a length minimizing geodesic connecting Q, R ∈ SO(n)
with respect to our left-GL(n)-invariant, right-O(n)-invariant metric g on GL(n), then the
GL+(n)-geodesic distance between Q and R is equal to the well-known SO(n)-geodesic
distance μc ‖log(QT R)‖2

6. Conclusion

We have shown that the squared geodesic distance of the (finite) deforma-
tion gradient F ∈ GL+(n) to the special orthogonal group SO(n) is the quadratic
isotropic Hencky strain energy:

dist2geod(F,SO(n)) = μ ‖devn logU‖2 + κ

2
[tr(logU )]2,

if the general linear group is endowed with the left-GL(n)-invariant, right-O(n)-
invariant Riemannian metric gA(X, Y ) = 〈A−1X, A−1Y 〉μ,μc,κ , where

〈X, Y 〉μ,μc,κ =μ 〈devn sym X, devn sym Y 〉+μc 〈skew X, skew Y 〉+ κ
2 tr(X) tr(Y )

with 〈X, Y 〉 = tr(X T Y ). Furthermore, the (partial) logarithmic strain measures

ωiso = ‖devn logU‖ = ‖devn log
√

FT F‖
and ωvol = |tr(logU )| = |tr(log

√
FT F)|

have been characterized as the geodesic distance of F to the special orthogonal
group SO(n) and the identity tensor 1, respectively:

ωiso = ‖devn logU‖ = distgeod,SL(n)

(
F

det F1/n , SO(n)

)
,

ωvol = |tr(logU )| = √
n · distgeod,R+·1

(
(det F)1/n · 1, 1

)
,

where the geodesic distances on SL(n) andR+ ·1 are induced by the canonical left
invariant metric ḡA(X, Y ) = 〈A−1X, A−1Y 〉.

We thereby show that the two quantities ωiso = ‖devn logU‖ and ωvol =
|tr(logU )| are purely geometric properties of the deformation gradient F , similar
to the invariants ‖devn ε‖ and |tr(ε)| of the infinitesimal strain tensor ε in the
linearized setting.

While there have been prior attempts to deductively motivate the use of loga-
rithmic strain in nonlinear elasticity theory, these attempts have usually focussed on
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the logarithmic Hencky strain tensor E0 = logU (or Ê0 = log V ) and its status as
the “natural” material (or spatial) strain tensor in isotropic elasticity. We discussed,
for example, a well-known characterization of log V in the hypoelastic context: if

the strain rate d
dt

�
is objective as well as corotational, and if

d

dt

�
[Ê] = D := sym(Ḟ F−1)

for some strain tensor Ê , then d
dt

� = d
dt
log

must be the logarithmic rate and Ê =
Ê0 = log V must be the spatial Hencky strain tensor.

However, as discussed in Section 1.1, all strain tensors are interchangeable: the
choice of a specific strain tensor in which a constitutive law is to be expressed is not
a restriction on the available constitutive relations. Such an approach can therefore
not be applied to deduce necessary conditions or a priori properties of constitutive
laws.

Our deductive approach, on the other hand, directly motivates the use of the
strain measures ωiso and ωvol from purely differential geometric observations. As
we have indicated, the requirement that a constitutive law depends only on ωiso
and ωvol has direct implications; for example, the tension-compression symmetry
W (F) = W (F−1) is satisfied by every hyperelastic potential W which can be
expressed in terms of ωiso and ωvol alone.

Moreover, as demonstrated in Section 4, similar approaches oftentimes pre-
suppose the role of the positive definite factor U = √

FT F as the sole measure
of the deformation, whereas this independence from the orthogonal polar factor is
obtained deductively in our approach (cf. Table 1).

