

Distributed Real-time Architecture for
Mixed Criticality Systems

Meta-models for Application and Platform

D 1.4.1

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date 31.03.2015 Deliverable No. 1.4.1

Contact Person Simon Barner Organisation fortiss

Phone +49 (0)89360352222 E-Mail barner@fortiss.org

mailto:barner@fortiss.org

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 2 of 124

Contributors

Name Partner

Simon Barner FORTISS

Alexander Diewald FORTISS

Fernando Eizaguirre IKL

Óscar Saiz IKL

Lionel Havet RTAW

Jörn Migge RTAW

Franck Chauvel SINTEF

Anatoly Vasilevskiy SINTEF

Marcello Coppola ST

George Tsamis TEI

Gebhard Bouwer TUV

Donatus Weber USIEGEN (ES)

Thomas Koller USIEGEN (DCS)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 3 of 124

Table of Contents

Contributors .. 2

Executive Summary ... 6

1 Introduction .. 7

1.1 Structure of the Deliverable .. 7

1.2 Positioning of the Deliverable in the Project .. 7

2 Viewpoints .. 9

2.1 Introduction .. 9

2.2 Architectural Viewpoints .. 11

2.2.1 Logical Viewpoint .. 11

2.2.2 Technical Viewpoint .. 11

2.2.3 Deployment Viewpoint ... 11

2.3 Temporal Viewpoint.. 12

2.4 Extra-functional Viewpoints .. 12

2.4.1 Safety Viewpoint ... 12

2.4.2 Security Viewpoint .. 15

2.4.3 Power Viewpoint ... 15

2.5 Variability Viewpoint ... 15

3 Model Editors and Toolsets .. 16

3.1 Overview ... 16

3.2 AutoFOCUS3 .. 18

3.2.1 Tool Summary ... 18

3.2.2 Installation .. 19

3.2.3 Overview of Tool Architecture .. 19

3.2.4 Getting Started With AutoFOCUS3 ... 20

3.2.5 Model Element Attributes .. 22

3.2.6 Fundamental Meta-Models .. 27

3.3 Base Variability Resolution (BVR) Tool .. 34

3.3.1 Tool Summary ... 34

3.3.2 Installation .. 35

3.3.3 Getting Started with BVR Tool Bundle .. 35

3.3.4 Visualization of Variability Models .. 35

3.4 Mixed-Criticality Product Line Editor .. 37

3.4.1 Tool Summary ... 37

3.4.2 Installation .. 37

3.4.3 IEC61508 and Diagnostic and Measures Safety Standard editor.................................. 37

3.4.4 Safety Compliance Model Editor .. 40

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 4 of 124

3.4.5 Safety Constraint Checker – F(Deployment, SafetyComplianceSpecification) 45

3.4.6 Safety Compliance Variability Model Editor ... 45

4 Logical Viewpoint .. 46

4.1 Logical Component Architecture Meta-Model ... 46

4.2 Logical Component Architecture Specifications ... 50

4.3 Logical Component Architecture Annotations .. 52

4.3.1 Annotations Registered for Components ... 52

4.3.2 Annotations registered for Ports .. 53

4.4 Interfaces to other Meta-Models ... 53

4.5 Logical Component Architecture Model Example Instances .. 54

4.5.1 Component Architecture with Annotations ... 54

4.5.2 Mode Automaton Specification .. 55

5 Technical Viewpoint .. 57

5.1 Platform Architecture Meta-Model .. 57

5.2 DREAMS Platform Meta-Model .. 63

5.2.1 Cluster Domain .. 64

5.2.2 Node Domain .. 66

5.2.3 Tile Domain ... 68

5.2.4 NoC Domain .. 71

5.2.5 Processor Domain ... 73

5.2.6 Hypervisor Domain ... 76

5.3 Platform Architecture Annotations... 80

5.3.1 Annotations registered for all Platform Elements .. 80

5.3.2 Annotations registered for ExecutionUnits .. 80

5.3.3 Annotations registered for Cores .. 81

5.3.4 Annotations registered for TransmissionUnits ... 81

5.3.5 Annotations registered for MemoryUnits .. 81

5.3.6 Annotations registered for RAM ... 81

5.3.7 Annotations registered for Tiles , Partitions and MemoryAreas 81

5.3.8 Annotations registered for Partitions ... 82

5.3.9 Annotations registered for HealthMonitorConfigurations ... 82

5.4 Interfaces to other Meta-Models ... 82

6 Deployment Viewpoint ... 83

6.1 Deployment Meta-Model ... 83

6.2 Deployment Annotations .. 87

6.3 Interfaces to other Meta-Models ... 87

6.4 Deployment Model Example Instance .. 88

7 Temporal Viewpoint.. 90

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 5 of 124

7.1 DREAMS Timing Meta-Model ... 90

7.2 Interface to other Meta-Models ... 92

7.3 DREAMS Timing Model Example Instance .. 92

8 Extra-functional Viewpoints .. 94

8.1 Safety Viewpoint ... 94

8.1.1 IEC 61508 and Diagnostic Techniques and Measures ... 95

8.1.2 Safety Compliance Meta-Model ... 96

8.1.3 Safety Partitioning Restrictions Meta-Model ... 99

8.1.4 Interface to other Meta-Models ... 100

8.2 Security Viewpoint .. 103

8.2.1 Security Meta-Model .. 103

8.2.2 Extension of the Annotation Meta-Model .. 104

8.2.3 Interface to other Meta-Models ... 105

8.2.4 Security Model Example Instances ... 106

8.3 Power Viewpoint ... 109

8.3.1 Interconnect Modelling... 109

8.3.2 Variables and parameters of interconnect power calculation principle 110

8.3.3 Power Equation ... 111

8.3.4 IP Power Cards management .. 111

8.3.5 Requirements of the interconnect power model ... 112

8.3.6 Interconnect power model ... 113

8.3.7 Conclusion ... 115

9 Variability Viewpoint ... 116

9.1 BVR Meta-Model ... 116

9.1.1 Overview ... 116

9.1.2 VSpec and VSpecResolution .. 116

9.1.3 Constraining VSpec Trees .. 117

9.1.4 Fragment Substitution .. 118

9.2 Variability Workflow ... 119

9.2.1 Modelling Variability ... 119

9.2.2 Exploiting Variability ... 119

9.3 Variability Model Example Instances .. 120

9.3.1 Variation of DREAMS System Models ... 120

9.3.2 Variation of Safety Consistency Variability Models .. 122

10 Bibliography .. 124

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 6 of 124

Executive Summary

This deliverable defines meta-models for the description of mixed-criticality applications and
instances of the DREAMS platform. It is structured into four viewpoints that provide meta-models
for the description of different aspects of DREAMS systems. The presentation of each of the
viewpoints comprises a specification of the corresponding meta-models, an explanation of their
utilization, and a discussion of example model instances.

The Architecture Viewpoint clusters meta-models used to describe structural aspects of the system.
It comprises a Logical Viewpoint that provides a meta-model for the platform-independent
description of applications, a Technical Viewpoint capturing the structure of instances of the
DREAMS platform, and a Deployment Viewpoint for the description of mappings between the model
elements of the logical and the technical viewpoint. The Temporal Viewpoint provides meta-models
that can be used to express timing requirements and temporal properties of applications. The Extra-
Functional Viewpoint groups meta-models for the description of application requirements and
platform properties related to safety, security and power consumption. Finally, the Variability
Viewpoint provides a meta-model that can be used to create separate specifications of variation
points of a given (product) model.

In addition to the definition of the meta-models, this document describes editors that can be used to
create and manipulate model instances. The toolset is based on both existing tool implementations
(that have been extended in the scope of DREAMS Task T1.4) and newly created tool prototypes. All
tools are implemented as plugins for the Eclipse platform which allows to integrate the model
editors for the different parts of the meta-model.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 7 of 124

1 Introduction

This deliverable defines meta-models for the description of mixed-criticality applications and
instances of the DREAMS platform. Furthermore, it introduces editors that can be used to create
model instances.

1.1 Structure of the Deliverable

The DREAMS application and platform meta-model has been structured into four main viewpoints
that provide meta-models for the description of different aspects of DREAMS systems. In the
following, these viewpoints that are defined in Chapter 2 will be summarized:

 The group of Architecture Viewpoints clusters meta-models used to describe structural
aspects of the system. It includes a Logical Viewpoint that provides meta-model for the
platform-independent description of applications, a Technical Viewpoint capturing the
structure of instances of the DREAMS platform, and a Deployment Viewpoint for the
description of mappings between the model elements of the logical and the technical
viewpoint.

 The Temporal Viewpoint provides meta-models that can be used to express timing
requirements and temporal properties of applications.

 The Extra-Functional Viewpoint groups meta-models for the description of application
requirements and platform properties related to safety, security and power consumption.

 The Variability Viewpoint provides a meta-model that can be used to create separate
specifications of variation points of a given (product) model.

Section 3 will describe the model editors that can be used to create instances of the meta-models
defined in this deliverable. The toolset is based on both existing tool implementations (that have
been extended in the scope of DREAMS Task T1.4) and newly created tool prototypes. All tools are
implemented as plugins for the Eclipse platform which allowed integrating the model editors for the
different parts of the meta-model. Finally, the main part of the document (Chapters 4-9) contains a
detailed description of the meta-models defined by viewpoints summarized above.

1.2 Positioning of the Deliverable in the Project

The architectural style document D1.2.1 (which was a direct result of the requirements elicitation in
D1.1.1) served as the primary input for the specification of the DREAMS application and platform
meta-models. Furthermore, D1.3.1 contains a description of the use of models in the DREAMS
development process and also includes an initial overview of some meta-models.

The application and platform meta-models defined in this document will be complemented by
platform-specific meta-models (D1.6.1) that define the meta-models related to the configuration of
the building blocks of the DREAMS platform. Hence, D1.6.1 will add additional meta-models to the
viewpoints defined in this document. Furthermore, deliverables D4.1.2 and D4.1.3 provide
information about meta-models for the specification of design goals and constraints.

The meta-models defined in this document D1.4.1 will be used as input specification of the methods
and tools developed in the following tasks:

 T4.2 “Offline Adaptation Strategies for Mixed Criticality”: Deliverables D4.1.2 and D4.1.3

 T4.3 “Explicit Variability Configuration”: Deliverables D4.3.2 and D4.3.3

 T5.2: “Simulation, Verification and Fault-injection Framework”: Deliverables D5.2.1 and
D5.2.2

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 8 of 124

The dissemination level of this deliverable is public (PU) i.e. once approved by the European
Commission (EC), it will be freely available for download through the DREAMS project website
(http://www.dreams-project.eu).

In the scope of this documents, small example model instances of the meta-models defined in this
documents will be presented. In course of the intermediate integration, example models based on
the current specification of the use cases from the application demonstrators will be created. They
will be presented in the integration report D1.5.1 whose dissemination level (confidential / CO)
matches the one of the demonstrator use case descriptions.

http://www.dreams-project.eu/

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 9 of 124

2 Viewpoints

In this chapter, the criteria for structuring the application and platform meta-models defined in this
document will be presented.

2.1 Introduction

The main goal of this document is to present meta-models that are suitable for the

 Platform-independent description of mixed-criticality applications, and the

 Description of instances of the DREAMS HW/SW platform.

Since the focus of both of the above points is on the description of architecture of a particular
system-of interest (here DREAMS systems, i.e. a given mixed-criticality applications deployed to an
instance of the DREAMS HW/SW platform), the relevant concepts defined in ISO/IEC/IEEE 42010 [1]
will be summarized in the following, and related to the corresponding sections in this document.

Figure 2.1: Conceptual model of architecture description [1]

An architecture description framework is structured into different architecture viewpoints that are
defined as “way[s] of looking at systems”. Each of the viewpoints covers one or more concerns of the
description of an architecture.

System-of-
Interest

Architecture

Architecture
Description

Architecture
Rationale

Correspondence
Correspondence

Rule

Architecture
View

Architecture
Model

Model
Kind

Architecture
Viewpoint

Concern

Stakeholder

1..* 1..*

1..*

1..*

1..*

1..*

3 addresses
1..*

1..*

fr
am

es
4

1..*

1..*

3
 h

as

1

1..* h
as

 in
te

rr
es

ts
 in
4

 1 1

exhibits4

1

1

ex
p

re
ss

es
4

1..* 1

3 identifies

1 1

governs4

1 1..*

governs4

1

1

3 identifies

1..*

13 identifies

0..*

1..*

0..*

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 10 of 124

For each architecture viewpoint, there exist one or more model kinds that define the corresponding
conventions and (modelling) languages. In this document, meta-models are used to define the used
model kinds that contain the following information:

 Entities: major sorts of elements

 Attributes: properties of entities

 Relationships: relations between entities

 Constraints

The main part of this document (sections 4 - 9) is concerned with the detailed definition of the meta-
models that realize the different viewpoints. For some of the view-points such as the deployment
viewpoint (Section 5.3) additional meta-models will be presented in D1.6.1 “Meta‐models for
platform‐specific modelling”.

Finally, Section 3 provides an overview of the different tools and editors that have been developed
and / or extended to create architecture views (i.e., (architecture) models conforming to the meta-
models defined in this document) that correspond the selected architecture viewpoints.
Additionally, this section will provide a definition of fundamental meta-models that are not specific
to the selected viewpoints, but provide modelling constructs shared between different meta-
models.

Figure 2.2 on the one hand sketches the use of different viewpoints to provide information about
different aspects of the system. On the other, the figure also illustrates the granularity dimension as
a second dimension of abstraction used in the DREAMS meta-models: A system is decomposed into
sub-systems which are at a lower granularity level and which can themselves be regarded as
systems. The process can be applied recursively, until finally basic building blocks are reached.

Figure 2.2: Dimensions of abstraction: viewpoints and granularity-levels

In the following, the viewpoints that have been defined to describe DREAMS system will be
presented. On the one hand, this comprises a summary of the meta-models constituting the
different view-points. On the other hand, the interface between the different meta-models will be
sketched.

Logical

Viewpoint

Technical

Viewpoint

System of

Systems

System

Sub-systems

Basic blocks

...

HW/SW

Platform

...

...

...

PE PE M

PE

...

L
e

v
e

l o
f G

ra
n

u
la

rity

Development Viewpoint

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 11 of 124

2.2 Architectural Viewpoints

The Architecture Viewpoints clusters meta-models used to describe structural aspects of the system
description. They are separated into three sub-viewpoints that will be described in the following.
The meta-models provided by the architectural viewpoints are based on the AutoFOCUS3 tool (see
Section 3.2).

2.2.1 Logical Viewpoint

The Logical Viewpoint (see Section 4) provides meta-models to describe the logical, or functional,
aspects of a mixed-criticality application in a platform-independent way. The main meta-model is the
Logical Component Architecture Meta-Model that provides a meta-model for the description of a
component architecture of an application. This meta-model of the application’s structure is
augmented with additional information provided by further meta-models, e.g.

