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a b s t r a c t

Phase field models for applications in physics and materials science are typically written in variational
form starting from a free energy functional, and sharp interface descriptions for moving boundary prob-
lems can be formulated similarly. Here we discuss why and under which circumstances this postulate for
deriving the equations of motion is justified, and what are limitations for specific cases. We investigate
this in particular for alloys, systems with elastic, viscoelastic and plastic effects, mainly based on analyt-
ical and numerical investigations in one dimension. We find that the naturally guessed equations of
motion, as derived via partial functional derivatives from a free energy, are usually reasonable, only
for materials with plastic effects this assumption is more delicate due to the presence of internal
variables.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of microstructure evolution has become a central
topic in materials science and physics, since these pattern forma-
tion processes are not only essential phenomena in our day-to-
day life but also important for the understanding and prediction
of material behavior. In this respect the development of phase field
models can be considered as a milestone, which triggered an enor-
mous intensification of research activities in this direction (Stein-
bach, 2009; Chen, 2002; Karma et al., 2001; Boettinger et al.,
2002; Provatas et al., 2010). Starting with pure curvature driven
motion (Langer, 1978; Fix, 1983; Collins and Levine, 1985; Langer,
1986) phase field modeling experienced a first ‘gold rush’ by the
investigation of diffusion limited solidification, in particular den-
dritic growth, and substantially contributed to a deeper under-
standing of this complex problem. Since then, it has become a
routine toolkit for modeling interfacial pattern formation pro-
cesses not only for highly idealized scientific investigations, but
also for realistic simulations of kinetic processes in engineering
materials (Tiaden, 1999). Later on, more and more phenomena
have been investigated by the means of phase field modeling
(Spatschek et al., 2011), and nowadays even applications in biol-
ogy, medicine and soft matter science start to emerge (Travasso
et al., 2011).

With the increasing knowledge about this modeling tool also
the understanding of this method has reached a significantly dee-
per level. Initially, the method was considered purely as a mathe-

matical tool that avoids the complex tracking of interface during
moving boundary problems. Instead, order parameters are intro-
duced to discriminate between different ‘phases’, and at interfaces
these order parameters change only gradually. The description of
interface dynamics is then reduced to partial differential equations
for the order parameters. The original idea is that in the sharp
interface limit, where the lengthscale over which the order param-
eters are smeared out at the interfaces between the ‘phases’ is
small in comparison to the relevant physical lengthscales, the
dynamics effectively recovers the governing laws for the kinetics
of the sharp interfaces. Although physically all interfaces have a fi-
nite thickness, this true physical width is negligibly small in com-
parison to the scales of the patterns, and therefore a sharp interface
description is usually appropriate. The numerical lengthscale,
which is introduced in phase field models, is usually a pure auxil-
iary parameter, and numerical efficiency demands to actually
choose it much larger than the true interface thickness. For quan-
titative modeling it is therefore mandatory to check that the results
are insensitive to a change of the numerical interface thickness.
Typically, first order equations (in time) are constructed for the
phase field evolution, and in this ‘traditional picture’ the choice
of the right hand side of the equations is not restricted, as long
as it recovers the proper sharp interface limit.

During the past years, the use of so called thermodynamically
consistent models, where the evolution is expressed via a thermody-
namic functional, has attracted a lot of interest. This is particularly
useful in the generalization to multi-phase and -component
systems, see e.g. (Nestler et al., 2005). In a special case, which is
recurrent in descriptions of physical phenomena, this free energy
functional contains at least two ingredients: a well or obstacle

0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.03.016

⇑ Corresponding author. Tel.: +49 0211 6792 684; fax: +49 0211 6792 465.
E-mail address: spatschek@mpie.de (R. Spatschek).

International Journal of Solids and Structures 50 (2013) 2424–2436

Contents lists available at SciVerse ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r



Author's personal copy

potential and a gradient square term, the latter being a Dirichlet-
type energy; these two lead to the proper interfacial energy of the
system, and the dynamical evolution corresponds to curvature dri-
ven motion. For the description of alloys, a term corresponding to
the free energy change due to impurities is added. Also mechanical
effects have been considered, which lead to an additional elastic
energy term (see e.g. (Spatschek et al., 2006; Brener et al., 2007; Spat-
schek et al., 2007; Fleck et al., 2011)), and also other physical effects
have been discussed in a similar way. There are also insights con-
cerning the postulation of continuum field models and the related
driving forces in a more fundamental mathematical and mechanical
context, particularly related to variational and non-variational deri-
vations, and we mention here in particular (Mariano, 2002) and ref-
erences therein for more general setups. Here, balance equations of
micro structural interaction can be derived from first principles
involving the invariance of the external power of actions alone.

Based on the experience that these thermodynamically moti-
vated models indeed lead to the correct equations of motion in
the sharp interface limit, the paradigm has changed to use such
extensions of free energy functionals and the derived phase field
models in a predictive manner also for problems, where an estab-
lished sharp interface description is not yet available. In fact, it is
often easier to find proper energy functionals than to derive or
guess the correct sharp interface equations.

Nevertheless, it should be pointed out that not all phase field
models are based on such a thermodynamic approach. In fact,
the generalization to a model with thin interface asymptotics typ-
ically introduces non-variational terms (Karma and Rappel, 1996;
Karma and Rappel, 1998). These terms are justified by a higher or-
der asymptotic analysis, and the generalization to other models
than established solidification problems is far from being trivial;
for that reason, frequently only the antitrapping current is taken
into account. More recently, these models have been revisited un-
der the aspect of Onsager symmetries, taking into account cross-
coupling between different fields (off-diagonal terms in the Onsag-
er matrix) (Brener and Boussinot, 2012).

The interplay of phase transformations and plasticity has been
discussed already in several publications. Closely related to the
present article is the work by Ostwald et al. (2011), who investi-
gate a one-dimensional model. There, also the aspect that disloca-
tions can be inherited or pushed away from the phase
transformation front has been discussed, and the model is illus-
trated for shape memory alloys and TRIP steels. The underlying
von Mises plasticity model and the probabilistic approach to the
phase transformation rate already has a certain complexity, which
allows to model realistic stress–strain curved. Bartel and Hackl
studied martensitic transformations in shape memory alloys, tak-
ing into account inelastic and dissipative relaxation (Bartel and
Hackl, 2009). In Bartel et al., 2011 the issue of plasticity inheri-
tance, i.e. the question concerning the plastic state of a material
that has undergone a phase transformation, is discussed. A Ginz-
burg–Landau model to capture hardening plasticity has been
developed in Fabrizio (2012). Takaki et al. combined a phase field
model with crystal plasticity to simulate the microstructure and
dislocation density during the deformation process of a polycrys-
talline metal (Takaki et al., 2007). Martensitic transformations in
polycrystals subject to elasto-plastic material behavior was studied
in Yamanaka et al. (2010) where the influence of plasticity on
lamellar microstructure formation is contrasted to the purely elas-
tic case. A phase field model coupled to viscoplasticity for the
investigation of rafting in superalloys is presented in Gaubert
et al. (2010). In the present article we confine the analysis to ele-
mentary plasticity models and focus on the aspect of thermody-
namic consistency and the relation to phase field models.

In view of the extension of phase field models by plasticity, we
investigate several prototype models and inspect the equations of

motion, as motivated from a thermodynamic approach without
reference to a sharp interface limit, from a physical point of view.
As we will see, an extension to plasticity, which introduces the new
aspect of ‘‘internal variables’’ which are not derived from the same
free energy functional as the phase field equations, brings in as-
pects, which make it less obvious, whether the usual approach to
derive equations of motion, is appropriate. We note that this issue
is also relevant for plastic deformations in other materials like fer-
roelectrics, magneto elastic materials, quasicrystals, polymeric
bodies etc.

