

Distributed Real-time Architecture for
Mixed Criticality Systems

Description of Development Process with
Model Transformations

D 1.3.1

Project Acronym DREAMS Grant Agreement
Number FP7-ICT-2013.3.4-610640

Document
Version 1.0 Date 2014-07-31 Deliverable No. 1.3.1

Contact Person Leire Rubio Organisation IK4-IKERLAN

Phone +34-943712400 E-Mail lrubio@ikerlan.es

Contributors

Name Partner

Leire Rubio, Asier Larrucea IKL

Gebhard Bouwer, Gernot Klaes TÜV

Simon Barner, Alexander Diewald FORTISS

José Enrique Simo Ten, Alfons Crespo UPV/FENTISS

Thomas Koller, Obaid Ur-Rehman USIEGEN

Jörn Migge RTaW

Arjan Geven TTT

Anton-Aart Trapman ALSTOM

Table of Contents

Contributors .. 2

Table of Contents .. 3

Figure Index... 5

Table Index .. 6

Glossary ... 7

1 Introduction .. 9

1.1 Context .. 9

1.2 Objectives of the document.. 9

1.3 Structure of the document ... 9

1.4 IEC 61508 Safety Life Cycle Overview ... 9

2 Definition of DREAMS Development Process ... 13

2.1 Safety Approach .. 13

2.1.1 Impact of DREAMS characteristics on the development process 14

2.1.2 DREAMS Safety Life-Cycle Specification ... 22

2.1.3 Measures for fault avoidance within DREAMS ... 22

2.2 Security Approach ... 24

2.2.1 Impact of security aspects on the DREAMS development process 24

2.2.2 DREAMS Security Lifecycle Specification .. 28

2.2.3 Measures for fault avoidance within DREAMS ... 32

2.3 Timing Approach ... 32

2.3.1 GMP... 32

2.3.2 Impact of DREAMS characteristics on the development process 35

2.3.3 DREAMS Timing Lifecycle Specification .. 37

2.4 Summary of DREAMS Development Process .. 39

3 DREAMS Meta-Models and Model-Transformations ... 41

3.1 Impact of DREAMS Characteristics ... 41

3.2 Introduction .. 43

3.2.1 (Meta-)Modelling .. 43

3.2.2 MDE tool-chain ... 45

3.2.3 DREAMS System Model .. 47

3.3 AutoFocus3 Meta-Model .. 49

3.3.1 Requirements perspective .. 50

3.3.2 Logical Perspective .. 51

3.3.3 Technical Perspective .. 54

3.3.4 Deployment Perspective ... 56

3.4 Timing requirements Meta-Model ... 56

3.5 MultiPARTES Meta-Model .. 61

3.5.1 Overview: Meta-Models, Toolset and Transformations ... 61

3.5.2 Safety Consistency Model ... 64

3.5.3 Safety Compliance Model ... 64

3.5.4 Diagnostics Techniques and Measure Model ... 65

3.5.5 Safety Integrity Levels Model .. 66

3.6 Model-to-model Transformations .. 66

3.6.1 Generic DREAMS Development Process ... 66

3.6.2 Exemplary Development Process using Concrete Technologies 73

4 Requirements Matrix .. 79

5 Bibliography .. 83

Terminology .. 84

Figure Index

FIGURE 1: OVERALL SAFETY LIFE CYCLE. ... 10
FIGURE 2: E/E/PE SAFETY LIFE CYCLE. .. 11
FIGURE 3: SOFTWARE SAFETY LIFE CYCLE. .. 11
FIGURE 4: SOFTWARE DEVELOPMENT PROCESS (V-MODEL). .. 12
FIGURE 5: HARDWARE DEVELOPMENT PROCESS (V-MODEL). ... 12
FIGURE 6: ASIC DEVELOPMENT SAFETY LIFE CYCLE (V-MODEL). .. 13
FIGURE 7: SYSTEM DEVELOPMENT SAFETY LIFECYCLE (THE V-MODEL)... 14
FIGURE 8: MEET-IN-THE-MIDDLE DESIGN FLOW OF DREAMS. ... 17
FIGURE 9: MODULAR DESIGN OF DREAMS.. 19
FIGURE 10: DREAMS SYSTEM AND ELEMENT DEVELOPMENT PROCESSES. .. 20
FIGURE 11: COMPONENT BASED DREAMS DEVELOPMENT PROCESS. ... 20
FIGURE 12: DOMAIN ENGINEERING AND PRODUCT ENGINEERING. .. 21
FIGURE 13: SAFETY-RELATED DEVELOPMENT PROCESS OF DREAMS. ... 23
FIGURE 14: SECURITY REQUIREMENTS IN THE MEET-IN-THE-MIDDLE DESIGN FLOW OF DREAMS .. 26
FIGURE 15: SECURITY REQUIREMENTS AND THREAT MODEL FOR DREAMS ... 26
FIGURE 16: MODULAR DESIGN OF DREAMS.. 27
FIGURE 17: MODULAR DESIGN EXAMPLE WITH UNTRUSTED COMPONENTS ... 28
FIGURE 18: TRUSTWORTHY SECURITY DEVELOPMENT LIFECYCLE (SDL) PROPOSED BY MICROSOFT. ... 29
FIGURE 19: SECURITY DEVELOPMENT LIFECYCLE BASED ON ISO/IEC 21827 .. 30
FIGURE 20: SECURITY DEVELOPMENT PROCESS OF DREAMS .. 31
FIGURE 21: GMP FOR TIMING... 33
FIGURE 22: ABSTRACTING TIMING PROPERTIES (TIMMO-2-USE) ... 36
FIGURE 23: TIMING-RELATED DEVELOPMENT PROCESS. .. 38
FIGURE 24: DREAMS DEVELOPMENT PROCESS. ... 40
FIGURE 25: COMPARISON OF OBJECT TECHNOLOGY AND MODEL-DRIVEN ENGINEERING (MDE) .. 44
FIGURE 26: 4-LEVEL MODEL ARCHITECTURE .. 45
FIGURE 27: GENERAL ARCHITECTURE OF MDE TOOL-CHAIN. ... 46
FIGURE 28: SYSTEM STRUCTURE OF APPLICATION (LOGICAL VIEW) AND STRUCTURE OF PLATFORM (PHYSICAL VIEW) [D1.2.1] 47
FIGURE 29: DIMENSIONS OF ABSTRACTION: GRANULARITY LEVELS, AND DEVELOPMENT PERSPECTIVES .. 49
FIGURE 30: AUTOFOCUS3 REQUIREMENTS PERSPECTIVE .. 51
FIGURE 31: AUTOFOCUS3 LOGICAL PERSPECTIVE .. 52
FIGURE 32: META-MODEL OF LOGICAL PERSPECTIVE ... 52
FIGURE 33: AUTOFOCUS3 TECHNICAL PERSPECTIVE AND DEPLOYMENT PERSPECTIVE ... 54
FIGURE 34: META-MODEL OF TECHNICAL PERSPECTIVE .. 56
FIGURE 35: TIMING EXTENSION ... 57
FIGURE 36: TIMING CONSTRAINS ... 58
FIGURE 37: MODULAR SYNCHRONIZATION CONSTRAINTS .. 59
FIGURE 38: DREAMS TIMING EXTENSIONS ... 60
FIGURE 39: DREAMS TIMING EVENTS AT SOFTWARE COMPONENT PORTS ... 60
FIGURE 40: SAFETY CONSISTENCY CHECK, USEFUL DOCUMENTS FOR CERTIFICATION AND GENERATION OF RESTRICTIONS. 63
FIGURE 41: SAFETY CONSISTENCY MODEL .. 64
FIGURE 42: SAFETY COMPLIANT ITEM AND SAFETY MANUAL MODELS ... 65
FIGURE 43: DIAGNOSTIC TECHNIQUES AND MEASURE MODEL. .. 65
FIGURE 44: INSTANCE OF THE DIAGNOSTIC TECHNIQUES AND MEASURE MODEL FOR IEC-61508. ... 66
FIGURE 45: OVERVIEW OF DREAMS SOFTWARE DEVELOPMENT & DEPLOYMENT WORKFLOW ... 67
FIGURE 46: CHECKING PROCESS AND DIAGNOSTIC TECHNIQUES INFORMATION PANEL. .. 69
FIGURE 47: EXAMPLE OF WIND POWER CERTIFICATION DOCUMENT. ... 70
FIGURE 48: OVERVIEW OF OFFLINE RESOURCE ALLOCATION AND EXPLORATION PROCESS ... 71
FIGURE 49: DREAMS SOFTWARE DEVELOPMENT WORKFLOW: TOOLS, TRANSFORMATIONS AND IMPLEMENTATION ARTEFACTS. 74
FIGURE 50: CONTEXT OF XTRATUM CONFIGURATION MODEL... 76
FIGURE 51: PARTS OF XTRATUM CONFIGURATION MODEL. ... 77
FIGURE 52: TTE TOOL-CHAIN WORKFLOW .. 78
FIGURE 53: TTE TOOL-CHAIN DATAFLOW ... 78

Table Index

TABLE 1: ANALYSIS OF DREAMS REQUIREMENTS. .. 15
TABLE 2: TRACEABILITY OF DREAMS DEVELOPMENT PROCESS. .. 18
TABLE 3: IMPACT OF SECURITY ASPECTS INTO THE DREAMS DEVELOPMENT PROCESS. .. 25
TABLE 4: ANALYSIS OF DREAMS TIMING REQUIREMENTS. ... 35
TABLE 5: IMPACT OF DREAMS CHARACTERISTICS ONTO META-MODELS .. 42
TABLE 6: IMPACT OF DREAMS CHARACTERISTICS ONTO MODEL-TRANSFORMATIONS ... 43
TABLE 7: DREAMS REQUIREMENT MATRIX. ... 82

Glossary

API Application Programming Interface
ASIC Application Specific Integrated Circuit
ASIL Automotive Safety Integrity Level
ATL Atlas Transformation Language
CMOF Complete MOF
CPLD Complex Programmable Logic Device
DREAMS Distributed Real-Time Architecture for Mixed Criticality Systems
E /E /PE Electrical/Electronic/Programmable Electronic
EAST-ADL EAST Architectural Description Language
ECU Electronic Control Unit
EMF Eclipse Modelling Framework
EMOF Essential Meta-Object Facility
FPGA Field-Programmable Gate Array
GMP Generic Methodology Pattern
ID Identification
IEC International Electrotechnical Commission
JAXB Java Architecture for XML Binding
MDA Model Driven Architecture
MDE Model Driven Engineering
MIRA Model-based Requirements Analysis
MOF Meta Model Facility
NI Network Interface
NoC Network on Chip
OMG Object Management Group
PIM Platform Independent Model
PLD Programmable Logic Device
PSM Platform Specific Model
QVT Query/View/Transformation
SDK Software Development Kit
SIL Safety Integrity Level
STNoC System on Chip
TADL Timing-Augmented Description Language
TIMMO TIMming MOdel
TIMMO-2-USE Timing Model – TOols, algorithms, languages, methodology, USE cases.
TTE Time Triggered Ethernet
VL Virtual Link
VLID Virtual Link ID
WCET Worst Case Execution Time
WCTT Worst Case Traversal Time
XCM Extended Configuration Management

XML Extensible Markup Language
XSD XML Schema

D1.3.1 Version 1.0 Confidentiality Level: PU

1 Introduction

1.1 Context

The objective of DREAMS is to develop a cross-domain architecture and design tools for networked
complex systems where application subsystems of different criticality, executing on networked
multi-core chips, are supported. DREAMS will deliver architectural concepts, meta-models,
virtualization technologies, model-driven development methods, tools, adaptation strategies and
validation, verification and certification methods for the seamless integration of mixed-criticality to
establish security, safety, real-time performance as well as data, energy and system integrity.

Engineering of safety systems typically implies enforcing a strict development process. V-shape
processes have been used frequently to attain certification.

1.2 Objectives of the document

This delivery will define a DREAMS development process that is realized on the top of DREAMS
platform with the building blocks from WP2-WP5 and which will be applied in the way that will be
possible, on the DREAMS three demonstrators (WP6-WP8). The overall development process, which
is based on IEC 61508, will be complemented by abstracting the different aspects that must be
covered by the models, the models used in individual domains, and the necessary tool support for
model-to-model transformation, verification and code generation.

1.3 Structure of the document

This document contains the following structure. Section 2 describes the approaches to safety (IEC
61508), security and timing for development of DREAMS project based development process.
Section 3 describes the required meta-models and model transformations for a tool-supported
workflow. Finally Section 4 provides a relation matrix of requirements and sections related with
these requirements.

1.4 IEC 61508 Safety Life Cycle Overview

A safety life cycle is a series of phases from initiation or specification of safety requirements, to
cover and develop of safety features in safety-critical system, and ending in decommissioning of that
system. The IEC 61508 standard covers safety-related systems where a system incorporates
electrical/electronic/programmable electronic devices. The standard covers possible hazards caused
by failures of the safety functions of E/E/PE safety related systems. The detection of a potentially
dangerous condition that results in the action of a protective or corrective mechanism to prevent
hazardous events is defined as functional safety. IEC 61508 is concerned with the E/E/PE safety-
related systems whose failure could have an impact on the safety of persons and/or environment.

The standard has two fundamental points: the safety life cycle and the safety integrity levels. The
safety life cycle is defined as a process that includes all necessary steps to achieve the required
functional safety.

Figure 1 show the safety life cycle defined by IEC 61508 [1], which is basis, followed and complained
by the proposed DREAMS development process in Section 2.

Phases 1 and 2 entail the considerations of the safety implications of the EUC and the control
systems, at the system level. In Phase 3, first two phases’ risk identification and analysis, assessed

31.07.2014 DREAMS Page 9 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

against tolerable criteria, are done. In phase 4, the risk-reduction measures of safety requirements
are specified, and in phase 5 these are translated into the design of safety functions, which are
implemented in safety-related systems, depending on the selected manner of implementation in
phases 9, 10 and 11. No claim for safety can be made unless its planning considers the overall safety
context reflected in phases 6, 7 and 8. The further phases, phases 12-16 are performed when the
system has been built. In Phase 12, the system must be installed and commissioned and in Phase 13,
the system is checked to verify that all the safety related requirements have been identified and
handled during building and installation. Then the system may be put into operation, where there
are safety and maintenance activities. It is also foreseen that the system can be modified during
operations and therefore, incorporation of some modifications will be needed. The final phase,
phase 16, is related with the disposal of the system (e.g., separations of the battery or the toxic
elements to dispose them separately).

Figure 1: Overall Safety Life Cycle.

IEC 61508 defines detailed lifecycle stages for stage 10 in the overall life cycle concerned to E/E/PE
and software systems developments. The E/E/PE system and software safety life cycles that shall be
defined and used according to IEC 61508 are specified in Figure 2 and Figure 3.

31.07.2014 DREAMS Page 10 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 2: E/E/PE Safety Life Cycle.

Figure 3: Software Safety Life Cycle.

Figure 4 shows the V-model of the development life cycle for the design of ASICs. For IEC 61508, the
term ASIC covers standard integrated circuits, core-based and cell-based ASICs, gate arrays, FPGAs,
PLDs and CPLDs (IEC 61508-4 3.2.15). As shown, there are similarities between ASIC and software
safety life-cycles.

31.07.2014 DREAMS Page 11 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 4: Software Development Process (V-model).

Figure 5: Hardware Development Process (V-model).

31.07.2014 DREAMS Page 12 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 6: ASIC development safety life cycle (V-model).

If another safety life-cycle is used, it shall be specified as part of the management of functional
safety activities (clause 6 of IEC 61508-1) and all objectives and requirements of all sub-clause of IEC
61508-2 shall be met.

2 Definition of DREAMS Development Process

One of the main objectives of the document is to expose the DREAMS development process, which
although is not intended to develop hardware in its specific context, is intended to develop software.
The main goal is not hardware development, although according to IEC 61508-2, sometimes (e.g.,
implementation of communication network inside a FPGA (e.g., STNoC)) is considered as HW, so, the
development process of DREAMS shall be compatible for hardware and software development.

In this section, overall results of the analysis of the DREAMS project requirements are detailed. Then
the impact of the DREAMS approach on the V-model is presented. And finally, the DREAMS project-
specific development process is detailed and explained.

2.1 Safety Approach

Commonly, V-shape processes have been used to attain certification. IEC 61508 recommends the
following V model development process. Figure 7 shows a lifecycle that is composed by two
branches: I) a design branch and II) a testing branch. This V-model can be easily customized for any
domain (e.g., automotive, railway, etc.).

31.07.2014 DREAMS Page 13 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 7: System development safety lifecycle (the V-model)

The continuous arrows of Figure 7 show the dependencies between phases. At the end of each
phase the verification is carried out (discontinuous vertical arrows) against the results of each phase.
This is done in order to check the consistency between the inputs and outputs of each phase. As can
also be seen, the branches of the Design and Testing are linked by the Test Plans. The solid arrows
on the left side of each Test Plan indicate that each test plan, which covers all the requirements, has
been generated from the specification of the requirements. Regarding the solid arrows on the right
side, these arrows denote the actions to perform the testing. The dashed lines to/from test plans are
the verification activities.
In case of hardware development, the techniques and measures defined by IEC 61508-2 must be
applied. In case of software development, the techniques and measures defined by IEC 61508-3
must be taken into account.
2.1.1 Impact of DREAMS characteristics on the development process
In delivery D1.1.1 the DREAMS project requirements have been collected. The DREAMS project has
some requirements that have to be taken into account for the definition of the development
process. These relevant requirements are referred to the meet-in-the-middle development
approach, traceability and modularity concepts.

Req. ID Description Reference
to

R1.8.1
The architecture should allow design methodologies where top-down
and bottom-up design styles are combined. Meet-in-

the-middle
developme

nt R 9.12.1
The development process should support "top-down" and "bottom-up"
development of DREAMS-based applications (“meet-in-the-middle
methodology”), if possible aligned with existing practices and workflows .

31.07.2014 DREAMS Page 14 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

R1.1.1
The architecture shall assure that the behaviour of a subsystem in the
value and time domain before integration into a larger systems equals
the behaviour after integration.

Scalability R1.6.1
The architecture shall leverage multi-core platforms for a system
perspective of mixed-criticality applications combining the chip-level and
cluster-level.

R 9.9.4
DREAMS systems need to be automatically adaptive, and this
requirement will help automating the production of a configuration in
particular in adapting to different platform technologies (e.g. hardware).

R9.6.3 The meta-models should support the traceability between the artefacts
used in the different steps of the development process.

Traceability
R9.13.3

The development process shall support the traceability for requirements
regarding: safety, security, etc.
Traceability will help in the avoidance of systematic faults in both HW
(IEC 61508-2 Table B.6) and SW (IEC 61508-3 Tables A.1 to A.10)
development.

R1.10.1

The architecture shall support different models of computation with
corresponding interaction mechanisms on on-chip and off-chip networks:
predictable time-triggered communication, event-triggered
communication with dynamic arbitration and shared memories.

Heterogen
eity

R1.10.2
Communication between components in an application subsystem
should be performed explicitly using communication primitives provided
by the architecture.

R1.10.3
The architectural style and the development methodology shall consider
multiple types of communication and computational activities (periodic,
sporadic and aperiodic activities).

R2.7.1
The on-chip network shall provide different interaction mechanisms
required for different models of computation such as Time-Triggered,
rate-constrained, best-effort communication and shared memory access.

R 2.7.2 The architecture shall provide support of different processors and/or
hardware accelerators with shared memory access.