 For the specification of a component’s behaviour (e.g., using state automata or mode
automata).

 For the specification of extra-functional properties of a component (e.g., the component’s
criticality level or the component’s security requirements).

Furthermore, the Logical Component Architecture Meta-Model is referenced by a number of meta-
models from other viewpoints, such as the deployment meta-model (see Section 6), the safety
compliance meta-model (see Section 8.1) and the meta-models defined in the temporal viewpoint
(see Section7).

2.2.2 Technical Viewpoint

The Technical Viewpoint (see Section 5) provides meta-models used to describe the structure of the
DREAMS hardware/software platform. It consists of a Platform Architecture Meta-Model that
provides a framework for the description of hierarchic platform architectures. Based on this, meta-
models for the layers defined in the DREAMS Architectural Style (see D1.2.1) have been defined.
These meta-models are augmented with additional information, e.g.

 Specification of extra-functional properties of platform elements (e.g., clock speed of cores,
parameters related to power consumption, component reliability annotations, security
mechanisms provided by platform elements).

 Linking between different layers of a platform model. In the presented approach, one
platform model is used to describe the hardware architecture of a DREAMS platform.
Another platform model is used to abstract the (system) software part of the platform that
contains links to the elements of the hardware architecture onto which the corresponding
system software component has been deployed to.

Lastly, also the meta-models provided by the Technical Viewpoint are referenced by meta-models
defined in other viewpoints, including the deployment meta-model (see Section 6) and the safety
compliance meta-model (see Section 8.1).

2.2.3 Deployment Viewpoint

The Deployment Viewpoint collects all deployment related model kinds. For this deliverable D1.4.1, it
only comprises meta-models required to describe the mapping of model elements from the logical
view to model elements of the technical view. The follow-up document D1.6.1 “Meta-models for
platform-specific modelling” will focus on enhancing this viewpoint with description mechanisms for
the allocation of platform resources.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 12 of 124

2.3 Temporal Viewpoint

The Temporal Viewpoint is composed of one meta-model (see Section 7). It is an adapted version of
the meta-model defined in the Timmo-2-use project1 for the AutoFOCUS3 framework (see Section
3.2), allowing making the link between temporal constraint and logical architecture elements (see
Section 4).

2.4 Extra-functional Viewpoints

2.4.1 Safety Viewpoint

2.4.1.1 Scope in the DREAMS V-Life-Cycle development process

The Safety Model is associated to the Logical Component Architecture Model and the Platform
Architecture Model. It aims at the early detection of some errors during the realization phase. In
Figure 2.3, the V-Life-Cycle according to IEC 61508-1 [2] is illustrated for the following phases:

 The architectural specification of a system or family of systems (e.g., Wind Power Turbines).

 The process of choosing the specific architecture of a specific system by resolving variability
(e.g., producing a specific wind turbine).

 Also, during the step of defining a deployment for the specific wind turbine.

Figure 2.3: IEC 61508-1 (Edition 2.0): General requirements

The safety model defined for a given system (a) is used to support the checking of safety
consistency rules that can help designers in the design of mixed-criticality solutions reducing the risk
of late discovery of safety related expensive design pitfalls (that would prevent a certification) and

1 https://itea3.org/project/timmo-2-use.html

https://itea3.org/project/timmo-2-use.html

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 13 of 124

(b) is used to help in a certification process by providing some evidences of safety aspects that have
taken into account during the realization phase.

The consistency rules to be implemented (as part of the SafetyConstraintChecker class to be
implemented in WP4, see section devoted to this class below for a brief introduction) are not
described in deliverable D1.4.1 (devoted to meta-models). However, a list of examples is given
below. The set of consistency rules implemented in DREAMS can be easily extended to enrich the
capability of catching early errors.

The IEC 61508 distinguishes between hardware integrity (expressed in SILx) and the systematic
capability (expressed in SCy). However it is assumed that the expression “SILx” covers the hardware
integrity of SILx as well as the systematic capability of SCy.

As mentioned above, the safety model defined for a given system is used to support the checking of
safety consistency rules. In the following, some examples will be presented:

 Example Rule - If a HW Node (DREAMS Node) claims to be SIL3 with hardware fault-
tolerance (HFT)=1 and is composed by two processors (i.e., DREAMS Tiles (see D1.2.1)), one
claiming SIL3 and the other SIL2, then a warning is given. This way the designer realizes there
is an inconsistency.

 Example Rule – If a HW element (e.g., DREAMS Node, Tile) claims to be SILx with HFT=1 and
is composed of two HW elements (for example a Node composed of two Tiles) that are (two
sub examples cases to clarify):

o SIL(x-1) and SCy (System Capability in IEC 61508), then a warning would be given
saying “Warning: Acceptable provided they are part of independent channels”

o SIL(x-1) and SC(y-1), then an error would be given, because claimed SILx cannot be
achieved).

 Example Rule - If a HW node is using a “Program Sequence” technique (e.g. IEC 61508-2
Table A.10 “Watch-dog with separate time base without time-window), it is checked that the
node:

1. Has an external HW watchdog.
2. The watchdog is connected to the processor.
3. They are connected to two independent clocks.

 Example Rule - It is checked that if the safety manual declares having a Medium Diagnostic
Coverage of (90-99%) and HFT = 0, the maximum allowable SIL level is SIL 2 according to IEC
61508-2 Table 3 (type B components). In case the claimed SIL level was higher a warning is
given.

 Example Rule - If a Partition (certified or not) claims a SIL3 level, but is deployed to a
Hypervisor (certified or not) that claims for example a SIL2 level, and error is given in case
the safety function requires SIL3. In case the safety function requires SIL2 this would be
acceptable.

 Example Rule - Similarly if a Hypervisor (certified or not) claims a SIL3 but is deployed to a
processing unit that claims to be SIL2, then an error is given in case the safety function
requires SIL3. In case the safety function requires SIL2 this would be acceptable.

 Etc.

To implement these consistency rules, the Safety Manual class defined in the meta-model (see
Section 8.1) do not include the full set of attributes defined in Annex D (of both IEC 61508-2 [3] and
IEC 61508-3 [4]). Instead, it comprises only those attributes needed to implement consistency rules:

 FSM (Functional Safety Management), IEC 61508,

 SIL level (Safety Integrity Level, SIL1, SIL2, SIL·, SIL4))

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 14 of 124

 SC (Systematic Capability, SC1, SC2, SC3, SC4)

 HFT (Hardware Fault Tolerance, HFT1, HFT2, HFT3)

 Diagnosis and Measure Techniques and Hypothesis values and ranges.

The Safety Model and, therefore also the consistency rules, scope mainly the ‘architectural
specification’ phase within the system ‘realization’ because of the following reasons:

 The analysis, planning, installation and operation of the system do not usually consider the
internal implementation details of the system (e.g. multicore partitioning technology); this is
only relevant in the ‘realization’ phase. Therefore, it is interesting to focus the scope in
discovering early errors in the realization phase of multicore partitioning scenarios.

 Within the ‘realization’ phase, the ‘system architectural specification’ needs to deal with the
non-trivial integration of mixed-criticality applications; multiple partitions mapped to
multicore platform(s). This is the phase in which the definition of rules for consistency
checking can provide higher benefits; improving productivity and reducing the risk of late
discovery of safety related design pitfalls.

To summarize the scope of safety meta-models (and therefore also the consistency rule checker
provided by WP4) is to support discovering errors during the realization phase of the hardware
architecture, and also with a basic support to discover basic errors in the integration of software
partitions, hypervisors and deployment of components in a mixed criticality multicore scenario. The
focus of the approach is on IEC 61508-2 [3] and also in part on IEC 61508-3 [4] (but not going in
depth in IEC 61508-3).

2.4.1.2 Safety Meta-models

The Safety Viewpoint is composed of a set of three meta-models. The main meta-model is the Safety
Compliance Model that gathers the safety specification of the DREAMS Architecture. The complete
set of safety meta-models is composed of:

 IEC 61508 and Diagnostic and Measures Safety Standard Meta-Model: This meta-model
enumerates the IEC 61508 SIL and ASIL safety integrity levels. In addition to this, this meta-
model is used to represent the Diagnostic Techniques and Measures recommended in IEC
61508-2 [3], Annex A, to control failures caused by random faults during operation (tables
A.2 to A14) and related to the systematic integrity (tables A.15 to A.18) during operation.
Safety Manuals declare the techniques used. This way, consistency rules can perform some
checks during the realization phase (as shown above) about SIL claimed, etc. Fault avoidance
measures for the development of software according to IEC 61508-3, Annex A, are not
considered at this point in time since they are applied in a later phase of the assumed overall
system development process.

 Safety Compliance Meta-Model: This meta-model is used to add safety properties/attributes
related to safety and IEC 61508-specific concepts to a hierarchy of Safety Compliant Items
(SCI, to be described later). Each SCI item provides a ‘Safety Manual’. As described in the
previous section, the Safety Manual will contain just the information needed by consistency
rules to detect errors early in the realization phase and not all information defined by Annex
D of IEC 61508-2 [3] and IEC 61508-3 [4].

 Safety Compliance Constraint Meta-Model: This meta-model is used to model the
constraints to be met by the deployment of the system in order to achieve a correct
deployment/partitioning from the safety point of view.

A more detailed description of the above meta-models can be found in Section 8.1.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 15 of 124

2.4.2 Security Viewpoint

The Security Viewpoint contains the security meta-model. It allows the modelling of the security
services in DREAMS. It uses annotations to extend the logical and the technical viewpoint.

2.4.3 Power Viewpoint

The Power Viewpoint in Section 8.3 presents a solution for power modelling for interconnects IPs
(ICN) to perform power analysis at system level.

2.5 Variability Viewpoint

The Variability Viewpoint clusters meta-models that can be used to define variability of a given base-
meta-model in an orthogonal way, i.e. using a separate variability specification meta-model.

The required variability specification meta-models are provided by the BVR tool from SINTEF (see
Section 3.3).

Figure 2.4: BVR conceptual architecture

Figure 2.4 sketches the approach to variability in BVR. The orange ovals as well as violet polygon
represent BVR elements whereas the blue ovals depict models in any third-party language. The
picture clearly shows that BVR does not amalgamate third-party languages (base models) with
variability concepts rather defines variability in a separate model and links the base model by means
of references. The BVR execution engine uses specified references to operate on base models to
yield resolved models, i.e. products.

In Section 9.3.1, it will be illustrated, how variability models can be used to define variations of a
model of a DREAMS system model. After that, in Section 9.3.2, these concepts are applied to the
safety meta-model where a Safety Feature model is used to express variations of Safety Compliance
models. Here, a variability model is defined using the BVR tool to express the variability of a Safety
Compliance model.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 16 of 124

3 Model Editors and Toolsets

This section provides an overview of the different model editors and toolsets that have been
developed and / or extended to create views that correspond to the architecture viewpoints
described in the previous section (i.e., models conforming to the meta-models defined in this
document).

In this section, exclusively the modelling functionality of the mentioned toolsets is described, which
is the scope of this document. It should be noted that these toolsets also provide additional
functionality such as analysis, optimization, model transformation and generation of different
artefacts such as program code, configuration and reports. The interfaces between the tools
described below, as well as additional tools required for the development of DREAMS-systems have
been defined in D1.3.1 “Description of Development Process with Model Transformations”.

Additionally, this section gives an overview of fundamental meta-models that are not specific to the
selected viewpoints, but provide modelling constructs shared between different meta-models.

3.1 Overview

To create model instances from the DREAMS meta-model defined in this document, the following
model editors are provided which will be described in the remaining sections of this chapter.

 AutoFOCUS3 (see Section 3.2),

 Base Variability Resolution (BVR) Tools (see Section 3.3), and

 Mixed-Criticality Product Line Editor (see Section 3.4).

All of the above model editors are based on the Eclipse Modelling Framework (EMF) 2 [5], and can be
installed into the same Eclipse installation. In order to install all model editors, it is recommended to
start with an installation of the AutoFOCUS3 Eclipse RCP that has been released for the DREAMS
project (see Section 3.2.2), and to install the BVR toolset into this AutoFOCUS3 DREAMS RCP
installation (see 3.3). Both the Mixed-Criticality Product Line Editor and the model editor for the
DREAMS timing meta-model are already bundled with the AutoFOCUS3 DREAMS RCP.

The result of this full installation is an integrated model editor for the application and platform meta-
models defined in this document, which allows the creation of interlinked instances of the models
from the different viewpoints defined in Section 2. In other words, the model editors operate on
separate models that contain references to models from other tools listed above. Since the tools are
installed in the same eclipse instance they share a common workspace and, hence, the inter-model
references are consistent, assuming the model files are not moved manually.

As can be seen in Figure 3.1, models created by the BVR Tool (Variability Viewpoint) contain
references to AutoFOCUS3 models and to models generated by the Mixed Criticality Product-line
editor (Safety Viewpoint). The safety and temporal model instances contain only references to
AutoFOCUS3 model instances.

Due to the generality of the variability modelling approach (see Section 9.1), generic EObject-
references are used to point from the variability meta-model to the respective foreign meta-model.
In contrast to that, specific references are used in all other cases to establish links between different
meta-models.

The integration of editors (required to specify references to the corresponding foreign meta-model)
is as follows: An extension interface of the BVR tooling has been used to support the selection of

2 http://www.eclipse.org/emf/

http://www.eclipse.org/emf/

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 17 of 124

model elements in the graphical diagram model editors provided by AutoFOCUS3. In all other cases,
the integration of editors relies on the mechanisms provided by the generated EMF tree-editors [5].

Figure 3.1: Model Editors and References between Models from different Viewpoints.

Figure 3.2 shows a screenshot of the full model editor installation discussed above. In the Navigator
on the left side of the figure, an AutoFOCUS3 model (DREAMS_Example_ControlUnit.af3_23), a
safety compliance model (Safety-DREAMS_Example_ControlUnit.drm_safetycompliance), and a
variability model (Var-DREAMS_Example_ControlUnit.bvr) can be seen. These models are opened in
their corresponding model editors shown on the right side of the figure. An example for inter-model
references can be seen in the lower right part of the figure where the safety compliance model
references an AutoFOCUS3 model.

AutoFOCUS3
 Logical Viewpoint (FORTISS)
 Technical Viewpoint (FORTISS)
 Deployment Viewpoint (FORTISS)
 Security Viewpoint (USIEGEN-DCS)

Base Variability
Resolution Tooling (BVR)

 Variability Viewpoint (SINTEF)

Timing Editor
 Temporal Viewpoint (RTAW)

Mixed Criticality Product-
Line Editor

 Safety Viewpoint (IKERLAN)

References to specific elements of the
referenced meta-model

Generic references (EObject) to referenced
meta-model

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 18 of 124

Figure 3.2: AutoFOCUS3 DREAM RCP, with BVR and Mixed Criticality Product Line Editor installed.