Note also that the specific distance measure distgeod on GL+(n) used here is
not chosen arbitrarily: the requirements of left-GL(n)-invariance and right-O(n)-
invariance, which have been motivated by mechanical considerations, uniquely
determine g up to the three parameters μ,μc, κ > 0. This uniqueness property
further emphasizes the generality of our results, which yet again strongly suggest
that Hencky’s constitutive law should be considered the idealized nonlinear model
of elasticity for very small strains outside the infinitesimal range.
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Appendix

A.1: Notation

• R is the set of real numbers,
• R

+ = (0,∞) is the set of positive real numbers,
• R

n is the set of real column vectors of length n,
• R

n×m is the set of real n × m-matrices,
• 1 is the identity tensor;
• X T is the transpose of a matrix X ∈ R

n×m ,
• tr(X) = ∑n

i=1 Xi,i is the trace of X ∈ R
n×n ,

• Cof X is the cofactor of X ∈ R
n×n ,

• 〈X, Y 〉 = tr(X T Y ) = ∑n
i, j=1 Xi, j Yi, j is the canonical inner product onRn×n ,

• ‖X‖ = √〈X, X〉 is the Frobenius matrix norm on R
n×n ,

• sym X = 1
2 (X + X T ) is the symmetric part of X ∈ R

n×n ,
• skew X = 1

2 (X − X T ) is the skew-symmetric part of X ∈ R
n×n ,

• devn X = X − 1
n tr(X) · 1 is the n-dimensional deviator of X ∈ R

n×n ,
• 〈X, Y 〉μ,μc,κ = μ 〈devn sym X, devn sym Y 〉+μc 〈skew X, skew Y 〉+ κ

2 tr(X)

tr(Y ) is the weighted inner product on Rn×n ,
• ‖X‖μ,μc,κ

= √〈X, X〉μ,μc,κ is the weighted Frobenius norm on R
n×n ,

• GL(n) = {A ∈ R
n×n | det A �= 0} is the general linear group of all invertible

A ∈ R
n×n ,

• GL+(n) = {A ∈ R
n×n | det A > 0} is the identity component of GL(n),

• SL(n) = {A ∈ R
n×n | det A = 1} is the special linear group of all A ∈ GL(n)

with det A = 1,
• O(n) is the orthogonal group of all Q ∈ R

n×n with QT Q = 1,
• SO(n) is the special orthogonal group of all Q ∈ O(n) with det Q = 1,
• Sym(n) is the set of symmetric, real n × n-matrices, that is ST = S for all

S ∈ Sym(n),
• Sym+(n) is the set of positive definite, symmetric, real n × n-matrices, that is

xT Px > 0 for all P ∈ Sym+(n), 0 �= x ∈ R
n ,

• gl(n) = R
n×n is the Lie algebra of all real n × n-matrices,

• so(n) = {W ∈ R
n×n | W T = −W } is the Lie algebra of skew symmetric, real

n × n-matrices,
• sl(n) = {X ∈ R

n×n | tr(X) = 0} is the Lie algebra of trace free, real n × n-
matrices, that is tr(X) = 0 for all X ∈ sl(n),

• � ⊂ R
n is the reference configuration of an elastic body,

• ∇ϕ = Dϕ is the first derivative of a differentiable function ϕ : � ⊂ R
n → R

n ,
often called the deformation gradient,

• curl v denotes the curl of a vector valued function v : R3 → R
3,

• Curl p denotes the curl of a matrix valued function p : R3 → R
3×3, taken

row-wise,
• ϕ : � → R

n is a continuously differentiable deformation with ∇ϕ(x) ∈
GL+(n) for all x ∈ �,

• F = ∇ϕ ∈ GL+(n) is the deformation gradient,
• U = √

FT F ∈ Sym+(n) is the right Biot-stretch tensor,
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• V = √
F FT ∈ Sym+(n) is the left Biot-stretch tensor,