To make this point more transparent, we will investigate differ-
ent models as prototype for various problems. The phase field / is
assumed to follow an Allen–Cahn equation for a non-conserved or-
der parameter

@/
@t
¼ � dF

d/
; ð1Þ

where time is renormalized such that a kinetic coefficient in front of
the variational derivative has become 1. In case of an alloy model,
this evolution equation is coupled to a diffusion equation for the
concentration, which can be considered as a prototype of a con-
served order parameter,

@c
@t
¼ r � cr @F

@c

� �
: ð2Þ

We mention a mathematically motivated discussion of these equa-
tions in a more general setting in Mariano (2005). Yet another case
are additional elliptical equations, as e.g. in the case of a coupling to
static elasticity. Here, the displacement field u with components ui

obeys an equation of the type

dF
dui
¼ 0: ð3Þ

In all cases, the variational derivative in the phase field equation is
calculated such, that the other fields are kept constant during the
‘‘virtual variation’’ of the order parameter; we can therefore use
the terminology of a ‘‘partial functional derivative’’. To that end,
the free energy is formally expanded up to first order in a variation
/! /þ d/, and the difference is represented in the form

F½/þ d/; c;u� � F½/; c;u� ¼
Z

dF
d/

d/dV þOðd/2Þ ð4Þ

and the integral kernel on the right hand side defines the variational
derivative of the functional. At this point, we mention in passing
that the precise mathematical definition of the ‘‘vertical’’ functional
derivative used here may raise questions concerning the function
space, which are beyond the scope of this article on a general level.
From a physical perspective, this issue is related to boundary condi-
tions, which may also be derived variationally. We will briefly re-
turn to this point later.

Physically, such a variational expression would be interpreted
as the energy change that would emerge from a variation of the
phase field, and therefore the interface position, while all other
fields are considered as being frozen in. If we look e.g. at diffusional
growth during solidification, this would intuitively correspond to a
situation where the diffusion of impurities is slow in comparison to
the fast fluctuations of a rough interface: When the interface (or
correspondingly the phase field) makes a ‘‘trial step’’, the concen-
tration field almost does not change, since it is assumed that this
diffusion process is significantly slower, and therefore it is appro-
priate to assume in the above functional derivative that the con-
centration is unaffected by the ‘‘virtual’’ interface motion.

Let us contrast this extreme situation to the behavior of the
electron density, which is typically of course not considered for
the description of phase transition kinetics on this level. The
electron density is for sure different in different phases (imagine
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a bcc–fcc transition), and is ‘‘integrated out’’ in the free energy
expression. Therefore, it is assumed that the electron density
instantaneously adjusts to a modification of the lattice structure,
which results here from a phase change (Born–Oppenheimer
approximation). In this sense, the electron density ne is a function
of the local phase state, neð/Þ. Formally, it means that in the func-
tional derivative for the calculation of the driving force an energy
change would rather be calculated from the work variation
F½/þ d/; c;u; neð/þ d/Þ� � F½/; c;u;neð/Þ�, and therefore it would
also contain contributions from the variational derivative dF=dne.
For this example, it would be very counterintuitive to keep the
electron density fixed in a part of the system where the material
is transformed from one phase to another – such a configuration
would be far from equilibrium and therefore energetically highly
unfavorable.

These two examples are intended to point out, that from a phys-
ical point of view it should not be obvious, which ‘‘variational
derivative’’ is appropriate as expression for the driving force,
whether it is a ‘‘partial derivative’’, where only the phase field is
adjusted, or whether in the sense of a ‘‘total derivative’’ also other
fields have to follow and therefore potentially influence the ener-
getic situation. We note that in more general cases of comparable
timescales for the different physical phenomena, the driving force
should be ‘‘in between’’ the two extreme situations of the partial
and total derivative. We contrast here these two limiting cases,
which are highly relevant for many applications, e.g. solidification,
where diffusion in the solid phases can be neglected due to the
much larger timescales, or slow solid state transformation, where
elastic degrees of freedom can be considered as instantaneously re-
laxed. A counterexample is brittle fracture, where the crack front
propagation occurs on the same velocity scale as the relaxation
of the mechanical degrees of freedom. Nevertheless, there has been
significant progress in phase field modeling, see (Spatschek et al.,
2011) for a review.

It is the purpose of the present paper to shed light on this
question, and this in view of the extension towards the incorpo-
ration of plastic effects and their influence on the kinetics of
phase transformations. We note that this discussion is not at all
restricted to phase field models, as also sharp interface methods
require the knowledge of the correct thermodynamic driving
force. For such descriptions, also the energy change upon a ‘‘vir-
tual’’ shift of the interface position is calculated. Therefore, the
same question, whether other fields should be kept constant or
being ‘‘slaved’’ for the calculation of this energy change, appear.
Technically, the calculation of driving forces is more cumbersome
for sharp interface formulations, since for non-planar fronts dif-
ferential geometrical aspects need to be taken into account, and
therefore the development of a phase field model is typically
much more straightforward. In this article we will also explicitly
make use of sharp interface descriptions, but restrict the investi-
gations to one-dimensional situations, where the tracking of the
interface requires just the bookkeeping of a single, time depen-
dent coordinate L1ðtÞ. The motion of the interfaces would then
– in the spirit of the discussion above – be directly related to
two different expressions for the chemical potential l, which is
the free energy change upon a variation of the interface position
L1. Here, one candidate for the driving force is the ‘‘partial deriv-
ative expression’’ with the strain e

Dlp ¼
@F
@L1

� �
c;e;...

; ð5Þ

where other fields are kept constant, whereas in the ‘‘total deriva-
tive expression’’

Dlt ¼
dF
dL1

; ð6Þ

all fields do depend on the interface position, and therefore contrib-
ute to the total derivative. The analogy of an equation of motion (1)
is in the sharp interface limit

dL1

dt
¼ �KDlp; ð7Þ

where the kinetic coefficient K is related to interfacial and kinetic
properties of the corresponding phase field model.

We will address the question of the appropriate driving force
here using the simplest models to highlight the essential points
and not to obscure them by other effects. This means in particular
that we will largely focus on one-dimensional geometries, consider
only two distinct phases, equal elastic and plastic properties etc.
Nevertheless, all statements can directly be transferred to more
complex situations.

We point out that aside from the issues related to finding the
correct expression for the driving force for interface motion, also
other effects need to be considered, which are related to configura-
tional forces. They arise when the shape of some material changes
not only due to mechanical deformations (which lead to the usual
mechanical forces) but by changing the amount of material, i.e. by
creating or destroying surfaces without changing the lattice struc-
tures and properties. The role of such configurational forces have
widely been discussed in the literature, see e.g. (Gurtin, 2000) for
an overview in the field of continuum thermodynamics. A well
known example is the role of interfacial energy, and its distinction
from surface stress (Fischer et al., 2008; Spatschek and Fleck,
2007), but also the conservation of momentum at advancing inter-
faces in continuum models of fracture are cases where these con-
cepts are applied (Freund, 1998; Brener and Spatschek, 2003).
Thermodynamic forces can cause phenomena like grain boundary
premelting, see (Sutton and Balluffi, 1995; Adland et al., 2013;
Spatschek et al., 2013). In a more general sense we mention also
frameworks for phase field models, sharp interface and related for-
mulations, see (Gurtin, 1996; Maugin et al., 2010) for an overview.
In this paper, we instead focus entirely on the aspect of the bulk
driving force only. In contrast to more general considerations as
in Gurtin (2000); Maugin et al. (2010) we study here only specific
examples, which are frequently encountered in Materials Science
applications, and discuss the models in view of fundamental phys-
ical perspectives.

The article is organized as follows: First, we revisit the case of a
conserved order parameter model for the description of an alloy in
Section 2. Section 3 discusses situations, where elastic effects are
relevant. Sections 4 and 5 treat the more complex cases of plastic
and viscoelastic effects. The results are summarized in Section 6.

2. Concentration coupling

Above we argued that in situations, where the interface motion
is fast in comparison to the diffusion, the use of the partial func-
tional derivative should give the appropriate driving force for the
phase field evolution, as the concentration field reacts only slowly
to interface fluctuations and can therefore be considered as fixed.
Here we will investigate the opposite limit, that the diffusion is
infinitely fast in comparison to the interface kinetics. Then the con-
centration field immediately adjusts to a motion of the interface
(similar to the electron density), and we would expect that in this
extreme case rather the total functional derivative

DF
D/ðrÞ ¼

dF½/; c½/��
d/ðrÞ ¼ dF

d/ðrÞ þ
Z

dF
dcðr0Þ

dcðr0Þ
d/ðrÞ dr0 ð8Þ

should be the appropriate driving force. Here, the volume integrals
are carried out over the whole system with positions r and r0. The
integral term, which appears due to the chain rule, therefore seems
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to give an additional contribution to the driving force in general. In
this case the chemical potential l must be homogeneous in the
system,

l ¼ dF
dc
¼ const; ð9Þ

which follows from the stationary diffusion equation

@c
@t
¼ r � Dcr dF

dc

� �
¼ 0; ð10Þ

under the assumption that the flux vanishes at infinity, thus
DcrðdF=dcÞ � 0. Notice that the constancy of the chemical potential
holds also if the diffusion constant is different in the phases. Inver-
sion of this relation formally gives c ¼ c½/�, which is therefore
slaved by the phase field.