The descriptions of each the underlying meta-models will provide an overview of its interface to
other meta-models, i.e. a list of the referenced entities. As pointed out in the introduction, small
example instances of the meta-models will be presented in this document, whereas models of the
DREAMS application demonstrators will be presented in deliverable D1.5.1.

3.2 AutoFOCUS3

3.2.1 Tool Summary

AutoFOCUS33 (AF3) is a tool based on the Eclipse Modelling Framework (EMF) [5] that supports the
development of embedded systems based on the Focus modelling theory [6]. AF3 uses models in all
development phases including requirements analysis, design of the logical architecture, platform
architecture, implementation and deployment. Furthermore, AF3 features formal analyses and
synthesis methods.

It should be noted that in the scope of DREAMS, the model of execution defined in the DREAMS
architectural style (see D1.2.1) is used rather than the one defined by the Focus modelling theory.
Hence, in the following, a number of fundamental AutoFOCUS3 meta-models will be described that
provide the basis for the implementation of meta-models appropriate in a DREAMS context. In this
document, the following meta-models provided by AF3 are used and extended to support the
following viewpoints defined in Chapter 2.

 Logical viewpoint: In AutoFOCUS3, systems are described using component models of the
software architectures which are enriched with specifications of the executable behaviour
(see Section 3).

 Technical viewpoint: The execution platform is described using a topology model containing
the corresponding hardware and software elements such as execution units, communication
transmission units and endpoints (see Section 4).

 Deployment viewpoint: A mapping model is used to specify how an application (described in
the logical viewpoint) is a mapped to the platform (see Section 5).

3 http://af3.fortiss.org/

http://af3.fortiss.org/

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 19 of 124

In the scope of DREAMS, AutoFOCUS3 provides the following:

 (Graphical) model editors for meta-models defined by the viewpoints listed above.

 Multi-objective design-space exploration (DSE) that supports the system architect in finding
Pareto-optimal mappings of models of mixed-criticality applications to models of the
DREAMS platform. A description of the implementation and the use of the DSE can be found
in Chapter 3 of deliverable D4.1.2.

3.2.2 Installation

In order to allow for an easy installation of an AutoFOCUS3 for use in the DREAMS project, a
dedicated Eclipse RCP application (based on Eclipse Kepler SR2) can be obtained by members of the
DREAMS consortium4 as follows:

3.2.2.1 System requirements

 An x86-based computer running a 32- or 64-bit version of Windows, Linux or MacOSX.

 Java Runtime Environment (JRE) version 8. This requirement actually stems from the BVR
tool-set (see Section 3.2.6), AutoFOCUS3 runs on JRE version 6 and above.

3.2.2.2 Obtaining and Installing AutoFOCUS3 DREAMS Edition

 Go to https://download.fortiss.org/projects/dreams/af3/rcp/.

 Download and extract the archive matching your platform. This will create the AF3-

DREAMS directory.

 Launch the platform-specific executable (e.g., AF3-DREAMS/autofocus3-

phoenix.exe on Windows).

 Close the welcome screen.

 To install additional components (such as the Base Variability Resolution Tool, see Section
3.2.6), use the Help Install New Software menu.

3.2.3 Overview of Tool Architecture

As pointed out in Section 3.2.1, AutoFOCUS3 is based on Eclipse. In order provide an overview on the
AutoFOCUS3 modules that are relevant for this deliverable, the tool architecture will be briefly
presented in the following. Each AutoFOCUS3 module consists of a plugin containing the
functionality (e.g., a meta-model, an analysis, etc.) and user-interface (UI) plugin required to interact
with the modules’ functionality. Depending on the modules functionality, its UI contribution can
consist of providing new model elements to the model element library, graphical model editors, or
user interfaces to algorithms. Figure 3.3 shows the dependency graph of the plugin
eu.dreamsproject.platform.ui. This plugin has dependencies to all AutoFOCUS3 plugins
described in this deliverable.

4 Since the AutoFOCUS3 distribution for use in the DREAMS project also contains contributions provided by
confidential deliverables (e.g., from T4.2), and confidential example models from the application
demonstrators, the download site is restricted to members of the DREAMS consortium. The login credentials
may be obtained from the project internal web-based collaboration tool:

https://dreams.teams.uni-
siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DRE
AMS%20Edition)%20Download%20Information

https://download.fortiss.org/projects/dreams/af3/rcp/
https://dreams.teams.uni-siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DREAMS%20Edition)%20Download%20Information
https://dreams.teams.uni-siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DREAMS%20Edition)%20Download%20Information
https://dreams.teams.uni-siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DREAMS%20Edition)%20Download%20Information

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 20 of 124

Figure 3.3: Dependency graph of the plugin eu.dreamsproject.platform.ui.

3.2.4 Getting Started With AutoFOCUS3

This section provides a brief “getting started” guide to the development of models using the
graphical editors provided by AutoFOCUS3. More details on model editing and all further features
can be found in the AutoFOCUS3 user guide5.

Most graphical model editors use the hierarchical meta-model that will be introduced in Section
3.2.6.2 as backend. In the following, the steps required to create AutoFOCUS3 models will be
illustrated. In AutoFOCUS3, new models are instantiated by creating a new AutoFOCUS3 project, as
shown in Figure 3.4.

Figure 3.4: Creating a new AutoFOCUS3 project.

From the context menu of an AutoFOCUS3 project, new architectures, e.g. component architectures
(see Section 4), can be created (shown in Figure 3.5).

5http://af3.fortiss.org/docs/ User Documentation or the Help AF3 Help menu in the AutoFOCUS3 RCP
application.

http://af3.fortiss.org/docs/

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 21 of 124

Figure 3.5: Creating a new Component Architecture

Hierarchical element models are usually edited using the diagram editor (see centre of Figure 3.6).
On the left side of the user interface, the model navigator displays the AutoFOCUS3 workspace with
all available projects and a tree view of the contained (hierarchical element) models.

Figure 3.6: Screenshot of an AutoFOCUS3 Component Architecture.

New model elements can be added to the architecture by dragging them from the model element
library (highlighted by the red rectangular in Figure 3.6) into the diagram editor. The model element
dynamically updates the set of offered model elements (i.e., it only offers element that are
syntactically compatible with the current model).
Likewise, the diagram editor enforces the syntactical correct composition of model elements.

Connections (e.g., between Ports of logical Components) can be created by dragging from the
source connector to the target connector with the ALT-key pressed. The editors of many meta-
models also support to drag the connection directly between Components (the Ports are created
automatically in this case).
All architecture models are edited using these diagram editors, which includes the DREAMS platform
meta-model (see Figure 3.7).

Figure 3.7: Screenshot of an AutoFOCUS3 Platform Architecture containing a DREAMS platform model.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 22 of 124

3.2.5 Model Element Attributes

AutoFOCUS3 provides three different ways to model attributes of model elements. The purpose of
this section is to give a general overview on these attribute specification mechanisms, and to briefly
introduce the corresponding graphical views. A detailed description of the individual attributes can
be found in sections that describe the corresponding part of DREAMS meta-model.

 Properties: intrinsic model element attributes (i.e., that always exist if the corresponding
model element is instantiated). The Properties View provides a local view on all properties
provided by the respective model element.

 Specifications: attributes that are explicitly added by the user to the respective model
element. Specifications are indicated in the Model Navigator and usually provide dedicated
editors.

 Annotations: model element attributes that always exist if the corresponding model element
is instantiated. The Annotation View provides a global view on the annotations of all model
elements of a project root element (e.g., a component architecture, see Section 4).

In the following, the different ways and the associated views will be described based on the simple
component architecture shown below.

Figure 3.8: Example for different was of specifying model element attributes

The example is restricted to the attributes contributed by the component architecture plugin, i.e.
Eclipse plugin implementing the logical component architecture. It should be noted that other
plugins will contribute further attributes for Components.

3.2.5.1 Properties

The Properties View provides a local view on all properties of the currently selected component. The
following screenshot illustrates the properties of Component1.

Figure 3.9: Model Element Properties

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 23 of 124

The following properties are always available (in the General tab) for any model element type (i.e.,
not restricted to Components:

 Name

 Comment

3.2.5.2 Specifications

Specifications are attributes that are derived from IModelElementSpecification. They can
optionally be added to any IModelElement model element that is compatible with the respective
specification type.

Figure 3.10: Model Element Specifications

The instantiation of IModelElementSpecifications can be performed in the following two
ways:

 Programmatically, i.e. specifications may be attached to model elements during their
construction or as the result of a computation that processes the corresponding model.

 Interactively, i.e. specifications can also be selectively added by the user. For this, the
corresponding specification must be made available in the Model Elements library (see right-
hand side of Figure 3.10). The specifications that have been added to model element are
indicated in the Model Navigator (see left-hand side of Figure 3.10). A double-click on these
specifications opens an editor dedicated to the respective specification type.

3.2.5.3 Annotations

Although the concept of specifications offers a lot of flexibility, it has the following drawbacks: On
the one hand, the effort to create new specifications into the tool is relatively large. On the other
hand, IModelElementSpecifications are not suitable for mandatory attributes since the
user would have to explicitly add them to every model element. Also, mandatory attributes could be
implemented by directly defining attributes in the corresponding classes. However, this approach
would not scale well when sharing attributes between classes that are not in a direct inheritance
relationship and would require a change of the meta-model in case attributes or their assignment to
meta-model elements is changed.

In AutoFOCUS3, the concept of annotations provides an approach that (from the developer’s
perspective) simplifies and - as far as possible - automates the integration of additional (mandatory)
attributes into the tool.

In the meta-model, annotations are derived from IAnnotatedSpecification and define one
or more EAttribute or EReference to be annotated to IModelElements. For the

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 24 of 124

integration of the annotation (i.e., the instantiation for the matching model elements and the
integration into the GUI) the following steps are required:

 Implementation of an annotation specific IAnnotationValueProvider (see below).

 Binding of the model element to be annotated with the corresponding
IAnnotationValueProvider using the annotation Eclipse extension point. This
registration ensures instantiation of the annotation and the integration into a tabular view
(see Figure 3.12).

Annotations can be defined within any plugin that (also indirectly) imports
org.fortiss.af3.tooling.base.

 To create simple annotations that provide a parameter of a primitive type as, a concrete
class inheriting from both IAnnotatedSpecification and

IHiddenSpecification must be created that contains the desired attribute(s). In this
case, the value provider should inherit from
EStructuralFeatureValueProviderBase.

 Annotations that do not contain attributes entered by the user, but values that are result of
a calculation should inherit from the DerivedAnnotation base class and employ the
DerivedAnnotationValueProvider.

In example given in Figure 3.11, the MemorySize annotation inherits from
IAnnotatedSpecification (and IHiddenSpecification) and uses a value provider
based on EStructuralFeatureValueProviderBase. The code example in the lower right
corner of the figure illustrates the registration MemorySizeValueProvider for all elements of

type eu.dreamsproject.platform.model.RAM with the annotation extension point
(typically in the plugin.xml file of the plugin where the corresponding

IAnnotatedSpecification is declared).

From the users’ perspective, the Annotation View (see Figure 3.12) provides a global view on all
model element annotations within the current project root element (e.g., within a Component
Architecture or a Platform Architecture). In the view, each model element is represented as a row.
The row for the model element that is currently selected in the associated model diagram editor is
highlighted with a green background.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 25 of 124

Figure 3.11: Integrating a new annotation type (example: MemorySize annotation)

The view's columns represent the annotations that are associated with the respective model
element. Here, the following three cases can be distinguished:

 White cell - the model element contains the respective annotation that is editable by the
user.

 Grey cell - the model element does not contain the respective annotation.

Blue cell - the model element contains the respective annotation. However, its value is the result of
a calculation (and hence the cell is read-only).

org.fortiss.tooling.base.model.element

org.fortiss.tooling.base.model.base

eu.dreamsproject.platform.model

+getValue() : T
+getDerivedFeature() : EStructuralFeature
+isUserAnnotatedValuePreferred() : EBoolean
+getUserAnnotatedValue() : T

DerivedAnnotationBase

T

«interface»
IHiddenSpecification

«interface»
IModelElementSpecification

«interface»
IAnnotatedSpecification

AnnotatedRAM : processor::RAM

{plugin.xml Extension Point Registration:

<extension point="org.fortiss.tooling.base.ui.annotationViewPart">
 <annotationViewPart
 binding="org.fortiss.af3.platform.ui.annotation.valueprovider.MemorySizeValueProvider">
 <modelElementClass modelElementClass="eu.dreamsproject.platform.model.RAM"/>
 </annotationViewPart>
</extension>}

-size : ELong

MemorySize
processor::RAM

&

+getValue() : EJavaObject
+getDerivedValue() : EJavaObject
+getDerivedFeature() : EStructuralFeature
+isUserAnnotatedValuePreferred() : EBoolean
+getUserAnnotatedValue() : EJavaObject

«interface»
element::IDerivedAnnotation

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 26 of 124

Figure 3.12: Model Element Annotation View

Like the Properties View, the Annotation View provides the following two annotations for any model
element.

 Name

 Comment

In fact, the Name and Comment annotations provide an alternative way to access the corresponding
properties.

Again, different plugins may contribute annotations to different model element types. In the
example, the component architecture plugin contributes the following two annotations to
Components:

 Memory: local: Memory need of a component (annotated by user - white cell).

 Memory: accumulated: Memory of a component and all children (calculated based on
Memory: local annotation - blue cell).

It can be seen that the memory annotations are not contributed to the Output port (grey cell).

At the bottom, the Annotation View provides a number of row and column filters.

Here, the following row filters can be used to restrict the set of model elements that is shown in the
view:

 Filter model element name: only model elements are shown whose name matches the filter
string.

 Filter model element type: if checked, only model elements are shown that have the same
type as the model element that is selected in the associated model diagram editor.

 Filter model element hierarchy level: Filters the set of model elements based on the model
structure. The following options are available:

o Show all levels: Any model element beneath the currently selected project root
element is shown.

o Show current level: Only model elements are shown that have the same hierarchy
level as the currently selected model element.

o Show selected sub-model: The currently selected sub-model and its entire offspring
is shown.

The following column filters can be used to restrict the set of annotations that is shown in the view:

 Filter annotations name: only annotations are shown whose name matches the filter string.

 Filter annotation type: Either all annotation types or only annotations of the selected type
are shown.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 27 of 124

3.2.6 Fundamental Meta-Models

In the following, a number of meta-models will be presented that provide the basis for all
AutoFOCUS3 based meta-models.

The following description (and also the description of all other AutoFOCUS3-based meta-models) is
structured as follows:

 A table lists general information on the meta-model
o Brief description
o Name of EMF Ecore-File in which the meta-model is defined
o Name of Eclipse-plugin which hosts the meta-model in an AutoFOCUS3 installation.

As pointed out in Section 3.2.3 in more detail, for each meta-model the

corresponding graphical editor is provided by a companion plugin <name of

model plugin>.ui.
o Java base package of the classes defined by the meta-model.