• B = F FT = V 2 is the Finger tensor,
• C = FT F = U 2 is the right Cauchy-Green deformation tensor,
• F = RU = V R is the polar decomposition of F with R = polar(F) ∈ SO(n),
• E0 = logU is the material Hencky strain tensor,
• Ê0 = log V is the spatial Hencky strain tensor,
• S1 = DF W (F) is the first Piola-Kirchhoff stress corresponding to an elastic

energy W = W (F),
• S2 = F−1 S1 = 2 DC W (C) is the second Piola-Kirchhoff stress corresponding

to an elastic energy W = W (C) (Doyle-Ericksen formula),
• τ = S1 FT = Dlog V W (log V ) [125, p. 116] is the Kirchhoff stress tensor,
• σ = 1

det F τ is the Cauchy stress tensor,
• TBiot = U S2 = DU W (U ) is the Biot stress tensor corresponding to an elastic

energy W = W (U ),
• L = Ḟ F−1 is the spatial velocity gradient,
• D = sym L is the rate of stretching or spatial strain rate tensor,
• W = skew L is the spatial continuum spin.

A.2: Linear stress-strain relations in nonlinear elasticity

Many constitutive laws commonly used in applications are expressed in terms
of linear relations between certain strains and stresses, including Hill’s family of
generalized linear elasticity laws (cf. Section 4.2.1) of the form

Tr = 2μ Er + λ tr(Er ) · 1 (71)

with work-conjugate pairs (Tr , Er ) based on the Lagrangian strain measures given
in (3). A widely known example of such a constitutive law is the hyperelastic
Saint-Venant-Kirchhoff model

S2 = 2μ E1 + λ tr(E1)1 = μ (C − 1) + λ

2
tr(C − 1) · 1

for r = 1 and T1 = S2, where S2 denotes the second Piola-Kirchhoff stress tensor.
Similarly, a number of elasticity laws can be written in the form

T̂r = 2μ Êr + λ tr(Êr ) · 1
with a spatial strain tensor Êr and a corresponding stress tensor T̂r . Examples
include the Neo-Hooke type model

σ = 2μ Ê1 + λ tr(Ê1)1 = μ (B − 1) + λ

2
tr(B − 1) · 1

for r = 1, where T1 = σ is the Cauchy stress tensor, the Almansi-Signorini model

σ = 2μ Ê−1 + λ tr(Ê−1)1 = μ (1 − B−1) + λ

2
tr(1 − B−1) · 1
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Fig. 19. Various linear mappings between the tangent spaces Tx� and Tϕ(x)ϕ(�)

for r = −1 and T−1 = σ , as well as the hyperelastic Hencky model

τ = 2μ log V + λ tr(log V ) · 1

for r = 0 and T̂0 = τ . A thorough comparison of these four constitutive laws can
be found in [16].
Another example of a postulated linear stress-strain relation is the model

TBiot = 2μ logU + λ tr(logU ) · 1,

where TBiot denotes the Biot stress tensor, which measures the “stress per unit
initial area before deformation” [28]. This constitutive relation was first given in
an 1893 article by the geologist G.F. Becker [18,153], who deduced it from a law
of superposition in an approach similar to that of Hencky. The same constitutive
law was considered by Carroll [38] as an example to emphasize the necessity of
a hyperelastic formulation in order to ensure physical plausibility in the description
of elastic behavior. Note that of the constitutive relations listed in this section, only
the Hencky model and the Saint-Venant-Kirchhoff model are indeed hyperelastic
(cf. [23, Chapter 7.4]).

A.3: Tensors and tangent spaces

In the more general setting of differential geometry, the linear mappings F, U, C,

V, B and R as well as various stresses at a single point x in an elastic body �

are defined as mappings between different tangent spaces: for a point x ∈ � and
a deformation ϕ, we must then distinguish between the two tangent spaces Tx�

and Tϕ(x)ϕ(�). The domains and codomains of various linear mappings are listed
below and indicated in Fig. 19. Note that we do not distinguish between tangent
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and cotangent vector spaces (cf. [63]).

F, R : Tx� → Tϕ(x)ϕ(�),

U, C : Tx� → Tx�,

V, B : Tϕ(x)ϕ(�) → Tϕ(x)ϕ(�).