It is important to take into account here the conservation of the
total amount of the impurities,Z

cðrÞdr ¼ �cV ¼ const ð11Þ

with a given average concentration �c. Notice that the conservation
law is also related to the issue of a finite system size, here with vol-
ume V. In this sense, it is also the domain of integration in all the
expressions here. Since boundary terms are suppressed in the vari-
ational derivatives, this implicitly assumes no-flux boundary condi-
tions, in agreement with the aforementioned material conservation.
We therefore introduce a new functional

~F ¼ F � k
Z

cðrÞdr� �cV
� �

; ð12Þ

with a Lagrange multiplier, instead of incorporating explicitly the
conservation constraint. Then by the equilibrium condition for the
concentration field (minimization of the free energy F with respect
to c under the conservation constraint) we have

d~F
dc
¼ dF

dc
� k ¼ 0: ð13Þ

As a result, the Lagrange multiplier equals the chemical potential,
k ¼ l. In this sense, the transition from F to ~F is a Legendre transfor-
mation. If the constraint is fulfilled, of course ~F ¼ F. Therefore then
also

DF
D/ðrÞ ¼

D~F
D/ðrÞ ¼

dF
d/ðrÞ � k

Z
dcðr0Þ
d/ðrÞ dr0 þ

Z
dF

dcðr0Þ
dcðr0Þ
d/ðrÞ dr0 ¼ dF

d/ðrÞ ;

ð14Þ

since the last two terms cancel by the definition of the chemical po-
tential. Interestingly, we can therefore conclude that the driving
force expression, as it would emerge from a definition via the total
derivative, equals the partial variational derivative, as it is routinely
used in phase field modeling, which therefore justifies this ap-
proach. Notice that for the present case, that the diffusion is infi-
nitely fast, would be the case where we would have expected the
largest deviation from the partial work approach, but it turns out
that both expressions are identical.

To make this situation more transparent, we use a simple phase
field model in dimensionless units

fpf ¼
1
2
ðr/Þ2 þ 1

2
/2ð1� /Þ2 þ Thð/Þ; ð15Þ

fc ¼ c ln c � c þ hð/Þc; ð16Þ

where the coupling function hð/Þ interpolates between 0 and 1, e.g.
hð/Þ ¼ /2ð3� 2/Þ. T is a reduced temperature deviation from the
melting temperature for the pure materials. The term hð/Þc
penalizes segregation in the solid phase and is responsible for the

partitioning. The resulting equilibrium phase diagram has straight
solidus and liquidus lines. The free energy functional is

F ¼ Fpf þ Fc ¼
Z
ðfpf þ fcÞdV : ð17Þ

The standard equations of motion are

_/ ¼ � dF
d/

; ð18Þ

_c ¼ r cr dF
dc

� �
: ð19Þ

Here, the derivatives are treated in the sense of partial derivatives,
which means that c is considered as frozen in during variation with
respect to /.

For slow interface motion the conjecture would be that the evo-
lution of the phase field should instead follow an equation of the
sort

_/ ¼ �DF
D/

; ð20Þ

where D=D/ symbolizes a ‘‘total derivative’’, in the sense that the
concentration field can adjust immediately.

For a fast equilibrating concentration field we have the
condition

dF
dc
¼ ln c þ hð/Þ ¼ l ¼ spatially constant; ð21Þ

and therefore the concentration field is slaved by the phase field

cð/Þ ¼ expðl� hð/ÞÞ: ð22Þ

The total derivative would thus be

DF½/; cð/Þ�
D/

¼ dF
d/
þ @fc

@c
@c
@/
¼ dF

d/
� lh0ð/Þcð/Þ; ð23Þ

where we used @fc=@c ¼ l. Here it seems that a new term appears
which is not used in typical phase field formulations, and as we will
see below, it is not correct here. First we note the interpretation of
this term: Consider a planar front moving through the system, let’s
say during solidification. Then in each bulk phase the concentra-
tions are (in this fast diffusion limit, where no solute trapping oc-
curs) equal to the equilibrium values cs and cl. Only in the
interface region we have a nontrivial transition between these
two values. If the interface moves, therefore now excess solute
cl � cs has to be removed from the system against the ‘‘work’’ of
the chemical potential l, and this is exactly expressed through
the new term in the variational derivative above. Since the removal
takes place at the boundary of the system, this is a highly nonlocal
process, and is intimately related to the fact that the concentration
is a conserved quantity. However, this is the reason why the above
total derivative is not the correct driving force. We used a free en-
ergy functional to derive the equations of motion. Thermodynami-
cally, this is only the right functional for a system with fixed
volume and number of particles, and therefore for the constraintZ

c dV ¼ constant in time: ð24Þ

According to the interpretation given above, this constraint is so far
not taken into account in the derivation above, and therefore, the
above total derivative is not the correct driving force. The consider-
ation of the correct thermodynamic potential is therefore manda-
tory for obtaining the correct driving force. Here we find that for
the alloy example the definition of the correct variational procedure
is less critical, as both lead to the same expression. However, this is
not a general result, as will become more transparent later. We
mention in passing that e.g. in situations with non-constant tem-
perature in closed systems maximization entropy is the proper
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thermodynamic principle, and therefore this potential is used in
phase field models of alloys (Nestler et al., 2005) or applied electri-
cal currents and Joule heating (Brush, 2003).

To correct the mistake of the improper material conservation,
we need to take into account that the chemical potential is not con-
stant during interface motion, but adopts according to the conser-
vation law above. Therefore, it becomes a nonlocal functional of
the phase field, and therefore leads to a contribution in the correct
driving force term. The concentration has to obey the constraintZ

c dV ¼ �cV ; ð25Þ

with the average concentration �c and the system volume V. There-
fore we get from Eq. (22) the value of the chemical potential

l ¼ ln
�cVR

expð�hð/ÞÞdV
: ð26Þ

Hence the concentration is a nonlocal functional of the phase field

c½/� ¼
�cV expð�hð/ÞÞR
expð�hð/ÞÞdV

: ð27Þ

We can calculate the total functional derivative of the free energy
contribution Fc

DFc

D/ðrÞ ¼
dFcð/; c½/�Þ

d/
¼ dFcð/; cÞ

d/
þ
Z
@fcð/; cÞ
@c

dcðr0Þ
d/ðrÞ dr0; ð28Þ

where the first term is the usual one, and we do not consider it fur-
ther; it is present also in the ‘‘partial work approach’’. In the second
term the variation of the concentration upon a change of / is

dcðr0Þ
d/ðrÞ ¼

�cV expð�hð/ðr0ÞÞÞR
expð�hð/ÞÞdV

� �2 expð�hð/ðrÞÞÞh0ð/ðrÞÞ

�
�cVR

expð�hð/ÞÞdV
h0ð/ðrÞÞ expð�hð/ðrÞÞÞdðr� r0Þ

Inserting this into the second integral term above givesZ
@fcð/; cÞ
@c

dcðr0Þ
d/ðrÞ dV ¼ 0; ð29Þ

where we used @fcð/; cÞ=@c ¼ l, which is spatially constant. Conse-
quently, we obtain in this limit, where the concentration is slaved
and conserved

DFc

D/
¼ dFcð/; cÞ

d/
: ð30Þ

The expectation was that in this case, where the concentration field
adjust instantaneously to changes of the interface position, that
here the deviation from the partial derivative (‘‘partial work’’) as
driving force would be highest; however, now we see that even in
this limit both approaches coincide.