 A UML class diagram visualizing the meta-model

 A description of the meta-models classes (and their attributes)

While users of the AutoFOCUS3 tool cannot directly create instances of these meta-models, for them
mainly the attributes defined in the base classes described in this section are relevant.

For developers who contribute new AutoFOCUS3-based meta-models, or who develop algorithms
based on the DREAMS meta-model, these fundamental meta-models provide a generic and abstract
interface to process DREAMS models, which – for most meta-models – includes a number of classes

with utility methods to process the given meta-model (in Java package <name of model
plugin>.utils.)

3.2.6.1 AutoFOCUS3 Kernel Meta-Model

The AutoFOCUS3 kernel meta-model provides fundamental modelling entities that are shared
between meta-models of all AutoFOCUS3 meta-models.

Table 3.1 provides an overview:

Name AutoFOCUS3 Kernel Meta-Model

Description The goal of the kernel meta-model is to provide fundamental modelling entities
shared between meta-models of arbitrary viewpoints

Ecore file kernel.ecore

Plugin org.fortiss.af3.kernel

Packages org.fortiss.af3.kernel.model Kernel meta-model

Dependencies N/A

Table 3.1: AutoFOCUS3 Kernel Meta-Model (overview)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 28 of 124

Figure 3.13: AutoFOCUS3 Kernel Meta-Model (UML Diagram of package org.fortiss.tooling.kernel.model)

The meta-model consist of a single package org.fortiss.af3.kernel.model that contains
following classes (see Figure 3):

 IIdLabeled

o Model elements implementing this interface have a unique identifier.
o Attributes:

 id: The element’s ID

 INamedElement

o Model elements implementing this interface have a unique id and a name.
o Attributes:

 name: The elements name

 INamedCommentedElement

o Model elements implementing this interface have a unique id, a name and a
comment.

o Attributes:
 comment: A comment describing the model element.

 IElementWithURI

o Elements that can be referenced using a URI.

 IProjectRootElement

o Super class of all root elements contained in the project.

 ILibraryRootElement

o Super class of all root elements contained in the libraries.

 ILibrary

o Super class of all libraries.
o Attributes:

 rootElements: Root elements of the library

-id : EInt

IIdLabeled

-name : EString

INamedElement

-comment : EString

INamedCommentedElement

«interface»
ILibraryRootElement

«interface»
ILibrary

«interface»
ILibraryPackage

«interface»
ILibraryElement

+isChangeable() : EBoolean

-URI : EString

ILibraryElementReference

+getURI() : EString

«interface»
IElementWithURI

1

0..*

1

-subPackages 0..*

-rootElements

-idReference : EInt

IIdReference

-uri : EString

IExternalDocumentReference

+specialCopyHook() : EMap

«interface»
ISpeciallyCopyiable

-libraryElements

0..*

«interface»
IProjectRootElement

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 29 of 124

 ILibraryPackage

o Super class of all library package (that can contain library elements and/or sub-
packages)

o Attributes:
 libraryElements: Elements contained in this package
 subPackages: Sub-packages of this package

 ILibraryElementReference

o Super class of all references to elements contained in a library.

 ILibraryElement

o Super class of all elements contained in a library.
o Attributes:

 wrappedElement: Element referenced by this library entry

3.2.6.2 AutoFOCUS3 Hierarchic Element Meta-Model

The AutoFOCUS3 hierarchic element meta-model provides the basis for hierarchical meta-models. It
is based on the on the AutoFOCUS3 kernel meta-model (see Section 3.2.6.1).

In this document, the meta-models for the following view-points are based on this meta-model.

 Logical viewpoint (see Section 3).

 Technical viewpoint (see Section 4).

 Mapping meta-model of deployment viewpoint (see Section 5).

 Temporal viewpoint (see Section 7)

Table 3.2 provides an overview of the AutoFOCUS3 Kernel Meta-Model.

Name AutoFOCUS3 Hierarchic Element Meta-Model

Description The goal of the hierarchic element meta-model is to provide the basis for hierarchical
models (e.g., component models)

Ecore file base.ecore

Plugin org.fortiss.af3.tooling.base

Packages org.fortiss.af3.tooling.base.model.element

org.fortiss.af3.tooling.base.model.base

org.fortiss.af3.tooling.base.model.layout

Hierarchic Element MM interface

Base classes for concrete MMs

GUI layout information store

Dependencies org.fortiss.tooling.kernel

Table 3.2: Hierarchic Element Meta-Model (overview)

The meta-model consists of three packages that will be described in the following.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 30 of 124

3.2.6.2.1 Hierarchic Element Interface

The package org.fortiss.af3.tooling.base.model.element defines the interface of the
hierarchic element meta-model (see Figure 3.14) that is shared with derived concrete meta-models.
It can be used by (plugin) developers to interface with AutoFOCUS3-based meta-model in a generic
way.

Figure 3.14: Hierarchic Element Meta-Model (UML Diagram of Interface package

org.fortiss.tooling.base.model.element)

It contains the following classes:

 IModelElement

o Super class of first class model elements.
o Attributes:

 specifications: List of model element specifications providing
additional model element properties (see Section 3.2.5).

 referencedBy: List of model element references.
o Operations:

 addSpecification(IModelElementSpecification): Adds an
IModelElementSpecification to the given IModelElement

 IModelElementReference

o Super class of EObjects referencing model elements.
o Attributes:

 reference: The referenced model element.

org.fortiss.tooling.kernel

«datatype»
IModelElementSpecificationArray

+addSpecification(eing.)

IModelElement

-referencedBy 0..*

-reference

0..1

-specificationOf0..1

-specifications0..*

-container
0..1

-containedElements
0..*

-connectors

0..*

-owner

0..1

-owner

0..1

-connections
0..*

+getValue() : EJavaObject
+getDerivedValue() : EJavaObject
+getDerivedFeature() : EStructuralFeature
+isUserAnnotatedValuePreferred() : EBoolean
+getUserAnnotatedValue() : EJavaObject

«interface»
IDerivedAnnotation

«interface»
IModelElementReference

«interface»
IModelElementSpecification

«interface»
IHiddenSpecification

«interface»
IAnnotatedSpecification «interface»

IHierarchicElementContainer

«interface»IConnector «interface»IConnection

-source
0..1

-outgoing

0..*

-incoming
0..*

-target
0..1

-id : EInt

kernel::IIdLabeled

«interface»
IHierarchicElement

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 31 of 124

 IModelElementSpecification

o Super class of model element specifications. Such specifications provide additional
pluggable properties.

o Attributes:
 specificationOf: The IModelElement which owns this specification

 IHiddenSpecification

o Super class of model element specifications, which should be excluded from the
navigator view.

 IAnnotatedSpecification:
o Super class of model element specifications that represent annotations (i.e.,

specifications that are guaranteed to exist exactly once for the model elements for
which the annotation has been registered).

 IDerivedAnnotation

o Interface for IAnnotationSpecifications that are derived from the state of
other annotations and/or model elements.

 Concrete specifications must provide a specialized getValue()
EOperations that perform the required calculation.

 Concrete specifications may provide additional EOperations that provide
an advanced query interface to the annotation.

 The corresponding IAnnotationValueProvider should be based on
DerivedAnnotationValueProviderBase.

o Operations:

 getValue():Wrapper method for returning derived (calculated) values. It
may return values annotated by the user if the calculation fails, or the user
input is preferred, based on the configuration of the concrete annotation.

 getDerivedValue(): Returns the actual derived (calculated) values. It
may return values annotated by the user if the calculation fails, or the user
input is preferred, based on the configuration of the concrete annotation.

 getDerivedFeature(): Returns the EStructuralFeature that
stores the annotation of the model element associated with this
IDerivedAnnotation. Returns null if no element specific behaviour is
desired.

 isUserAnnotatedValuePreferred():Default implementation of a
method indicating whether the user annotated value, if available, shall be
preferred over the derived one. The default is true, i.e. user annotated
values are preferred. Shall be overridden, if a different behaviour is desired.

 getUserAnnotatedValue():Returns the EAttribute which is used
to store the user annotated values, if the concrete annotation is designed
therefore. By default, this function returns null, indicating no user
annotated values are supported. This method must be re-implemented by
concrete annotations if any other behaviour is desired.

 IModelElementSpecificationArray

o An array of model element specifications.

 IConnector

o Super class of connectors. Connectors reference incoming and outgoing connection
model elements.

o Attributes:
 incoming: The incoming connections.
 outgoing: The outgoing connections.
 owner: The IModelElement which owns this connector

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 32 of 124

 IConnection

o Super class of connections. Connections are aggregated in a hierarchic model
element and reference two connectors from that element or any direct sub-
element.

o Attributes:
 source: The connection's source connector.
 target: The connection's target connector.
 owner: The IModelElement which owns this connection

 IHierarchicElementContainer

o Super class of hierarchic model elements.
o Attributes:

 containedElements: The contained hierarchic model elements.

 IHierarchicElement

o Super class of hierarchic model elements.
o Attributes:

 connections: List of aggregated connection model elements. Usually a
hierarchic element aggregates all connections of its direct sub-structure.

 connectors: List of aggregated connectors.
 container: The container which this element belongs to.

3.2.6.2.2 Hierarchic Element Base Classes

Figure 3.15: Hierarchic Element Meta-Model (UML Diagram of base class package

org.fortiss.tooling.base.model.base)

The package org.fortiss.af3.tooling.base.model.base (see Figure 3.15) provides base classes
that implement the interface defined in org.fortiss.af3.tooling.base.model.element. They are
used as a basis for concrete hierarchical element meta-models such as the logical (see Section 3),
technical (see Section 4) and the mapping meta-model provided by the deployment viewpoint (see
Section 5).

The package defines the following classes:

 LibraryElementBase

o Base class for members of the model element library

org.fortiss.tooling.baseorg.fortiss.tooling.kernel

HierarchicElementBaseConnectorBase

EntryConnectorBase ExitConnectorBase LocalConnectorBase

ConnectionSegmentBase
+getURI() : EString
+getName() : EString

LibraryElementBase

-comment : EString

kernel::INamedCommentedElement

«interface»
layout::ILayoutedModelElement

«interface»
kernel::ILibraryElement

«interface»
element::IConnector

«interface»
element::IConnection

-source
0..1

-outgoing
0..*

-incoming
0..*

-target
0..1

«interface»
element::IHierarchicElement

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 33 of 124

 HierarchicElementBase

o Base class for hierarchic model elements

 ConnectorBase

o Base class for connectors

 EntryConnectorBase

o Base class for connectors with incoming connections

 ExitConnectorBase

o Base class for connectors with outgoing connections

 LocalConnectorBase

o Base class for connectors with local connections

 ConnectionSegmentBase

o Base class for connections

3.2.6.2.3 Hierarchic Element GUI Layout Data Store

The package org.fortiss.af3.tooling.base.model.layout (see Figure 3.16) provides a data
store for graphical representations (see Section 0) of hierarchic element models that are based on
org.fortiss.af3.tooling.base.model.element.

Figure 3.16: Hierarchic Element Meta-Model (UML Diagram of Layout Data Store package

org.fortiss.tooling.base.model.layout)

 ILayoutedModelElement

o Super class of model elements with layout data.
o Attributes:

 layoutData: Stores the aggregated layout data.

 ILayoutData

o Super class of all layout data objects.
o Attributes:

 key: The layout key indicating how the layout data is to be interpreted.

 Point

o Layout data for 2D locations.
o Attributes:

 x: The horizontal X coordinate.
 y: The vertical Y coordinate.

-key : EString

ILayoutData

«interface»
ILayoutedModelElement

-x : EInt
-y : EInt

Point

-width : EInt
-height : EInt

Dimension

Points

-orientation : EOrientation

Orientation

OffsetOrientation

-offset : EInt

Offset

-angle : EDouble

Angle

-layoutData
0..*

+NORTH
+EAST
+SOUTH
+WEST

«enumeration»
EOrientation-points

0..*

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 34 of 124

 Points

o Layout data for a sequence of 2D locations.
o Attributes:

 points: The aggregated locations.

 Dimension

o Layout data for 2D dimensions.
o Attributes:

 width: Object width
 height: Object height

 EOrientation

o Enumeration of 2D directions and orientations.

 Orientation

o Layout data for 2D orientations.
o Attributes:

 orientation: The orientation

 Offset

o Layout data of a single dimensional offset.
o Attributes:

 offset: The offset value.

 OffsetOrientation

o Combines an offset with an orientation.

 Angle

o Layout data for an angle (the interpretation of the double value is application
dependent).

o Attributes:
 angle: The double value of the angle.

3.3 Base Variability Resolution (BVR) Tool

The Base Variability Resolution (BVR) [7] helps manage the variability that emerges when using
domain specific modelling languages (DSML). Expressing variability explicitly at the model level
enables the construction of product lines while preserving the compatibility with existing domain
specific tooling including model editors, model analyses, model transformations, and eventually
code generators. By fostering reuse, product lines reduce waste, improve quality, and shorten time-
to-market.

We summarize below the key features of the BVR tool chain from the user perspective. We further
detail the underlying data model, which captures variability, and show how one can define and
resolve variation points. We refer the interested reader to the official documentation [8] for a
comprehensive treatment.

3.3.1 Tool Summary

BVR is developed on the top of the Eclipse platform. Although Eclipse is primarily an integrated
development environment (IDE) targeting Java and web development, it provides a very general
platform to build and integrate various textual and graphical editors in a single IDE.

BVR takes advantage of the Eclipse modelling framework (EMF)6 [5], which is the de facto standard
for MOF-based tooling. By providing a standardized implementation of the MOF specification [9],

6 See http://eclipse.org/modelling/emf/

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 35 of 124

EMF makes BVR compatible with a large community of model-based tools. EMF also provides
convenient facilities such as, standard tree-based editors or XMI and XML serialization to name a
few.

The BVR Tool Bundle consists of the numerous plugins which support a variability engineer in
defining variability model. The following plugins are the most essential to enable specification of
variability:

 BVR Model – BVR meta-model

 BVR VSpec MVC Editor – provide editor to define VSpec tree also known as feature tree
or variability abstraction

 BVR Resolution MVC Editor – resolution editor to define an instance of your VSpec tree,
i.e. define a product configuration by selecting desirable features of the future product

 BVR MVC Realization Editor – realization editor allows an engineer to define how
abstract feature from VSpec are actually realized in the model. Further, one may define
fragment substitution operations to specify model modification to yield a product

 SPLCATool – set of tools to generate an optimal set of products to perform efficient
testing in software product lines

 BVR :: Thirdparty – contains interfaces and default implantation to enable cooperation
BVR with third-party tooling

3.3.2 Installation

3.3.2.1 Prerequisites

• The BVR tool bundle is tested against Eclipse Kepler, which is available at:
http://eclipse.org/downloads/packages/eclipse-modeling-tools/keplerr

• The tool bundle is also tested against AutoFOCUS3 DREAMS edition (see Section 3.2.2).
• Java 8 is required to run the bundle (the plugins should work on Linux as well as Windows).
• The BVR Papyrus related plugins do not support the recent version of Papyrus, thus one

should ensure to run Papyrus 0.9.