R4.2.1
Variability modelling and analysis tools shall be enhanced to achieve by
automatic means as well as guided manual means an optimal or best
effort configuration of DREAMS platforms and DREAMS systems.

Variability

R5.1.1 Mixed-criticality product line shall be supported to enable certification of
product-lines with variability management.

R9.9.1 The variability meta-model shall allow specifying variations of base
models in order to define product lines.

R9.9.2 The variability meta-model shall allow to describe different feature sets
of applications.

R9.9.3 The variability meta-model shall allow to describe different
implementation alternatives of applications.

R9.14.1 The development process shall define how variability is bound.
Table 1: Analysis of DREAMS requirements.

Below each characteristic of the DREAMS architecture is defined and the respective changes (if
necessary) are specified in the development process according to IEC 61508.

31.07.2014 DREAMS Page 15 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

2.1.1.1 Meet-in-the-middle Methodology

The meet-in-the-middle approach can be considered as a successive refinement method going
alternatively from a top-down methodology to a bottom-up methodology, in order to converge into
a hardware or software solution. It is this characteristic that makes platform-based design a novel
design method, which can be used for the design of complex and heterogeneous embedded
systems. The meet-in-the-middle process approach is not a top-down process in which the software
is designed in the first place and hardware is developed secondly [2]. It is used when pre-existing
products, for which there are some implementations, are partially mapped onto a new service,
functionality or process definition. This option involves the usage of old and new services,
functionalities or process definitions. The meet-in-the-middle development strategy offers a middle
ground between previous methodologies, that attempts to take advantages of other approaches,
while attenuating some of their most notable risks and problems [3]. For attenuation of risks and
problems, from the point of view of safety, it is important to show that the existing products are
sufficiently free of systematic faults. According to IEC 61508-2 and IEC 61508-3, there are two routes
which can be used to probe the non existence of systematic faults.

• Route 2S
1 - Proven-in-use approach: Compliance with the requirement for proven in use

elements is established. An element shall only be regarded as proven-in-use when it has a
clearly restricted and specified functionality and when there is demonstration that the
systematic faults are low enough. (IEC 61508-2 Section 7.4.10)

• Route 3S - Pre-existing software: This option is the compliance with the requirements of IEC
61508-3, where it is defined that the pre-existing software elements that are reused to
implement all or part of the safety functions, shall meet the following requirements:

o Meet the requirements of one of the following compliance routes

- Route 1S: compliant development. Compliant with the requirements of the IEC-
61508 standard for the avoidance and control of systematic faults in software.

- Route 2S: proven in use. Provide evidence that the element is proven in use.
- Route 3S: assessment of non-compliant development. Compliance with IEC-61508-

3 7.4.2.13.

o Provide a safety manual (Annex D of IEC 61508-2 and IEC 61508-3) that gives a
sufficiently precise and complete description of the pre-existent elements to make
possible an assessment of the integrity of a specific safety function that depends wholly
or partly on the pre-existing software elements.

In general, a meet-in-the-middle methodology applies a top-down design (application design) from
higher abstraction level and a bottom-up to lower level (platform design). These two processes
necessarily meet at some point, when the platform is ready to host an application, and when the
application is ready to be hosted in a platform. This point is called meet-in-the-middle point, where
performance analysis and architectural exploration takes place.

1 S: Designates systematic safety integrity to distinguish it from Route 1H for hardware safety integrity.

31.07.2014 DREAMS Page 16 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

To
p-

D
ow

n
B

ot
to

n-
U

p

Meet-in-the-
middle

Application
Design

Platform
Design

High

Low

A
bs

tr
ac

tio
n

Le
ve

l

Safety
Requirements

Safety
Requirements

Figure 8: Meet-in-the-middle design flow of DREAMS.

Figure 8 illustrates the meet-in-the-middle design flow approach for DREAMS, where, a top-down
methodology is applied for higher abstraction levels and a bottom-up methodology is applied to
lower abstraction levels. At the same time, at the hardware perspective it supports the bottom-up
approach (low to high abstraction level), this way enabling hardware adaptation at design-time as
well as at runtime using dynamic and partial reconfiguration.

2.1.1.2 Traceability

In order to ensure that the software that results from the life cycle activities meets safety-related
requirements, it is essential to ensure the consistency between the life cycle stages. Traceability is
the impact analysis to check that the decisions made at an earlier stage are adequately implemented
in later stages (forward traceability) and that decisions made at later stage are actually required and
mandated by earlier decisions.

According to IEC 61508, the following traceability techniques must be used during the development
process of DREAMS for assurance of traceability.

• IEC 61508-2 [4] [4]specifies hardware traceability, which should be between specifications,
design, circuit diagram and parts lists. It should be computer-aided and based on defined
methods (IEC 61508, table B.6 and section 7.2.2.2 of IEC 61508-2).

• In case of software, traceability is done between all phases of the development process, in
compliance also with IEC 61508-3. The following table shows the traceability techniques
specified by IEC 61508-3 that are interpreted and is going to be used among phases of
DREAMS Development process.

A prerequisite for traceability is, that the requirements can be clearly identified. For this, the
requirements usually get a unique identifier. Subsequently, for example, in a tables, the relation
between the identifier is shown tracked through the development process (with derived
requirements and respective test cases). These mentioned tables have to be reviewed (amongst
others) to ensure that all requirements have been considered in the respective development
document in the respective development phase.

31.07.2014 DREAMS Page 17 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Technique Ref. Table Interpretation

Forward traceability between the system safety
requirements and the software safety requirements. C 2.11 A.1

Review to ensure that all system
safety requirements are
addressed by software safety
requirements.

Backward traceability between the safety
requirements and the perceived safety needs. C 2.11 A.1

Review to ensure that all software
safety requirements are actually
needed to address systems safety
requirements.

Forward traceability between the software safety
requirements specification and software
architecture.

C 2.11 A.2

Review to ensure that all software
safety requirements are
addressed by the software
architecture.

Backward traceability between software safety
requirements specification and software
architecture.

C 2.11 A.2

Review to ensure that all
architecture safety requirements
are actually needed to address
software safety requirements.

Forward traceability between the software safety
requirements specification and software design. C 2.11 A.4

Review to ensure that all software
safety requirements are
addresses by the software design.

Forward traceability between the software design
specification and the module and integration tests
specifications.

C 2.11 A.5

Review to ensure that a adequate
test is planned to examine the
functionality of all modules and
their integration with
appropriately related modules.

Forward traceability between the system and
software design requirements for
hardware/software integration and the
hardware/software integration test specifications

C 2.11 A.6
Review to ensure that the
hardware/software integration
tests are adequate/ sufficient.

Forward traceability between the software safety
requirements specification and the software safety
validation plan.

C 2.11 A.7

Review to ensure that adequate
software validation tests are
planned to address the software
safety requirements.

Backward traceability between the software safety
validation plan and the software safety requirements
specification.

C 2.11 A.7 Review to ensure that all
validation tests are relevant.

Forward traceability between the software safety
requirements specification and the software
modification plan (including reverification and
revalidation)

C 2.11 A.8
Adequate modification
procedures to achieve the
software safety requirements.

Backward traceability between the software
modification plan (including reverification and
revalidation) and the software safety requirements
specification

C 2.11 A.8
Adequate modification
procedures to achieve the
software safety requirements.

Forward traceability between the software design
specification and the software verification (including
data verification) plan.

C 2.11 A.9 Review to ensure adequate test of
functionality.

Backward traceability between the software
verification (including data verification) plan and the
software design specification.

C 2.11 A.9 Review to ensure that all
verification tests are relevant.

Forward traceability between the requirements of
IEC 61508-1 Clause 8 and the plan for software
functional safety assessment

C 2.11 A.10
Check completeness of coverage
of the functional safety
assessment.

Table 2: Traceability of DREAMS Development Process.

31.07.2014 DREAMS Page 18 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

2.1.1.3 Modularity

Modular design or modularity in design is an approach that subdivides a system into smaller parts
(modules) that can be independently created and then used by different systems to drive different
functionalities; a compliant item. The following figure shows the DREAMS modular structure that is
decomposed into four levels (System-of-Systems, systems, subsystems and components). A system
of system is a composition of independent and interoperable systems intended to achieve unique
goals collectively.

For example, considering a series of DREAMS platforms (see D1.2.1, figure 49) as a System of system,
the cluster domain can be considered as a system, the Node Domain can be considered as a Sub-
System and the Virtualization Layer Domain as an element of the sub-system. In the same way
(D1.2.1, figure 50), if we focus on the Node domain, we can consider it as SoS, and its internal
elements can be abstracted as systems (e.g., I/O, gateways, applications, etc.), subsystems (e.g.,
Processor Cores, Local Memory, Network Interface, etc.) and elements (e.g., MON, LRS, Application
components).

Figure 9: Modular design of DREAMS.

To apply the modularity approach in the DREAMS development process, IEC 61508 defines some
rules, techniques and measures (IEC 61508-2 Annex A-B) that must be followed and used in order to
comply with the standard. In case of hardware, IEC 61508-2 defines that modules must be limited by
size and must also be isolated. In case of software modification, an impact analysis is carried out to
determine how the effect of modifications is limited by the modularity of the overall system.

Modularity aims at the decomposition of the software system into small comprehensible parts
(element) in order to limit the complexity of the system. It addresses typical development process
methods, although there is one difference; a element-based development process focuses on
questions related to elements whereas a system development process does not. In that sense, we
distinguish the element HW/SW (e.g., dedicated tile/core, etc.) development process and system
elements development for the extension of the platform and application elements. The activities or
goals of these two processes are different. In case of the system development, the emphasis is to
find the proper element and to verify them. In the other hand, in case of the element development,
is required the independence and the reusability of the elements.

31.07.2014 DREAMS Page 19 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 10: DREAMS System and Element Development Processes.

Figure 11 shows the DREAMS component-based development process, which assumes that there are
closed components (developed elements), that can be integrated into the system through an
adaptation process. This way, a element can be reused into diverse systems development at the
same time, thereby reducing the required development time and cost.

Software safety
requirement
specification

Module testing

Software
architecture

Software system
design

Development

Integration
Testing

(Module)

HW/SW
Integration testing

Validation testing Validated
 System

Verification

Output

Hardware safety
requirement
specification

System Safety Req. Specification

Hardware
architecture

System Architecture Specification

System Design

Hardware system
design

Integration
Testing

Module Design

Validation

Element Pool

Select Necessary
 Adapt ?

Yes

No

Figure 11: Component based DREAMS Development process.

Whereas modularity is useful for the decomposition of a system into smaller parts in order to
develop independent elements, some features of these elements can be variable, depending of the
needs of system/subsystem. Therefore, DREAMS development process also takes into account the
variability of both HW and SW. Hardware variability is the ability to change (customize, extend) a
hardware platform for a specific context. Software variability is the ability to change (configure,

31.07.2014 DREAMS Page 20 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

customize, extend) software artefacts (e.g., code, product, domain requirements, models, design,
documentation, test cases) for a specific context. The reusability of any software artefact is
determined by its ability to support the variability required from it.

One of the purposes of DREAMS is to offer a core system, whose can be updated and upgraded with
specific features, but always with the same nucleus. The conjunction of DREAMS characteristics
provide a diverse, independent and re-usable element based architecture, which can be used in
future changes or updates (change or update of functionality, platform, etc) of the product line.

Domain Test

Domain
Maintenance

Domain Req.
Specification

Domain Common
Req. Specification

Domain Variable
Requirement
Specification

Domain Design

Implementation

Product Test

Product
Maintenance

Product
Requirements
Specification

Product Design

Implementation

Only when certified
products already

exists

DOMAIN
ENGINEERING

PRODUCT
ENGINEERING

Figure 12: Domain Engineering and Product Engineering.

The process of reusing product-line knowledge in the production of new systems, also called domain
engineering, is designed to improve the quality or characteristics of the development through the
reuse of artefacts. Domain engineering is applied to all phases of the development process, although
it is focused on the three primary phases: Domain analysis, design and implementation paralleling
application engineering, which produces a set of implemented components that are relevant to the
domain, reusable and configurable. Domain engineering focuses on a family of systems (products).

31.07.2014 DREAMS Page 21 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 12 shows that in domain design, where all domain requirements are available and can be
used to define the product specifications. After the product is tested, it can be used for domain
implementation together with many other products. The domain implementation must not have
direct effect on the product implementation but it has to go back to the domain design and product
specification.

2.1.2 DREAMS Safety Life-Cycle Specification
According to points raised in the previous section, this section is intended to summarize the most
important aspects of the DREAMS development process related to the safety approach, as shown in
Figure 13.

2.1.3 Measures for fault avoidance within DREAMS
For each level of Figure 13 (Domain Level, System Level and Element Level) techniques and measures
for the avoidance of systematic failures during the different phases of the lifecycle have to be
defined. The basis for these techniques and measures are the tables in IEC61508-2 Annex B and
IEC61508-3 Annex A, B. Reasonable techniques and measures have to be selected for each phase
depending on the selected criticality. In case the criticality level is unclear, the measures for SIL3
shall be selected.

31.07.2014 DREAMS Page 22 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Module Test

Development with Safety considerations

Validation Test Validated
 System

Hardware Safety
Requirements Specifications

System Requirements Specification

Safety System
Architecture Hardware

Specifications

System Architecture Specification

System Design

Safety Hardware
System Design

Module Design

Component Pool

Select Necessary
Adapt ?

Yes

No

Design
Acceptance

Operation,
maintenance and

repairing

2.
SYSTEM
 LEVEL

Software Safety
Requirements
Specifications

Safety System
Architecture Software

Specifications

Integration Testing
(Module)

HW/SW Integration
Testing

Module Test

Development with Safety considerations

Validation Test Validated
 ElementSafety Hardware Element

Requirements Specification

Element Requirements Specification

Safety Hardware Element
Architecture Specification

Element Architecture Specification

Element Design

Safety Hardware
Element Design

Module Design

Design
Acceptance and

Certification

Operation,
maintenance and

repairing

3.
ELEMENT

LEVEL

Safety Software Element
Requirements Specification

Safety Softwawre
Element Design

Safety Software Element
Architecture Specification

Integration Testing
(Module)

HW/SW Integration
Testing

Implementation

Domain Test

Domain Design

Domain Assurance

Domain
Maintenance

1.
DOMAIN
LEVEL

Domain
Requirements
Specification

Domain Value
Requirements
Specification

Domain Common
Requirements
Specification

Only when
certified product

already exists

Safety Software
System Design

Figure 13: Safety-related Development Process of DREAMS.

31.07.2014 DREAMS Page 23 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

2.2 Security Approach

As mentioned in 2.1, the V-shape process is used in DREAMS which can be customized for different
industrial domains (e.g., avionics, wind power, healthcare). This is due to the fact that the
engineering of safety systems implies enforcing a strict development process and V-shape processes
have been used frequently to attain certification in the safety domain. However, the engineering of
security systems is not based on the V-Model. In the IT security domain, the evaluations for
certification are usually based on ISO/IEC 15408, commonly known as the “Common Criteria” [5].
The Common Criteria (CC) supports an objective evaluation of IT products or systems to validate that
a particular product or system satisfies a defined set of security requirements. Although the focus of
the CC is evaluation, it presents a standard that should be of interest to those who develop security
requirements. However, the CC does not give methodological support for security engineering
because its focus is on the evaluation of the security of the IT products and is not dependent on the
process which is used to develop the product. Integration of security into the software development
process is not specified in the CC and therefore any well known industrial approach can be adapted.
Nevertheless, the evaluation role of CC makes it of interest to those who develop security products.
The Common Criteria allows for seven Evaluation Assurance Levels (EALs). At the time of this writing,
CC version 3.1 (revision 4) is in use. Sixteen countries around the world, including many countries of
the EU as well as the US, Canada, Japan and Australia, are a part of the Common Criteria Recognition
Act (CCRA). This means that the IT products evaluated in one of these countries will be approved in
all of the 16 countries. Additionally, the IT products evaluated on the CC approach get certifications
which are accepted in 26 countries.

The Common Criteria is flexible in what to evaluate and is therefore not tied to the boundaries of IT
products. The CC approach uses Protection Profiles (PP). A PP is an implementation-independent set
of security requirements for a class of Targets of Evaluation (TOEs). PP provides customer desires,
needs, and requirements on what is needed. PP is used for a Security Target (ST), which states how
the PP will be satisfied by the supplier and what will be provided. A TOE is defined as a set of
software, firmware and/or hardware, possibly accompanied by guidance that meets specific
consumer needs. A TOE can be a complete system or a subsystem. Examples of a TOE are (a) a
complete software application, (b) an operating system, (c) the cryptographic co-processor of a
smart card integrated circuit or (d) an IT product or system, together with its documentation and
administration that is the subject of a CC evaluation. Finally, an Evaluated System (ES) show that the
three representations discussed above, i.e., the PP, the ST and the TOE are all consistent.

Though the evaluation and certification of security systems is supported by the CC, the integration of
security in the development process of IT systems is missing. Different approaches for secure
software development have been proposed in other standards which can be used to achieve security
by design. This includes ISO/IEC 27000 [6], ISO/IEC 21827 [7] and the Trustworthy Security
Development Lifecycle (SDL) proposed by Microsoft. This also affects the security aspects concerning
security requirements and the corresponding security services.

2.2.1 Impact of security aspects on the DREAMS development process
The security requirements have been collected in the deliverable D1.1.1. Below the most significant
security requirements concerning the development process and model transformation are listed.
They are classified into development process, threat model, security requirements, modelling and
verification.

Req.
ID Description Reference to

R11.6. Integration of security in the development process, i.e., security by Development

31.07.2014 DREAMS Page 24 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

1 design. Process

R11.1.
1

The core security services shall include secure communications,
secure time distribution and secure execution environment.

Threat Model
R11.1.

2

Identification of core and optional security services, security policies
and threat models in the DREAMS architecture and provision of
security mechanisms to address those identified services.

R11.2.
4

Mechanisms for protection against physical attacks, such as side
channel attacks, shall be evaluated and provided if found adequate,
e.g., if they do not affect the QoS requirements.

Security
Requirements

R11.3.
3

A choice of cipher suites shall be provided. A cipher suite includes
cryptographic algorithms and their parameters, e.g., key sizes etc.

R11.3.
4

Core security services on the cluster level shall be identified and
provided. This includes services such as end-to-end security (e.g.,
privacy and authentication).

R11.3.
7

Key management for secure communication between the entities on
a cluster shall be provided (Mechanisms for key generation, key
distribution/exchange, key destruction etc.).

R9.8.1
The Security Meta-Model for Data Confidentiality shall allow
modelling the varying needs of confidentiality.

Modelling
R9.8.2

The Security Meta-Model for Data Integrity shall allow modelling the
varying needs of data integrity.

R9.8.3
The Security Meta-Model for Authentication shall allow modelling the
needs for establishing the authenticity of communication partner and
the authentication of data origin.

R11.4.
1

Integrity, authenticity and availability shall be ensured for
communications and communications partners, in the presence of
security threats, such as message sniffing, insertion, modification and
denial of service.

Verification

R11.4.
2

Security services shall be validated using reasonable attack scenarios
and related penetration tests. Attack scenarios in the context of the
DREAMS architecture need to be envisaged and implemented to
validate the strength of the security services of DREAMS.

Table 3: Impact of Security aspects into the DREAMS development process.