In view of these result it is not surprising that the free energy is
a Lyapunov functional even in the general case, where the concen-
tration field is not slaved. From the equations of motion above we
deduce after an integration by parts

dF
dt
¼
Z

dFð/; cÞ
d/

_/þ dFð/; cÞ
dc

_c
� �

dV

¼ �
Z

dFð/; cÞ
d/

� �2

þ c
dFð/; cÞ

dc

� �2
" #

dV 6 0: ð31Þ

3. Elasticity

Elastic effects are essential during many solid-state transforma-
tions, and their implementation in phase field models has been
demonstrated repeatedly in the literature (see e.g. (Chen, 2002;

Spatschek et al., 2011)). In many cases, the assumption of static
elasticity is legitimate, since the front velocities are often slow in
comparison to the sound speed. Here, we would again expect that
the elastic degrees of freedom adjust instantaneously during a
‘‘trial step’’ of the interface to explore the decay of the free energy
as driving force. In contrast to what is usually used for phase field
models we would therefore expect an equation of motion of the
form

@/
@t
¼ �DF

D/
: ð32Þ

However, from the elastic equilibrium conditions for the displace-
ment components ui

dF
dui
¼ 0 ð33Þ

follows immediately

DF
D/
¼ dF

d/
ð34Þ

by the chain rule,

DF
D/ðrÞ ¼

dF
d/ðrÞ þ

Z
dF

duðr0Þ
duðr0Þ
d/ðrÞ dr0: ð35Þ

Again, both driving force expressions therefore give identical re-
sults. We note that no assumption about the elastic model had to
be made, and the statement therefore holds equally for isotropic
as for anisotropic, for linear as for nonlinear elasticity. We mention
that upon integration by parts for the functional derivatives elastic
boundary conditions naturally arise. This is illustrated explicitly in
the one-dimensional formulation below, where we consider in par-
ticular fixed-volume scenarios, in agreement with the use of the
Helmholtz free energy as thermodynamic potential (Landau, 1986).

Instead of a phase field formulation, also a sharp interface mod-
el can be used equivalently, as will be illustrated in the following.
For simplicity, we consider the simplest case of a one-dimensional,
linear elastic model, since there the interface tracking problem is
reduced to the requirement to know just the (time-dependent)
interface coordinate. Nevertheless, all steps can be transferred to
more complicated situations, and the link to phase field models
will be established below. The following example serves also as ba-
sis for the inclusion of plasticity later in the text.

The system is assumed to have the length L, and the interface is
located at the position 0 < L1ðtÞ < L. The free energy of the system
is then

F0½e1; e2; L1� ¼
Z L1

x¼0
f1ðe1ðxÞÞdxþ

Z L

x¼L1

f2ðe2ðxÞÞdx; ð36Þ

where interfacial energy terms are neglected, since they give only
an additive constant (the surface ‘‘area’’ is constant in one
dimension).

Since in the following it is more convenient to work with strains
e ¼ du=dx than with displacements, we have to fulfil additionally
the constraint that the total displacement should equal the system
elongation D, which we realize by a Lagrange multiplier ku

F½e1ðxÞ; e2ðxÞ; L1Þ ¼ F0½e1ðxÞ; e2ðxÞ; L1�

� ku

Z L1

x¼0
e1ðxÞdxþ

Z L

x¼L1

e2ðxÞdx� D
� �

: ð37Þ

The reason is that for the free energy as proper thermodynamic
functional the system volume, which is here related to the total dis-
placement D, has to be constant. As we will see below, the transi-
tion from F0 to F corresponds to a change from the Helmholtz to
the Gibbs free energy via a Legendre transformation by addition
of ‘‘pV’’ (pressure times volume). The local stress is defined as
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riðxÞ ¼
@fiðeiðxÞÞ
@eiðxÞ

: ð38Þ

Mechanical equilibrium requires that the functional (37) is mini-
mized with respect to the strains, thus

dF
de1ðxÞ

¼ @f1

@e1ðxÞ
� ku ¼ 0; ð39Þ

dF
de2ðxÞ

¼ @f2

@e2ðxÞ
� ku ¼ 0; ð40Þ

which implies that the stresses in both phases are spatially constant
and equal,

r1ðxÞ ¼ r2ðxÞ ¼ ku ¼: r ¼ const; ð41Þ

which also identifies the meaning of the Lagrange multiplier as the
system stress. This also shows that the difference between F0 to F
corresponds to a ‘‘pV term’’.

The driving force which is related to a virtual shift of the inter-
face position and fixed elastic fields (corresponding to the partial
variational derivative in a phase field framework) is

Dlp ¼
@F
@L1

� �
e1ðxÞ;e2ðxÞ

: ð42Þ

This has to be contrasted with the ‘‘total’’ driving force

Dlt ¼
dF
dL1

; ð43Þ

where the strains are not frozen but taken as functions of L1.
For an explicit model we assume linear elasticity with equal

elastic constants E in the two phases, thus the energy densities are

f1 ¼
1
2

Ee2
1 þ Df ; ð44Þ

f2 ¼
1
2

Eðe2 � e0Þ2; ð45Þ

with eigenstrain e0 and a tilt term Df , which reflects temperature
deviations from phase equilibrium. Therefore the stress is
r ¼ Ee1 ¼ Eðe2 � e0Þ ¼ const. From this follows in particular that
the elastic strain in each phase is constant, and we obtain

e1 ¼ e2 � e0 ¼ D=L� ð1� L1=LÞe0: ð46Þ

Therefore, the free energy becomes

FðL1Þ ¼
E

2L
ð�Dþ ðL� L1Þe0Þ2 þ Df L1; ð47Þ

from which we directly get the total work expression

Dlt ¼ re0 þ Df : ð48Þ

In contrast, the ‘‘partial’’ work expression is

Dlp ¼
1
2

Ee2
1 �

1
2

Eðe2 � e0Þ2 � rðe1 � e2Þ þ Df : ð49Þ

By virtue of Eq. (46) we readily obtain the expected agreement with
the total work expression

Dlp ¼ re0 þ Df : ð50Þ

The nonequilibrium front propagation is in this sharp interface
model described by an evolution law of the kind

dL1

dt
¼ �KDl ð51Þ

with a kinetic coefficient K. This simple problem can easily be
solved analytically, and we obtain

L1ðtÞ ¼ Lðeq:Þ
1 þ c1 exp �KEe2

0t
L

� �
ð52Þ

with

c1 ¼ L1ðt ¼ 0Þ þ D
e0
� Lþ LDf

Ee2
0

ð53Þ

and the equilibrium width of phase 1

Lðeq:Þ
1 ¼ � D

e0
þ L� LDf

Ee2
0

: ð54Þ

Whenever Lðeq:Þ
1 =L is in the range ð0;1Þ we get phase coexistence in

equilibrium. This is shown in Fig. 1, together with a numerical inte-
gration of the equation of motion (51). For this, at each time step
the partial or total energy change for interface motion in both direc-
tions is computed (they are equal up to the sign for the present
problem), and then the interface is advanced accordingly. From
Eqs. (46) and (52) follows then the stress evolution, which is shown
in Fig. 2.

If we call phase 1 the austenite and phase 2 the martensite, we
get the ‘‘martensite start temperature’’

MsðDÞ ¼ �
Ee0D

L
ð55Þ

and the ‘‘finish temperature’’

Mf ðDÞ ¼ Ee2
0 �

Ee0D
L

: ð56Þ

Notice that both of them depend on the external displacement D,
which shifts the temperatures linearly (Clausius–Clapeyron effect).
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Fig. 1. Interface evolution for a purely elastic case. The exponential relaxation
towards the equilibrium interface position agrees well between the theoretical
prediction (using either the total or partial work as driving force), and the numerical
simulation. Parameters are E ¼ 1; e0 ¼ 0:1;D ¼ 0:01L;Df ¼ 0:005 and K ¼ 1.
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Fig. 2. Stress evolution as function of time for the purely elastic case, corresponding
to the interface motion in Fig. 1. During the growth of the less dense phase 2 the
compressive stress in the clamped system increases and hampers further phase
transformation, until the elastic driving force balances the undercooling and the
process asymptotically comes to rest.
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The width of the coexistence region is Mf �Ms ¼ Ee2
0. In between,

the martensite volume fraction varies linearly with temperature,
see Fig. 3. Notice that within this one-dimensional model we do
not have an elastic hysteresis, therefore the martensite start and
austenite finish temperature coincide, as well as the martensite fin-
ish and austenite start temperature. Corresponding stress–strain
curves are shown in Fig. 4. In the single phase regimes the stress in-
creases linearly with strain, but stays constant in the two-phase
region.