The right Cauchy-Green tensor C = FT F , in particular, is often interpreted as a
Riemannian metric on �; Epstein [61, p. 113] explains that “the right Cauchy-
Green tensor is precisely the pull-back of the spatial metric to the body manifold”,
cf. [127]. If � and ϕ(�) are embedded in the Euclidean space Rn , this connection
can immediately be seen: while the length of a curve x : [0, 1] → � is given by∫ 1
0

√〈ẋ, ẋ〉 dt , where 〈·, ·〉 is the canonical inner product on R
n , the length of the

deformed curve ϕ ◦ x is given by (cf. Fig. 19)
∫ 1

0

√
〈 d
dt (ϕ ◦ x), d

dt (ϕ ◦ x)〉 dt =
∫ 1

0

√〈F(x) ẋ, F(x) ẋ〉 dt

=
∫ 1

0

√〈C(x) ẋ, ẋ〉 dt .

The quadratic form gx (v, v) = 〈C(x) v, v〉 at x ∈ � therefore measures the length
of the deformed line element Fv at ϕ(x) ∈ ϕ(�). Thus locally,

distEuclid,ϕ(�)(ϕ(x), ϕ(y)) = distgeod,�(x, y),

where distEuclid,ϕ(�)(ϕ(x), ϕ(y)) = ‖ϕ(x) − ϕ(y)‖ is the Euclidean distance
between ϕ(x), ϕ(y) ∈ ϕ(�) and distgeod,�(x, y) denotes the geodesic distance
between x, y ∈ � with respect to the Riemannian metric gx (v,w) = 〈C(x) v, w〉.
Moreover, this interpretation characterizes theGreen-Lagrangian strain tensor E1 =
1
2 (C − 1) as a measure of change in length: the difference between the squared
length of a line element v ∈ Tx� in the reference configuration and the squared
length of the deformed line element F(x) v ∈ Tϕ(x)ϕ(�) is given by

‖F(x) v‖2 − ‖v‖2 = 〈C(x) v, v〉 − 〈v, v〉 = 〈(C(x) − 1) v, v〉 = 2 〈E1(x) v, v〉,
where ‖ . ‖ denotes the Euclidean norm on R

n . Note that for F(x) = 1 + ∇u(x)

with the displacement gradient ∇u(x), the expression ‖F(x) v‖2 can be linearized
to

‖F(x) v‖2 = ‖(1 + ∇u(x)) v‖2 = 〈(1 + ∇u(x)) v, (1 + ∇u(x)) v〉
= 〈v, v〉 + 2 〈∇u(x) v, v〉 + 〈∇u(x) v, ∇u(x) v〉
= ‖v‖2 + 2 〈sym∇u(x) v, v〉 + ‖∇u(x) v‖2
= ‖v‖2 + 2 〈sym∇u(x) v, v〉 + h.o.t.,

where h.o.t. denotes higher order terms with respect to ∇u(x). Thus

‖F(x) v‖2 − ‖v‖2 = 2 〈ε(x) v, v〉 + h.o.t.,

where ε = sym∇u is the linear strain tensor.



560 Patrizio Neff, Bernhard Eidel & Robert J. Martin

A.4: Additional computations

Let Cof F = (det F) · F−T denote the cofactor of F ∈ GL+(n). Then the geodesic
distance of Cof F to SO(n) with respect to the Riemannian metric g introduced in
(19) can be computed directly by applying Theorem 3.3:

dist2geod(Cof F,SO(n))

= μ ‖devn log
√

(Cof F)T Cof F‖2 + κ

2

[
tr
(
log

√
(Cof F)T Cof F

)]2

= μ ‖devn log
√

(det F)2 · F−1F−T ‖2+ κ

2

[
tr
(
log

√
(det F)2 · F−1F−T

)]2

= μ ‖devn log
√

F−1F−T ‖2 + κ

2

[
tr
(
log

(
(det F) · 1)+ log

√
F−1F−T

)]2

= μ ‖devn log(U
−1)‖2 + κ

2
[tr ((ln det F) · 1 + log(U−1)

)]2

= μ ‖− devn logU‖2 + κ

2
[n · (ln detU ) − tr(logU )]2

= μ ‖devn logU‖2 + κ (n − 1)2

2
[tr(logU )]2.