2.2.1.1 Meet-in-the-middle Methodology
In DREAMS, in order to converge at a final security solution, the security requirements should be
fulfilled by the bottom up as well as top down designs. The security requirements should be fulfilled
by the platform design as well as the application design to meet at a common middle point. Figure
14 illustrates the meet-in-the-middle design flow approach for DREAMS (section 2.1.1.1). In DREAMS
there are various security requirements defined affecting software and hardware. Therefore there
are requirements on both design flows, at the top-down design and at the bottom-up design. In the
meet-in-the-middle point, all security requirements have to be fulfilled and consistent. This has to be
done thoroughly, because attacks on one side could aim on targets on the other side. E.g., a
component or module developed for the platform design in the bottom-up could be vulnerable to
attacks from a component or module developed in the top-down process for the application design.

31.07.2014 DREAMS Page 25 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Application
Design

Platform
Design

Meet-in-the-
middle

Bo
tt

om
-U

p
To

p-
Do

w
n

Ab
st

ra
ct

io
n

Le
ve

l

High

Low

Security
Requirements

Security
Requirements

Figure 14: Security requirements in the meet-in-the-middle design flow of DREAMS

2.2.1.2 Threat Model
The security development process uses threat analysis to assess the security needs and identify the
security risks. This information is then used to develop security requirements. The security
requirements stated in D1.1.1 permit a first view on the security challenges. To get a more detailed
view into the security threats, a threat model is needed, which will be an input to the secure
development process.

Threat Model

Security
Requirements

Figure 15: Security Requirements and Threat Model for DREAMS

A threat model describes and analyses the security risks associated with the system. It identifies
potential threats to the system and its vulnerabilities. The threat model covers the different
individual parts as well as the system in its entirety. Various parts of the system have different attack
goals and can lead to diverse benefits for the attacker. Hence, the threat model discusses types of
attacks, their functional principles and their impact on the system [8].

Figure 15 shows the relationship between security requirements and the treat model in DREAMS.
The threats for the DREAMS architecture identified in the threat model allow a more accurate view
on the security requirements. In the threat model, different types of attackers are explained, diverse
threats are classified and attack scenarios are illustrated.

31.07.2014 DREAMS Page 26 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

The identified threats and attack scenarios can be used to analyse the protection of the system
against different attack types in the testing and the verification phase of the development process.
This includes different phases like module testing or integration testing.
The threat model and security attacks are described in the deliverable D1.2.1. A thorough analysis
and further details for off-chip communication are given in the deliverable D3.3.1.

2.2.1.3 Security Requirements and Modularity
As mentioned in section 2.1.1.3, modularity is an approach to divide a system into smaller parts to
reuse them in different systems. The modular structure of DREAMS is decomposed into the four
levels system-of-system, system, subsystem and component (Figure 16), which is related to the
architectural style as already discussed in section 2.1.1.3. The use of modular design reduces the
interdependence between elements of a system and thus reduces the risk that a change or error in
one module will have effects on some or all of the other modules. The security requirements
describe demands between modules on the same level. There are end-to-end or point-to-point
security requirements. Whereas end-to-end security ensures the provision of the requested security
services between two modules through the complete communication path between these modules,
point-to-point security only ensures the provision of the requested security services between two
modules on the path of the communication. E.g., security requirements between two applications
are end-to-end requirements and security requirements between two gateways in the
communication between two modules are point-to-point requirements.

SoS

System

Subsystem

Component

SoS

System

Subsystem

Component

Figure 16: Modular design of DREAMS

However, parts of the system between the modules communicating in a secure way cannot be
trusted and have to be treated as insecure. The same applies to the four levels of the modular
structure of DREAMS. Underlying modules are not necessarily trustable. Hence, the security services
between two modules, e.g., two subsystems, have to assume that there are insecure components.

31.07.2014 DREAMS Page 27 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Untrusted Part

Subsystem

Component

Subsystem

Component

Secure Communication

Figure 17: Modular design example with untrusted components

Figure 17 shows an example for a secure communication between two subsystems. They use the
components to communicate with each other, but the components are untrusted. Therefore, the
communication does not depend on the underlying components. The subsystems can communicate
through a black channel and the channel itself does not have to be considered.

Not every communication has to be secured. Nevertheless, parts of the communication path can use
security services anyway. E.g., the communication between two gateways is encrypted, but the
communicating applications have not requested the encryption. Otherwise, if they need a specific
security service, they cannot assume that the specific security service is provided by a module from a
lower level.

2.2.2 DREAMS Security Lifecycle Specification
In order to integrate the security into the software development life cycle of DREAMS, different
approaches based on [6, 7, 9] can be considered. The SDL proposed by Microsoft [9] is the most
relevant approach to software development based on the V-Model.

The DREAMS security development lifecycle can be roughly based on the Microsoft’s SDL as
discussed above. The SDL process is depicted in Figure 18.

The core phases of the SDL, i.e., requirements, design, implementation, verification/testing and
release roughly correspond to the core phases of the V-Model based software development process.

The SDL integrates effective security practices into each phase of the software development lifecycle
to improve awareness of security risks. It is also used to realize time and cost-saving benefits from
discovering and eliminating the security issues early in the development process instead of fixing the
issues as they are discovered later after the software release. This is more of a security by design
approach.

The security approach for the engineering process given in ISO/IEC 21827 [7] is shown in Figure 19.
The security engineering process is composed of three main areas, i.e., the risk analysis, engineering
and assurance.

31.07.2014 DREAMS Page 28 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 18: Trustworthy Security Development Lifecycle (SDL) proposed by Microsoft.

The risk analysis identifies and prioritizes the dangers inherent to the product or system being
developed. Risk assessment is the process of identifying potential problems to the system. Risks are
assessed by examining the likelihood of a threat (or vulnerabilities) and by considering the potential
impact of an unwanted incident. An unwanted incident is composed of a threat, vulnerability, and
impact.

The security engineering works on the produced risk information to find and implement solutions to
the problems presented by dangers. Security engineering is a process that proceeds through
concept, requirements, design, implementation, testing and deployment phases. Throughout this
process, security engineers work very closely with the system engineering team. Coordination
between the security and the system development engineers ensure that security is an integral part
of the larger process, and not a separate activity. Using the information from the risk process and
other auxiliary information such as the relevant laws and policies etc., the security engineers identify
security needs together with the customer. This is followed by the identification of specific
requirements. The process of proposing solutions to security problems involves identifying possible
alternatives and evaluating the alternatives to determining the most promising one. This process is
shown in Figure 19.

The assurance process helps the customers in establishing trust in the security solutions. Assurance
is defined as the degree of confidence that security needs are satisfied. It is a very important product
of security engineering. There are many forms of assurance, e.g., it might be defined as the
confidence in the repeatability of the results from the security engineering process. Although
assurance does not add any additional controls to counter the risks related to security, but it does
provide the confidence that the controls that have been implemented will reduce the anticipated
risk.

Any one or both of the above approaches explained above for security engineering can be used in
DREAMS for a secure development process. For uniformity with the safety development lifecycle
based on the V-Model the best points from the above approaches are integrated into the V-Model
as described next.

Training

• Core Security
Training

Require-
ments

• Establish
Security

Requirement
s

• Create
Quality Gates

/ Bug Bars
• Security &
Privacy Risk
Assessment

Design

• Establish
Design

Requirement
s

• Analyze
Attack
Surface

• Threat
Modeling

Implemen
-tation

• User
Approved

Tools
• Deprecate

Unsafe
Functions
• Static
Analysis

Verifica-
tion

• Dynamic
Analysis

• Fuzz Testing
• Attack
Surface
Review

Release

• Incident
Response Plan

• Final Security
Review

• Release
Archive

Response

• Execute
Incident

Response
Plan

31.07.2014 DREAMS Page 29 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Specify Security
Needs

Monitor
Security
Posture

Provide
Security Input

Administer
Security
Controls

Coordiante
Security

Solutions,
Guidance, ect...

Risk Information

Configuration
Information

Requirements
Policy, ect...

Assess Security
Risk

Assess Threat Assess
Vulnerability Assess Impact

Threat
Information

Vulnerability
Information

Impact
Information

Figure 19: Security Development Lifecycle based on ISO/IEC 21827

However, the safety engineering process shown in Figure 13 is based on the V-Model. In order to
come up with a common approach for the development for DREAMS, the different phases of the
proposed security engineering architectures of SDL and ISO/IEC 21827 can be mapped to the various
phases of the V-Model based approach shown in Figure 13. Based on the combination of these
approaches, the secure engineering approach looks as shown in Figure 20.

31.07.2014 DREAMS Page 30 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Module
testing for
Security

Development with Security
considerations

Security
Validation

Test

Validated
 System

Hardware Security
Requirements
Specification

System Requirements Specification

Security Hardware
Architecture

System Architecture Specification

System Design

Security Hardware
System Design

Module
Design

Component
Pool

Select Necessary
Adapt ?

Ye
s

No

Design
Acceptance

Operation,
maintenance
and repairing

2.
SYSTEM
 LEVEL

Software Security
Requirements
Specifcation

Security Software
Architecture

Security
Integration

Testing (Module)

Security HW/SW
Integration

testing

Module
testing for
Security

Security
Validation

Test

Validated
 Element

Security Hardware
Element

Requirements
Specification

Element Requirements Specification

Security Hardware
Element

Architecture
Specification

Element Architecture Specification

Element Design

Security Hardware
Element Design

Module
Design

Design
Acceptance

and
Certification

Operation,
maintenance
and repairing

3.
ELEMENT

 LEVEL

Security Software
Element

Requirements
Specification

Security Software
Element Design

Security Software
Element

Architecture
Specification

Security
Integration

Testing (Module)

Security HW/SW
Integration

testing

Implementation

Domain Test
Domain
Design

Domain
Assurance

Domain
Maintenance

1.
DOMAIN
LEVEL

Domain
Requirements
Specification

Domain Value
Requirements
Specification

Domain
Common

Requirements
Specification

Only when
certified
product
already
exists

Security Software
System Design

Development with Security
considerations

Figure 20: Security Development Process of DREAMS

31.07.2014 DREAMS Page 31 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

2.2.3 Measures for fault avoidance within DREAMS
By following the Security by Design approaches described in the previous section different faults due
to security flaws such as DoS attacks, buffer overflow attacks, etc. can be avoided. These need to be
considered during the risk analysis phase and the output of the risk analysis should be an input to
the secure software engineering phase.

2.3 Timing Approach

The consideration of timing constraints and their verification is often neglected but should be
considered as a subject on its own: if control orders do not arrive in time at the actuators or are not
updated sufficiently often, then the system may get “out of control”. The consequences may be
damage to the system or harm to people and thus, without considering timing requirements during
the development process, it is not possible to design a safe system. However, timing constraints and
their verification through prediction techniques such as worst-case analysis or simulation are based
on the assumption that in the real system all parts behave as supposed. If at some time an
application actually sends its data over a network much more often than foreseen, it may hinder
control orders of other applications to arrive in time, which could lead to failures. This is where
safety considerations must come into play, in order to establish acceptable failure probabilities,
which are then achieved through an appropriate safety design. In this sense, the Safety and Timing
approaches are complementary.

The goal of the TIMMO / TIMMO-2-USE (https://itea3.org/project/timmo-2-use.html) projects was
to elaborate a meta-model and a methodology for modelling and verifying timing constraints in the
automotive domain. The main results, Timing-Augmented Description Language (TADL) and the
Generic Methodology Pattern (GMP) for timing, are however general enough to allow their
application to other domains. For this reason it is considered in DREAMS as basis for timing
considerations.

2.3.1 GMP
The Generic Methodology Pattern (GMP) is a set of process steps that identify design tasks that are
relevant for considering timing constraints and their validation during the development of electronic
systems, see [10].

The GMP consists in a generic sequence of tasks that can be executed at every abstraction level of
the development process, see Figure 21. These tasks are described in more detail in the following
sections.

31.07.2014 DREAMS Page 32 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 21: GMP for Timing

The natural flow of execution is from higher abstraction levels to low abstraction levels, but the
GMP can be performed on top-down or bottom-up direction.

2.3.1.1 “Create Solution”

This task describes the definition of solution architecture without any timing information. In the
GMP, it is a (big) placeholder for all other design activities at the current design level / system view.

2.3.1.2 “Attach Timing Requirements to Solution”

This task “describes the formulation of timing requirements in terms of the current” design level /
system view.

This means that for the “input” timing requirements from the previous level/view, the
corresponding entities need to be (re)defined in the current view:

• definition of TimingEvents, attached to the structural entities of the current system view

• redefinition of TimingChains in terms of the translated TimingEvents

• redefinition of TimingConstraint with references to the translated TimingEvents

Let us consider the example of latency constraints in the technical view. As explained Section 3.4, a
latency constraint is based on a “stimulus” and a “response” event (Figure 36). In the technical view,
these TimingEvents would be those related to the reception and the production of data in
component ports. As suggested in Section 3.4, these could be called DataReceived (stimulus) and
DataSentEvent (response).

2.3.1.3 “Create Timing Model”

This task “describes the definition of a formalized model for the calculation of specific timing
characteristics based on properties of the current” design level / system view.

31.07.2014 DREAMS Page 33 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

The goal is to define a model (or several models) that will serve as input for the “timing analysis” to
be performed in the next task. This may mean to define additional information, like the
decomposition of a TimingChain into segments.

Let us return to the latency constraint example, but this time at mapping level. The work of this task
would consist in decomposing the “end-to-end” timing chain into segments which span each a
different execution / communication perimeter: execution on a tile, communication over NoC,
communication over off-chip networks. This decomposition is generally needed so that worst-case
analysis or simulation can be applied in order to evaluate timing.

2.3.1.4 “Analyze Timing Model”

This task “describes the actual execution and evaluation of all necessary calculations according to
the timing model”.

This task consists in feeding the analysis tool(s) with the “timing model(s)” built in the previous step,
before running the analysis and finally retrieving the results for verification.

2.3.1.5 “Verify Solution against Timing Requirements”

 This task “describes the comparison of the obtained analysis results with the specified timing
requirements”.

The simple part of this task consists in comparing analysis results with requirements.

In our latency constraint example, the verification would consist in simply checking that the upper
bound on (end-to-end) delays is smaller than the latency constraint.

Notice however that if several kinds of analyses have been performed, the results might first have to
be merged, before being able to perform the simple comparison. If two algorithms produce upper
bounds on Worst Case Traversal Time (WCTT), and if algorithm 1 provides a bound larger than the
constraint, then it can only be concluded that we algo1 cannot prove that the WCTT are below the
constraint. But if for the same WCTT algorithm 2 provide a bound below the constraint then it can be
concluded that the constraint is met. The problem with algorithm 1 is simply that the provided upper
bound on WCTT is too pessimistic to allow a positive conclusion. The merging of the analysis result
would consist in taking the minimum of the bound computed by the different algorithms.

Notice also that the main objective of this design task is to decide “whether the numbers are good
enough for progressing” or “whether those numbers have to be revised”. If not, it is necessary to
return back to an earlier development step/level (iteration)”. The “numbers might not be good
enough” if slack is needed for future extensions or in order to compensate for lack of precision in the
estimation of timing characteristics.

2.3.1.6 “Specify and Validate Timing Requirements”

This task “describes the identification of mandatory timing characteristics and their promotion to
timing requirements for the next development phase”.

It is about stating which timing constraints are the inputs for the next design phase and whose
satisfaction implies the satisfaction of the original input requirements of the current step. For
example, in the case of latency constraints, one can either decide to only keep the end-to-end
constraint or to impose sub-latency constraints (=sub-time budgets), for the different perimeters
(processing, on-chip-, off-chip networks) that are covered by the end-to-end constraint. In the

31.07.2014 DREAMS Page 34 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

second case the solution space is reduced, but the global problem is divided into sub-problems with
lower complexity.

2.3.2 Impact of DREAMS characteristics on the development process
In the deliverable D1.1.1 the DREAMS project requirements have been collected. Some of these
requirements have to be taken into account for the definition of the development process.
Regarding the Timing Approach, the relevant requirements are listed in the following table and
referred to as the, modularity and timing concepts. Other concept such as meet-in-the-middle
development approach, traceability and some requirements of modularity and heterogeneity are
listed in Section 2.1.1.

Req. ID Description Reference to

R9.13.5 Integration of an additional application subsystems into an existing
system

Modularity /
Scalability

R 4.4.3
Methods and tool should at least be suitable for all application
domains represented by the demonstrators. Heterogeneit

y
R 1.2.2

The architecture shall ensure that all safety-critical subsystems of a
system see a sequence of critical events (e.g. reception of messages)
in the same order or can re-establish the temporal order.

R 6.1.2
The end-to-end communication time between two tasks of an
application subsystem on the DREAMS architecture shall be less than
50ms.

Timing

R 6.1.3

The DREAMS architecture shall ensure that it is possible to design a
solution where two subsystems can be connected in which the time
between a data generation from one application subsystem and the
time the data has been delivered to another application subsystem is
less than 1s. This latency shall be ensured even when the two
application subsystems are in different clusters.

R7.4.1

The wind turbine shall achieve the stop state (safe state) when the
speed of the blades is greater than or equal MAX_BLADE_SPEED.
The wind turbine shall be in the safe state until a manual reset of the
system.

R 8.4.1

Soft real-time applications shall be combined with non real-time
applications in a reliable manner. The focus is on reliable and
predictable communication and synchronization between on- and off-
chip domains.

R 9.5.1 The Timing Requirements Meta-Model shall allow the specification of
latency constraints (local or end-to-end).

R 9.5.2 The Timing Requirements Meta-Model shall allow the specification of
repetition constraints.

R 9.5.3 The Timing Requirements Meta-Model shall allow the specification of
synchronization constraints (based on events).

R4.1.3
End-to-end response time analysis algorithm shall be developed
which are able to account for scheduling algorithms considered by the
resource allocation strategy.

R10.4.1 Bounded Reconfiguration Time

R10.4.4 Timely communication between GRM and LRM
Table 4: Analysis of DREAMS Timing requirements.

In the following section we analyze whether the above mentioned aspects are covered or supported
by the GMP and identify missing elements or needed adaptations.

31.07.2014 DREAMS Page 35 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

2.3.2.1 Timing
The “timing” related requirements listed in the table are either

• concrete example of latency constraints from the demonstrators (R6.*, R7.*, R8.*)

• requests for the possibility to specify certain kinds of timing requirements (R9.*)

• requests for the possibility to perform timing analyses (R4.*)

• concrete example of timing constraints related to resource management services (R10.*)

The GMP developed in the TIMMO-2-USE project [10] and the associated meta-model [11], cover or
support, in principle, all listed requirement related to “timing”. ”Depending on the specificities of
the demonstrators, some adaptations or extension may be necessary.

2.3.2.2 Meet-in-the-middle Methodology

The core entities of the Timing meta-model (TimingExtension, TimingEvents, TimingChains and
TimingConstraint) are defined for a certain system view / design level and form a self-contained set
of information (together with the system view). Furthermore, the input timing constraints may
either come from a higher abstraction level (previous design step) or from a lower abstraction level
(existing system). Thus, the GMP does not impose an order in which the timing extension must be
defined for the different system view/levels.

Additionally, the GMP foresees a “bottom-up task” called “Abstraction of Timing Properties”:
refinement of timing properties used at a current level, form estimations drawn from an existing
implementation, see Figure 22. One would typically refine the estimation of WCET, based on
feedback from implementation.

Thus the GMP is a meet-in-the-middle methodology.

Figure 22: Abstracting Timing Properties (TIMMO-2-USE)

2.3.2.3 Traceability

TIMMO-2-USE TimingConstaint are actually EAST-ADL requirements and inherit, in principle, the
related traceability features. Since traceability is an essential aspect of requirements modelling and

31.07.2014 DREAMS Page 36 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

may imply relations between different kinds of requirements, a common traceability framework
should be used. In the upcoming deliverable D1.4.1 (DREAMS meta-model) will be defined in details
how the TimingConstraints will be integrated with the other requirements of the DREAMS meta-
model.

