
Chair for Nonlinear Analysis and Modelling

Faculty of Mathematics

University of Duisburg-Essen

2016

Strain tensors and strain measures

in nonlinear elasticity
Patrizio Neff, Bernhard Eidel and Robert J. Martin

1 Strain tensors

The concept of strain is of fundamental importance in
continuum mechanics. In linearized elasticity, one as-
sumes that the Cauchy stress tensor σ is a linear func-
tion of the symmetric infinitesimal strain tensor

ε = sym∇u = sym(∇ϕ− 1) = sym(F − 1) ,

where ϕ : Ω → R
n is the deformation of an elastic

body with a given reference configuration Ω ⊂ R
n,

ϕ(x) = x + u(x) with the displacement u, F = ∇ϕ is
the deformation gradient, sym∇u = 1

2(∇u + (∇u)T )
is the symmetric part of the displacement gradient ∇u

and 1 is the identity tensor. In geometrically nonlinear
elasticity models, it is no longer necessary to postu-
late a linear connection between some stress and some
strain. However, nonlinear strain tensors are often used
in order to simplify the stress response function, and
many constitutive laws are expressed in terms of linear
relations between certain strains and stresses [2, 3, 5]:
according to Truesdell and Noll [18, p. 347], “Various
authors [. . . ] have suggested that we should select the
strain [tensor] afresh for each material in order to get
a simple form of constitutive equation. [. . . ] Every in-
vertible stress relation T = f (B) for an isotropic elastic
material is linear, trivially, in an appropriately defined,
particular strain [tensor f (B)].”

There are many different definitions of what exactly the
term “strain” encompasses: while Truesdell and Toupin
[19, p. 268] consider “any uniquely invertible isotropic
second order tensor function of [the right Cauchy-Green
deformation tensor C = F TF ]” to be a strain tensor,
it is commonly assumed [9, p. 230] (cf. [10, 11, 4,
14]) that a (material or Lagrangian) strain takes the
form of a primary matrix function of the right Biot-
stretch tensor U =

√
F TF of the deformation gra-

dient F ∈ GL+(n), i.e. an isotropic tensor function
E : Sym+(n) → Sym(n) from the set of positive defi-
nite tensors to the set of symmetric tensors of the form

E (U) =

n∑

i=1

e(λi)·ei⊗ei for U =

n∑

i=1

λi ·ei⊗ei (1)

with a strictly monotone scale function e : (0,∞) → R,
where ⊗ denotes the tensor product, λi are the eigen-
values and ei are the eigenvectors of U . Similarly, a
spatial or Eulerian strain tensor Ê (V ) depends on the
left Biot-stretch tensor V =

√
FF T (cf. [6]).

The general idea underlying these definitions is clear:
strain is a measure of deformation (i.e. the change in
form and size) of a body with respect to a chosen (arbi-
trary) reference configuration. Furthermore, the strain
of the deformation gradient F ∈ GL+(n) should cor-
respond only to the non-rotational part of F . In par-
ticular, the strain must vanish if and only if F is a
pure rotation, i.e. if and only if F ∈ SO(n), where
SO(n) = {Q ∈ GL(n) |QTQ = 1, detQ = 1} denotes
the special orthogonal group. This ensures that the
only strain-free deformations are rigid body movements
[12].

According to a more general definition [13], (material)
strain tensor is an injective isotropic tensor function
U )→ E (U) of the right Biot-stretch tensor U mapping

Sym+(n) to Sym(n) with

E (QTU Q) = QTE (U)Q for all Q ∈ O(n)

and E (U) = 0 ⇐⇒ U = 1 ,

where O(n) = {Q ∈ GL(n) |QTQ = 1} is the orthog-
onal group. In particular, these conditions ensure that
E (U) = 0 if and only if 1 = U =

√
F TF , i.e. if and

only if F ∈ SO(n).

Among the most common examples of material strain
tensors used in nonlinear elasticity is the Seth-Hill fam-
ily [15]

Er(U) =

{
1
2 r (U

2r − 1) : r ∈ R \ {0}
logU : r = 0

(2)

of material strain tensors, which includes the Biot strain
tensor E1/2(U) = U − 1, the Green-Lagrangian strain
tensor E1(U) = 1

2(U
2 − 1), the (material) Almansi

strain tensor [1] E−1(U) =
1
2(1− C−1) and, of course,

the (material) Hencky strain tensor

E0(U) = logU = log(
√
F TF ) . (3)

Here, log : Sym+(n) → Sym(n) is the principal matrix
logarithm on the set Sym+(n) of positive definite sym-
metric matrices. The Hencky (or logarithmic) strain
tensor has often been considered the natural or true
strain in nonlinear elasticity [17, 16, 7, 8].
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Figure 1: Scale functions er , ẽr associated with the strain tensors
Er and Ẽr =

1
2(Er − E−r).

All strain tensors, by the definition employed here, can
be seen as equivalent: since the mapping U )→ E (U)
is injective, for every pair E ,E ′ of strain tensors there
exists a mapping ψ : Sym(n) → Sym(n) such that
E ′(U) = ψ(E (U)) for all U ∈ Sym+(n). Therefore,
every constitutive law of elasticity can – in principle
– be expressed in terms of any strain tensor and no
strain tensor can be inherently superior to any other
strain tensor: as Truesdell and Toupin [19, p. 268] state,
“. . . any [tensor] sufficient to determine the directions
of the principal axes of strain and the magnitude of the
principal stretches may be employed and is fully gen-
eral”. Truesdell and Noll [18, p. 348] also argue that
there “is no basis in experiment or logic for supposing
nature prefers one strain [tensor] to another”.

2 Strain measures

In contrast to strain or strain tensor, we use the term
strain measure to refer to a nonnegative real-valued

function ω : GL+(n) → [0,∞) depending on the defor-
mation gradient which vanishes if and only if F is a pure
rotation, i.e. ω(F ) = 0 if and only if F ∈ SO(n). A
simple example of a strain measure in the above sense
is the mapping F )→ ‖E (

√
F TF )‖∗ of F to an orthog-

onally invariant norm of any strain tensor E .

Note carefully that, in contrast to strain tensors, strain
measures cannot simply be used interchangeably: for
two different strain measures (as defined above) ω1,ω2,
there is generally no function f : R+ → R

+ such that
ω2(F ) = f (ω1(F )) for all F ∈ GL+(n). Compared
to “full” strain tensors, this can be interpreted as an
unavoidable loss of information for strain measures
(which are only scalar quantities).

Since, by our definition, a strain measure attains zero
if and only if F ∈ SO(n), a simple geometric ap-
proach is to consider a distance function on the
group GL+(n) of admissible deformation gradients, i.e.
a function dist : GL+(n) × GL+(n) → [0,∞) with
dist(A,B) = dist(B ,A) which satisfies the triangle in-
equality and vanishes if and only if its arguments are
identical. Such a distance function induces a “natural”
strain measure on GL+(n) by means of the distance to
the special orthogonal group SO(n):

ω(F ) := dist(F , SO(n)) := inf
Q∈SO(n)

dist(F ,Q) . (4)

In this way, the search for an appropriate strain mea-
sure reduces to the task of finding a natural, intrinsic

distance function on GL+(n).
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