3.3.2.2 BVR Tool Bundle Update Site

• The BVR Tool Bundle update site can be found at:
http://bvr.modelbased.net/update/site.xml

• The detailed footage of the installation process is available from here:
http://bvr.modelbased.net/installation.swf

3.3.3 Getting Started with BVR Tool Bundle

• The following demo explains and exhibits BVR concepts, editors and variability process as
well as integration with third-party tools:
http://bvr.modelbased.net/demo/

• This short demo shows briefly VSpec and Resolution editors:
http://bvr.modelbased.net/demo2/demo.swf

• An example of the variability definition on UML based models and Papyrus integration is
available at:
http://bvr.modelbased.net/demo3/demo.htm

• Integration between BVR and AutoFOCUS3 DREAMS edition are shown at:
http://bvr.modelbased.net/af3bvr/af3bvrdemo.htm

3.3.4 Visualization of Variability Models

BVR provides three main visualisations for the variability models: namely the Ecore tree editor, the
table view and the feature tree view. We illustrate below these three views and provide simple
guidelines for when to use each of these.

http://eclipse.org/downloads/packages/eclipse-modeling-tools/keplerr
http://bvr.modelbased.net/update/site.xml
http://bvr.modelbased.net/installation.swf
http://bvr.modelbased.net/demo/
http://bvr.modelbased.net/demo2/demo.swf
http://bvr.modelbased.net/demo3/demo.htm
http://bvr.modelbased.net/af3bvr/af3bvrdemo.htm

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 36 of 124

 The Ecore Tree-based View, is not provided by BVR per se, but is available to browse (and
modify) any well formed Ecore model. It presents the objects that compose a given model,
layout as a tree following the containment relationship. As BVR models are themselves Ecore
models, it is possible to visualize and edit them using this tree-based view. This can be a
convenient way to carry on surgical updates in corrupted models for instance, but will not
provide any support for variability-related tasks, such as derivation of validation (see
Section 9.2.2).

Figure 3.17: BVR Tree View

 The Feature Tree View is the default editor recommended to build, edit and visualize BVR
models. Variation points are layout as a tree, which reflects the primary decomposition
chosen to capture variability. Figure 3.18 below shows a simplified variability models for the
DREAMS platform depicted as a feature tree. By contrast with the Ecore tree-based view
where every object described in the BVR meta-model is shown, only user level concepts are
represented here.

Figure 3.18 Feature tree of the variability inherent to the DREAMS platform,

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 37 of 124

3.4 Mixed-Criticality Product Line Editor

3.4.1 Tool Summary

The Mixed-Criticality Product Line Editor is tool that helps to define the safety related concepts of
the system. The tool is composed by the following editors:

 The IEC61508 and Diagnostic and Measures Safety Standard editor: this editor allows the
representation of a usable model of the IEC61508 standard and a subset of its Diagnostics
and Measures Techniques (tables A.2 to a A.14 and A.15 to A.17), allowing to add safety
attributes to Component, Platform and System Software entities that have safety
requirements.

 The Safety Compliance editor: this editor allows defining Safety Compliance models based in
IEC61508-2 and IEC61508-3 standard, allowing adding safety attributes to Component,
Platform and System Software entities that have safety requirements.

 The Safety Compliance Variability editor (based on BVR) of the Safety Compliance editor:
this editor allows defining variability in the Safety Compliance models defined with the
previous editor.

Safety Compliance models will be used to check correctness of the system from the safety point of
view.

3.4.2 Installation

The Mixed-Criticality Product Line Editor is bundled with the AutoFOCUS3 DREAMS Eclipse RCP
application (see Section 3.2.2 for installation notes).

3.4.3 IEC61508 and Diagnostic and Measures Safety Standard editor

This editor allows defining IEC61508 based standards with SIL or ASIL (ISO26262) integrity levels for
each one. For each standard, its SafetyIntegrityLevels (SILx) are defined, and for IEC 61508 its SCy
levels are also defined, as shown in Figure 3.19:

In addition to this, the editor allows defining a model of the diagnosis techniques and measures for
IEC 61508 safety standard.

The root of the hierarchy starts with the Starting from the IEC 61508 Based Safety Standard node.
Apart from the SIL and SC levels described above, t, the user can create one of these entities:

 Technique Folder

 Technique Table

 Technique Item Description

 Random Failure Technique

 Systematic Failure Technique

For each Technique Item Description, the following properties can be defined:

 Name: Description of the item

 Notes: Additional notes about the item

 See IEC61508-7: Reference to the IEC61508-7 item, which describes in deeper detail the
technique or measure.

Figure 3.20 shows that Techniques and Measures have been represented (Techniques & Measures
node) and tables of Annex A of the IEC 61508-2 tables A.2 to A.17 have been defined. IEC 61508-3
part would also be interesting but goes beyond the scope of current definition of safety meta-model,
although deployment of SW components into Partitions, and Partitions into Hypervisors, and
Hypervisors into Tiles is checked (all these elements are SCItems with a Safety Manual defining at
least claimed SILx and SCy). Anyway, in depth extension of safety meta-model to IEC 61508-3 in the
future would be an interesting work.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 38 of 124

Figure 3.19: Safety Integrity Levels and System Capability Levels

Figure 3.20: Safety Standard Techniques of IEC 61508-2 Annex A

For each technique, its main properties are also defined. Figure below show the properties of a given
technique (A9.1) for Table A.10 Program Sequence of IEC61508-2. For example, each Random Failure
Technique has the following properties (see Figure 3.21):

 The Table it belongs to.

 The maximum diagnostic coverage that can be achieved with this technique.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 39 of 124

Figure 3.21: Example of Random Failure Technique

And also, for each Systematic Failure Technique (as shown in Figure 3.22), the following properties:

 Group: The user can define if this technique is mandatory or is part of a group. Two groups
are available:

o AtLeastOneBlackShaded.
o AtLeastOneGreyShaded.

At least one technique of each group must be selected.

Figure 3.22: Example of Systematic Failure Technique

And also the effectiveness and importance in function of the SIL level of the entity, as shown in
Figure 3.23.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 40 of 124

Figure 3.23: Effectiveness for a SIL group

To summarise, this model allow representing IEC61508 standard in a usable way so that safety
concepts can be associated to Component, Platform and System Software entities, allowing to check
safety consistency of the model being developed.

3.4.4 Safety Compliance Model Editor

3.4.4.1 Toolset Summary and Functionality

This editor allows defining a hierarchy Safety Compliant Items (SCI), and a ‘Safety Manual’ of each
SCI (SCItem). A SCItem can represent one of the following DREAMS entities:

 The Root representing the whole system (HW/SW)

 (HW) DREAMS Node

 (HW) DREAMS Cluster

 (HW) DREAMS Tile

 (SW) DREAMS Hypervisor

 (SW) DREAMS Partition

 (SW) DREAMS Component

Each of these SCItems may a Safety Manual (to be described later). The hierarchy partially mimics
the structure of a DREAMS system model (see Section 2.2). Figure 3.24 shows the very root of a
Safety Compliance Model.

Figure 3.24: Safety Compliance model main nodes

The root consists of a Safety Compliance Specification entity, the very root of the model. The
specification is composed by:

 A Safety Manual (to be described later)

 A Component Architecture Safety Folder

 A Platform Architecture Safety Folder

 A System Software Safety Folder

A description of the above folders follows in the next sections.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 41 of 124

3.4.4.2 Component Architecture Safety Folder

Under this folder, safety specification of components (DREAMS software Component entities) is
given. It is important to note that this model contains only safety relevant software components
(i.e., software components which are part of safety functions and have defined safety requirements
components that have safety requirements). Non safety software components do not appear here.

In the same way that a DREAMS system model can have multiple Component Architecture models,
this folder can have multiple roots which correspond to different logical component models (see
Figure 3.25).

Figure 3.25: Component Architecture Safety Components Folder

Figure 3.26: Safety Properties of a Safety Component

For each component, the following safety relevant properties (see Figure 3.26) may be defined:

 RefComponent: Reference to the Component of the project.

 Safety Standard and Safety Integrity Level: SIL level claimed for the Component.

 RefCore: if the safety engineer wants to make sure that any deployments involving this
component deploys the component into a given core, this field contains a reference to the
core. For example: The safety engineer in Wind Turbine demonstrator (WP7) wants to
ensure (for whatever reason) that for any Deployment (determined automatically using the
design-space exploration (provided by WP4) or even manually defined) the Supervision(D)
software Component in Figure 3.26 always is deployed into a Partition that is finally

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 42 of 124

deployed into a given Core of a given Tile. The consistency rules will check that for any
deployment the Partition is finally deployed into that core.

 RefTile: if the safety engineer wants to make sure that any deployments involving this
component deploys the component in a given tile, this field contains a reference to the tile.
A similar example as above can be given here. However, in this case, the engineer wants to
ensure that Component is deployed into a Partition that is deployed to the given Tile
(without specifying a particular Core).

 Isolated in One Partition (Boolean): True if the safety engineer wants to make sure (for
whatever reason) that any deployments involving this component deploys the component
“alone” in one partition (i.e., not shared with any other component). In other words, the
Partition will contain only this Component.

 NeedAccessListHWResources: List of hardware resources (watchdogs, clocks, tiles, etc.) to
which the component need access rights. This is for example needed for a software
Component that resets a Watchdog and is deployed into a Partition. In this case, the
Partition has to be configured in the hypervisor as having access to those hardware
resources. Then, when Hypervisors configuration files are generated (WP4), the hypervisor
and Partition will have access rights to the HW resources (particularly, the watchdog).

3.4.4.3 Platform Architecture Safety Folder

Under this folder, safety specification of HW elements (DREAMS Platform Architecture elements) is
given. It is important to note that this models only is composed by safety relevant hardware Cluster,
Node and Tile elements which are part of safety functions and have defined safety requirements.
Non-safety hardware elements do not appear here.

In the same way that a DREAMS system model can have multiple Platform Architecture models, this
folder can have multiple roots corresponding to different platform architecture models (see Figure
3.27).

Figure 3.27: Platform Architecture Safety roots

Each Platform Architecture partially mirrors the Platform Architecture of a DREAMS system model
(with links to the corresponding entities), and adds Safety Manuals to some of the items (see Figure
3.28).

Figure 3.28: Platform Architecture Safety elements hierarchy with Safety Manual

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 43 of 124

The hierarchy, relevant from the safety point of view, consist of:

 HW Root
o Clusters

 Nodes

 Tiles

3.4.4.4 System Software Safety Folder

In this folder, the safety specification of Hypervisors and Partitions (defined via the Virtualization
Layer of the technical architecture model, see Section 5.2.6) is given. Figure 3.29 shows an example
for the Wind Turbine use case.

Figure 3.29: System Software Safety roots: Hypervisors and Partitions

Apart from the Safety Manual that can be attached to Hypervisors and Partitions, the safety
engineer may want to specify (for whatever reason) that a given Hypervisor be deployed into a given
Tile, or that a given Partition be deployed to a given core.

As SCItems, each Hypervisor and Partition will have its own safety manual (figure below). Again, non-
safety-relevant hypervisors or partitions (elements which are not part of safety functions) do not
appear in this model.

Figure 3.30: Safety Manuals for Hypervisors and Partitions

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 44 of 124

3.4.4.5 Safety Manual

A Safety Manual defines the way in which the entity containing the manual manages safety, so that a
given SIL level is achievable. The safety manual (see Figure 3.31) can be understood as a
“declaration” (made by the designer or provider of the item) about how the SCItem manages safety.

Figure 3.31: Detailed Safety Manual Example

A Safety Manual contains:

 Hardware Fault Tolerance level (HFT) only for hardware elements

 Safety Standard (i.e. IEC 61508)

 Safety Integrity Level (i.e. IEC61508-SIL2) claimed

 Systematic Capability Integrity Level (i.e. IEC61508-SIL2) claimed

 Faults Management, with the following properties:
o List of Random Failure techniques used by the entity
o List of Systematic Failure Techniques used by the entity

 Hypothesis values
o Values of parameters under which is claimed the safety level

 Hypothesis ranges (Category - Min value - Max value)
o Ranges of parameters under which is claimed the safety level

In short, information consigned in the Safety Manuals will be used to asses if claimed levels of SIL are
consistent.

3.4.4.6 Hierarchy of Safety Manuals and Variability due to different Deployments

Hierarchy of Safety Manuals is also a key aspect. For example, if one node, down in the hierarchy,
claims a SIL1 level but, higher in the hierarchy, an ancestor claims SIL3, then at least a warning
should be raised. Depending on the architecture components with a lower SIL may be combined to
result in a higher SIL (e.g., see IEC 61508-2, Chapter 7.4.3)

Variability may complicate things further because perhaps, a given node can have one tile or
multiple tiles depending on a variation point or, for example, one component may or may not exists
depending on the configuration of the final system.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 45 of 124

The same project can also have multiple deployments, depending on the System Architect’s
requirements. A given component, depending on the deployment, can be running on a different tile
or a different core, and therefore, the claimed SIL must be checked against the SIL of the platform
deployed.

3.4.5 Safety Constraint Checker – F(Deployment, SafetyComplianceSpecification)

3.4.5.1 Linking everything together and checking

The specific mapping linking software Components, software Partitions, software Hypervisors,
hardware Tiles and hardware Cores is given by a Deployment.

Safety Consistency Rules checker, checks consistency for a given tuple composed by five elements
for a given project:

 (1) Component Model

 (2) Platform Model

 (3) System Software Model

 (4) Deployment (as the glue of 1,2 and 3)

 (5) Safety Compliance Specification Model

This way, Safety Model and Safety Consistency Rules checking will help the DSE tool to produce valid
Deployments from the safety point of view (for the given safety information provided in Safety
Manuals and the set of rules implemented). The next section explains the fundamentals about how
the safety consistency checking works.

3.4.5.2 Safety Consistency checking

Above sections show that safety consistency checking must be a function with the following
parameters:

 (4) Deployment contains
o (1) With a Component Architecture with variability resolved (see Section 3.4.6 for an

overview how variability is considered for safety compliance models).
o (2) With a Platform Architecture with the variability resolved
o (3) With a System Software Architecture with the variability resolved
o (5) SafetyComplianceSpecification (with variability resolved)

The class SafetyConstraintChecker contains a function (evaluateSafetyCompliance) (see Section
8.1.3) that receives a (a) deployment, (b) a collection of safety constraints (explained in Sections
8.1.2 and 8.1.3) and (c) a safetyComplianceSpecification, and returns a list of constraints violated by
the deployment. The constraint model is described later in Section 8.1).

Notice that there is no specific editor for Safety Constraints Model. The reason is that it is not the
designer who creates this model, but it is generated automatically by the SafetyConstraintChecker
class.

3.4.6 Safety Compliance Variability Model Editor

The goal of this editor is to create models to capture the safety compliance related variability.