2.3.2.4 Modularity

By definition, smaller timing chains can be composed into larger timing chains and larger timing
chains can hierarchically be decomposed into sub-chains. In parallel, latency constraints with a larger
perimeter can be decomposed in sub- latency constraints with smaller perimeters. Thus, latency
constraints and timing chains are naturally compatible with modular design approaches.
Synchronization constraints on the other hand, are not modular by nature: a control algorithm,
implemented in a software component may require that the different sensor values, needed as
input, are measured at the “same” time. In order to express this in the form of a synchronization
constraints, it is necessary to refer to “measurement events” in the sensor, but the sensor hardware
and the corresponding drivers are not (necessarily) part of the control software component, because
they may be located “at the other end” of the system, and the data possibly travels over some
network or simply because the sensors and drivers may be provided by different suppliers. In order
to overcome this difficulty and preserve traceability, we propose to use “modular” synchronization
constraints, which are expressed in terms of events related to the local input and output ports, but
with the meaning of placeholders for the actual events in the sensors and actuators, which can only
be determined when the component is used in the context of an architecture, see Section 3.3. Thus,
the GMP and the Timing-requirements meta-model are compatible with modular system description
approaches.

Since the timing model is an “orthogonal” or “annotation” meta-model, it should be possible to
combine it with other orthogonal meta-model such as those used for describing variability.

2.3.3 DREAMS Timing Lifecycle Specification
The Generic Methodology Pattern (GMP), for the consideration of timing requirements throughout
the development process (see Section 2.3.1), can be mapped to the V-Model based safety related
development process of DREAMS (Figure 13), as shown in Figure 23.

The GMP can be “instantiated” at and in between design steps, where entities are considered that
consume inputs and/or produce outputs. At a higher level one typically considers a “functional
architecture” and at a lower level, a software architecture, consisting of software (modules). Notice
that timing requirements can not apply to software alone, because software needs execution (and
communication) resources. Thus, timing related activities generally concern the combination of
software and hardware, unless a function is implemented only in hardware. For this reason
hardware (HW) and software (SW) are not explicitly mentioned in the names of the timing related
design step in Figure 23.

Timing requirements can be seen as constraints, imposed in a top-down manner or as properties of
existing entities (bottom-up). When working in top-down manner (vertical solid lines in Figure 23),
one intents to design entities that satisfy the constraints coming from the previous higher level. The
timing properties of the resulting entities are also expressed as timing requirements, since they play
the role of constraints for (a) the design of the entities at the next lower level and in (b) the tests of
the actual implementations in the corresponding timing related activities in the right branch of the
V-Model (horizontal dotted lines in Figure 23). Only during the verification activities in the left
branch of the V-Model (vertical dotted lines in Figure 23), are timing requirements of some lower
level seen as properties that must satisfy some higher level constraints.

31.07.2014 DREAMS Page 37 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Module
testing for

Timing

Development with Timing
considerations

Timing
Validation

Test

Validated
 System

System Requirements
Specification

System Architecture
Specification

System Design

Module
Design

Element Pool

Select Necessary
Adapt ?

Yes

No

Design
Acceptance

Operation,
maintenance
and repairing

2.
SYSTEM
 LEVEL

Timing Requirements
Specifcation

Timing Architecture
Specification

Timing
Integration

Testing (Module)

Timing
Integration

testing

Module
testing for

Timing

Timing
Validation

Test

Validated
 Element

Element Requirements
Specification

Element Architecture
Specification

Element Design

Module
Design

Design
Acceptance

and
Certification

Operation,
maintenance
and repairing

3.
ELEMENT

LEVEL

Element Timing
Requirements Specification

Element Timing
Specification

Element Architecture Timing
Specification

Timing
Integration

Testing (Module)

Timing
Integration

testing

Implementation

Domain Test
Domain
Design

Domain
Assurance

Domain
Maintenance

1.
DOMAIN
LEVEL

Domain
Requirements
Specification

Domain Value
Requirements
Specification

Domain
Common

Requirements
Specification

Only when
certified
product
already
exists

System Timing
Specification

Development with Timing
considerations

Figure 23: Timing-related Development Process.

31.07.2014 DREAMS Page 38 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

2.4 Summary of DREAMS Development Process

Figure 24 shows the DREAMS Development process which addresses the requirements of safety,
security and timing approaches. The development processes of each approach have been shown in
Figure 13, Figure 20 and Figure 23, but without numeration. The summary of the development
process, shown in Figure 24, shows that for each approach, there is one block for each phase of the
development process that includes both HW and SW. Therefore, the numeration of phases of each
approach is not possible, because each development process of the safety, security and timing
approaches, show that for each phase of the development process, there is one block for HW and
other for SW, which has been merged in case of the summarized figure.

 As shown, DREAMS development process has three levels of development, beginning with the
element development process, continuing with system development process and, finishing with the
domain level development process. Each level of abstraction follows the V-shape, which is based on
the life cycle defined by IEC 61508.

Between each level of development process, are defined the relations/connections that have
between them. For example, as shown in Figure 24, the entire element level development process is
focused in the phases from 2.4 to 2.6 of the system level development. Therefore, the pre-existent
certified elements can be used and reused at system level, although sometimes, some changes on
elements shall be needed for adapt them to the system needs. Therefore the recertification process
shall be carried out, to prove that upgraded system is enough safe. Same way, a certified system can
be used on domain level to generate a product-line products.

31.07.2014 DREAMS Page 39 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

3.1.1.
Safety Element
Requirements
Specification
(HW and SW)

3.10.
Design

Acceptance and
Certification

2.6.
Module Test

2.5.
Development with Safety, Security

and Timing considerations

2.9.
Validation

Testing

Validated
 System

2.1.1.
Safety Requirements

Specification
(HW and SW)

2.1. System Requirements Specification

2.2.1.
Safety

Architecture
Specification
(HW and SW)

2.2. System Architecture Specification

2.3. System Design
2.3.1.

Safety HW and
SW System

Design

2.4.
Module
Design

Element Pool

Select Necessary
Adapt ?

Yes

No

2.10.
Design

Acceptance

2.11.
Operation,

maintenance
and repairing

2.
SYSTEM
 LEVEL

2.1.2.
Security

Requirements
Specification
(HW and SW)

2.2.2.
Security

Architecture
Specification
(HW and SW)

3.6.
Module
Testing

3.5.
Development with Safety, Security

and Timing considerations

3.4.
Module
Design

3.
ELEMENT LEVEL

1.5.
Implementation

1.6.
Domain Test1.4.

Domain
Design

1.7.
Domain

Assurance

1.8.
Domain

Maintenance

1.
DOMAIN
LEVEL

1.1.
Domain

Requirements
Specification

1.3.
Domain Value
Requirements
Specification

1.2.
Domain Common

Requirements
Specification

Only when
certified product

already exists

2.3.2.
Security HW and

SW System
Design

2.7. Integration Testing (Module)
2.7.1.

Safety Module
Integration

Testing

2.7.2.
Security Module

Integration
Testing

2.8. HW/SW Integration Testing
2.8.1.

Safety HW/SW
Integration

Testing

2.8.2.
Security HW/

SW Integration
Testing

3.7. Integration Testing (Module)
3.7.1.

Safety Module
Integration

Testing

3.7.2.
Security Module

Integration
Testing

3.8. HW/SW Integration Testing
3.8.1.

Safety HW/SW
Integration

Testing

3.8.2.
Security HW/

SW Integration
Testing

3.9.
Validation

Test

3.11.
Operation,

maintenance
and repairing

Validated
 Element

2.1.3.
Timing

Requirements
Specification

2.2.3.
Timing

Architecture
Specification

2.3.3.
System
Timing

Specification

2.8.3.
Timing

Integration
Testing

2.7.3.
Timing Module

Integration
Testing

3.2.1.
Safety Element

Architecture
Specification
(HW and SW)

3.2. Element Architecture Specification

3.3. Element Design
3.3.1.

Safety HW and
SW Element

Design

3.2.2.
Security Element

Architecture
Specification
(HW and SW)

3.3.2.
Security HW and

SW Element
Design

3.2.3.
Element

Architecture Timing
Specification

3.3.3.
Element
Timing

Specification

3.1. Element Requirements Specification
3.1.2.

Security Element
Requirements
Specification
(HW and SW)

3.1.3.
Element Timing
Requirements
Specification

3.8.3.
Timing Integration

Testing

3.7.3.
Timing Module

Integration
Testing

Figure 24: DREAMS Development Process.

31.07.2014 DREAMS Page 40 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

3 DREAMS Meta-Models and Model-Transformations
This chapter will provide an overview of the DREAMS meta-models and the model-transformations
required for a tool-supported workflow. It is structured as follows:

Section 3.1 starts with an analysis of the impact of the DREAMS characteristics onto meta-models
and model-transformations. After that, Section 3.2 provides a brief introduction on meta-modelling,
model-driven engineering (MDE) tool-chains as well as a summary of the DREAMS system model
introduced in D1.2.1 since it will serve as an input to the definition of the DREAMS meta-model.

After that, a coarse overview of the meta-model used in DREAMS will be presented whose purpose
is to provide a specification language for DREAMS-based systems (section 3.3). Furthermore, the
timing meta-model which will be applied in DREAMS and the MultiPARTES meta-model will be
introduced. Both meta-models will be briefly introduced. The detailed definitions of the meta-
models are due in documents D1.4.1 and D1.6.1.

In Section 3.6, the model-transformations required to exchange data between the different tools
involved in the development of a DREAMS system will be sketched. This section includes an
exemplary instantiation of the toolchain. It covers configuration formats for hardware/software IPs
to be integrated into the DREAMS architecture

3.1 Impact of DREAMS Characteristics

In deliverable D1.1.1, the DREAMS project requirements have been collected. Some of these
requirements have to be taken into account for the definition of the development process.
Regarding the Meta-Models and the Model-to-Model-Transformations, the relevant requirements
are listed in the following two tables. The analysis of the requirements onto the meta-models
resulted in the following groups (see Table 5): overall design of meta-models, architecture, safety,
security, timing, variability and requirements. The aspects safety, security and timing are
investigated in Chapter 2 of this document. A preliminary investigation of the majority of the
remaining aspects (which are due in documents D 1.4.1 and D1.6.1) is performed in this Chapter.

Req. ID Description Reference
to

R 9.1.1 Separation of concerns: The meta-model shall be organized in such a
way that different aspects are covered by sub-meta-models. Overall

design of
Meta-

Models
R 9.1.2

The meta-models should exhibit an adequate degree of abstraction, i.e.
abstracting irrelevant details while providing the information required
for the methods and tools based on them.

R 9.1.3 The proposed meta-models shall be domain-independent.

R 9.2.1 The application meta-model / PIM shall capture the structure of
applications in terms of their component architecture.

Architectur
e

R 9.2.2 For the application meta-model, precise (platform-independent)
execution semantics should be defined.

R 9.3.1 The platform meta-model shall capture the topology and the hierarchic
structure of instances of the DREAMS architecture

R 9.3.2 The platform-meta model shall distinguish different types of building
blocks / services contained in instances of the DREAMS architecture.

R 9.4.1
The platform-specific meta-model shall provide means to describe
applications that are deployed to instances of the DREAMS
architecture.

R 9.6.1 The Reliability / Safety Meta-Model should allow to specify policies Safety

31.07.2014 DREAMS Page 41 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

according to IEC-61508 realization phase (system architecture
definition). Each safety compliant item of a mixed criticality system can
specify a failure probability (e.g., an assigned SIL level). So it is required
that during modelling process safety policies are checked (e.g., Chosen
SIL level cannot be higher than the maximum allowable SIL).

R 9.6.2 The Reliability / Safety Meta-Model shall allow specifying criticality-
levels according to IEC-61508.

R 4.2.1
Variability modelling and analysis tools shall be enhanced to achieve by
automatic means as well as guided manual means an optimal or best
effort configuration of DREAMS platforms and DREAMS systems.

R 9.8.1 The Security Meta-Model for Data Confidentiality shall allow modelling
the varying needs of confidentiality.

Security R 9.8.2 The Security Meta-Model for Data Integrity shall allow modelling the
varying needs of data integrity.

R 9.8.3
The Security Meta-Model for Authentication shall allow modelling the
needs for establishing the authenticity of communication partner and
the authentication of data origin.

R 9.12.3 The development (design, verification, validation) process shall
foresee the definition of application timing requirements.

Timing

R 9.5.1 The Timing Requirements Meta-Model shall allow the specification of
latency constraints (local or end-to-end).

R 9.5.2 The Timing Requirements Meta-Model shall allow the specification of
repetition constraints.

R 9.5.3
The Timing Requirements Meta-Model shall allow the specification of
synchronization constraints (based on events).Synchronization
constraints

R 9.9.1 The variability meta-model shall allow specifying variations of base
models in order to define product lines.

Variability R 9.9.2 The variability meta-model shall allow to describe different feature sets
of applications

R 9.9.3 The variability meta-model shall allow to describe different
implementation alternatives of applications.

R 9.9.4 The variability meta-model shall allow to describe instances of the
DREAMS architecture

R 5.1.1 Mixed-criticality product line shall be supported to enable certification
of product-lines with variability management.

R 9.6.3 The meta-models should support the traceability between the artefacts
used in the different steps of the development process.

Requireme
nts

R 9.13.3 The development process shall support the traceability for
requirements regarding: safety, security, etc.

R 9.7.2
The Energy / Power requirements meta-model should be suitable to
define requirements on the energy / power consumption of a DREAMS
system at the system-level.

R 9.2.3 The DREAMS application architecture model should provide means for
defining the memory needs.

Table 5: Impact of DREAMS characteristics onto Meta-Models

Table 6 clusters the requirements on model-transformations in a tool-supported development
process into the following groups: complexity management, as well as integration of resource
allocation / exploration and analysis methods into the development process (see Section 3.6).

31.07.2014 DREAMS Page 42 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Req. ID Description Reference
to

R 4.4.1 Design activities of the DREAMS development process shall be
supported by a tool chain.

Complexity
Manageme

nt

R 4.4.2
The exchange of data between consecutive tools in the DREAMS
development process shall be automated so that it can be performed
without “manual” recopying or reworking of the data.

R 4.5.1
The generation of the configuration files of the DREAMS platform for an
instance of the DREAMS architecture, shall be supported by tools that
use the system model as input.

R 9.10.1
The development process should define the model-to-model
transformations required to implement application subsystems on top
of the DREAMS platform.

R 9.10.2
The development methodology should allow the definition of the
implementation artefacts, i.e. its end products that have to be
produced for a DREAMS-based system.

R 9.11.1

The development process shall support offline real-time scheduling
methods for mixed-criticality systems (allocation of functional parts to
partitions, time triggered schedules, static virtual circuit arbitration and
port scheduling).

Integration
of resource
allocation

and
exploration

into
developme
nt process.

R 9.11.2
The development methodology shall support online resource allocation
and management strategies, and their relationship to the static
methods described in R10.2.1.

R 9.11.3
The development process should support the design space exploration
(DSE) method that provides means for semi-automatic architectural
exploration.

R 9.14.1 The development process shall define how variability is bound.

R 9.11.4
The development process should support timing analyses, such as the
analysis of end-to-end response times induced by a given allocation and
scheduling configuration. Integration

of
analyses

into
developme
nt process

R 9.13.6
The development process should support a reliability analysis, and
methods for the introduction of active redundancy that derive a fault-
tolerant design from the original design.

R 9.7.1
A high level analytical model covering average static and dynamic
power consumption of the NoC at the system-level shall be provided,
e.g., a mathematical function.

Table 6: Impact of DREAMS characteristics onto Model-Transformations

3.2 Introduction

3.2.1 (Meta-)Modelling
DREAMS promotes the use of a model-driven engineering (MDE) approach in order to provide the
different stakeholders in the system development process with appropriate means to describe the
system under design in order to support the different activities in the development process. Here,
MDE is defined as the combined use of models for the representation of the system with
development processes and analysis methods [12]. The goal of MDE is to provide models for as
many development artefacts as possible, which provide different views onto the same system
(“everything is a model” [13]).

31.07.2014 DREAMS Page 43 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

In general, MDE distinguishes two major model types [14, 15]: Product models are used to describe
design and implementation artefacts that are created manually by the developer, or automatically
using appropriate model-transformations. In contrast to that, process models provide a
formalization of the development process and are used to specify the relation of product models
stemming from different phases of the development process. In DREAMS, only product models are
considered, since they are intended to be used as data-containers for tools supporting the
development of DREAMS-based systems.

Super-class

Object

Class

Meta-model

System

Model

inherits

instanceOf

conformatTo

representedBy

Figure 25: Comparison of object technology and model-driven engineering (MDE)

While the concepts used in object-technology and MDE are identical at first glance [13], there are
some subtle differences that will be discussed in the following. The left-hand side of Figure 25
illustrates the well-known abstraction provided by object-oriented languages based on the two
relations instanceOf and inherits. In contrast to that, the right-hand side of the figure illustrates the
basic principle of MDE where “a particular view (or aspect) of a system can be captured by a model
and that each model is written in the language of its meta-model” [13] (relation representedBy).
While this looks very similar to the relation instanceOf from object-technology, it is important to
note that there are arbitrarily many models of some (real-world) system, which individually provide
suitable abstractions required for the specific purpose for which the model has been created. In
contrast to that, the instanceOf is always a 1:1 relation between one particular object (instance) and
its type (class). Accordingly, there is a difference between the well-known relations: conformatTo
and inherits, which expresses that a model, is expressed in terms of its meta-model. Therefore, a
meta-model can be interpreted as the abstract syntax of a language that is used to formalize a given
model.

The bottom part of Figure 26 repeats the relationship between system, model and meta-model
discussed before (also referred to levels M0, M1 and M2). As it can be seen, a meta-model is
expressed in the “language” provided by the meta-meta model (at level M3), that provides basic
concepts like classes, references, attributes, atomic types. This principle could be continued
infinitely, i.e. the meta-meta-model at level M3 is linguistically expressed in terms of a “meta-meta-
meta-model”. However, the figure illustrates a different approach where the meta-meta-model at
level M3 conforms to itself. This has the advantage that the modelling architecture is built upon a
“self-contained” meta-meta-modelling kernel where it is possible to reason about M3 (in terms of
M3 concepts) in a similar fashion like M3 concepts can be used to reflect M2.

Since there is obviously no unique choice of the meta-meta-model, numerous suggestions have been
made (see [16] for an overview). However, the efforts of the Model-Driven Architecture (MDA)
initiative to establish standards for MDE, resulted in the definition of the Meta Object Facility [17], a
meta-meta-model that is basically a simplified version of the class modelling capabilities provided by
UML 2.0. The MOF 2 core specification [17] provides the basis for further standards in the area of
model serialization and exchange, model life-cycle management, transformation languages and

31.07.2014 DREAMS Page 44 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

constraint specifications. MOF defines two compliance levels for implementations: Essential MOF
(EMOF) and complete MOF (CMOF) [17].

Meta-Model

System

Model

conformantTo

Meta-Meta ModelM3

M0

M1

M2

conformantTo

conformantTo

representedBy

The modeling world

Reality

ConstituentsExample

Class, Attribute,
Reference, ...

DREAMS
meta-model

Model MS of DREAMS
system S

DREAMS
system S

(Basic) MOF
≈ EMF Ecore

Classes representing components
of S, e.g., SW component,
message, tile, partition, ...