This case shows in particular the duality of phase field and
sharp interface descriptions. The fact, that total and partial work
coincide holds both for the phase field as well as the sharp inter-
face description. To make the link more explicit, we can use for a
one-dimensional phase field description the functional

F½/;u� ¼
Z L

0
ðfs þ fdw þ fel þ fTÞdx ð57Þ

with the Landau free energy density

fs ¼
3cn

2
d/
dx

� �2

ð58Þ

with the interface thickness n and the interfacial energy c. Notice,
that although we do not need the latter parameter in the sharp
interface description, since the interface is just a point in a

one-dimensional situation and therefore the surface ‘‘area’’ cannot
change, it still appears in a phase field description and is required
for the interface stabilization. However, its choice is not crucial
here, but a proper choice may stabilize in particular moving inter-
faces. The double well potential is

fdw ¼
6c
n

/2ð1� /Þ2; ð59Þ

and the elastic energy density in agreement with the sharp interface
model

fel ¼ hð/Þ1
2

Ee2 þ ½1� hð/Þ�1
2

E e� e0ð Þ2; ð60Þ

with an interpolating function hð/Þ ¼ /2ð3� 2/Þ. Notice that now
we do not have to explicitly discriminate between the strains in
the two phases, e ¼ u0. Hence / ¼ 1 corresponds to phase 1 and
/ ¼ 0 to phase 2. Finally, we add the thermal tilt

fT ¼ hð/ÞDf : ð61Þ

The equation of motion is

@/
@t
¼ � dF

d/

� �
u
¼ �DF

D/
; ð62Þ

where the time scale has been renormalized such that no additional
kinetic coefficient appears in front of the variational derivative. The
latter identity follows from the static mechanical equilibrium
condition

dF
du

� �
/

¼ 0: ð63Þ

A planar front solution is

/ðx; tÞ ¼ 1
2

1� tanh
x� L1ðtÞ

n

� �
; ð64Þ

with front velocity

_L1 ¼ 3nDl; ð65Þ

in the sharp interface limit, and hence we identify for this model
K ¼ 3n.

4. Elasto-viscoplasticity

Typical (visco-) plasticity models bring in a new aspect into
phase transition modeling, as they contain internal variables, with
evolution laws that are not derived from the same functional as the
other dynamical equations. The main message of this paper is, that
due to this property, the driving force expressions as derived from
different variational derivatives give different results, and there-
fore one should postulate evolution equations with care. To under-
line this statement and some consequences, we use in the
following a simple, one-dimensional von Mises-type model. Isotro-
pic strain hardening is considered in the following (except of in the
simulations). We refrain here from discussing more complex mod-
els, which may be used for realistic modeling, in order not to ob-
scure the result; nevertheless, it should be pointed out that the
same question for the correct driving force appears also in these
cases.

We will start the discussion again with a one-dimensional sharp
interface model, since this allows an analytical treatment, and also
for numerical investigations it is easier to switch between the ‘par-
tial’ and ‘total’ work for interface motion.

For convenience, we replace the rate-independent elasto-plas-
ticity model by a rate-dependent viscoplasticity model according
to
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Fig. 3. Austenite volume fraction as function of undercooling for different applied
strains. The martensite start temperature Ms and finishing temperature Mf depend
on the total system displacement. For a lower density martensite, e0 ¼ 0:1 > 0 here,
the conversion to martensite is favored for tensile strain, and therefore the
transition starts already at higher temperatures (dashed curve), for compressive
strain the coexistence region is shifted towards lower temperatures (dotted curve).
In the coexistence regime the volume fraction changes linearly with temperature.
For a stress free system without mechanical constraint coexistence is only possible
at the nominal phase equilibrium temperature Df ¼ 0. Parameters are the same as
in Fig. 1.
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decomp: of deformation e¼ eelþevpl ð66Þ
closure of elastic domain Er :¼fðr;aÞ 2R�Rþjf ðr;aÞ60g ð67Þ
yield function f ðr;aÞ :¼ jrj� ½ryþKa� ð68Þ

flow ruleðDuvaut-LionsÞ _evpl¼
E�1

s r�Pr½ � iff ðr;aÞ>0
0 else

(
ð69Þ

hardening law _a¼ j _evplj ð70Þ

where P : R! @Er is the closest point projection onto @Er, i.e. the
boundary of the elastic range. Furthermore, the yield stress is de-
noted by ry and the viscoplastic relaxation timescale is s. Notice,
that in the limit s! 0 the case of rate-independent plasticity is
restored.

The present model exhibits the visco-plastic strain evpl and the
equivalent plastic strain a driving isotropic strain hardening. The
previously introduced eigenstrain can be understood as a special
case of a plastic deformation, with the only difference that the
eigenstrain can there change only due to the phase transition,
but not as a result of plastic flow.

The previous results can therefore also be interpreted as the
phase transition between two materials, with one of them previ-
ously being loaded beyond the elastic limit, such that a plastic
strain evpl;2 ¼ e0 remains, and, consecutively, purely elastic defor-
mations. However, the preceding analysis suggests that a qualita-
tively different behavior can occur if plastic deformations occur
during the phase transformation process.

The first example that we use here is a case where the initial
state is still in the elastic regime, i.e. initially the stress is below
the yield stress. For simplicity we assume again that the two elastic
constants are equal, and that phase 1 has in the beginning a van-
ishing plastic strain, whereas evpl;2 ¼ e0 in the beginning e.g. due
to prior plastic deformations or a density difference in comparison
to phase 1.

In contrast to the elastic case, where we have a unique link be-
tween phase and eigenstrain, this is not necessarily the case for
phase transitions involving plastic deformations. The plastic strain
is a dynamical quantity, and it is usually not homogeneous within
one phase, but may change there even discontinuously. This will be
discussed in more detail below, and for the moment we assume
that the plastic strain is homogeneous in each phase, which simpli-
fies the theoretical analysis.

As long the system remains in the elastic state, the stress in the
two-phase region for the equilibrium interface position is

r ¼ �Df
e0
; ð71Þ

which follows from Eqs. (50) and (51). Depending on the initial
phase fractions and temperature the stress can increase or decrease
during the interface motion. In case that it grows we expect a devi-
ation from the previous exponential relaxation to the equilibrium
phase fractions if the stress exceeds the yield stress ry. For a situa-
tion in which the absolute value of the stress grows monotonically
during the evolution, we get a transition from the purely elastic to a
plastic regime if jDf=e0j > ry.

The noticeable effect is that at the moment when the yield
stress is reached, the martensite volume fraction changes fast
and linearly in time. Intuitively spoken, the reason for this abrupt
change of the material behavior is that the stress remains constant
in the plastic regime, and therefore the driving force does not
change. Consequently the phase transformation velocity is con-
stant in our one-dimensional example. In the following, we will
analyze this behavior analytically.

Let tp be the time when the yield stress is reached. At that mo-
ment the interface is located at L1ðtpÞ. From then on the stress must
stay at the level of the yield stress if the relaxation timescale s is

short, s! 0. At t ¼ tp we start with known values of evpl;1ðtpÞ and
evpl;2ðtpÞ. If phase 1 grows, this would create a stress overshoot
ry þ dr with dr ¼ �Eðevpl;1 � evpl;2ÞDx, along with a plastic strain
rate following from the flow rule

_evpl;i ¼
1
sE

dr; i ¼ 1;2 ð72Þ

which is equal for both phases. Therefore, we get equally the same
inelastic strain increment DevplðtÞ in both phases

evpl;iðtÞ ¼ evpl;iðtpÞ þ DevplðtÞ; i ¼ 1;2 ð73Þ

The decomposition of deformation reads

evpl;1ðtÞ ¼ eiðtÞ � eel; i ¼ 1;2: ð74Þ

Together with the compatibility condition, i.e. the displacements at
x ¼ L obeying

uðx ¼ LÞ ¼ e1L1 þ e2ðL� L1Þ ¼ D; ð75Þ

we have five equations for the five unknowns
e1ðtÞ; e2ðtÞ; evpl;1ðtÞ; evpl;1ðtÞ and DevplðtÞ for known interface position
L1ðtÞ.