3.4.6.1 Toolset Summary

The variability will be modelled using BVR tool provided by SINTEF (see Section 3.2.6). Following this
approach the variability is modelled in a separate model. Then a mapping between the variability
model and the safety consistency models must be done. After that the system is able to create
concrete instances of the models with variability using replacement mechanisms.

3.4.6.2 Core Meta-models

The used meta-model is the one of BVR (see Section 9.1). The models based on these meta-models
will describe the variability of the safety related models.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 46 of 124

4 Logical Viewpoint

4.1 Logical Component Architecture Meta-Model

The (logical) component architecture meta-model is used to describe the logical, or functional,
aspects of an application with AutoFOCUS3. The component architecture meta-model is based on
the AutoFOCUS3 hierarchic element meta-model (see Section 3.2.6.2), i.e. a component may contain
(hierarchical) subcomponents. Hence, the meta-model allows for the definition of the architecture
and functional aspects the desired abstraction level.

The components of a ComponentArchitecture have Input- and OutputPorts that
describe the (logical) messages which a Component receives or emits. Channels link these

Ports to describe the functional dependencies between the components. Note that in the logical
view, ports may also remain unconnected to model “external” inputs or outputs, e.g. from sensors
or to actuators. Components also have attached specifications and annotations contain additional
attributes.

Table 5.1 provides an overview of the AutoFOCUS3 component architecture meta-model.

Table 4.1: Component Architecture Meta-Model (overview)

The meta-model of the Component Architecture consists of the package

org.fortiss.af3.component.model and the subpackage
org.fortiss.af3.component.model.annotation that provides property annotations of
logical elements. They will be described in the following.

Name Logical Component Architecture Meta-Model

Description The goal of the hierarchic element meta-model is to provide modelling support for
describing the logical, or functional, aspects of an application.

Ecore file component.ecore

Plugin org.fortiss.af3.component

Packages org.fortiss.af3.component

org.fortiss.af3.component.annotation

org.fortiss.af3.component.behavior

org.fortiss.af3.component.generator

AutoFOCUS3 component meta-model

Component-related annotations

Behaviour specification of Components

Code generation for Components

Dependencies org.fortiss.af3.expression (not covered in this document)

org.fortiss.tooling.base (see Section 3.2.6.2)

org.fortiss.tooling.kernel (see Section 3.2.6.1)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 47 of 124

Figure 4.1: UML diagram of the AutoFOCUS3 Component Architecture

o
rg

.fo
rtiss.to

o
lin

g
.b

a
se

o
rg

.fo
rtiss.to

o
lin

g
.k

e
rn

e
l

o
rg

.fo
rtiss.a

f3
.e

xp
re

ssio
n

o
rg

.fo
rtiss.to

o
lin

g
.b

a
se

+getTo
p

C
o

m
p

o
n

en
t() : C

o
m

p
o

n
en

t
+getD

efin
itio

n
Elem

en
t() : <n

ich
t sp

ezifiziert>
+getD

efin
itio

n
Elem

en
t() : <n

ich
t sp

ezifiziert>
+getITyp

eD
efin

itio
n

s() : <n
ich

t sp
ezifiziert>

+getIFu
n

ctio
n

D
efin

itio
n

s() : <n
ich

t sp
ezifiziert>

C
o

m
p

o
n

e
n

tA
rch

ite
ctu

re

+getSu
b

C
o

m
p

o
n

en
ts() : EList<C

o
m

p
o

n
en

t>
+getO

u
tp

u
tP

o
rts() : EList<O

u
tp

u
tP

o
rt>

+getIn
p

u
tP

o
rts() : EList<In

p
u

tP
o

rt>
+getC

h
an

n
els() : EList<C

h
an

n
el>

+getD
efin

itio
n

Elem
en

t(ein
g.) : <n

ich
t sp

ezifiziert>
+getP

aren
tC

o
m

p
o

n
en

t() : C
o

m
p

o
n

en
t

+getC
au

salitySp
ecificatio

n
() : C

au
salityC

o
m

p
o

n
en

tSp
ecificatio

n
+isStro

n
glyC

au
sal() : EB

o
o

lean
+getP

aren
tV

ariab
leSco

p
e() : <n

ich
t sp

ezifiziert>
+getC

o
d

eSp
ecificatio

n
() : <n

ich
t sp

ezifiziert>
+fin

d
W

eaklyC
au

salC
o

m
p

o
n

en
ts() : EList<C

o
m

p
o

n
en

t>
+createLin

earizatio
n

() : C
o

m
p

o
n

en
t

+fin
d

Su
b

C
o

m
p

o
n

en
t(ein

g. : EStrin
g) : C

o
m

p
o

n
en

t
+fin

d
Su

b
C

o
m

p
o

n
en

tR
ecu

rsively(ein
g. : EStrin

g) : C
o

m
p

o
n

en
t

+fin
d

O
u

tp
u

tP
o

rt(ein
g. : EStrin

g) : O
u

tp
u

tP
o

rt
+fin

d
In

p
u

tP
o

rt(ein
g. : EStrin

g) : In
p

u
tP

o
rt

+getTo
p

C
o

m
p

o
n

en
tP

aren
t() : C

o
m

p
o

n
en

t
+getP

aren
tC

o
m

p
o

n
en

ts() : EList<C
o

m
p

o
n

en
t>

+fin
d

A
to

m
icC

o
m

p
o

n
en

ts() : EList<C
o

m
p

o
n

en
t>

+sp
ecialC

o
p

yH
o

o
k(ein

g. : EM
ap

)
+getV

erifB
eh

avio
u

r() : <n
ich

t sp
ezifiziert>

C
o

m
p

o
n

e
n

t

+getO
u

p
u

tP
o

rts() : EList<O
u

tp
u

tP
o

rt>
+getIn

p
u

tP
o

rts() : EList<In
p

u
tP

o
rt>

+getC
h

an
n

els() : EList<C
h

an
n

el>
+getSu

b
C

o
m

p
o

n
en

ts() : EList<C
o

m
p

o
n

en
t>

+getD
efin

itio
n

Elem
en

t(ein
g.) : <n

ich
t sp

ezifiziert>
+getC

au
salitySp

ecificatio
n

() : C
au

salityC
o

m
p

o
n

en
tSp

ecificatio
n

+getSp
ecificatio

n
s() : EList<IM

o
d

elElem
en

tSp
ecificatio

n
>

+getLib
raryC

o
m

p
o

n
en

tSh
ad

o
w

() : C
o

m
p

o
n

en
t

+getC
o

n
tain

ed
Elem

en
tList() : EList<IH

ierarch
icElem

en
t>

C
o

m
p

o
n

e
n

tR
e

f
In

te
rn

alC
o

m
p

o
n

e
n

t

+getSo
u

rce() : P
o

rt
+getTarget() : P

o
rt

+getP
aren

tC
o

m
p

o
n

en
t() : C

o
m

p
o

n
en

t

C
h

an
n

e
l

-stro
n

glyC
au

sal : EB
o

o
lean

C
au

salityC
o

m
p

o
n

e
n

tSp
e

cificatio
n

+getC
o

m
p

o
n

en
t() : C

o
m

p
o

n
en

t

Lib
raryC

o
m

p
o

n
e

n
t

+getP
o

rtSp
ecificatio

n
() : P

o
rtSp

ecificatio
n

+getC
o

m
p

o
n

en
t() : C

o
m

p
o

n
en

t
+getO

u
tgo

in
gC

h
an

n
els() : EList<C

h
an

n
el>

+getIn
co

m
in

gC
h

an
n

els() : EList<C
h

an
n

el>
+getV

ariab
leTyp

e() : <n
ich

t sp
ezifiziert>

+getV
ar() : <n

ich
t sp

ezifiziert>
+getIn

itialV
alu

e() : <n
ich

t sp
ezifiziert>

+sp
ecialC

o
p

yH
o

o
k(ein

g. : EM
ap

) : <n
ich

t sp
ezifiziert>

P
o

rt

In
p

u
tP

o
rt

O
u

tp
u

tP
o

rt

+getLib
raryC

o
m

p
o

n
en

ts() : EList<Lib
raryC

o
m

p
o

n
en

t>
+getU

R
I() : EStrin

g
+getLib

raryTyp
eD

efin
itio

n
s() : <n

ich
t sp

ezifiziert>
+getLib

raryFu
n

ctio
n

D
efin

itio
n

s() : <n
ich

t sp
ezifiziert>

+getD
efin

itio
n

Elem
en

t(ein
g.) : <n

ich
t sp

ezifiziert>
+getD

efin
itio

n
Elem

en
t(ein

g.) : <n
ich

t sp
ezifiziert>

+getIFu
n

ctio
n

D
efin

itio
n

s() : <n
ich

t sp
ezifiziert>

+getITyp
eD

efin
itio

n
s() : <n

ich
t sp

ezifiziert>

Lib
raryC

o
m

p
o

n
e

n
tP

ackage

C
o

m
p

o
n

e
n

tSp
e

cificatio
n

sC
o

n
tain

e
r

b
e

h
avio

r

+p
ro

p
agate(ein

g. : P
ro

p
agateab

leSp
ecificatio

n
)

P
ro

p
agate

ab
le

Sp
e

cificatio
n

+p
ro

p
agate(ein

g. : P
ro

p
agateab

leSp
ecificatio

n
)

-typ
e

-in
itialV

alu
e

-stateSign
al : EB

o
o

lean

P
o

rtSp
e

cificatio
n

ge
n

e
rato

r

b
ase::H

iera
rch

icElem
en

tB
a

se

+sp
ecia

lC
o

p
yH

o
o

k() : EM
a

p

«
in

terface»
kern

el::ISp
ecia

llyC
o

p
yia

b
le

«
in

terface»
elem

en
t::IH

id
d

en
Sp

ecifica
tio

n

+getU
R

I() : EStrin
g

+getN
am

e() : EStrin
g

b
ase::Lib

raryEle
m

e
n

tB
ase

«
in

terface»
kern

el::ILib
ra

ryP
a

cka
g

e

1

-su
b

P
ackages

0
..*

«
in

terface»
kern

el::ILib
ra

ryR
o

o
tElem

en
t

<<in
terface>>

...

b
ase::C

o
n

n
ecto

rB
a

se
b

ase::C
o

n
n

ectio
n

Seg
m

en
tB

a
se

an
n

o
tatio

n

V
e

rifB
e

h
avio

u
rC

o
m

p
o

n
e

n
tSp

e
cificatio

n

+a
d

d
Sp

ecifica
tio

n
(ein

g
.)

«
in

terface»
elem

en
t::IM

o
d

e
lEle

m
e

n
t

«
in

terface»
elem

en
t::IM

o
d

elElem
en

tSp
ecifica

tio
n

«
in

terface»
elem

en
t::IH

iera
rch

icElem
en

t
«

in
terface»

kern
el::IP

ro
jectR

o
o

tElem
en

t

+isC
h

an
geab

le() : EB
o

o
lean

-U
R

I : EStrin
g

kern
el::ILib

ra
ryElem

en
tR

eferen
ce

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 48 of 124

For modelling the logical architecture of an application, Components, Ports, and Channels are
most relevant. Components are used to define functional blocks and logical groups, Ports define
the input and and output interfaces. of Components. Finally, Channels define the data flow (or
data dependencies) between Components.

A description of the relevant elements of the meta-model is given in the following:

 ComponentArchitecture
o Root element of logical architectures, contains components
o Operations:

 getTopComponent(): Returns the top-level component that is
associated with this architecture.

 Component
o Describes a logical/functional block
o (May) describe a logical container for subComponents
o Operations:

 getSubComponents(): Returns the list of direct subComponents
 getOutputPorts():
 getInputPorts(): Returns the Output-/InputPorts attached to this

Component
 getChannels(): Returns the Channels that are contained within this

Component

 getParentComponent(): Returns the direct parent of this Component
 findSubComponent(EString):
 findSubComponentRecursively(EString):

Returns the (first) subComponent whose name matches the given
EString. Returns null if no component with a matiching name is
found.

 findOutputPort(EString):
 findInputPort(EString):

Returns the (first) Output-/InputPort whose name matches the

 given EString. Returns null if no matching Output-/InputPort is
 found.

 findTopComponentParent(): Returns the topmost Component.

This is typically the Component associated with the
ComponentArchitecture.

 getParentComponents(): Returns all parent Components of this

Component.
 findAtomicComponents(): Returns all atomic subComponents of

this Component. An atomic Component is a Component that does not

contain any subComponents.
 specialCopyHook(EMap): Used to copy Channels between

Componnets.
 getVerifBehaviour(): Returns the Specification that defines the

appearance of this Component within a verification of this

ComponentArchitecture.
See VerifBehaviourComponentSpecification.

 Port:
o Defines the input or output of the Component to which the Port is attached.
o Allows Components to interact with their “environment”
o Ports are transparent to the subelements of the Component to which they are

attached.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 49 of 124

o Operations:
 getPortSpecification(): Returns the PortSpecification of

this Port (see below).
 getComponent(): Returns the Component to which this Port is

attached.
 getOutgoingChannels() / getIncomingChannels(): Returns

the outgoing / the incoming Channels of this Port. Note that both
OutputPorts and InputPorts may have incoming and outgoing

Channels, e.g. the OutputPort of a non-atomic Component can have
incoming channels from sub-Components.

 specialCopyHook(EMap): Used to copy Channels between

Componnets.

 InputPort:
o Represents a Port that receives input data of a Component.

 OutputPort:
o Represents a Port that emits data from a Component.

 Channel:
o Connects Ports.
o Used to define the data flow of a modeled application, as Channels set

Components into relation.

o Channels have a direction; Thereby, inter-Component dependencies can be
defined.

o Operations:
 getSource(): Returns the source Port of this Channel. The source

Port is the emitter of a message.
 getTarget(): Returns the target Port of this Channel. The target

Port is thus a receiver of the message emitted by the source Port.
 getParentComponent(): Returns the parent Component of this

Channel. For example, if a Component A has two child Components
A_1 and A_2, and a Channel C_12 connects A_1 and A_2, then
C_12.getParentComponent() will return A.

In additon to these basic elements, libraries may be defined withing AutoFOCUS3 which allow the
definition of reuseable logical blocks. These blocks can the be used in a
ComponentArchitecture while the actual detailed description resides at one location within
the ComponentArchitecture. The elements of a library only contain references to the original
instance, but since ComponentRef implements the Component interface, their use is
transparent (i.e., the behave like Components that have directly been defined).

 LibraryComponentPackage

o Subelement of an AutoFOCUS3 library or another LibraryComponentPackage.
o Contains references to Components, and/or relevant “data dictionaries”
o Operations:

 getLibraryComponents(): Returns the LibraryComponents that
are part of this package.