Submodels of MS

HW/SW components
of S (processor, NoC, …)

Figure 26: 4-level model architecture

For the DREAMS meta-model, mainly the EMOF compliance level is relevant because the Eclipse
modelling framework (EMF), which is the basis for the majority of tools to be developed and/or
extend in the course of the project, provides the Ecore meta-meta-model which – to a large extend –
is compliant to EMOF (mainly naming differences)[18].

3.2.2 MDE tool-chain
Before the description how an MDE tool-chain can be created based on the concepts introduced in
the last section, the application of such tool-chains for safety-critical systems will be briefly
discussed. As pointed out in Section 2.1, the DREAMS development process suggests the application
of IEC 61508 for the development of safety-critical systems. In this context, IEC 61508-4 classifies
tools into the three categories described below that demand different degrees of verification to
qualify tools for use in an IEC 61508 development process. The degree of verification needed for
tools depends on the possibility and simplicity to verify the output of tools against its input.

• T3 (transformation tool): Tool generates outputs which can directly or indirectly contribute
to the executable code of the safety related system. Examples: translator, compiler, linker,
assembler…

• T2 (verification tool): Tool supports the test or verification of the design or executable code,
where errors in the tool can fail to reveal defects but cannot directly create errors in the
executable software. Example: static code analysis, emulator, simulator, test tools…

• T1 (data entry tool): Tool generates no outputs which can directly or indirectly contribute to
the executable code (including data) of the safety related system. Example: text editor.

As pointed out in the requirements analysis in deliverable D1.1.1 (requirement R 5.2.2), tools will not
be qualified during the project, but the provision of basic requirements will be assessed for tools in
categories T2 and T3. These requirements include the availability of a tool manual, a tool errata
sheet, at least one test case for each requirement, the management of revisions using a
configuration management tool, and the development of libraries according to IEC 61508-3 (safety
code).

31.07.2014 DREAMS Page 45 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Input Model 1

Input Model 2

…

Input Model n

M2M Internal ModelsCombined Model Final Model

Code Templates

User Code

M2M M2M

Model editor,
external tool, ...

M2T

Application
Developer

External tool

Source Code

Configuration

Figure 27: General architecture of MDE tool-chain.

Figure 27 provides an overview of the general architecture of MDE tool-chains. Generally, a tool-
chain (or one of its modules) processes a set of input models, which are either created in an internal
editor, or using an external (third-party) tool. Based on these inputs, it produces a final output
model which is either processed by an external tool, or from which textual artefacts such as source
code or configuration data are generated.

As indicated in Figure 27, the transformations required to obtain the final model from the input
models can involve several stages. The transition from a model M (conforming to its meta-model T)
at a given stage to its successor model M’ (conforming to meta-model T’) is implemented by a
model-to-model transformation T → T’. Here, the complexity of transformations can range from
simple aggregation of information or assignment of ID-s to complicated calculations (such as static
scheduling).

In order to obtain textual artefacts from the final model, template-based code generators rely on
code templates that contain both hard-coded static contents of the output file, and dynamic parts
that emit outputs based on references to objects of the input model. For the sake of clarity, the
model-to-text transformation usually does not involve extensive calculations, but implements a
more or less direct transformation of the final model to a corresponding textual representation by
serialization.

The use of model-transformations and code generators in a fully automated work-flow – eliminating
manual review steps generally required on intermediate products – typically requires the
classification of the corresponding tool to be a member of class T3. As an alternative, the ultimate
output of these tools (i.e., program code in a 3rd generation language such as C) can undergo the
same (generally both automatic and manual) validation and verification steps as program code that
has been manually crafted in the first place.

In the following, it will be sketched how the above tool architecture can be implemented based on
the EMF technology. On the one hand, the use of Ecore as a common meta-meta-model ensures the
syntactical interoperability the different (sub)-meta-model defined within the project. On the other
hand, the EMF provides the technological infrastructure that eases the import of XML-based models
created by existing (third-party) tool-chains, as well as the implementation of the transformation
and generation steps sketched above. The EMF supports the automatic generation of the following
components from an Ecore specification of a meta-model, which are required for the
implementation of the corresponding modules of the tool-chain (Eclipse plugin):

• Java classes for the in-memory representation of the instances of the user-specified meta-
model including the required code to serialize and load (parse) the models to/from an XML
representation.

31.07.2014 DREAMS Page 46 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

• XML schemas specifying the structure of the XML representation (to ensure interoperability
with external tools). Conversely, it is also possible to convert a XML schema specification
(e.g., XSD) to an Ecore meta-model, which can be used to create an importer for foreign
XML-based formats into an EMF-based tool-chain.

• Basic, but fully functional tree editors that allow the instantiation and manipulation of EMF-
based models.

Furthermore, the EMF is accompanied by a variety of tools to ease the processing of models and
model-to-model transformations and model-to-text transformations (“code generation”):

• A pragmatic yet efficient way of implementing model-to-model transformations is to code
the required calculations directly in Java. As already mentioned, EMF provides automatically
generated Java representations of meta-models which provide a comfortable API for
instantiation and manipulation

• Dedicated model-transformation languages allow the specification of model-to-model
transformations (e.g., QVT declarative, QVT operational, ATL). While these approaches offer
a higher degree of abstraction, it should be considered that they increase the number of
technologies used in the tool-chain.

• For model-to-text transformations (“code generation”), template-based code generation
engines are generally preferred over hand-crafted code generators (“printf”). Here,
dedicated template languages (e.g., Xtend2, Xpand, Acceleo (MOFM2T)) allows the
specification of templates that contain both hard-coded static contents of the output file,
and dynamic parts that emit code based on references to objects of the input model.

3.2.3 DREAMS System Model
In this section, the DREAMS system model and architectural style introduced in D1.2.1 will be
summarized and will be used to relate the meta-models and model-transformations introduced in
the remainder of this chapter to the DREAMS architectural style. 2

In Figure 28, the structure of a DREAMS system is sketched. It is divided into a logical view (of the
application) and a physical view (of the platform).

View
Physical

Logical View

Mes-
sage

Component

Application
Subsystem

Physical View

Partition
Tile

NoC
Node
Cluster

Off-Chip Network

Criticality
Domain

Message-
based
Interface

Figure 28: System Structure of Application (Logical View) and Structure of Platform (Physical View) [D1.2.1]

2 As pointed out at the beginning of this section, this document contains only preliminary information on the
DREAMS meta-models. Hence, the presentation of this conceptual system model as well as the description of
the corresponding meta-models focuses on the aspects application architecture and behaviour, platform
architecture, timing, as well as safety and variability. In the upcoming deliverables D1.4.1 and D1.6.1,
additional meta-models will be presented that also cover the aspects security, reliability, and energy.
Preliminary information on reliability meta-models are included as part of the object-specification meta-model
in Section 11.1.3 of deliverable D4.1.1.

31.07.2014 DREAMS Page 47 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

3.2.3.1 Logical view

The purpose of the logical view is to provide the following information about mixed-criticality
applications in a platform-independent way:

• Criticality-levels: A system is structured into criticality levels from the different application
domains (e.g., DAL A to E in avionics, ASIL A to D in automotive and SIL 1-4 in multiple
domains according to IEC-61508).

• Component service: The specification of a component’s interface defines its services, which
is the intended observable behaviour as perceived by the transmission of messages as a
response to inputs, state and the progression of time. Three types of messages are
distinguished based on their timing, namely periodic messages, sporadic messages, and
aperiodic messages.

As pointed out in D1.2.1, the above definition of the logical view induces the logical namespace
Criticality.Subsystem.Component.Message. The mapping to the physical namespace can be
performed by a (run-time) translation layer in hardware or software, or at design-time (using a fixed
mapping).

3.2.3.2 Physical view

In this section, the physical system structure of the DREAMS platform consisting of networked multi-
core chips will be described. It is described by the physical view that defines the following
hierarchical structure:

• The overall system is physically structured into a set of clusters.
• Each cluster consists of nodes.
• Each node is a multi-core chip containing tiles.
• A tile can be a processor cluster with several processor cores, caches, local memories and I/O

resources. Alternatively, a tile can also be a single processor core or an IP core.
• The processor cores within a tile can run a hypervisor that establishes time-and-space

partitions, each of which executes a corresponding software component.

The communication between the above entities is provided by the following components:
• The connection between clusters is provided by inter-cluster gateways that are formed by

off-chip gateways located between two clusters.
• Nodes are interconnected by an off-chip real-time communication network.
• Tiles are interconnected by a Network-on-Chip (NoC). Each tile provides a Network Interface

(NI) to the NoC offering ports for the transmission or reception of NoC messages.
• A on/off-chip gateway is responsible for the redirection of messages between the NoC and

the off-chip communication network.
• Off-chip and on-chip networks are responsible ensuring for time and space partitioning as

well as the integrity of messages between the respective communication partners.

The physical view induces the following namespace: Cluster.Node.Tile.Port.

3.2.3.3 Application-platform mapping

In order to provide their specified services, components from the logical view must be mapped to
the resources of the physical platform:

• Components must be assigned to partitions with suitable computational resources

31.07.2014 DREAMS Page 48 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

• Messages must be mapped to the communication networks, taking into account the
required timing and reliability properties, and the routing between different parts of the
physical platform.

In order to address the challenge of mapping (logical) messages to a (potentially multi-hop route) in
the physical platform, the architectural style provides Virtual Links (VLs) as an abstraction hiding the
physical system structure of the platform from the component. The timing and reliability properties
of a VL are determined by the properties of the constituent physical networks. It is defined as an
end-to-end multicast channel between the output port of one sender component and the input
ports of multiple receiver components, and can be identified using its Virtual Link ID (VLID). VLs are
defined for time-triggered transmission of periodic messages, and the rate-constraint transport of
sporadic messages. In contrast to that, aperiodic messages do not employ the VL abstraction, but are
subject to connectionless transfer and include the physical name of the receiver for the routing
through the network instead.

Here, the Network Interfaces (NI) mentioned above either send messages locally to a receiver within
the same node, or direct it to the corresponding gateway. The gateway will use the VLID (or the
physical receiver name in case of aperiodic messages) to generate the off-chip path to the gateway
at the receiver node that will route the message to the corresponding tile.

3.3 AutoFocus3 Meta-Model

In the following, a conceptual overview3 of the relevant parts of the AutoFOCUS34 meta-model will
be presented, which will provide the basis for parts of the DREAMS meta-model. AutoFOCUS3 is an
Eclipse-based tool prototype that supports the development of embedded systems based on the
Focus modelling theory [5]. In its meta-model, systems are described using component models of
the software architectures which are enriched with specifications of the executable behaviour (e.g.,
I/O automata).

Logical
Perspective

Technical
Perspective

System of Systems

System

Sub-systems

Basic blocks

...

HW/SW
Platform

...

...

...

PE PE M

PE

...

Level of G
ranularity

Development Perspectives

......

Figure 29: Dimensions of abstraction: granularity levels, and development perspectives

3 For the sake of clarity, the presentation abstracts from the tool implementation, and focuses on core
concepts.
4 http://af3.fortiss.org/

31.07.2014 DREAMS Page 49 of 85

http://af3.fortiss.org/

D1.3.1 Version 1.0 Confidentiality Level: PU

The execution platform is described using a topology model containing the corresponding hardware
and software elements (e.g., execution units, communication transmission units and endpoints,
etc.). Finally, a deployment model is used to specify how an application is a mapped to the platform
(e.g., application components to execution units).

In AutoFOCUS3, two dimensions of abstraction are applied (see Figure 29). In the granularity
dimension, a system is decomposed into sub-systems which are at a lower granularity level and
which can themselves be regarded as systems. The process can be applied recursively, until finally
basic building blocks are reached. On the other hand, a system can be regarded from different
perspectives (or views) that provide different information about the system. In Figure 29 only those
perspectives are shown that will be used in DREAMS for the description of mixed-criticality systems
(i.e., logical and technical architecture). For these perspectives, also the principle structure of the
corresponding meta-models will be sketched in the subsequent sections. AutoFOCUS3 also provides
further perspectives that will be briefly described in the next sections (i.e., requirements and
deployment perspective).

3.3.1 Requirements perspective

Figure 30 shows a screenshot of the AutoFOCUS3 requirements perspective. It is provided by the
MIRA (Model-based Requirements Analysis) module that can be used to create the following
models:

• Elicitation and specification of system context

o Glossary

o Requirements sources

• Specification of system requirements

o Requirement models: Template for specification of requirements. It contains
information such as ID, title, description, rational, author, requirements source,
references to external resources.

o Use case models can be used to describe a desired functionality in a specific scope of
the system. Use cases on the one hand provide similar information as the
requirement models described above. On the other hand, they also provide the
possibility to describe the involved actors, the trigger conditions, the required
inputs, outputs, and pre-conditions as well as the guarantees that hold after the
execution.

• Management and tracing of requirements

o Requirements attributes: In addition to the descriptive attributes mentioned above,
also attributes that describe the state of a requirement in the course of the
development process can be modelled (e.g., status, priority, opens issues, etc.).

o Requirements relations: Both requirement models and use cases provide the
possibility to create traces to related requirement models, and to components of the
system specification.

31.07.2014 DREAMS Page 50 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 30: AutoFOCUS3 Requirements Perspective

The requirements perspective can be used to support the software “requirements specification”
phase in the V-shape Software development process depicted in Figure 24.

3.3.2 Logical Perspective

The logical perspective describes the application of the system by a network of communicating and
cooperating components (see Figure 31). Hence, the logical perspective corresponds to the
platform-independent model (PIM) in the MDA terminology, and provides the following abstraction:

• Hierarchical structuring of the application by means of components.

• Definition of the syntactical interfaces and information flow between the system and its
environment (input and output communication) and between the different sub-systems
(local communication).

• Implementation of the system functionality and its interaction with the environment by
means of behaviour specifications.

31.07.2014 DREAMS Page 51 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 31: AutoFOCUS3 Logical Perspective

The logical perspective can be used to support the “software architecture”, “software system
design” and software “module design” phases in the V-shape software development process
depicted in Figure 24. In conjunction with a code generator (see Section 3.2), also the software
“development” phase can (but does not need to) be based on the models provided by the logical
architecture.

Figure 32: Meta-Model of Logical Perspective

3.3.2.1 Summary of Meta-Model

In the following, the main concepts3 of the meta-model of the logical perspective will be described
(see Figure 32).

• Component:
The logical view consists of a set of components. A component is a syntactical and semantic
projection of the overall system with the outermost component giving the interface
between the system and its environment. In the FOCUS theory, a component is
mathematically defined as a mapping from the valuations of input stream histories to the
valuations of the output stream histories [19]. A component is a named element that has a
syntactical interface and may be atomic or combined. An example of component
architecture is shown in on the top left diagram of Figure 31 (components Merge, Controller,
Panel).

31.07.2014 DREAMS Page 52 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

• Atomic Component:
An atomic component is given by one or more (alternative) behaviour specifications
describing the input/output behaviour of that component.

• Composite Component:
A composite component consists of a network of two or more components (each being
atomic or, again, a composite). Composite components are used to structure the system
architecture into smaller units and connecting them with communication links (called
channels). The behaviour of the composite component is defined by the parallel composition
of the behaviours of the sub-components [19].

• Specification:
A specification is a generic mechanism used to provide additional information to model
elements such as components, ports and channels. For instance, it is used to define the
behaviour of a component and using different specification formalisms (e.g., I/O automata
as shown in the right diagram of Figure 31, or table-driven specification). Further examples
for specifications will be presented in Section 3.3.2.2.

• Syntactic Interface:
A component has a syntactic interface consisting of (named) input and output ports.

• Port:
A port is an interaction point between the system and its environment. Note, that any port
has at most one source of information, i.e., atomic output ports receive the data to be sent
from the atomic behaviour, while composite output ports are connected to at most one
atomic output port via a channel. Analogously, atomic input ports receive their data from a
composite input port or an atomic output port, respectively.

• Type:
Each port is either associated with an atomic data type, or a composed data type (structure,
array, enumeration).

• Channel:
A channel is a named element that specifies a directed connection between an output port
and an input port of two components.

3.3.2.2 DREAMS logical view

In this section, the relation of the excerpt of the meta-model implementing the logical perspective of
AutoFOCUS3 and the logical view of the DREAMS system model (see Section 3.2.3.1) will be
discussed.

There is an apparent overlap between DREAMS logical view and the meta-model summarized above:

• Components: Atomic and composite components can be modelled using the corresponding
classes introduced above. Their syntactical interface can be described using typed (and
named) ports.

• The observable behaviour of components can be modelled using the specifications
mentioned above (e.g. I/O automata).

31.07.2014 DREAMS Page 53 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Furthermore, specifications can be used to enrich the model elements with additional information
required to describe mixed-criticality applications (by defining dedicated specification classes).
Examples include:

• Criticality-level can be annotated to components using a dedicated specification type
(SafetySpecification).

• Static memory demands of components

• Channels can be annotated in order to distinguish between periodic, sporadic and aperiodic
messages.

• Following a similar approach, a meta-model for security properties can be integrated.

3.3.3 Technical Perspective
The technical perspective describes the platform on which the system is to be executed on. It
corresponds to the platform model (PM) in MDA terminology. The left part of Figure 33 shows an
example of a simple technical architecture that consists of two ECUs that are connected by a
network.

Figure 33: AutoFOCUS3 Technical Perspective and Deployment Perspective

The technical perspective can be used to create models of the HW/SW architecture of the target
platform. On the one hand, these models abstract the artefacts from the “Hardware Architecture”
phase in Figure 7. It should be emphasized that these models are not actually used in a hardware
development process, but are used to support the “HW/SW integration” phase. On the other hand,
the models of the technical perspective also provide an abstraction of the platform software
components (e.g., partitions provided by a hypervisor).

3.3.3.1 Summary of Meta-Model

Figure 34 shows the basic concepts3 of the platform meta-model (in black) and examples of
platform-specific specializations (in red).

The technical meta-model can be extended for specific technical platforms by providing
specializations of the respective base classes. In T1.4, an extension of the technical meta-model will
be developed that captures the technical architecture of the DREAMS platform.

The technical perspective provides the following abstractions:

31.07.2014 DREAMS Page 54 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

• Hierarchical structuring of the processing and communication units of the execution
platform.

• Description of specialized peripheral components (like sensors and actuators).

In the following, the different base classes will be briefly presented:

• Computing Unit:
A computing unit provides an abstraction of an execution container for the application. A
model of a computing unit may contain various types of (physical) ports as an interface to its
environment. Furthermore, each computing unit may have an internal structure
decomposing it into smaller computing and transmission units.

• Transmission Unit:
A transmission unit connects multiple computing units via transceiver ports.

• Port:
A port is a generalization of hardware units or virtual machine parts that connect computing
units with their environment and allows data exchange.

• Type:
(Physical) ports are usually typed with low-level types like integer or Boolean.

• Transmitter:
A computing unit can provide information to its environment via transmitter ports,
representing abstractions of communication interfaces provided by the platform (e.g., bus
interface, off-chip gateway). The output ports of logical components are mapped to
transmitter ports in the technical architecture.

• Receiver:
A computing unit can acquire information from its environment via receiver ports. Input
ports of logical components are mapped to receiver ports.

• Transceiver:
A transceiver allows the computing unit to send and receive information. Transceiver ports
are connected to some transmission unit. They usually represent network driver software
provided by the operating system or the virtual machine of the computing unit.

31.07.2014 DREAMS Page 55 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 34: Meta-Model of Technical Perspective

3.3.3.2 DREAMS technical architecture

As pointed out above, the AutoFOCUS approach suggests the implementation of dedicated technical
architecture meta-models. For the DREAMS project, this meta-model will cover the following aspects
of the physical view of the DREAMS system model (see 3.2.3.2)

• The platform organisation into nodes, tiles, the processor cores of a tile, the partitions
provided by a hypervisor will be reflected by specialized computing unit types.

