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FIRE: Accelerated Energy-Minimization in Atomistic FEM

based on Acceleration, Inertia and Numerical Quenching

• Motivation and Goal

Energy minimization in atomic simulations at zero tempera-

ture is used to find the (inherent) equilibrium structure of a

solid without the ”noise” of thermal vibrations.

The goal is to reformulate an algorithm with superior conver-

gence for flat energy landscapes and instability problems for

the Cluster-Based QC Method as an examplary atomistic fi-

nite element method.

In [4] a simple MD scheme for structural relaxation was pro-

posed. The algorithm dubbed FIRE for Fast Inertial Relaxation

Engine (FIRE) relies on inertia. The strategy is to descent to

an energy-minimum following an equation of motion by

v̇(t) = 1/mF (t)− γ(t)|v(t)|
[
v̂(t)− F̂ (t)

]
, (1)

with mass m, velocity v = ẋ, force F = −∇EQC(x), and

where the hat denotes a unit vector.

• Strategy

– Accelerate in a direction that is ”steeper” than the current

direction of motion via the function γ(t).

– Avoid uphill motion the algorithm stops as soon as the power

P (t) = F (t) · v(t) becomes negative.

– Choose parameter γ(t) appropriately; not too large, because

the current velocities carry information about the reasonable

’average’ descent direction and energy scale, [4].

– The numerical treatment: Use an MD integrator providing

the propagation of the trajectories due to conservative forces.

Readjust continuously the MD trajectories by a mixing rule of

the velocities according to

v → (1− α)v + αF̂ |v| , α = γ∆t (2)

following from an Euler-step in eq. (1) with time step size ∆t.

• Propagation rules for the FIRE algorithm

initialization: set ∆t, α = αstart, the vectors x and v = 0.

1. MD integrator: calculate x, F = −∇EQC(x) and

v using any common MD integrator (here: Velocity

Verlet); check for convergence.

2. calculate force power P = F · v.
3. set v → (1− α)v + α|v|F̂ .

4. if P > 0 and the number of steps since P was

negative is larger than Nmin, increase the time step

∆t → min(∆tfinc,∆tmax) and decrease α → αfα.

5. if P ≤ 0, decrease time step ∆t → ∆tfdec, freeze the

system v → 0, and set α back to αstart.

6. Return to MD integrator.

Here: Nmin = 5, αstart = 0.1, finc = 1.1, fdec = 0.5, fα = 0.99.

• Compression of a Micro-Pillar

An fcc single-crystalline pillar subject to axial compression ex-

hibits plastic deformation localizing in a shear band.

The novel FIRE minimizer is tested against the Steepest De-

scent (SD) method, a nonlinear version of the Conjugate Gradi-

ent (CG) method and the Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm. The total deformation

range can be decomposed into three parts, I-III:

I. Surface relaxation.

The energy landscape is

’flat’. FIRE by virtue of

inertia passes local min-

ima towards the global

minimum much faster

than other algorithms.

II. Elastic compression

up to 7%. FIRE is much

faster than L-BFGS.

CG and SD are not

competitive.

III. Material instabil-

ity: bifurcation into

deformation localization

(shear-banding). CG

and SD do not converge.

FIRE is faster than

L-BFGS. function calls
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Fig. 1. Convergence diagrams for different optimizers at char-

acteristic deformation stages of the nanopillar (left), contour

plots for axial displacement component uz [Å] (right).

Conclusion

The novel optimizer based on acceleration and inertia shows

in its adaption to a variationally consistent, fullynonlocal QC

method a competitive and partially superior behavior com-

pared with state-of-the-art optimizers like L-BFGS. These

promising results suggest further investigations and the use

of the algorithm for various other models and applications.
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