A.5 The principal matrix logarithm on Sym+(n) and the matrix exponential

The following lemma states some basic computational rules for thematrix exponen-
tial exp : Rn×n → GL+(n) and the principal matrix logarithm log : Sym+(n) →
Sym(n) involving the trace operator tr and the deviatoric part devn X = X − tr(X)

n ·1
of a matrix X ∈ R

n×n .

Lemma A.1. Let X ∈ R
n×n, P ∈ Sym+(n) and c > 0. Then

(i) det(exp(X)) = etr(X),

(ii) exp(devn X) = e− tr(X)
n · exp(X),

(iii) log(c · 1) = ln(c) · 1,

(iv) log((det P)−1/n · P) = log P − ln(det P)
n · 1 = devn log P.

Proof. Equality (i) is well known (see for example [22]). Equality (iii) follows
directly from the fact that exp : Sym(n) → Sym+(n) is bijective and that exp(ln(c)·
1) = eln(c) · 1 = c · 1. Since AB = B A implies exp(AB) = exp(A) exp(B), we
find

exp(devn X)= exp(X − tr(X)

n
· 1) = exp(X) · exp(− tr(X)

n
· 1)

= exp(X) · e− tr(X)
n · 1,

showing (ii). For (iv), note that

tr(log P) = ln(det P) �⇒ log P − ln(det P)
n · 1 = devn log P,
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and

exp(devn log P) = e− tr(log P)
n · exp(log P)

=
(

eln(det P)
)−1/n · P = (det P)−1/n · P.

according to (ii). Then the injectivity of the matrix exponential on Sym(n) shows
(iv). ��

A.6: A short biography of Heinrich Hencky

Hencky at MIT, age 45 [137]

Biographical information on Heinrich Hencky, as laid out in [33,95,197]:

• November 2, 1885: Hencky is born in Ansbach, Franken, Germany
• 1904: Hencky finishes high school in Speyer
• 1904–1908: Technische Hochschule München
• 1909: Military service with the 3rd Pioneer Battalion in München
• 1912–1913: Ph.D studies at Technische Hochschule Darmstadt
• 1910–1912: Work on the Alsatian Railways
• 1913–1915: Work for a railway company in Kharkov, Ukraine
• 1915–1918: Internment in Kharkov, Ukraine
• 1919–1920: Habilitation at Technische Hochschule Darmstadt
• 1920–1921: Technische Hochschule Dresden
• 1922–1929: Technical University of Delft
• 1930–1932: Massachusetts Institute of Technology (MIT)
• 1933–1936: Potato farming in New Hampshire
• 1936–1938: Academic work in the Soviet Union, first at Kharkov Chemical

Technical Institute, then at the Mechanics Institute of Moscow University
• 1938–1950: MAN (Maschinenfabrik Augsburg-Nürnberg) in Mainz
• July 6, 1951: Hencky dies in an avalanche at age 65 during mountain climbing



562 Patrizio Neff, Bernhard Eidel & Robert J. Martin

Hencky received his diploma in civil engineering from TH München in 1908 and
his Ph.D from TH Darmstadt in 1913. The title of his thesis was “Über den Span-
nungszustand in rechteckigen, ebenen Platten bei gleichmäßig verteilter und bei
konzentrierter Belastung” (“On the stress state in rectangular flat plates under uni-
formly distributed and concentrated loading”). In 1915, themain results of his thesis
were also published in the Zeitschrift für angewandte Mathematik und Physik [96].
After working on plasticity theory and small-deformation elasticity, he began his
work on finite elastic deformations in 1928. In 1929 he introduced the logarithmic
strain elog = log

( final length
original length

)
in a tensorial setting [99] and applied it to the

description of the elastic behavior of vulcanized rubber [103].
Today, Hencky is mostly known for his contributions to plasticity theory: the article
“Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern”
[98] (“On statically determined cases of equilibrium in plastic bodies”), published
in 1923, is considered his most famous work [197].
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