Next, we assume that the free energy density has the form

f1ðe1; evpl;1Þ ¼
1
2

Ee2
el;1 þ fvpl;1ðevpl;1Þ þ Df ; ð76Þ

f2ðe2; evpl;2Þ ¼
1
2

Ee2
el;2 þ fvpl;2ðevpl;2Þ; ð77Þ

in agreement with the stress–strain relation used before. The term
fvpl;i; i ¼ 1;2 is a function of the local plastic strain state and repre-
sents a ‘‘defect energy’’ of the material, which typically leads to
the phenomenological effect of strain hardening. In Eq. (68) a sim-
ple linear isotropic strain hardening was assumed to hold, following
from a quadratic form of the plastic potential fvpl;i ¼ 1=2Ka2.

Concerning the definition of the different candidates for driving
force terms, more care should be used here. As mentioned before,
the reason is that e.g. for the elastic case the eigenstrain is directly
linked to the ‘‘phase state’’ and homogeneous in each phase. The
plastic strain, however, can be inhomogeneous in each phase, since
it obeys a separate dynamical evolution. A simple example would
be a cylindrical hole, which acts as a stress concentrator, and then
the material can be still fully elastic far away from the whole but
plastic with a nonvanishing plastic strain close to the defect (Fleck
et al., 2010). Furthermore, the motion of a phase boundary can
influence the plastic state: if one phase is converted into another,
it is not a priori clear in which ‘‘defect state’’ the new phase will
grow. On the one hand it is possible that in the newly transformed
phase many misfit dislocations are generated, therefore leading to
a high plastic strain in this region, but on the other hand it is also
conceivable that the new phase can grow defect free although the
mother phase contains many dislocations. In particular, it is there-
fore possible that the newly grown phase has a very different plas-
tic strain than parts of the same phase. This implies that within
each phase the material properties, here the plastic strain, can
change discontinuously, and therefore also in the calculation of
the driving forces all functions have to be evaluated with care. In
fact, we find that the choice of the variational procedure does mat-
ter here, which is a central message of the present paper. This is
illustrated in the following in more detail.

4.1. Total work expression

For the calculation of the total work one therefore gets in gen-
eral different driving forces for the growth of the two phases, one
for a interface trial step dL1 > 0 and another for dL1 < 0. To discrim-
inate between the different states for the internal variables before
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and after the interface motion step, we therefore use superscripts
(old) and (new) and obtain

DldL1>0
t ¼ f ðnewÞ

1 jint � f ðoldÞ
2 jint � rðeðnewÞ

1 jint � eðoldÞ
2 jintÞ

þ
Z L1

0

@f1

@evpl;1

@evpl;1ðx; L1Þ
@L1

dxþ
Z L

Lþ1

@f2

@evpl;2

@evpl;2ðx; L1Þ
@L1

dx:

ð78Þ

Here, the term f ðnewÞ
1 jint � f ðoldÞ

2 jint accounts for the work to replace
the material consisting of phase 2 at the interface (in the plastic
state before the trial step) by the newly grown phase 1 in the
new state. The second term, rðeðnewÞ

1 jint � eðoldÞ
2 jintÞ, is the mechanical

work that is necessary to maintain the coherency, since the previ-
ous phase 2 before the transformation has a new strain than the
new phase 1 after the transformation. The last two terms are the
nonlocal terms which result from plastic bulk dissipation (Dlnl).
Here it is assumed that the plastic strain changes smoothly in these
regions. In the second integral the lower integration bound is Lþ1 , i.e.
it has to be evaluated in phase 2 only, despite the fact that an (infin-
itesimally small) part of this phase at the interface is converted to
phase 1 at the interface.

For growth of phase 2, dL1 < 0, the expression is similarly

DldL1<0
t ¼ f ðoldÞ

1 jint � f ðnewÞ
2 jint � rðeðoldÞ

1 jint � eðnewÞ
2 jintÞ

þ
Z L�1

0

@f1

@evpl;1

@evpl;1ðx; L1Þ
@L1

dxþ
Z L

L1

@f2

@evpl;2

@evpl;2ðx; L1Þ
@L1

dx:

ð79Þ

For the ‘‘partial’’ work as driving force, all fields have to be evalu-
ated in the old state, since the fields are frozen during the trial step.
This means in particular that there is no distinction between the
different directions of interface growth, and no nonlocal terms ap-
pear. Hence we obtain

Dlp ¼ f ðoldÞ
1 jint � f ðoldÞ

2 jint � rðeðoldÞ
1 jint � eðoldÞ

2 jintÞ: ð80Þ

For the presently considered case that the material grows in the
same plastic state as the same adjacent already existing phase
and continuous functions fi, the distinction between (old) and
(new) is not necessary, and therefore the only relevant difference
between total and partial work expression is the appearance of
the nonlocal terms. Furthermore, the ‘‘partial work expression’’
does not depend on the direction of interface motion.

For the specific model above we obtain

@fi

@evpl;i
¼ �Eeel;i þ f 0vpl;iðevpl;iÞ ¼ �ry þ f 0vpl;iðevpl;iÞ: ð81Þ

The local contribution to the chemical potential difference (partial
work) is given by

Dlp ¼ f1ðe1; evpl;1Þ � f2ðe2; evpl;2Þ � ryðe1 � e2Þ

¼
r2

y

2E
þ fvpl;1 �

r2
y

2E
� fvpl;2

� ry
ry

E
þ evpl;1ðtÞ �

ry

E
� evpl;2ðtÞ

� 	
þ Df

¼ fvpl;1 � fvpl;2 � ry evpl;1ðtpÞ � evpl;2ðtpÞ
� �

þ Df : ð82Þ

The nonlocal contribution is

Dlnl ¼
@f1

@evpl;1

devpl;1

dL1
L1 þ

@f2

@evpl;2

devpl;2

dL1
ðL� L1Þ

¼ �ry þ f 0vpl;1

h i dDevpl

dL1
L1 þ �ry þ f 0vpl;2

h i dDevpl

dL1
ðL� L1Þ

¼ dDevpl

dL1
�ryLþ f 0vpl;1L1 þ f 0vpl;2ðL� L1Þ
h i

ð83Þ

From the above equations we get

Devpl ¼
D� evpl;1ðtpÞL1 � L1ry=E

L
� L� L1

L
ry

E
þ evpl;2ðtpÞ

� 	
ð84Þ

and therefore

dDevpl

dL1
¼ � evpl;1ðtpÞ

L
þ evpl;2ðtpÞ

L
: ð85Þ

This means that the ‘‘total’’ driving force Dlt ¼ Dlp þ Dlnl is

Dlt ¼ evpl;2ðtpÞ � evpl;1ðtpÞ
� �
� f 0vpl;1ðevpl;1ÞL1 � f 0vpl;2ðevpl;2ÞðL� L1Þ
h i

=Lþ fvpl;1ðevpl;1Þ

� fvpl;2ðevpl;2Þ þ Df : ð86Þ

To simplify and illustrate the behavior, we assume fvpl;i ¼ 0, which
means that the free energy of the defects is assumed to be negligi-
bly small. It is quite remarkable that all mechanical effects com-
pletely drop out of the driving force term. Then Dlt ¼ Df becomes
constant, which, together with the evolution equation _L1 ¼ �KDlt

leads to a constant interface velocity in the plastic regime, see
Fig. 5. The time evolution of the stress and the plastic strain are
shown in Figs. 6 and 7. The equilibrium austenite volume fraction
as function of temperature, depending on the yield stress and exter-
nal deformation, are shown in Figs. 8 and 9 respectively.

4.2. Partial work expression

Let us contrast this with a model where the interface motion is
driven by the partial work expression. Again, for the case of negli-
gible defect energy, fvpl;i ¼ 0, the driving force becomes constant in
the plastic regime, Dlp ¼ �ry evpl;1ðtpÞ � evpl;2ðtpÞ

� �
þ Df , and there-

fore also here the interface velocity becomes constant. The process
therefore stops only when the material is completely converted
into a single phase. In contrast to the total work case, the interface
velocity changes here continuously at the transition point between
the elastic and plastic regime, see Fig. 5, since the strain difference
at the plastification time tp is exactly equal to the eigenstrain dif-
ference in the elastic regime, and therefore the driving force after
this point matches the elastic expression (50).