• On-chip, off-chip and inter-partition communication will be described using derived
transmission units.

• The meta-model will be extended with a mechanism to model gateways between different
levels of the platform hierarchy, e.g. between the on- and off-chip level.

3.3.4 Deployment Perspective
The deployment perspective (see right part of Figure 33 for an example) is used to model how
components from the logical architecture are mapped to the technical architecture. Hence, the
models of this perspective support the platform/software integration activities preceding the
“Integration Testing” phase of a V-shape model Figure 24.

In the following two sections, the TIMMO-2-USE and the MultiPARTES project are introduced. They
are relevant for the fine-grained definition of the DREAMS meta-model that follows in D1.4.1 and
D1.6.1.

3.4 Timing requirements Meta-Model

The meta-model developed in the TIMMO-2-USE project for the description of timing requirements
[11], was designed to allow the extension of different systems views (of existing meta-models) with
timing related information [10]. This way, the TADL language provided by TIMMO2-USE provides

31.07.2014 DREAMS Page 56 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

mechanisms to reference to an external meta-model (e.g., AutoFOCUS3). The details of the
reference to an external meta-model are specified in D1.4.1.

In case of the DREAMS development process, as specified on Section 3.6.2, Figure 49, the different
modelling languages (AUTOFOCUS, TIMMO-2-USE) are used to describe the different aspects
structure/behaviour and timing.

Figure 35: Timing Extension

This has been applied during the TIMMO-2-USE project to the different system views of the EAST-
ADL and AUTOSAR meta-models. The same approach will be applied to extend the logical, technical,
and mapping view of the DREAMS meta-model. In this section, an overview to the TIMMO-2-USE
timing model is provided. A more detailed description as well as the integration of with the other
meta-models used in DREAMS will be provided in D1.4.1.

The core concept of the timing meta-model is the so-called TimingEvent class, see Figure 35. It
“denotes a distinct form of state change in a running system, taking place at distinct points in time
called occurrence of the event” and to which the timing meta-model allows to attach
TimingConstraints directly, or indirectly through TimingChains, see Figure 36. The timing related
information of a system view is grouped into a TimingExtension entity, see Figure 35.

A TimingChain is a container for a pair of TimingEvents that are causally related. The “stimulus”
event is supposed to trigger actions that lead to the “response” event. It is not necessary to know
these actions, just that the “stimulus” event does lead to the “response” event. A TimingChain can
be hierarchically decomposed into “segments”, which are TimingChains themselves. This allows
refining a TimingChain along with the refinement of the system description in the same or a
different system view.

A whole range of different kinds of Timing Requirements has been defined in TIMMO-2-USE. In
Figure 36, we show three latency constraints that are likely to be relevant for DREAMS. More Timing
Requirements, such as Repetition, Order and Offset Constraints might also be needed, but this will
depend on the specific needs of the demonstrators and will be defined in the upcoming deliverable
D1.4.1, which defines the DREAMS meta-model.

31.07.2014 DREAMS Page 57 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 36: Timing Constrains

The first kind of constraint is the so-called LatencyConstraint that comes in two variants:

• “A ReactionConstraint defines how long after the occurrence of a stimulus a corresponding
response must occur”. This requirement is useful, if it is important that a system reacts to a
stimulus in a limited amount of time.

• “An AgeConstraint defines how long before each response a corresponding stimulus must
have occurred”. This requirement is useful, if it is important that sensor values, used by a
control algorithm are not “too old”.

The second kind of constraint is the SynchronizationConstraint that “describes how tightly the
occurrences of a group of events follow each other”, see Figure 36. These events are typically related
to the measurement of sensor values or the applying of actuator values. In order to describe a
(software) component that implements a control algorithm in a self-consistent way, when a modular
approach is used, where the implementation of a control algorithm and the needed sensors and
actuators are handled separately, a dedicated variant, called modular synchronization constraints
can be used, see Figure 37. The modular synchronization constraint is part of the component that
implements the algorithm and it references events related to input and output ports of the
component, but considers them as place-holders for the events in the sensor and actuators that are
actually connected in a concrete architecture.

The third kind is ExecutionTimeConstraints that “limit the time between the starting and stopping of
an executable entity (function), see Figure 36, not counting the intervals when the execution of such
an executable entity (function) has been interrupted”. ExecutionTimeConstraints impose limits on
WCET of software functions, for example. ExecutionTimeConstraints are similar to
LatencyConstraints, since both limit the duration of an activity. But LatencyConstraints also include
the time periods where the activity is actually not progressing because the needed resources are
allocated to other activities, whereas ExecutionTimeConstraints exclude interruption times.

31.07.2014 DREAMS Page 58 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 37: Modular synchronization constraints

Let us underline here that seen top-down, timing constraints are indeed constraints on the
properties of artefacts of the following design steps, but that seen bottom-up, the timing constraints
play the role of properties. This is in particular true for ExecutionTimeConstraints: if a system is
designed from scratch, i.e. necessarily top-down, it may become necessary at some time to make
resource allocation decision, before (bounds) WCETs are available. In that case, resource allocation
decision can be based on ExecutionTimeConstraints, which play the role of assumptions regarding
the later software implementation. When software implementations have been implemented, and
their WCET are below the ExecutionTimeConstraints (on the chosen execution platform), then the
ExecutionTimeConstraints are actually also properties - in the sense that their execution times are
lower than the upper bound declared by the ExecutionTimeConstraint.

All DREAMS relevant timing requirements will be listed in the upcoming deliverable D1.4.1, which
defines the DREAMS meta-model.

Since a TimingExtension entity does group all timing information related to a certain view of the
system, we define view specific sub-classes that inherit from TimeExtension and point to the system
view that is concerned, see Figure 38.

TimingConstaints impose constraints on the occurrences of events. But the concrete definition of
these events depends on the system view that is extended with timing information. In Figure 39 we
show examples of events that could be relevant in the DREAMS technical view. The
DataReceivedEvent represents the fact that input data is ready in an input port of a component. The
DataSentEvent represents the fact that the component has made available new output data in an
output port. This would for example allow defining a ReactionConstraint on a component that
implements a control function: the delay between the availability of sensor data (at an input port)
and the production of the corresponding control data (at an output port), must not be longer than a
specified maximal time.

31.07.2014 DREAMS Page 59 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 38: DREAMS Timing Extensions

Figure 39: DREAMS Timing Events at software component ports

The exact list of the events and their semantic will be defined in the upcoming deliverable D1.4.1,
which defines the DREAMS meta-model.

31.07.2014 DREAMS Page 60 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

3.5 MultiPARTES Meta-Model

This section contains a description of the work carried out in the European Project FP7 -
MultiPARTES (Project Nº 287702), in the following MPT. Following subsections describes main
models, metamodels and functionalities of the toolset developed in MPT focusing on safety and
certification aspects. The aim is to take advantage of the work done about Safety and Certification
and, together with Variability Concepts, not covered in MPT, enrich the model, metamodels and
transformations defined in DREAMS.

The proposal is reusing and adapting safety related models developed in MultiPARTES, more
precisely:

• Safety Consistency Model
• Safety Compliance Model
• Diagnosis Techniques and Measure Models
• Safety Standard Model

These models (described briefly in section 3.5.2 that capture safety related concepts) would keep
the appropriate pointers to the other models of the project where needed. Along with this, the
proposal is reusing the Safety Validation Rules Checking Mechanism and Certification Document
generation depicted in section 3.5.3 and 3.5.4.

Figure 49 shows where safety related models and even product line (not developed in MultiPARTES)
would fit in the development process, mainly in the left side of the V-shape model, but also helping
in certification aspects in the right side of the V-shape development process.

Precise relation with other models would need a very detailed study that would be done as part of
next task T1.4

3.5.1 Overview: Meta-Models, Toolset and Transformations

3.5.1.1 Meta-Models

As part of the project, the work in MPT has focused on defining models and tools for managing
safety concepts, checking the safety consistency of the platform, and modelling mixed-criticality
systems in a multi-core platform based in hypervisor partitioning technology. Two kinds of models
have been defined:

Models to define the SW and HW System

• Application Model
• Deployment Model
• Platform Meta Model

o Hardware Platform Model
o Hypervisor Model
o Operating System Model

• Real Time Policy model
• Partitioning Restriction Model

In principle, it is not planned to use these models in DREAMS because we assume that AutoFOCUS
and TIMMO-2-USE models provides these modelling capabilities. However, perhaps it would be

31.07.2014 DREAMS Page 61 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

interesting for DREAMS to check in next Task T1.4 if parts of these models can enrich or complement
DREAMS models.

Last model “Partitioning Restriction Mode” is used to help a Hypervisor Partitioning Algorithm
developed in MultiPARTES. Perhaps it would be interesting to investigate in the next task if
partitioning algorithm developed in MultiPARTES can be used in DREAMS in conjunction with other
models.

Models to represent Safety Related Concepts

• Safety Consistency Model - that takes into account properties/attributes related to safety
and IEC-61508 specific concepts. The model is basically a hierarchy of Safety Compliant Items
(SCI) to be described later.

• Safety Compliance Model - that sets IEC-61508 related safety considerations to a SCI. ‘Safety
Manual’ of each SCI includes diagnostics techniques and measures.

• Diagnostic Techniques and Measures Model - that sets diagnostic techniques defined in IEC-
61508 to avoid and control failures during operation.

• Safety Standard Model - that enumerates a set of integrity levels for each Safety Standard.

3.5.1.2 Toolset

The toolset developed in MultiPARTES to manage these models include, very briefly described:

• System Modelling: Allowing defining the platform model, the application model (with
annotations for safety, real time, etc) and generating a restriction model to help partitioning
tool.

• Partitioning tool: In charge of generating the partitioning that will be represented in the
deployment model, the assignment of application to partitions, the characteristics of the
partitions, operating system, resources, etc.

• Generation of Artefacts: When the system partitioning is correct, a number of
transformation tools generate a set of outcomes that are necessary for creating and building
the final system: XtratuM configuration files, System building files, Source code Skeletons,
etc.

 Safety Consistency Checking: tool with the following functionality

- Checking Consistency Rules: checking constraints for:

o Safety consistency - as for example, ‘Rule 2-61508: Safety certification standard
supported by any 'compliant item' must be compliant with the system
certification standard all the components of a system must be compliant with
the certification standard of the system. If any component is not compliant with
this standard, the system will not be considered consistent. If any component is
not compliant with system’s standard, but supports a derived standard it will be
considered consistent, but a warning message will be shown.

o System integrity - as for example, ‘Applications can only be mapped to
supported operating systems’

- Certification Documents: producing useful documents for certification.

31.07.2014 DREAMS Page 62 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

- Generation of Restrictions: populating ‘restrictions’ models from consistency

information.

Figure 40 summarises functionality described above:

Figure 40: Safety Consistency Check, Useful Documents for Certification and Generation of Restrictions.

3.5.1.3 Model-to-model transformations

These transformations include pat of the intelligence of the toolset. The most relevant model-to-
model transformations are:

- Input models to deployment model: This deployment model will contain the information of
the resulting partitioning schema. It is the foundation for the integration of the partitioning
tool with external tools (e.g. safety analysis, real-time analysis…). It defines the resulting
partitions, where each partition has a list of allocated applications, required hardware,
required operating system, etc.

- Safety consistency model to partitioning constraint model: The tool pre-processes safety
information and defines restrictions to the resulting partitioning, based on a comparison
between safety information of each compliant item. For instance, an application must be or
must not be allocated on a specific partition based on their respective safety integrity levels.

3.5.1.4 Model-to-text generators

There is a number of model-to-text generators, some of them are:

- Deployment model to XtratuM configuration files: Based on the deployment model, it
generates the XML file required to configure XtratuM.

- Deployment model to makefiles: It generates the required files (makefiles, scripts, etc.) for
building the whole system.

- Safety Consistency Model to HTML code: It generates a useful document for safety
certification that collects all information of safety models.

- Etc.

The next sections describe safety consistency and checking related models. For the sake of
simplicity, entities of the model are not described in details as they can be found in MPT
deliverables.

31.07.2014 DREAMS Page 63 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

3.5.2 Safety Consistency Model
The different components of the system can be referred as Safety Compliant Items (SCIs) and this
model contains the properties related to safety and IEC-61508 specific concepts for each system
component. The SCIs can be defined as system, platform, partition or node. Furthermore, user can
assign to each application its IEC-61508 safety integrity level. Figure 41 shows the Ecore diagram of
the models.

Figure 41: Safety Consistency Model

This model is basically related to 2.1.1 Safety Requirement Specification and 2.2.1 Safety
Architecture Specification, at system and element level (3.1.1 and 3.2.1), of the V-shape model as it
enable to specify safety requirements (modelled as a Safety Compliance Model described in the next
section) for any SCI item (safety compliant item) as system, platform, hypervisor, partition and
application node.

3.5.3 Safety Compliance Model

This model provides IEC-61508 related safety considerations encapsulated into a Safety Manual to
each SCI. This model, linked to previous model, is used basically to represent safety requirements,
fault management and faults hypothesis information.

• Management of Functional Safety (FSM). It is a collection of the supported safety integrity
levels by SCI.

• Faults Management. It contains information such as the diagnostic coverage level, hardware
fault tolerance level (HFT), and a collection of diagnostic techniques and measures employed
to achieve the safety integrity level assigned in the FSM.

• Hypothesis value and hypothesis range. Collections that specify assumptions about the types
of faults, the rate at which components fail and how components may fail.

Figure 42 shows the Ecore diagram of the models.

31.07.2014 DREAMS Page 64 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 42: Safety Compliant Item and Safety Manual Models

3.5.4 Diagnostics Techniques and Measure Model
This model represents the diagnostic techniques and measures defined in IEC-61508 standard to
avoid and control failures during operation. This model, which is linked to the previous models, is
used to represent the requirements of systems and SCI items nodes about the standard IEC-61508.

Figure 43: Diagnostic Techniques and Measure Model.

To help understanding this model, Figure 44 shows an instance of the model for IEC-61508 standard.

31.07.2014 DREAMS Page 65 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 44: Instance of the Diagnostic Techniques and Measure Model for IEC-61508.

3.5.5 Safety Integrity Levels Model
Finally, this model is used to represent just an enumeration of the integrity levels of safety standards
(i.e. SIL, ASIL). In the next section, the model-to-model transformations are introduced which ground
the development process used in DREAMS.

3.6 Model-to-model Transformations

3.6.1 Generic DREAMS Development Process
Figure 45 provides a coarse overview of the development workflow suggested to implement
software for DREAMS-based systems, and to deploy it to the platform. The focus of this description
is on the specification and implementation phase of the development process (“left branch” of V-
shape model).
The numbers in the yellow boxes indicate the phases of the DREAMS development process depicted
in Figure 245. An exemplary version of the workflow that details the use of concrete technologies
implementing the DREAMS architectural style can be found in Section 3.6.2.

As sketched in the figure, the workflow involves a number of frontend tools (to be operated by the
different stakeholders of the development process) as well as internal tools (e.g., analyses,
optimizations, transformations, and generators) that form the backend of the workflow.

5 We append “(SW)” to phase specification to indicate that the step does not involve hardware development.
Two-digit phase specifications (e.g., 2.3 (SW)) express that the step is not specific to one of the three aspects
safety, security, and timing. However, the step may (but not necessarily needs to) support one or more of
these aspects.

31.07.2014 DREAMS Page 66 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Platform-specific
Model(s)

Platform-specific
Model(s)

Model Editors

Application
Model

Platform Model

Platform-
specific
Model(s)

Timing
Requirements

(+WCET)

Service
configuration

model skeleton

Service
Configuration Extender

System
Architect

Offline Resource
Allocation

Timing Model

Service
configuration

model

Generator

Deployable
Service

configuration

Software IDE

Software
Developer

Deployable
Application

Image

Software tool-
chain

Code
generator

System
Architect / Integrator

Service
Configuration Editor

2.1 – 2.4 (SW)
3.1 – 3.5 (SW)2.5 (SW)

3.5 (SW)

2.5 (SW)

2.3 (SW)

2.3 (SW)
2.4 (SW)

2.5 (SW)

Safety
Consistency &
Feature Model

Workflow

Library

Intermediate Product

Backend tool

Frontend tool

Deployable Artefact

Document

Safety Consistency
Rules Checker &
Safety Concept

Composer

Safety
Consistency

Report
Safety Concept

2.5 (SW)
3.5 (SW)

2.3 (SW)

2.1.1 (SW)
2.2.1 (SW)

Figure 45: Overview of DREAMS software development & deployment workflow

The workflow implements a chain of transformations from the input models via a set of
intermediate models and textual artefacts to the final artefacts to be deployed to the target
platform (e.g., software images, configuration for devices and software services).

3.6.1.1 System Architecture Development Process

In the first step, the system architect uses modelling tools to create a model of the overall system. It
covers the following aspects:

• Application architecture (with annotations).

o Desired temporal behaviour.
o Criticality domains.

31.07.2014 DREAMS Page 67 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

• Platform architecture: structure of target platform.

o Clusters, nodes, tiles, networks, etc.
o System software (e.g., partitions to be provided by hypervisor).

• Safety Consistency & Feature Model: Safety Consistency Model and Variability Model of the
Safety Consistency Model.

o Safety Manuals for SCI Nodes, Platform, Hypervisor, Partitions, Applications, etc.
o Variability with features of the Safety Consistency Model.

This step covers phases 2.1-3 (SW) of the DREAMS development process (see Figure 24). As pointed
out in Section 3.3.3, abstract models of the HW/SW platforms are used to support the
software/platform integration step in phase 2.3.

3.6.1.2 Software Development Process

The actual functionality of the different application subsystem is provided by software developers
who implement software components to be integrated into the overall system as pointed out below.
On the one hand, the software developer can follow a fully model-driven software development
approach and specify the functionality (and the desired temporal behaviour) using models that
refine the application architecture specified by the system architect (corresponding to phase 2.1-4
(SW) of the development process). In this case, a code generator is used to produce the source code
of the application (phase 2.5 (SW)).

On the other hand, the software developer can also implement components directly in a
programming language supported by the integration platform (e.g., C) (phase 2.5 (SW)). In this case,
application subsystems are provided as black box components with regard to the system model
which is still used to support the integration phase. Although not shown explicitly in the figure, the
software developer may also use tools to support the preceding phases of the development process
(i.e., 2.1-4 (SW)).

In either case the resulting source code is compiled (phase 2.5 (SW)) and further transformed into
deployable images supported by the software integration platform (see below for details). Also, both
software development approaches may be used in a development process at the element level
(corresponding to phases 3.1-5 (SW)).

3.6.1.3 Safety Management

3.6.1.3.1. Safety Consistency Rules

Safety consistency are checked by the tool by means of the consistency rules that are enforced by
the toolset by means of validation constraints defined in EOL (Epsilon Validation Language
http://www.eclipse.org/epsilon/doc/evl/ by Epsilon Research group at York University) that is a
validation language developed on top of EOL. Some examples of the rules implemented in the
toolset include:

• Rule 1-61508: SIL claimed cannot be higher than the maximum allowable SIL. SIL level
claimed to a Safety Compliant Item cannot be higher than the allowable SIL value calculated
depending on the diagnostics used for compliant item.