 LibraryComponent
o Wrapped element for representing a Component within a

LibraryComponentPackage
o Operations:

 getComponent(): Returns the Component associated with this
LibraryComponent

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 50 of 124

 ComponentRef:
o Class that references a Component.
o Operations:

 getOutputPorts():
 getInputPorts(): Returns the Output-/InputPorts attached to the

referenced Component.
 getChannels(): Returns the Channels that are contained within the

referenced Component.
 getSubComponents(): Returns the list of direct subComponents of

the referenced Component.
 getSpecifications(): Returns the list of specifications that are

attached to the referenced Component.
 getContainedElementList(): Returns a list of the directly

contained IHierarchicElements of the referenced Component.

4.2 Logical Component Architecture Specifications

As pointed out in Section 3.2.3, additional attributes can be defined for model elements using fields
in the class definition of the meta-model, specifications and annotations. The attributes
implemented using field have been pointed out above (or respectively the operations used to access
these fields). In addition to that, several specifications (see Section 3.2.5.2) are defined within the
Component Architecture meta-model that will be explained in the following.

The most relevant specifaction is the PortSpecification that allows to define the data that is
exchanged via Ports.

 PortSpecification:
o Defines the type of data that is emitted or received by the Port to which this

specification is attached. Also defines the initial value of the associated Port.
o Attributes:

 type: Defines the type of data that is emitted/receiver by the associated
Port.

 initialValue: Defines the initial value of the attached Port.
o Operations:

 propagate(PropagateableSpecification):

see PropagatableSpecification

 PropagatableSpecification:
o Defines a general interface that allows subclasses to propagate their properties (of

this specification) to a target specification.
o Operations:

 propagate(PropagateableSpecification): Interface method
to propagate properties of this PropagateableSpecification to the
target PropagateableSpecification which must be given as a
parameter.
Empty method that must be implemented by subclasses.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 51 of 124

Figure 4.2: AutoFOCUS3 Component Architecture Meta-Model (UML Diagram 2/2 of package

org.fortiss.af3.component.model)

In the following, different possibilities to specifiy a Component’s behaviour using the dedicated
specifications will be briefly summarized. In the scope of DREAMS, a formal specification of an
application’s behavior is not required, since models are mainly intended as input for offline design
optimization and platform configuration generation tools. For completeness, the specifcations
provided by AutoFOCUS3 are summarized in the following. Additionally, the ModeAutomaton
specification could be used to define the different modes of the application demonstators, allowing
to define different application sets (with different characteristics such as safety integrity levels and
component WCETs for different modes).

 CodeSpecification
o A CodeSpecification can be used to specify the behavior of a Component at

code level using a deditated domain-specific language.
o AutoFOCUS provides a dedicated editor with syntax-colouring and online syntax

checking.

 StateAutomaton
o A StateAutomaton can be used to define a Component’s behaviour using a

finite-state machines.
o Each StateAutomaton must specify an initial state, in which the Component is

started.
o An State of a StateAutomaton can contain another StateAutomaton,

resulting into a so-called hierarchical state automaton.
o A StateAutomaton can contain Data State Variables (DSV), that can be accessed

in all states of the Component’s state automaton.

o A StateAutomaton is defined using the following mode elements:
 States: Define the states of a Component.

 Transitions: Define a change from one State to another State
defined in the StateAutomaton.

 Guards: Define a condition or a set of conditions for triggering / firing an
Action.

org.fortiss.tooling.baseorg.fortiss.tooling.kernel

org.fortiss.af3.expression

org.fortiss.tooling.base

+getTopComponent() : Component
+getDefinitionElement() : <nicht spezifiziert>
+getDefinitionElement() : <nicht spezifiziert>
+getITypeDefinitions() : <nicht spezifiziert>
+getIFunctionDefinitions() : <nicht spezifiziert>

ComponentArchitecture

+getSubComponents() : EList<Component>
+getOutputPorts() : EList<OutputPort>
+getInputPorts() : EList<InputPort>
+getChannels() : EList<Channel>
+getDefinitionElement(eing.) : <nicht spezifiziert>
+getParentComponent() : Component
+getCausalitySpecification() : CausalityComponentSpecification
+isStronglyCausal() : EBoolean
+getParentVariableScope() : <nicht spezifiziert>
+getCodeSpecification() : <nicht spezifiziert>
+findWeaklyCausalComponents() : EList<Component>
+createLinearization() : Component
+findSubComponent(eing. : EString) : Component
+findSubComponentRecursively(eing. : EString) : Component
+findOutputPort(eing. : EString) : OutputPort
+findInputPort(eing. : EString) : InputPort
+getTopComponentParent() : Component
+getParentComponents() : EList<Component>
+findAtomicComponents() : EList<Component>
+specialCopyHook(eing. : EMap)
+getVerifBehaviour() : <nicht spezifiziert>

Component

+getOuputPorts() : EList<OutputPort>
+getInputPorts() : EList<InputPort>
+getChannels() : EList<Channel>
+getSubComponents() : EList<Component>
+getDefinitionElement(eing.) : <nicht spezifiziert>
+getCausalitySpecification() : CausalityComponentSpecification
+getSpecifications() : EList<IModelElementSpecification>
+getLibraryComponentShadow() : Component
+getContainedElementList() : EList<IHierarchicElement>

ComponentRef InternalComponent

+getSource() : Port
+getTarget() : Port
+getParentComponent() : Component

Channel -stronglyCausal : EBoolean

CausalityComponentSpecification

+getComponent() : Component

LibraryComponent

+getPortSpecification() : PortSpecification
+getComponent() : Component
+getOutgoingChannels() : EList<Channel>
+getIncomingChannels() : EList<Channel>
+getVariableType() : <nicht spezifiziert>
+getVar() : <nicht spezifiziert>
+getInitialValue() : <nicht spezifiziert>
+specialCopyHook(eing. : EMap) : <nicht spezifiziert>

Port

InputPort OutputPort

+getLibraryComponents() : EList<LibraryComponent>
+getURI() : EString
+getLibraryTypeDefinitions() : <nicht spezifiziert>
+getLibraryFunctionDefinitions() : <nicht spezifiziert>
+getDefinitionElement(eing.) : <nicht spezifiziert>
+getDefinitionElement(eing.) : <nicht spezifiziert>
+getIFunctionDefinitions() : <nicht spezifiziert>
+getITypeDefinitions() : <nicht spezifiziert>

LibraryComponentPackage

ComponentSpecificationsContainer

behavior

+propagate(eing. : PropagateableSpecification)

PropagateableSpecification

+propagate(eing. : PropagateableSpecification)

-type
-initialValue
-stateSignal : EBoolean

PortSpecification

generator

base::HierarchicElementBase

+specialCopyHook() : EMap

«interface»
kernel::ISpeciallyCopyiable

«interface»
element::IHiddenSpecification

+getURI() : EString
+getName() : EString

base::LibraryElementBase

«interface»
kernel::ILibraryPackage

1

-subPackages

0..*
«interface»

kernel::ILibraryRootElement

<<interface>>
...

base::ConnectorBase base::ConnectionSegmentBase

annotation

VerifBehaviourComponentSpecification

+addSpecification(eing.)

«interface»
element::IModelElement

«interface»
element::IModelElementSpecification

«interface»
element::IHierarchicElement

«interface»
kernel::IProjectRootElement

+isChangeable() : EBoolean

-URI : EString

kernel::ILibraryElementReference

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 52 of 124

 Action: Defines the actions to accomplish when conditions defined in
Guard are met. An Action should normally contain some Transition
between one State and another State.

o The values of DSV can trigger an Action, when a condition is met. These conditions
are implemented using Guards.

 ModeAutomaton
o A ModeAutomaton controls the switching of running modes of a Component

during the lifecycle.
o For each ModeAutomaton, an initial Mode must be defined (i.e., the mode in

which the mode automaton starts).
o A ModeAutomaton is defined using the following mode elements:

 Mode: Describes the current configuration of computational data flow a
component is in.

 Switch: Controls the change of the mode to execute. A Switch element
contains Guards which specify the mode switch conditions.

 Guards: Define a condition or a set of conditions for triggering a mode
switch.

 ModeComponentStructureSpecification: This specification
encapuslates a Component that defines the behaviour of the given mode.

4.3 Logical Component Architecture Annotations

Lastly, a number of properties are contributed to model elements of the logical view using
annotations (see Section 3.2.5.3).

In order to provide a better overview, all annotations which are registered for model elements from
the logical viewpoint (i.e., also if they are contributed by other viewpoints) are summarized in the
following tables.

4.3.1 Annotations Registered for Components

Table 4.2 lists the annotations that are registered for logical Components.

Annotation name plugins Description

MemoryRequirement

[DerivedAnnotation]

org.fortiss.af3.component Defines the required memory of a component. The local
value is subject to user input, while the accumulated value
considers the memory requirements of the
subComponents and itself.

SafetyIntegrityLevel

[DerivedAnnotation]

org.fortiss.af3.safety This annotation allows defining the required safety level
for a Component using the levels defined in different
safety standards (e.g., SIL2 from IEC 61508). The
annotation for the top level Component (which is

associated with the ComponentArchitecture, is used
to select the safety standard that defines the available
levels (considered standards DO178C, IEC61508, and
ISO26262).

The information provided by the
SafetyIntegrityLevel annotation is mainly
intended to support the architecture design and
deployment phase of the development process. The Safety
View (Section 7.1) provides additional concepts that are
used support verification and validation activities in the
development process. Therefore, the Safety View provides

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 53 of 124

the Safety Standard Meta-Model (see Section 7.1.4) which
is used internally by the corresponding tool-support (e.g.,
for safety consistency checks and report generation) and
into which SafetyIntegrityLevel annotation form
the logical view can easily be transformed.

EventTriggerAnnotation eu.dreamsproject.rtaw.timing This annotation allows defining the trigger of a
Component based on the EventTrigger defined in
the DREAMS timing viewpoint (see Section 7).

Table 4.2: Annotations for Components

4.3.2 Annotations registered for Ports

Likewise, Table 4.3 lists annotations that have been registered for logical Ports.

Annotation Name Corresponding plugins Description

MessageSize

[DerivedAnnotation]

eu.dreamsproject.application Returns the size of the raw data that is
sent via the annotated OutputPort.
It is given in bits and calculated via the
data type (see PortSpecification
in Section 4.2) that is defined for the
annotated OutputPort.

InputEventAnnotation eu.dreamsproject.rtaw.timing This annotation allows defining the
event triggering at an InputPort

based on the InputEvent defined in
the dreams timing viewpoint (see
Section 7).

OutputEventAnnotation eu.dreamsproject.rtaw.timing This annotation allows defining the
event triggering at an OutputPort

based on the OutputEvent defined
in the dreams timing viewpoint (see
Section 7).

Table 4.3: Annotations for Ports

4.4 Interfaces to other Meta-Models

The logical component architecture meta-model does not contain references to meta-models from
other viewpoints described in this document. However, as pointed out in 2.2.1, it is referred to by a
number of meta-models defined in other viewpoints.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 54 of 124

4.5 Logical Component Architecture Model Example Instances

4.5.1 Component Architecture with Annotations

Figure 4.3: Exemplary model of a navigation application

As an example, a model of the logical architecture of a navigation application is illustrated in Figure

4.3. It consists of the Components SensorAcquisition (reads and pre-processes sensor data),
Controller (algorithmic performing the navigation), MapProcessing (provides access to a stored
map), HMI (user input / display), and ActuatorControl (controls a motor or similar). The exemplary
application model is centered on the Controller Component that receives refined sensor data from

the Component SensorAcquisition and performs the actual navigation using additional information
from a map. The results from the Controller are output to the ActuatorControl Component to

transform these results into physical actions and to the HMI Component that displays the results
and forwards commands issued by the user to the Controller.

Each of these Components has attached InputPorts (white circles) and OutputPorts (black
circles) that may be used to connect Components via Channels (black arrows). Disconnected
Ports are used to model in- and outputs from or to the environment of the logical architecture, like

data from sensors (e.g. the GPS port at the Component SensorAcquisition) or sending commands to
actuators (e.g. via the Actuator Port or the ActuatorCtrl Component).

Figure 4.4: Component model of the Controller

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 55 of 124

The internal structure of the Controller Component is illustrated in Figure 4.4 and the annotated
properties of the contained Components are given in Figure 4.5. Since the Components related to
the path planning are safety-relevant due to their direct impact on the maneuvers of resulting
vehicle, their annotated SIL value is high (SIL4), whereas the navigation function is uncritical (SIL0).
Furthermore, the figure illustrates that further on-functional properties can be annotated to logical
components (here: memory consumption). As it will be pointed out in Chapter 6, parameters that

depend on the mapping of a logical Component to an ExecutionUnit provided by the platform
(see Chapter 5) are described by the Deployment meta-model.

Figure 4.5: Annotations of the subcomponents of the Controller Component

4.5.2 Mode Automaton Specification

As pointed out in Section 4.2, a ModeAutomaton can be used to specify mode switches inside
logical Components. The Mode Automaton controls the mode changes of a component in distinct
periods of the time. A component may contain different running modes in lifecycle.

In Figure 4.6, a Mode Automaton example associated to a Component is displayed.

Figure 4.6. Example of Mode Automation applied to a component controlling automotive driving mode.

As defined in Section 4.2, a ModeAutomaton is composed of Modes (represented as blue ellipses)
and Switches (represented as arrows). The linking of Modes and Switches is performed using
input and output connectors (black and white circles, respectively). An initial mode, which the mode
automaton starts with, is required in mode automaton. This initial mode is contains a black dot,
which highlights that the mode node is the initial mode.

Mode changes are defined using switches. The conditions for switching between modes are
provided by specifying Guards of a Switch. If no Guard of an outgoing Switch is specified, the
current Mode remains active. If a Switch can be fired (the condition specified in the Guard is
met), then new Mode will be active, and the Component specifying the behaviour of this Mode will
take over the computation job.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 56 of 124

A mode generally contains a component structure. A mode component structure is a computation of
the outputs when the corresponding mode active is. Every mode must contain one sub-component
structure. A mode component structure must have the same input and output Ports as the parent
component, which contains this mode automaton (denoted “mode node” the following). Every time
a switch is triggered, the corresponding mode component structure is executed. The mode
component structure uses the mode node’s InputPorts, and delivers the result of its computation

to the mode node’s OutputPorts.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 57 of 124

5 Technical Viewpoint

5.1 Platform Architecture Meta-Model

The platform architecture meta-model provides the basis for the description of platform
architectures in AutoFOCUS3. It consists of a platform architecture meta-model (described in this
section) that is based on the AutoFOCUS3 hierarchic element meta-model (see Section 3.2.6.2) and
additional attributes contributed by a number of annotations (see Section 5.3).

In order to describe a concrete platform architecture, a specialized meta-model needs to be derived
from the AutoFOCUS3 platform meta-model described in this section. Hence, all classes in this meta-
model are abstract types. The meta-models for the DREAMS architecture are described in next
sections 4.2-4.6.

Table 5.1 provides an overview of the AutoFOCUS3 platform architecture meta-model.

Name Platform Architecture Meta-Model

Description The goal of the hierarchic element meta-model is to provide the basis for the
description of platform architectures.