The existence of the two-phase region is a consequence of the
total volume constraint; in the purely elastic case phase coexis-
tence would exist only for one specific temperature if instead of
the total displacement the stress is given. The presence of plastic
effects acts in some sense like a modification of the boundary con-
ditions in closed systems, as the stress remains at the yield stress
even if the interface moves. It is therefore consistent that the coex-
istence region becomes smaller through the presence of plastic ef-
fects. On the other hand it is quite remarkable, that with plastic
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Fig. 5. Interface position as function of time. Initially, the system is in a purely
elastic state, i.e. evpl;1 ¼ 0 and evpl;2 ¼ e0 ¼ 0:1. During the evolution the absolute
value of the stress increases, until it reaches the yield stress. At this moment, the
interface starts to move linear in time until it hits the boundary, i,e. the equilibrium
state is a single phase. This means that the martensite start and finish temperatures
are changed through the plastic effects. Parameters are E ¼ 1;ry ¼ 0:049; L ¼
1;D ¼ 0:01;Df ¼ 0:005;K ¼ 1; fvpl;1 ¼ fvpl;2 ¼ 0.
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effects, i.e. with an additional dissipative effect (in the bulk), the
interface moves even faster and with a constant velocity.

4.3. Energy dissipation

Let us consider also the time evolution of the free energy. For
fvpl;i ¼ 0 we get in the first elastic regime according to Eq. (47)
for equal elastic constants

FðL1Þ ¼
1
2

E
ðD� ðL� L1Þe0Þ2

L
þ L1Df ; ð87Þ

where we added already the temperature contribution. The expo-
nential relaxation of the interface position has already been calcu-
lated above.

In the plastic regime, we can obtain the above results also easily
by a direct calculation of the free energy. Then in both phases
r ¼ ry, with a free energy density

fi ¼
r2

y

2E
ð88Þ

(without tilt and defect energy, fvpl;i ¼ 0), and thus the total free be-
comes (with tilt)

FðL1Þ ¼
r2

y

2E
Lþ L1Df ; ð89Þ

from which we directly get

Dlt ¼
dF
dL1
¼ Df : ð90Þ

Therefore, with the linear evolution of L1 in the plastic regime, also
the free energy decays linearly. The velocity is given by
_L1 ¼ �KDlt ¼ �KDf , and therefore

_F ¼ dF
dL1

dL1

dt
¼ �KðDf Þ2 < 0: ð91Þ

Both the elastic and the plastic regime are shown in Fig. 10.
If, in contrast, we used the partial work as driving force for the

interface motion, we would have

Dlp ¼ rye0 þ Df : ð92Þ

With the equation of motion _L1 ¼ �KDlp we would therefore get

dF
dt
¼ dF

dL1

dL1

dt
¼ �KDf ðDf þ rye0Þ; ð93Þ

which can (in principle) be, depending on the eigenstrain, positive
or negative. This seems to indicate a violation of the second law
of thermodynamics, but in fact the situation is more complicated.
Obviously, this problem could occur only in the plastic regime. If
the process is started in the elastic regime, the necessary condition
for entering the plastic regime is jDf=e0j > ry. Let us assume that
e0 > 0. The condition for a violation of the second law of thermody-
namics is Df ðDf þ rye0Þ < 0. If Df > 0, we would need Df < �rye0,
which is impossible for the chosen signs. In the opposite case,
Df < 0, the condition would be Df > �rye0 or equivalently
jDf j=e0 < ry, which contradicts the above requirement for being in
the plastic regime.
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Fig. 6. Stress as function of time for the simulation in Fig. 5. The graph is valid for
both the total and the partial work as driving force. The parameters are the same as
in Fig. 5.
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Fig. 8. Austenite volume fraction as function of undercooling, for different values of
the yield stress. For high yield stresses, the behavior is the same as in the elastic
case. For lower yield stresses plastic effects set in as soon the yield stress is
exceeded, and then the remaining austenite is fully transformed into martensite. In
this regime the knowledge of the full history is relevant, as a plastic stress could
already be present in the initial state. Here we start with complete austenite at each
temperature. No additional displacement is applied to the clamped system,
therefore the purely austenitic system is stress free, and hence the transition sets
in at the nominal coexistence temperature Df ¼ 0. The parameters are the same as
in Fig. 5.
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Physically, the dissipation rate should be higher if we use the
total free energy change as driving force. It consists of the local
‘‘transformation energy’’ plus the bulk dissipation due to plastic
relaxation. Since the latter also reduces the free energy, it gives
an additional contribution for the driving force. With the partial
work ansatz, the system also relaxes plastically, but the bulk con-
tribution to the free energy reduction is not taken into account in
the interface equation of motion, and therefore the interface moves
more slowly. As a consequence, the decay of the free energy is
slower, too.

4.4. Discussion

On the level of a continuum modeling, equations of motion can
only be postulated. Since we have encountered here a case where
total and partial work approach lead to different results, the proper
choice for realistic modeling needs to be discussed. On the hand
hand side, the approach via the total work seems to be appealing,
since it considers in particular the instantaneous relaxation of the
elastic degrees of freedom, which can often be assumed to be fast.
On the other hand, this approach also takes bulk dissipation far
away from the interface into account as a driving force for interface
motion. The motion of the interface leads to localized dissipation in
this region as well as to bulk dissipation everywhere due to plastic
flow if the yield stress is exceeded. This is counterintuitive, since
energy losses far away, which do not lead to any changes of the
atomic configuration at the interface, may still influence its mo-
tion. A similar situation is encountered for viscous materials, which
are considered in the next section. One would expect that only the
material behavior in the immediate interface region can be related
to its motion. Also, the acceleration of the interface in the moment
that the plastic regime is entered, is questionable.

This suggests another model for the choice of the driving force,
which is in some sense between these two extreme cases,

DldL1>0
lt ¼ f ðnewÞ

1 jint � f ðoldÞ
2 jint � rðeðnewÞ

1 jint � eðoldÞ
2 jintÞ ð94Þ

and

DldL1<0
lt ¼ f ðoldÞ

1 jint � f ðnewÞ
2 jint � rðeðoldÞ

1 jint � eðnewÞ
2 jintÞ: ð95Þ

It takes into account the full relaxation of the trial states, but only
the dissipation in the interfacial region is relevant for the interface
motion. For the situation, that we have considered so far, where the
material grows in the same defect state as its adjacent ‘‘substrate
phase’’, the expressions become the same as the partial driving
force. This suggests that also here the use of the virtual variation
(or partial functional derivative in a phase field model) leads to rea-
sonable interface dynamics.

Nevertheless, this new model also allows get a different behav-
ior, as it includes the possibility to have different driving forces for

both growth directions. To illustrate this, we consider a case where
phase 2 grows from phase 1 preserving the defect state, i.e. in the
newly grown material the plastic strain remains as it was before. In
the other direction we assume that the newly created phase 1 has
the same plastic strain as the already existing phase 1. This growth
behavior is sketched in Fig. 11. To keep the situation as simple as
possible, we consider now only cases where the stress always re-
mains below the yield stress, thus the plastic strain never changes
via the back projection onto the yield surface but only via the
phase transition. Nevertheless, the behavior is different than the
purely elastic case, because the material possesses now a ‘‘mem-
ory’’ of a defect state, i.e. an internal variable. In contrast to the
purely elastic case the eigenstrain of the material is not uniquely
connected with the notion of the phase.