• Rule 2-61508: Safety certification standard supported by any 'compliant item' must be
compliant with the system certification standard. All the components of a system must be
compliant with the certification standard of the system. If any component is not compliant
with this standard, the system will not be considered consistent. If any component is not

31.07.2014 DREAMS Page 68 of 85

http://www.eclipse.org/epsilon/doc/evl/

D1.3.1 Version 1.0 Confidentiality Level: PU

compliant with system’s standard, but supports a derived standard it will be considered
consistent, but a warning message will be shown.

• Rule 3-61508: FSM used in the development of any ‘compliant item’ must be compliant
with the system FSM. FSM for each component of a system must be compliant with FSM for
the System.

• Rule 4-61508: SIL level required for the Application is provided by the Platform. The
platform where an application is deployed on must provide the level of integrity required by
the application.

Figure 46: Checking process and diagnostic techniques information panel.

Under user requirement EVL constraints are triggered and checked, and a summary of constraint
failures is given by the system to alert the user. In addition to this, additional information to know
details of the checking process (Figure 46) and the diagnostics techniques that appear in the safety
manuals are shown for each SCI component. This information may be useful for certification
purposes.

3.6.1.3.2. Generation of Documentation for Certification

As mentioned before the toolset generates documents useful for certification. The functionality is
developed in Epsilon EGL language and is based on a set of templates that generate a set of html
document useful for certification. The main templates are:

• Template for SCI Nodes (Safety Compliant Item) – For each safety item:

o Documents the safety manual

o Documents Application Safety Requirement

o Documents the Partition Safety Manual

o Documents the Hypervisor configuration Safety Requirement

o Documents the Platform

• Template for Safety Manual of each SCI item

o Documents the Standard an SIL level
o Documents the Diagnostic Technique used
o Etc.

Figure 47 shows an example of Certification Document generated for the Wind Power use case.

31.07.2014 DREAMS Page 69 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 47: Example of Wind Power certification document.

3.6.1.4 Offline Resource Allocation

The key property of mixed-criticality systems is the integration of different application subsystems of
different criticality levels into a single target system. In the DREAMS architecture, both design-time
and runtime methods are used to support this integration task. Figure 45 depicts the role and
workflow of the system integrator who integrates the components provided by application
developers into the overall system model designed by the system architect. This step corresponds to
phase 2.3 (SW) and involves the following main steps:

• Mapping of tasks to execution containers (i.e., partitions).
• Computation of offline task and message schedules.

31.07.2014 DREAMS Page 70 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

• Configuration of online adaptation strategies (e.g., pre-computed static schedules for
different system modes).

In these tasks, the system integrator is supported by the offline resource allocation algorithms
provided by WP4, potentially based on a partial manual integration (e.g., task mapping according to
application-specific requirements). The result of this offline integration step is stored in the
platform-specific model (PSM) of the application that is obtained from the initial application and
platform model using a model-transformation. The PSM refines platform-independent model
artefacts from the application model (e.g., messages between components) into platform-specific
constructs (e.g., instantiation of specific communication channels depending on the mapping of the
communication endpoints, such as inter-partition communication provided by the hypervisor, as
well as on-chip and off-chip communication). Furthermore, the PSM contains detailed information
about the deployed application (e.g., it serves as a container for the computed mapping information
and schedules).

In the subsequent steps of the workflow, the PSM serves as input model for the generation of
platform-specific code and platform configuration data:

• The PSM can be used to directly generate configuration data for specific services of the
DREAMS platform such as the global and local resource managers (phase 2.5 (SW)).

• Alternatively, the PSM can be merged using appropriate model-transformations
(“configuration extender” in Figure 45) with skeleton configurations created using the
vendor-specific configuration tools. This approach corresponds to phases 2.3 (SW) / 2.4 (SW)
and ensures the creation of valid vendor-specific configuration files for the different
technical domains of the target platform that are augmented with the results obtained
during the offline resource allocation step. Here, the system model (and the PSM derived
from it) provides a holistic view onto the overall DREAMS system and ensures the
consistence of the overall configuration.

The offline resource allocation and exploration step is illustrated in Figure 48 in more detail, which
presents the involved processing chain (coloured ovals in the figure, from left to right). It provides
two entry points that starts at a different level of abstraction. The basic workflow involves the
following steps:

Figure 48: Overview of Offline Resource Allocation and Exploration Process

• Offline adaptation strategies for mixed criticality systems, (blue oval) serve as the entry point
to the development process. These methods are used to compute a deployment of an
application to an instance of the DREAMS platform and also take into account the DREAMS

31.07.2014 DREAMS Page 71 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

online resource management strategies. This step uses models of the application subsystems
and a platform model as input. The result of this process is a platform-specific model that
contains information about the deployed application.

• In the figure, the blue backward arrow (“analysis”) indicates that this step is an optimization
process where different deployment alternatives are explored and that it provides analysis
methods to rate the eligibility or quality of a particular solution, such as analyses of different
timing properties, or the energy consumption of the NoC. It also includes an analysis to
estimate the reliability, which is used to explore different fault-tolerant versions of a given
design (based on active redundancy)2. Note that several parts of the solution analysis
require HW-specific models that allow an estimation how the platform behaves given a
certain configuration. For the examples given above this can be the execution time of
instructions for the timing properties and the energy demand of the instructions and the
peripherals for the energy consumption.

• In the next step (bottom right in the figure), the platform-specific model is used as input for
the backend of the processing chain that generates configuration files for the different
HW/SW components of the target platform.

3.6.1.5 Product-Line Design

3.6.1.5.1. Product-Line Exploration Process

Based on the above basic workflow that handles the configuration of a single system, the following
extended development process can be defined which considers entire product-line families.

• In this case, the process starts with the definition of base models and variability specification
(red oval in Figure 48). Here, a system model consisting of an application model and a
platform model (see above) are used as base models. Additionally, the system designer
provides a (separate) variability specification that defines which parts of the base model can
be varied. Hence, the base model serves as template which is augmented with appropriate
variation points.

• Together, both models span an entire product-line family from which particular members
can be selected. In the figure, this selection step is designated as variability binding (green
oval), since for all variation points, a concrete choice is made. The result of this process is a
system model that can be further processed using the basic workflow pointed out above.

• The green and red backward arrows in the figure indicate that also in this workflow, the
eligibility and quality of the deployed system is rated. In case the selected solution does not
satisfy all requirements, the following two options exist: At first, a different variability
binding is selected (indicated by the green backward arrow), i.e. a different member of the
product-line family is used as input for the basic workflow. In case the last step was not
successful, the designer changes the definition of the product-line by modifying the base
model and/or the variability specification (red arrow).

3.6.1.5.2. Variability and its impact in Safety and Certification

Finally, one of the aims in DREAMS is to study the possibility of adding software product line
techniques to some of the tools to be developed in the project.

MPT did not address variability concepts. The proposal here in DREAMS is to use CVL (Common
Variability Language) Variation Points language developed by SINTEF to represent variability (in a
separate model) for Safety Consistency Model.

31.07.2014 DREAMS Page 72 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

The definition of how variability affects Safety Consistency Model and its impact in the other models
will depend on the analysis of variability needs for the demonstrators use cases.

3.6.2 Exemplary Development Process using Concrete Technologies
In Section 3.6.1 , a generic development process for DREAMS-based systems has been introduced. In
this section, a concrete instantiation of this process will be presented that shows the integration of
tools for provided by DREAMS project partners and which will be applied to develop the application
demonstrators. Figure 49 illustrates this instantiation of the DREAMS development workflow that
follows the generic approach shown in Figure 45.

In the following, the roles of the tools for the system architecture as well as the software
development process will be summarized.

• AutoFOCUS3: The system architect uses “AutoFOCUS3” to create models of the application
and the instance of the DREAMS platform. As pointed out in Section 3.3, AutoFOCUS3 can be
used to support the specification of software requirements, software architecture and
design specification as well as the software development phase of the development process
(2.1-2.5 (SW), and 3.1-3.5 (SW)) if the tool is used to define and implement software
modules). The software/platform integration step in phase 2.3 supports modelling the
HW/SW platforms (i.e. the SW deployment and configuration (number of devices, inter-
connections, etc.) of existing HW blocks). Furthermore, AutoFOCUS3 contains modules to
support several phases on the right-hand side of the development process depicted in Figure
24 at system and element level such as formal verification, simulation, synthesis of test-
cases and test-code (not shown in Figure 49).

• RTaW Timing tools: The system architect uses the “RTaW Timing” tools to describe the
desired timing properties of the system. This toolset cover phases 2.1.3, 2.2.3, 2.3.3, 2.4 and
3.1.3, 3.2.3, 3.3.3 of the design branch, and phases 2.7.3, 2.8.3 and 3.7.3, 3.8.3 of the testing
branch (see Figure 24).

31.07.2014 DREAMS Page 73 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Partition.xef

AutoFOCUS 3

Platform Model

EditorSoftware IDE

Code generator

RTaW Timing

TTE Network
Description

skeleton

Configuration
Extender

TTE Network
Description

TTE Plan

Xamber

XtratuM
Configuration

Model

XtratuM
Configuration File

(XMCF)

Configuration
Adapter

xmcparser

Configuration
generator(s)

Deployable
Service

configuration

Compilation &
Linking xef

Deployable image

Binary
configuration

vector

xmpackPartition.xefPartition.xef

Source Code

Software
libraries

TemplatesTemplates

TTE Device
Configuration

Software
Developer

System
Architect

System
Integrator

Offline Resource
Allocation

Model
Transformation

Model
Transformation

TTE Device
Specification (DS)

Platform-specific
Model(s)

Platform-specific
Model(s)

Platform-specific
Model(s)

Timing Model

Application Model
Timing

Requirements
(+WCET)

TTE Verify

TTE Build TTE Verify

2.5 (SW)
3.5 (SW)

2.3 (SW)

2.3 (SW)

2.3 (SW) 2.3 (SW)

2.5 (SW)
3.5 (SW)

2.3 (SW)
2.5 (SW)

2.3 (SW)

2.4 (SW) 2.3 (SW)

2.5 (SW) 2.4 (SW)

2.4 (SW)
2.5 (SW) 2.6 (SW)

2.6 (SW)

2.4 (SW)

2.3 (SW)

2.1 - 2.4 (SW)
3.1 - 3.5 (SW)

2.5 (SW)

Mixed-Criticality
Product Line Editor

2.1.1 (SW), 2.2.1 (SW),
3.1.1 (SW), 3.2.1 (SW)

Safety Consistency
Model

Safety Consistency
Rules Checker &
Safety Concept

Composer

Safety Concept
Templates

Safety
Consistency

Report
Safety Concept

Workflow

Library

Intermediate Product

Backend tool

Frontend tool

Deployable Artefact

Safety Artefact

Safety
Feature Model

2.1 - 3.3, 3.1 - 3.3,
2.7 - 3.8, 3.7 - 3.8

2.1.1 (SW)

Figure 49: DREAMS software development workflow: Tools, transformations and implementation artefacts.

The DREAMS architectural style suggests the use of hypervisors and off-chip communication
networks in order to enable the efficient implementation of mixed-criticality systems. Since these
elements are hidden in the blocks Offline Resource Allocation, Service Configuration Editor and
Platform Specific Model(s) in the generic workflow shown in Figure 45 , but are an essential part of
the approach, a more detailed presentation using the XtratuM hypervisor and the TTEthernet off-
chip network as examples for these technologies are provided in Figure 49 .

Here, the XtratuM hypervisor and the TTEthernet off-chip network have been selected as examples
for these technologies. More details on the configuration of these components using technology-
dependent tools provided by the respective vendors will be presented in Sections 3.6.2.1 and
3.6.2.2, respectively.

• For the configuration of the XtratuM hypervisor, the system integrator creates an “XtratuM
Configuration Model” (phase 2.3 (SW)) that is used as additional input to the offline resource
allocation step. The offline resource allocation module required for the configuration of the
virtualization services of the XtratuM hypervisor is provided by “Xamber” (phase 2.3 (SW)).
In the next step, these results are used to obtain an updated “XtratuM Configuration Model”
that contains the information computed during the offline resource allocation. Thereafter,
this model is transformed into a “XtratuM Configuration File” (phase 2.4 (SW)) which in turn
is transformed into a deployable binary hypervisor configuration vector in phase 2.5 (SW)
(see Section  for details).

31.07.2014 DREAMS Page 74 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

• The figure also shows how the configuration vector for the hypervisor service is combined
with the executable images of the application subsystems in order to obtain deployable
images. Here, the source code for the application subsystems (which has either been crafted
manually using a “Software IDE” or that has been generated from the application model) is
compiled, linked (phase 2.5 (SW)) against the required libraries, and transformed into the
partition image format (phase 2.4 (SW)). In the module integration phase, for each
hypervisor instance the required partition images are combined with the corresponding
“Binary Configuration vector” into a deployable image (phase 2.3 (SW)).

• For the configuration of the TTEthernet off-chip communication, the system integrator
creates an initial “TTE Network Description” skeleton (phase 2.3 (SW)) that is extended with
the information computed in the offline resource allocation step (phase 2.3 (SW)). After
that, the resulting “TTE Network Description” model is transformed (phases 2.4 (SW), 2.5
(SW) and verified (phase 2.6 (SW)) by the TTEthernet tool-chain using the workflow
described in Section 3.6.2.2.

Finally, Figure 49 also details the integration of the safety and variability management toolsets into
the workflow.

• To represent the Safety Consistency Model and the Variability of the Safety Consistency
Model the System Architect defines a model in which safety requirements are defined for
System, SCI Nodes, Platform, Hypervisor, Partitions and Applications with its features. As
described in previous sections, these are separate models from the base models.

• In the next step, the Safety Consistency Rules Checker and the Safety Concept Composer can
be called to check consistency rules for specific platform and applications and to produce
documents useful for certification according to safety concept templates.

3.6.2.1 Configuration of XtratuM hypervisor

Virtualization is the enabling technology to run simultaneously into the same hardware independent
subsystems with strong isolation and mixing different criticality levels. As shown in Figure 49 , the
Xtratum hypervisor is configured during some phases of the development process, phases 2.1 to 2.5
(SW), where the Xtratum configuration file will be configured. The configured Xtratum configuration
file will be tested during the rising branch of the development process, phases (2.6 to 2.9).

XtratuM is a “Type 1” hypervisor intended to embed system applications. It provides a para-
virtualization interface and mainly supports the following features:

• Temporal isolation: fixed scheduling of CPU time.
• Spatial isolation: fixed assignment of physical memory and device resources.
• Static resource assignment: The system designer assigns the platform resources (time,

memory and devices) to partitions.
• Inter-partition communication mechanism: Supporting “sampling” and “queuing” channels.
• Heath monitoring mechanism.
• System manager: Privileged (and trusted) “system partition” can monitor and manage other

partitions

XtratuM is available for a limited variety of platforms. From scratch, it must be ported in order to
support specific underlying architecture mechanisms. In the DREAMS context, ARM, PowerPC and
x86 will be supported.

31.07.2014 DREAMS Page 75 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Once having a specific porting of XtratuM, during the development process, it must be configured
according to the physically available platform components and, on the other hand, according to the
application requirements. In order to deploy an XtratuM-based application, the provided SDK
includes tools to generate a container packing the following components:

• XtratuM hypervisor image
• Configuration information
• Full binary code for all partitions

This section focus on the “Configuration information” that in fact is a model including information
about a particular view of the system. Therefore, the configuration information can be seen as the
result of a deployment-specific transformation of different DREAMS models: platform,
requirements, and application (see Figure 50).

Figure 50: Context of XtratuM configuration model.

The XtratuM SDK packing tool stands for an XML configuration file matching all architectural and
application restrictions of a specific deployment. This file includes detailed information about:

• Hardware description
• Hypervisor properties
• Partition Table: List of partitions
• Inter-partition communication channels: List of channels.

The syntax of this file is narrowed by the chosen XtratuM and must follow a deployment-specific
model. This model must follow an XML schema specification automatically generated and provided
together with each XtratuM compilation. This mechanism allows the very early detection of
configuration errors during XtratuM deployment packing.

In the DREAMS context, this XML schema meta-model is not general enough because it assumes a
variety of implicit restrictions. In fact, due the variety of platforms and configurations expected in
DREAMS we should manage a family of valid schemas. The mandatory generalization of XtratuM
configuration leads to the concept of a general “Configuration Model” which includes model
restrictions explicitly together with the configuration information. From this model, a correct
XtratuM Configuration File can be generated by model transformations (see “T2” in Figure 50).

The “XtratuM Configuration General Model” (XCM) has two parts: the first one including restrictions
about underlying hardware and hypervisor internals and the second one including non-restricted
XtratuM configuration fields that nevertheless must fit the restrictions declared in the first part of
the model (see Figure 48). This provides the required flexibility to generate, by model
transformations, configuration files for all supported platform-XtratuM variations.

31.07.2014 DREAMS Page 76 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 51: Parts of XtratuM configuration model.

In order to manage the creation and manipulation of XtratuM configurations, a Java-based helping
tool “Xamber” provides a graphical user interface to edit models and restrictions. From a practical
point of view, Xamber handles XCM files and, among other manipulation features, includes
import/export options to generate (or read) specific “XtratuM Configuration Files” as well as
platform specifications.

All models to be manipulated with Xamber must follow a meta-model written in XML Schema
syntax. Internally, Java/XML bindings are implemented using JAXB facilities. In this sense, it is
desirable that all models interfacing Xamber could have a meta-model specified as an XML Schema
file.

3.6.2.2 Configuration of TTEthernet off-chip network

The generation of time-triggered schedules for TTEthernet (TT-network-schedules) as well as
configuration artefacts for TTEthernet nodes is carried out by the TTE-tool-chain. As shown in Figure
49 , the TTEthernet off-chip network is configured during some phases of the development process,
phases 2.1 to 2.5 (SW), where the TTEthernet off-chip network will be configured. The configured
TTEthernet off-chip network will be tested during the rising branch of the development process,
phases (2.6 to 2.9).

Figure 52 and Figure 53 show the tool workflow and the related dataflow on a typical tool-chain run
respectively. The connection of the different tools is made via well-defined interfaces, in form of
XML files. This provides a human readable format of the input as well as generated data and enables
the manipulation of these files manually or via automated tools.

TTE-Plan is used to generate network configurations for TTEthernet systems. It helps the user to
model the topology of a TTEthernet network, and to generate a communication schedule for that
network (i.e. TT-network-schedule).

TTE-Plan is a command-line tool that takes a network description XML file as input and generates a
network configuration, which consists of a main <.network_config> file and additional files
referenced by this file. In the network description file, the user configures aspects of the network
such as topology, virtual links, and synchronization parameters. The network configuration file can
be used to generate device configuration HEX files for each device in the network using TTE-Build,
and these file s can be downloaded to the switches using TTE-Load, and to the end systems user
application. When the network is in operation, the data traffic can be viewed using either an
oscilloscope or TTE-View, a Wireshark distribution with a dissector plug-in for TTEthernet frames.

31.07.2014 DREAMS Page 77 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Figure 52: TTE tool-chain workflow

Figure 53: TTE tool-chain dataflow

An overview of this tool chain showing input and output files is shown in Figure 53. For the
configuration of a TTEthernet network, TTE-Plan expects a network description XML file
corresponding to the network topology and preferences. This file is used as input to TTE-Plan so it
can generate the corresponding network configuration files, which constitute the input to TTE-Build
and the following tools.

A complete network description contains several sections specifying the necessary TTEthernet
preferences. Namely,

• timing parameters, including redundancy, global speed, and network periods;
• network synchronization configuration;
• network topology, specifying switches, end systems and their physical connections;
• time-triggered and rate-constrained virtual links, as well as best-effort traffic;
• frame buffers;
• specific constraints and scheduling guidance parameters.

