
PD Dr.-Ing. habil. B. Eidel
Heisenberg-Fellow (DFG)
Chair of Computational Mechanics
Department of Mechanical Engineering

B. Eidel J. Schröder
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Full Algorithmic Consistency in Viscoelasticity

– Enabling High Performance Computations

Motivation and Goals

The need for rapid prototyping in industry calls for high-

performance algorithms to speed-up engineering simulations.

For the design of structures made of metals or polymers, in-

elastic deformations must be considered in finite element (FE)

simulations. Here, time integration methods for inelastic rate

equations are most relevant and the questions arise:

• Which is the best embedding of higher-order Runge-Kutta

(RK) methods for inelastic FEM analyses?

• Which speed-up can be achieved compared with the (lin-

ear) Backward-Euler (BE)?

Solution. In the FE solution framework of inelasticity

the variational form of the balance of momentum is solved on

the ”global” level for displacements. From the displacements

a deformation/strain measure is calculated; they are required

as input for the solution of the Initial Value Problem (IVP)

of inelastic flow on the ”local” quadrature (typically Gauss)

point level.

RK methods require total strain values at their stages. Com-

pared with the true, nonlinear strain-path the approximation

of deformation as constant F (t) = Fn+1 = const., t ∈ [tn, tn+1]

is poor; higher order polynomials (based on data at tn+1, tn
and earlier times) improve the approximation, see Fig. 1.
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Fig. 1. The true deformation path (solid line) and its poly-

nomial approximations (constant, linear, quadratic).

The necessary polynomial order follows from a consistency

analysis. The differential equation for viscoelastic flow (z rep-

resents inelastic strain) typically exhibits the format

ż = f (F (t),z(t)) . (1)

Therefore, for RK methods of the nominal order p and a rep-

resentation of F (t) by interpolation polynomial of degree q−1

(hence of order q) it holds, see [1],

F = O(∆tq) , z = O(∆tp) → z = O(∆tmin{p,q}) . (2)

Algorithmic solution framework of inelasticity within FEM
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• ”global” level:

solution of the BVP by FEM

• data transfer: global ↔ local

zn: internal variable at tn
F(t): deformation gradient
zn+1: internal variable at tn+1

Pn+1: stress tensor at tn+1

Cven+1 =
∂Pn+1

∂Fn+1

algo.tangent

• ”local” Gauss-point level:

solution of the IVP

Numerical Example
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error p q e(C) e(Sov) speed-up

BE 1 1 1.02 1.02 1.0

DIRK2l 2 2 2.00 2.00 21.6

DIRK3q 3 3 2.67 2.95 48.1

DIRK4c 4 4 3.03 3.64 48.7

Conclusions

(A) Full order for z and P is obtained, if and only if q = p.

(B) For lower order strain interpolation q < p, the order of z

and of stress P is reduced to q, order reduction!

(C) Representation of total strain by interpolation based on

data at tn+1, tn, . . . , tn+2−p, p ≥ 2 is effective.

(D) Drastic speed-up compared with Backward-Euler (BE).

(E) Concept of algorithmic consistency in inelasticity must

be augmented:

#Standard condition: Nagtegaal (1982), Simo& Taylor (1985)

Algorithmic tangent moduli Cve
n+1 = ∂Pn+1/∂Fn+1

→ quadratic convergence in global solution.

#Novel condition for consistent coupling : q = p

→ full convergence order p in time integration.
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