Starting from the phase and plastic strain distribution as de-
picted in Fig. 11a and considering the growth of phase 2, the elas-
to-plastic situation does not change from (a) to (b), and therefore
the driving force becomes

DldL1<0
lt ¼ Df : ð96Þ

For the interface motion in opposite direction, i.e. the transition (a)
to (c), the behavior is the same as the previously discussed elastic
problem, and therefore the driving force is

DldL1>0
lt ¼ re0 þ Df : ð97Þ

The discrepancy between these two expression has the following
consequences. First, growth of phase 2 demands DldL1<0

lt > 0, and
conversely growth of phase 1 requires DldL1>0

lt < 0. Now it is possi-
ble that none of these conditions is satisfied, and then the interfaces
are pinned. Or, if both conditions hold, the interface becomes unsta-
ble, since different parts (in more than one dimension) may move in
opposite directions; in this case short wave corrugations may still
be hampered by interfacial energy. Second, according to Eq. (96)
the material would be completely converted to phase 2 (martens-
ite) as soon as Df > 0, and the front velocity is constant. For this
case martensite start and finishing temperature would therefore
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Fig. 10. Time evolution of the free energy, based on the total work expression. The
parameters are the same as in Fig. 5.
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Fig. 11. Asymmetric growth scenario. Starting from configuration (a), where the
dashed vertical line depicts the interface between phase 1 and 2, in (b) phase 2 has
grown. However, in the newly converted phase the plastic strain is adopted from
the mother phase, i.e. the plastic strain is now inhomogeneous in phase 2. For
growth in the other direction (c), it is assumed that phase 1 stays in a homogenous
plastic strain state.
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coincide, since elastic deformations do occur. For the reverse trans-
formation, however, the formation of austenite starts at Df ¼ �re0,
and therefore the austenite start temperature differs from the mar-
tensite finish temperature. Consequently, such a simple model
could be used as a starting point to describe systems with a trans-
formation hysteresis.

In a phase field simulation this would require to use different
evolution equations for growth and shrinkage, i.e. for the different
signs of @/=@t. A similar concept has previously been used in the
phase field modeling of irreversible fracture, where a crack is only
allowed to grow but not to shrink, and this is implemented by the
requirement @/=@t 6 0, where / ¼ 0 represents the broken mate-
rial inside the crack (Henry, 2010).

A central conclusion from the inspection of plastic effects is
therefore that model formulations should be chosen with
care, since the presence of internal variables can lead to
different behaviors depending on the choice of the driving force.
This ambiguity therefore calls for further investigations, also e.g.
with atomistic methods, to obtain further insights into this
problem.

5. Viscoelasticity

Let us briefly comment on another material class with a com-
plementary behavior to the plastic case. There, we had an additive
decomposition into an elastic and a plastic strain, but stresses are
only induced by the elastic strain. Furthermore, we considered the
limit where plastic relaxation is fast, i.e. no timescale is present in
this case. For a viscoelastic material, the situation is opposite:
There, we have both an elastic ‘equilibrium’ stress and a viscous
overstress, which additively give the total stress. Also, the process
naturally contains a timescale in contrast to rate-independent elas-
to-plasticity.

We consider again a one-dimensional situation, where the elas-
tic stresses are

rel;1 ¼ Ee1; ð98Þ
rel;2 ¼ Eðe2 � e0Þ: ð99Þ

The viscous stresses are related to the strain rates, and in a simple
Kelvin model they are (Landau, 1986)

rvis;i ¼ g _ei; i ¼ 1;2: ð100Þ

The total stress

r ¼ rel þ rvis ð101Þ

is homogeneous by the force balance condition @r=@x ¼ 0, where
inertial terms are ignored, since we assume that the relaxation
and interface motion is slow in comparison to the sound speed. This
gives, together with the total displacement condition

L1e1 þ ðL� L1Þe2 ¼ D; ð102Þ

the strain evolution equation

Ee1 þ g _e1 ¼ Eðe2 � e0Þ þ g _e2

¼ E
D� L1e1

L� L1
� e0

� �
� g

d
dt

D� L1e1

L� L1

� �
; ð103Þ

where both the strain e1 and the interface position L1 are time-
dependent. Notice that – as in the elastic case – there is no ambigu-
ity of how the strain evolves, since the eigenstrain is uniquely
linked to the phase state. Also, since we ignore inertial effects, the
strain is homogeneous in each phase. The evolution of the strain
is uniquely determined through Eq. (103), as soon as the interface
motion L1ðtÞ is known; notice that here also the interface velocity
plays a role.

A simple solution for Eq. (103) is

e1 � e2 � e ð104Þ

and this is the case, if the material is initially in static equilibrium,
i.e. the viscous stresses vanish. Therefore, then and also at all later
times rel;1 ¼ rel;2 and rvis;1 ¼ rvis;2. In the following we assume this
physically reasonable situation.

The partial work approach suggests here as driving force

Dlp ¼
1
2

Ee2
1 �

1
2

Eðe2 � e0Þ2 � relðe1 � e2Þ þ Df : ð105Þ

As before, the term relðe1 � e2Þ is the coherency work, here against
the elastic stress rel, which is equal in both phases. This means that
we assume that the viscous stresses are not relevant also for the
coherency work, and this expectation will be justified in the follow-
ing. The first two terms can also be written as rel;1e1=2 and
rel;2ðe2 � e0Þ=2, which means that only the reversible elastic work
is taken into account, in agreement with sharp interface and phase
field models of fracture (Spatschek et al., 2008; Spatschek et al.,
2011). As before, the coherency term appears automatically in a
phase field model that operates with the displacements. For the
fracture models, there is no density difference at the interface,
hence the coherency term vanishes even in a sharp interface
description, and also the energy density inside the crack is zero, if
the elastic and viscous constants are zero there.

Together with the interface velocity expression

_L1 ¼ �KDlp: ð106Þ

Eqs. (98)–(106) form a closed set of equations for the time
evolution.

We can justify the above partial work expression by noting that
it agrees again with the dissipation at the interface. Notice that
similar to a plastic model also bulk dissipation is present here.
We first start with the free energy expression

F ¼ 1
2

L1Ee2
1 þ

1
2
ðL� L1ÞEðe2 � e0Þ2 þ Df L1 ð107Þ

and therefore its time derivative is

_F ¼ 1
2

Ee2
1 �

1
2

Eðe2 � e0Þ2 þ Df
� �

_L1 þ L1Ee1 _e1

þ ðL� L1ÞEðe2 � e0Þ _e2: ð108Þ

At a first glance it seems that the first term � _L1 is an interface term,
whereas the rest comes from the bulk; however, this is not true, as
it contains also the coherency work term (notice that the calcula-
tion is generic so far, and no use of viscoelasticity has been made
so far). For the specific solution (104) we get from Eq. (102)

e1 ¼
D� ðL� L1Þe0

L
ð109Þ

and therefore

_e1 ¼ _e2 ¼
_L1

L
e0: ð110Þ

Hence for the feigned bulk term

L1Ee1 _e1 þ ðL� L1ÞEðe2 � e0Þ _e2 ¼ rele0
_L1; ð111Þ

which is exactly the coherency work term. Hence we get

_F ¼ Dlp
_L1: ð112Þ

Therefore, the partial work gives the correct driving force.

6. Summary and conclusion

In this article we analyzed various phase field and sharp
interface models for the description of moving boundary problems
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concerning the physical meaning of the driving forces. We
contrasted the difference between a partial work expresssion and
a total work expression. The first one is typically used in variational
phase field models, where a virtual energy change is calculated
while all other physical fields are kept constant. In the latter
approach of total work, all physical fields are adjusted instanta-
neously even for the trial move of the interfaces. Although the lat-
ter is typically not used in phase field modeling, we argued that it
should be the proper driving force in cases where the interface mo-
tion is slow in comparison to the kinetics of the other fields.

We demonstrated, that in cases of coupling to fast diffusion and
static elasticity the two driving force expressions, which can be
considered as limiting cases, coincide, and therefore the usual ap-
proach of the partial variational derivative should be appropriate.
The equality of the two approaches does no longer hold for elas-
to-plastic material models, since they additionaly contain internal
variables which follow separate dynamics. These are usually not
derived from the same free energy functional as the evolution
equations for the other fields. Consequently, the partial and total
work approach lead to different expressions for the driving forces.
One central difference is that the latter contains also nonlocal
terms which result from plastic bulk dissipation. The usual
assumption is, however, that only the interface dissipation should
play a role for the front propagation, and therefore it seems unli-
kely that bulk terms can be relevant. We therefore generalized
the expression by proposing the true interface dissipation (where
all other fields are slaved by the phase field) as driving force. It
turns out, that this physically motivated expression coincides
again with the partial work expression, provided that the material
does not grow in different defect states than the underlying
substrate phase. Otherwise, interface pinning and destabilization
effects may occur, as well as the splitting of the direct and inverse
transition curves, that is relevant for many solid-state
transformations.
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