This concludes section 3.6.2 which introduces one exemplary instantiation of the generic
development process that has been shown in the section before. Thereby, the general presentation
of the meta-models which will be used in the DREAMS project is finalized and a more detailed
version with higher granular models follows in the deliverables D1.4.1 and D1.6.1.

31.07.2014 DREAMS Page 78 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

4 Requirements Matrix

Requirement Ref. to
Section Comment

R 1.1.1 2.1.1.3,
2.3.2.4

Assurance of value and timing in case of integration into a
larger system.

R 1.2.2 2.3.2.3 Safety critical subsystem shall see sequences of critical
event in a given order

R 1.6.1 2.1.1.3 Scalability (Multi-core platforms, mixed-critical, etc…)
R 1.8.1 2.1.1.1 Meet-in-the-middle

R 1.10.1 2.1.1.3 Different models of computation support

R 1.10.2 2.1.1.3 Communication between components

R 1.10.3 2.1.1.3,
2.3.2.3 Architectural style and development methodology

R 2.7.1 2.1.1.3

The on-chip network shall provide different interaction
mechanisms required for different models of computation
such as Time-Triggered, rate-constrained, best-effort
communication and shared memory access.

R 2.7.2 2.1.1.3
The architecture shall provide support of different
processors and/or hardware accelerators with shared
memory access.

R 4.1.3 2.3.2.1
End-to-end response time analysis algorithm shall be
developed which are able to account for scheduling
algorithms considered by the resource allocation strategy.

R 4.2.1 2.1.1.3,3, 3.5

Variability modelling and analysis tools shall be enhanced
to achieve by automatic means as well as guided manual
means an optimal or best effort configuration of DREAMS
platforms and DREAMS systems.

R 4.4.1 3.6 Design activities of the DREAMS development process shall
be supported by a tool chain.

R 4.4.2 3.6

The exchange of data between consecutive tools in the
DREAMS development process shall be automated so that
it can be performed without “manual” recopying or
reworking of the data.

R 4.4.3 2.3.2.3 Methods and tool should at least be suitable for all
application domains represented by the demonstrators.

R 4.5.1 3.6
The generation of the configuration files of the DREAMS
platform for an instance of the DREAMS architecture, shall
be supported by tools that use the system model as input.

R 5.1.1 2.1.1.3, 3, 3.5 Mixed-criticality product line shall be supported to enable
certification of product-lines with variability management.

R 6.1.2 2.3.2.1
The end-to-end communication time between two tasks of
an application subsystem on the DREAMS architecture shall
be less than 50ms.

31.07.2014 DREAMS Page 79 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

R 6.1.3 2.3.2.1

The DREAMS architecture shall ensure that it is possible to
design a solution where two subsystems can be connected
in which the time between a data generation from one
application subsystem and the time the data has been
delivered to another application subsystem is less than 1s.
This latency shall be ensured even when the two
application subsystems are in different clusters.

R 7.4.1 2.3.2.1
The wind turbine shall achieve the stop state (safe state)
when the speed of the blades is greater than or equal
MAX_BLADE_SPEED.

R 8.4.1 2.3.2.1 The wind turbine shall be in the safe state until a manual
reset of the system.

R 9.1.1 3.2
Separation of concerns: The meta-model shall be organized
in such a way that different aspects are covered by sub-
meta-models.

R 9.1.2 3.2

The meta-models should exhibit an adequate degree of
abstraction, i.e. abstracting irrelevant details while
providing the information required for the methods and
tools based on them.

R 9.1.3 3.2.3, 3.3.2 The proposed meta-models shall be domain-independent.

R 9.2.1 3.2.3, 3.3.2
The application meta-model / PIM shall capture the
structure of applications in terms of their component
architecture.

R 9.2.2 3.2.3, 3.3 For the application meta-model, precise (platform-
independent) execution semantics should be defined.

R 9.2.3 3, 3.3.2.2 The DREAMS application architecture model should provide
means for defining the memory needs.

R 9.3.1 3.2.3, 3.3.3
The platform meta-model shall capture the topology and
the hierarchic structure of instances of the DREAMS
architecture

R 9.3.2 3.2.3, 3.3.3
The platform-meta model shall distinguish different types
of building blocks / services contained in instances of the
DREAMS architecture.

R 9.4.1 3.2.3, 3.5,
3.6.2.2

The platform-specific meta-model shall provide means to
describe applications that are deployed to instances of the
DREAMS architecture.

R 9.5.1 2.3.2.1, 3.4 The Timing Requirements Meta-Model shall allow the
specification of latency constraints (local or end-to-end).

R 9.5.2 2.3.2.1, 3.4 The Timing Requirements Meta-Model shall allow the
specification of repetition constraints.

R 9.5.3 2.3.2.1, 3.4
The Timing Requirements Meta-Model shall allow the
specification of synchronization constraints (based on
events).

R 9.6.1 3, 3.5

The Reliability / Safety Meta-Model should allow to specify
policies according to IEC-61508 realization phase (system
architecture definition). Each safety compliant item of a
mixed criticality system can specify a failure probability
(e.g., an assigned SIL level). So it is required that during
modelling process safety policies are checked (e.g., chosen
SIL level cannot be higher than the maximum allowable

31.07.2014 DREAMS Page 80 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

SIL).

R 9.6.2 3.3.2.2, 3.5 The Reliability / Safety Meta-Model shall allow specifying
criticality-levels according to IEC-61508.

R 9.6.3 2.1.1.2,
2.3.2.3, 3

The meta-models should support the traceability between
the artefacts used in the different steps of the
development process.

R 9.7.1 3.6.1.4
A high level analytical model covering average static and
dynamic power consumption of the NoC at the system-
level shall be provided, e.g., a mathematical function.

R 9.7.2 3.6.1.4
The Energy / Power requirements meta-model should be
suitable to define requirements on the energy / power
consumption of a DREAMS system at the system-level.

R 9.8.1 2.2.1.3,
3.3.2.2

The Security Meta-Model for Data Confidentiality shall
allow modelling the varying needs of confidentiality.

R 9.8.2 2.2.1.3,
3.3.2.2

The Security Meta-Model for Data Integrity shall allow
modelling the varying needs of data integrity.

R 9.8.3 2.2.1.3,
3.3.2.2

The Security Meta-Model for Authentication shall allow
modelling the needs for establishing the authenticity of
communication partner and the authentication of data
origin.

R 9.9.1 2.1.1.3,
3.6.1.4

The variability meta-model shall allow specifying variations
of base models in order to define product lines.

R 9.9.2 2.1.1.3,
3.6.1.4

The variability meta-model shall allow to describe different
feature sets of applications.

R 9.9.3 2.1.1.3,
3.6.1.4

The variability meta-model shall allow to describe different
implementation alternatives of applications.

R 9.9.4 2.1.1.3, 3, 3.5

DREAMS systems need to be automatically adaptive, and
this requirement will help automating the production of a
configuration in particular in adapting to different platform
technologies (e.g. hardware).

R 9.10.1 3.6
The development process should define the model-to-
model transformations required to implement application
subsystems on top of the DREAMS platform.

R 9.10.2 3.6
The development methodology should allow the definition
of the implementation artefacts, i.e. its end products that
have to be produced for a DREAMS-based system.

R 9.11.1 3.6 Offline real-time scheduling methods for mixed criticality
systems.

R 9.11.2 3.6 The development process shall support online resource
allocation and management strategies.

R 9.11.3 3.6 The development process should support the Design Space
Exploration (DSE) method.

R 9.11.4 3, 3.4, 3.6 The development process shall support timing and end-to-
end response analysis.

R 9.12.1 2.1.1.1,
2.3.2.2, 3.5 Meet-in-the-middle

R 9.12.3 3.4, 3.5 The development process shall foresee the timing
requirements.

31.07.2014 DREAMS Page 81 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

R 9.13.3 2.1.1.2,
2.3.2.3, 3

The development process shall support the traceability for
requirements regarding: safety, security, etc.

R 9.13.5 2.3.2.4
The development process should support the integration of
an additional application subsystem into an existing
system.

R 9.13.6 3.6.1.4

The development process should support a reliability
analysis, and methods for the introduction of active
redundancy that derive a fault-tolerant design from the
original design.

R 9.14.1 2.1.1.3, 3, 3.6 The development process shall define how variability is
bound.

R 10.4.1 2.3.2.1
The system can be reconfigured upon foreseen and
unforeseen changes in its operational and environmental
conditions within in a predictable time span.

R 10.4.4 2.3.2.1

Information about the state of individual resources, as
provided by the local resource managers, has to be
transmitted to the GRM in a timely manner. Similarly, the
decisions about resources stated taken by the GRM have be
communicated to the LRMs in a timely fashion.

R 11.1.1 2.2.1.2 Core security services

R 11.1.2 2.2.1.2 Identification of core and optional services, security policies
and thread models

R 11.2.4 2.2.1.3

Mechanisms for protection against physical attacks, such as
side channel attacks, shall be evaluated and provided if
found adequate, e.g., if they do not affect the QoS
requirements.

R 11.3.3 2.2.1.3
A choice of cipher suites shall be provided. A cipher suite
includes cryptographic algorithms and their parameters,
e.g., key sizes etc.

R 11.3.4 2.2.1.3
Core security services on the cluster level shall be identified
and provided. This includes services such as end-to-end
security (e.g., privacy and authentication).

R 11.3.7 2.2.1.3

Key management for secure communication between the
entities on a cluster shall be provided (Mechanisms for key
generation, key distribution/exchange, key destruction
etc.).

R 11.4.1 2.2.1.2

Integrity, authenticity and availability shall be ensured for
communications and communications partners, in the
presence of security threats, such as message sniffing,
insertion, modification and denial of service.

R 11.4.2 2.2.1.2

Security services shall be validated using reasonable attack
scenarios and related penetration tests. Attack scenarios in
the context of the DREAMS architecture need to be
envisaged and implemented to validate the strength of the
security services of DREAMS.

R 11.6.1 2.2.2 Integration of security in the development process

Table 7: DREAMS Requirement Matrix.

31.07.2014 DREAMS Page 82 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

5 Bibliography

[1] IEC, "IEC 61508-1: General Requirements," in Requirements for electrical/ electronical /

programmable electronic safety-related systems, ed, 2010.
[2] Y.-Y. Fan Jiang, J. Y. Kuo, and S.-P. Ma, "An Embedded Software Modeling and Process by

Using Aspect-Oritented Approach," Software Engineering and Applications, Journal of, vol. 4,
pp. 106-122, April 2011.

[3] M. P. Papazoglou and W.-J. van den Heuvel, "Service-Ortiented Design and Development
Methodology," Web Engineering and Technology (IJWET), International Journal of, vol. 2, pp.
412-442, 2006.

[4] IEC, "IEC 61508-2: Requirements for electrical/electronic/programmable electronic safety-
related systems," in Requirements for electrical/ electronical / programmable electronic
safety-related systems, ed, 2010.

[5] ISO, "ISO/IEC 15408-1/2/3," ed, 2005.
[6] ISO, "ISO/IEC 27001," ed, 2013.
[7] ISO, "ISO/IEC 21827 ", ed, 2008.
[8] F. Swiderski and W. Snyder. (2004) Threat modeling. Microsoft Press.
[9] S. Lipner and M. Howard, "The Trustworthy Computing Security Development Lifecycle,"

presented at the Annual Computer Security Applications Conference Tucson, Arizona, 2004.
[10] TIMMO-2-USE. Methodology description V2. Available:

https://itea3.org/project/workpackage/document/download/861/09033-TIMMO-2-USE-
WP-4-D13MethodologydescriptionV2.pdf

[11] TIMMO-2-USE. Language syntax, semantics, metamodel V2. Available:
https://itea3.org/project/workpackage/document/download/850/09033-TIMMO-2-USE-
WP-2-D11Languagesyntax,semantics,metamodelV2.pdf

[12] S. Kent, "Model Driven Engineering," in Integrated Formal Methods. vol. 2335, M. Butler, L.
Petre, and K. Sere, Eds., ed Berlin Heidelberg: Springer, 2002, pp. 286-298.

[13] J. Bézivin, "In Search of a Basic Principle for Model Driven Engineering," Upgrade, vol. 5, pp.
21-24, April 2004.

[14] J. Bézivin, "On the unification power of models," Softw. Syst. Model., vol. 4, pp. 171-188,
May 2005.

[15] B. Schätz, A. Pretschner, F. Huber, and J. Philipps, "Model-Based Development of Embedded
Systems," in Advances in Object-Oriented Information Systems. vol. 2426, J.-M. Bruel and Z.
Bellahsene, Eds., ed Berlin Heidelberg: Springer, 2002, pp. 298-311.

[16] H. Kern, A. Hummel, and S. Kühne, "Towards a comparative analysis of meta-metamodels,"
in Proceedings of the compilation of the co-located workshops on DSM'11, TMC'11,
AGERE!'11, AOOPES'11, NEAT'11, & VMIL'11 (SPLASH '11 Workshops), New York, NY, USA,
2011, pp. 7-12.

[17] OMG, "Meta Object Facility (MOF) Core Specification," ed, 2011.
[18] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Framework,

2nd ed.: Addison-Wesley Longman, Amsterdam, 2008.
[19] M. Broy and K. Stølen, Specification and development of interactive systems: focus on

streams, interfaces, and refinement. Secaucus, NJ, USA: Springer, 2001.

31.07.2014 DREAMS Page 83 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Terminology
Next there are some of the terminologies used during this deliverable. For more terminology, see
deliverable D1.1.1.

Application Specific Integrated Circuit (ASIC)
Integrated circuit designed and manufactured for specific function, where its functionality is defined
by the product developer.

Architecture
Specific configuration of hardware and software element in a system.

Element
Part of a subsystem comprising a single component or any group of components that performs one
or more element safety functions.

Equipment under control
Equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical
or other activities.

Functional Safety
Part of the overall safety, related to the EUC and the EUC control system that depends on the correct
functioning of the E/E/PE safety-related systems and other risk reduction measures.

Pre-existing software
Software element which already exist and is not developed specifically for the current project or
safety related system.

Programmable Electronic (PE)
Based on computer technology, which may be composed by hardware, software, and of input
and/or output units.

Proven in use
Demonstration, based on analysis of operational experience for a specific configuration of an
element, that the likelihood of dangerous systematic faults is low enough so that every safety
function that uses the element achieves its required safety integrity level.

Safety
Freedom from unacceptable risk.

Safety Lifecycle
Necessary activities involved in the implementation of safety-related systems, occurring during a
period of time that starts at the concept phase of a project and finishes when all of the E/E/PE safety
related systems and other risk reduction measures are no longer available for use.

Safety Manual for Compliant Systems
Document that provides all the information relating to the functional safety of an element, in
respect of specified element safety functions, that is required to ensure that the system meets the
requirements of IEC 61508 series.

Safety related Software
Software that is used to implement safety functions in a safety related system.

31.07.2014 DREAMS Page 84 of 85

D1.3.1 Version 1.0 Confidentiality Level: PU

Safety Related System
Designated system that implements the required safety functions necessary to achieve or maintain a
safe state of/or EUC and is intended to achieve, on its own or with other E/E/PE safety-related
systems and other risk reduction measures, the necessary safety integrity for the required safety
functions.

Software
Intellectual creation that comprises the programs, procedures, data, rules and any associated
documentation pertaining to the operation of a data processing system.

Software Lifecycle
Activities occurring during a period of time that starts when software is conceived and ends when
the software is permanently decommissioned.

Software Module
Construct that consist of procedures and/or data declarations and that can also interact with other
such constructs.

Subsystem
Entity of the top-level architectural design of a safety-related system, where a dangerous failure of
the subsystem results in dangerous failure of a safety function.

Validation
Confirmation by examination and provision of objective evidence that the particular requirements
for a specific intended use are fulfilled.

Verification
Confirmation by examination and provision of objective evidence that the requirements have been
fulfilled.

31.07.2014 DREAMS Page 85 of 85

	Contributors
	Table of Contents
	Figure Index
	Table Index
	Glossary
	1 Introduction
	1.1 Context
	1.2 Objectives of the document
	1.3 Structure of the document
	1.4 IEC 61508 Safety Life Cycle Overview

	2 Definition of DREAMS Development Process
	2.1 Safety Approach
	2.1.1 Impact of DREAMS characteristics on the development process
	2.1.1.1 Meet-in-the-middle Methodology
	2.1.1.2 Traceability
	2.1.1.3 Modularity

	2.1.2 DREAMS Safety Life-Cycle Specification
	2.1.3 Measures for fault avoidance within DREAMS

	2.2 Security Approach
	2.2.1 Impact of security aspects on the DREAMS development process
	2.2.1.1 Meet-in-the-middle Methodology
	2.2.1.2 Threat Model
	2.2.1.3 Security Requirements and Modularity

	2.2.2 DREAMS Security Lifecycle Specification
	2.2.3 Measures for fault avoidance within DREAMS

	2.3 Timing Approach
	2.3.1 GMP
	2.3.1.1 “Create Solution”
	2.3.1.2 “Attach Timing Requirements to Solution”
	2.3.1.3 “Create Timing Model”
	2.3.1.4 “Analyze Timing Model”
	2.3.1.5 “Verify Solution against Timing Requirements”
	2.3.1.6 “Specify and Validate Timing Requirements”

	2.3.2 Impact of DREAMS characteristics on the development process
	2.3.2.1 Timing
	2.3.2.2 Meet-in-the-middle Methodology
	2.3.2.3 Traceability
	2.3.2.4 Modularity

	2.3.3 DREAMS Timing Lifecycle Specification

	2.4 Summary of DREAMS Development Process

	3 DREAMS Meta-Models and Model-Transformations
	3.1 Impact of DREAMS Characteristics
	3.2 Introduction
	3.2.1 (Meta-)Modelling
	3.2.2 MDE tool-chain
	3.2.3 DREAMS System Model
	3.2.3.1 Logical view
	3.2.3.2 Physical view
	3.2.3.3 Application-platform mapping

	3.3 AutoFocus3 Meta-Model
	3.3.1 Requirements perspective
	3.3.2 Logical Perspective
	3.3.2.1 Summary of Meta-Model
	3.3.2.2 DREAMS logical view

	3.3.3 Technical Perspective
	3.3.3.1 Summary of Meta-Model
	3.3.3.2 DREAMS technical architecture

	3.3.4 Deployment Perspective

	3.4 Timing requirements Meta-Model
	3.5 MultiPARTES Meta-Model
	3.5.1 Overview: Meta-Models, Toolset and Transformations
	3.5.1.1 Meta-Models
	3.5.1.2 Toolset
	3.5.1.3 Model-to-model transformations
	3.5.1.4 Model-to-text generators

	3.5.2 Safety Consistency Model
	3.5.3 Safety Compliance Model
	3.5.4 Diagnostics Techniques and Measure Model
	3.5.5 Safety Integrity Levels Model

	3.6 Model-to-model Transformations
	3.6.1 Generic DREAMS Development Process
	3.6.1.1 System Architecture Development Process
	3.6.1.2 Software Development Process
	3.6.1.3 Safety Management
	3.6.1.3.1. Safety Consistency Rules
	3.6.1.3.2. Generation of Documentation for Certification

	3.6.1.4 Offline Resource Allocation
	3.6.1.5 Product-Line Design
	3.6.1.5.1. Product-Line Exploration Process
	3.6.1.5.2. Variability and its impact in Safety and Certification

	3.6.2 Exemplary Development Process using Concrete Technologies
	3.6.2.1 Configuration of XtratuM hypervisor
	3.6.2.2 Configuration of TTEthernet off-chip network

	4 Requirements Matrix
	5 Bibliography
	Terminology