Ecore file platform.ecore

Plugin org.fortiss.af3.platform

Packages org.fortiss.af3.platform

org.fortiss.af3.platform.annotation

AutoFOCUS3 platform meta-model

Platform-related annotations

Dependencies org.fortiss.af3.component (see Section 4.1)

org.fortiss.tooling.base (see Section 3.2.6.2)

org.fortiss.tooling.kernel (see Section 3.2.6.1)

Table 5.1: Platform Architecture Meta-Model (overview)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 58 of 124

Figure 5.1: AutoFOCUS3 Platform Architecture Meta-Model (UML Diagram 1/2 of package

org.fortiss.af3.platform.model)

org.fortiss.tooling.base
org.fortiss.tooling.base

org.fortiss.tooling.kernel

-generated : EBoolean

PlatformArchitecture

+getPlatformConnectorUnits() : EList<PlatformConnectorUnit>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

ExecutionUnit

-capacity : EInt

TransmissionUnit PlatformConnectorUnitGatewayUnit MemoryUnit

+getPlatformArchitecture() : PlatformArchitecture

«interface»
IPlatformArchitectureElement

Transmitter Receiver Transceiver

PlatformArchitectureElementGroup«interface»
IBoxPlatformArchitectureElement

«interface»
IChipPlatformArchitectureElement

«interface»
IIpCorePlatformArchitectureElement

+getPlatformConnectorUnits() : EList<IPlatformConnectorType>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

GenericPlatformUnit

«interface»
ILogicalPlatformArchitectureElement

«interface»
IPhysicalPlatormArchitectureElement

«interface»
IPlatformArchitectureElementType

TransmissionConnection

«interface»
IMiddlewarePlatformArchitectureElement

«interface»
IVirtualizationPlatformArchitectureElement

«interface»
IOperatingSystemPlatformArchitectureElement

«interface»
ISoftwarePlatformArchitectureElement

«interface»
ICommunicationRole

«interface»
ICommunicationMaster

«interface»
ICommunicationSlave

«interface»
IPlatformConnectorType

+getArchitectureDomainName() : EString

«interface»
IArchitectureDomain

+getArchitectureDomainName() : EString

«interface»
IPlatformDomain

generic

«interface»
IBoardPlatformArchitectureElement

base::HierarchicElementBase«interface»
element::IHierarchicElement

«interface»
kernel::IProjectRootElement

base::ConnectorBase
base::ConnectionSegmentBase base::ExitConnectorBase

«interface»
IPlatformPort

«interface»
IPlatformExport

«interface»
IPlatformResource

«interface»
IPlatformCommunicationResource

«interface»
IPlatformProcessingResource

«interface»
IPlatformMemoryResource

«interface»
IPlatformIOResource

«interface»
IPlatformInterface

«interface»
IGenericPlatformSourceConnector

«interface»
IGenericPlatformTargetConnector

base::EntryConnectorBase

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 59 of 124

Figure 5.2: AutoFOCUS3 Platform Architecture Meta-Model (UML Diagram 2/2 of package

org.fortiss.af3.platform.model)

The meta-model consist of the package org.fortiss.af3.platform.model that contains
the core definition of the platform architecture meta-model, as well as the package
org.fortiss.af3.platform.model.annotation that provides a number of annotations
for platform architecture model elements.

The org.fortiss.af3.platform.model package contributes several groups of classes. It is
shown in Figure 5.1 and Figure 5.2.

For the description of the platform architecture root (container element for all platform
architectures) and the structural platform elements, the following classes are available:

 PlatformArchitecture

o Root element for platform architecture meta-model.
o Attributes:

 generated: Flag if the platform architecture has been generated.

 IPlatformArchitectureElement

o Base class for all platform architecture elements
o Operations:

 getPlatformArchitecture(): Returns the
PlatformArchitecture for this
IPlatformArchitectureElement.

 IPlatformResource

o Base marker interface for platform elements that classify the different platform
resources.

org.fortiss.tooling.base
org.fortiss.tooling.base

org.fortiss.tooling.kernel

-generated : EBoolean

PlatformArchitecture

+getPlatformConnectorUnits() : EList<PlatformConnectorUnit>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

ExecutionUnit

-capacity : EInt

TransmissionUnit PlatformConnectorUnitGatewayUnit MemoryUnit

+getPlatformArchitecture() : PlatformArchitecture

«interface»
IPlatformArchitectureElement

Transmitter Receiver Transceiver

PlatformArchitectureElementGroup«interface»
IBoxPlatformArchitectureElement

«interface»
IChipPlatformArchitectureElement

«interface»
IIpCorePlatformArchitectureElement

+getPlatformConnectorUnits() : EList<IPlatformConnectorType>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

GenericPlatformUnit

«interface»
ILogicalPlatformArchitectureElement

«interface»
IPhysicalPlatormArchitectureElement

«interface»
IPlatformArchitectureElementType

TransmissionConnection

«interface»
IMiddlewarePlatformArchitectureElement

«interface»
IVirtualizationPlatformArchitectureElement

«interface»
IOperatingSystemPlatformArchitectureElement

«interface»
ISoftwarePlatformArchitectureElement

«interface»
ICommunicationRole

«interface»
ICommunicationMaster

«interface»
ICommunicationSlave

«interface»
IPlatformConnectorType

+getArchitectureDomainName() : EString

«interface»
IArchitectureDomain

+getArchitectureDomainName() : EString

«interface»
IPlatformDomain

generic

«interface»
IBoardPlatformArchitectureElement

base::HierarchicElementBase«interface»
element::IHierarchicElement

«interface»
kernel::IProjectRootElement

base::ConnectorBase
base::ConnectionSegmentBase base::ExitConnectorBase

«interface»
IPlatformPort

«interface»
IPlatformExport

«interface»
IPlatformResource

«interface»
IPlatformCommunicationResource

«interface»
IPlatformProcessingResource

«interface»
IPlatformMemoryResource

«interface»
IPlatformIOResource

«interface»
IPlatformInterface

«interface»
IGenericPlatformSourceConnector

«interface»
IGenericPlatformTargetConnector

base::EntryConnectorBase

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 60 of 124

 IPlatformCommunicationResource

o Interface to mark communication resources (i.e., resources that move data in
system).

 IPlatformProcessingResource

o Interface to mark processing resources (i.e., resources that support the execution of
software)

 IPlatformMemoryResource

o Interface to mark memory resources (i.e., resources that support the storage of
data).

 IPlatformIOResource

o Interface to mark I/O resources (i.e., resources that interface the platform to its
environment).

 ExecutionUnit

o Base class for execution units, i.e., platform elements which allow the execution of
software

o Operations:
 getReceiverUnits()

 getTransmitterUnits()

 getTransceiverUnits()

 getPlatformConnectorUnits()

 TransmissionUnit

o Base class for transmission units, i.e., communication platform elements that allow
the transmission of data (e.g., busses, networks, etc.).

 GatewayUnit

o Base class for gateways units, i.e. dedicated communication platform elements that
move traffic between transmission units residing at different levels of the platform
architecture.

 MemoryUnit

o Base class for memory units (e.g., RAM, ROM resources)

 GenericPlatformUnit

o Placeholder for generic platform elements (e.g., custom IP blocks) that are not
described by any of more specific base classes.

o Operations:
 getReceiverUnits()

 getTransmitterUnits()

 getTransceiverUnits()

 getPlatformConnectorUnits()

For a more fine-grained specification how a platform architecture element is implemented, the
meta-model provides the following marker interfaces that can be inherited additionally. For
example, a concrete processor would inherit both from ExecutionUnit (see above) and
IChipPlatformArchitectureElement.

 IPlatformArchitectureElementType

o Marker interface to specify the type of platform architecture elements.

 ILogicalPlatformArchitectureElement

o Model element is a logical grouping.

 IPhysicalPlatformArchitectureElement

o Base marker interface for platform elements implemented in hardware.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 61 of 124

 IBoxPlatformArchitectureElement

o Marker interfaces for “boxes”, i.e. electronic devices hosting one or more computer
systems (~ ECU).

 IBoardPlatformArchitectureElement

o Marker interface for electronic circuit boards (hosting multiple chips).

 IChipPlatformArchitectureElement

o Marker interface for electronic chips that can host multiple hardware IP components
in a single package.

 IIpCorePlatformArchitectureElement

o Marker interface for hardware IP component (may contain chip IP components).

 ISoftwarePlatformArchitectureElement

o Marker interface for platform architecture elements implemented in software.

 IVirtualizationPlatformArchitectureElement

o Marker interface for software platform architecture elements that provide a
virtualization layer of the underlying hardware.

 IOperatingSystemPlatformArchitectureElement

o Marker interface for operating systems and their sub-components.

 IMiddlewarePlatformArchitectureElement

o Marker interface for middleware components (i.e., platform architecture elements
implemented in software that belong neither into the virtualization nor the
operating system layer).

 PlatformArchitectureElementGroup

o Logical group of platform architecture elements.

In order to allow for a modular definition of hierarchical platform architectures, and to foster the
reuse of sub meta-models, a concept is required to define the compatibility of platform architecture
elements. An encoding of the composition rules into the type-system provided by the meta-model is
not flexible enough since it does not support the re-use of sub-meta-models in different contexts
(e.g., two different concrete platform architectures might allow the use of memory elements at
different levels). Therefore, the AutoFOCUS3 platform meta-model provides the

IArchitectureDomain base marker interface, from which derived marker interfaces should be
defined by meta-models providing concrete element types. For each platform meta-model that
might combine multiple existing meta-models providing a number of platform architecture element
domains, an implementation of the IPlatformHierarchicalCompositionRules (see
Section 5.2.6) interface must be provided that defines the compatibility of the different architecture
domains.

 IArchitectureDomain

o Marker interface to specify platform architecture domain of hierarchical platforms.
Platforms / platform element libraries must provide concrete domains (and derive
its platform elements from these domains), as well as an implementation of
IPlatformHierarchicalCompositionRules where the composition rules
are encoded (i.e., composability of the different domains).

o Operations:

 getArchitectureDomainName(): Returns the architecture domain's
name.

 IPlatformDomain

o IArchitectureDomain depicting the PlatformArchitecture itself.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 62 of 124

Finally, the last group of classes is used to specify the interfaces of platform architecture elements:

 PlatformConnectorUnit

o Base class for connectors of platform architecture elements.

 Transmitter

o Platform connector that supports outbound traffic, only.

 Receiver

o Platform connector that supports inbound traffic, only.

 Transceiver

o Platform connector that supports both inbound and outbound traffic.

 TransmissionConnection

o Connection between platform connector units of two platform architecture

elements. It should be noted that the TransmissionConnection is a purely
logical link that is used to model the connection of any platform architecture
elements. All required attributes are described in the corresponding platform
architecture elements and platform connector units. If not noted otherwise,

TransmissionConnections are undirected (despite the fact that they inherit
the source and target attributes from the IConnection interface).

 ICommunicationRole

o Marker interface to specify which role a platform element takes in the
communication.

 ICommunicationMaster

o Marker interface to specify that platform element is a communication master that
actively initiates the communication.

 ICommunicationSlave

o Marker interface to specify that platform element is a communication slave that can
accept communication requests from communication masters.

 IPlatformConnectorType

o Marker interface to further classify the type of platform connector units

 IPlatformPort

o Platform connector unit is a port that be connected / that can implement a given
platform interface.

 IPlatformInterface

o Platform connector unit is an interface that can be implemented by platform ports.

 IPlatformExport

o Platform connector unit exports services for use at the parent level.

 IGenericPlatformSourceConnector
o Generic platform (source) connector used to connect platform elements where

interconnect has no special role, like transmitting communication information.

 IGenericPlatformTargetConnector
o Generic platform (target) connector used to connect platform elements where

interconnect has no special role, like transmitting communication information.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 63 of 124

5.2 DREAMS Platform Meta-Model

The DREAMS platform meta-model provides the types required to describe instances of the DREAMS
architecture (see D1.2.1 “Architectural Style of DREAMS”). It is based on the AutoFOCUS3 platform
architecture model (see Section 5.1), and provides a number of architecture domains (each of which
is declared in a separate sub-package of the meta-model).

Table 5.2: DREAMS Platform Meta-Model provides an overview of the AutoFOCUS3 platform
architecture meta-model.

Name DREAMS Platform Meta-Model

Description Meta-Model for the description of instances of the DREAMS architecture.

Ecore file dreams.ecore

Plugin eu.dreamsproject.platform

Packages eu.dreamsproject.platform.model.cluster

eu.dreamsproject.platform.model.node

eu.dreamsproject.platform.model.tile

eu.dreamsproject.platform.model.noc

eu.dreamsproject.platform.model.hypervisor

eu.dreamsproject.platform.model.processor

eu.dreamsproject.platform.model.processor.

annotation

Cluster: physically distributed computer
system

Node: multi-core chip containing tiles
connected by a network-on-chip

Tile: processor cluster / single processor
core / IP core connected to the NoC

NoC: Internal structure of network-on-
chip

Hypervisor: virtualization of physical
resources into partitions

Processor: Internal structure of
processors

Processor domain elements annotations

Dependen-
cies

org.fortiss.af3.platform (see Section 5.1)

org.fortiss.af3.component (see Section 4.1)

org.fortiss.tooling.base (see Section 3.2.6.2)

org.fortiss.tooling.kernel (see Section 3.2.6.1)

Table 5.2: DREAMS Platform Meta-Model

In the next sections, each of the architecture domains will be described in more detail. Finally,
Section 5.2.6 describes the composition rules that specify how elements from the different
architecture domains can be combined.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 64 of 124

5.2.1 Cluster Domain

5.2.1.1 Cluster Meta-Model

Figure 5.3: DREAMS Platform Meta-Model / Cluster (UML Diagram of package

eu.dreamsproject.platform.model.cluster)

The eu.dreamsproject.platform.model.cluster package is used to model the DREAMS
cluster level, i.e. to logically group the interconnection of entire physically distributed computer
systems. The meta-model contains the following classes (see Figure 5.3):

 IClusterDomain:
o The IArchitectureDomain identifying model elements of the cluster domain.
o Operations:

 getArchitectureDomainName(): Returns the architecture domain's
name.

 ClusterDomainElement: Base class for structural elements of the cluster domain

 Cluster: A DREAMS cluster, i.e. a (logical) group of nodes that are connected via an off-
chip network (see Section 5.2.2).

 OffChipNetworkGateway: GatewayUnit providing a bridge between the
OffChipNetworks of connected Clusters.

As it can be seen from Figure 5.3, the model elements in this package are based on the concepts
provided by the AutoFOCUS3 platform Meta-Model (see Section 5.1):

 The purpose of the elements at the cluster domain is provide a logical grouping of physically
distributed computer systems (which are modelled at the node domain, see Section 5.2.2).
Hence, the cluster domain elements are modelled as logical elements (base marker interface
ILogicalPlatformArchitectureElement of IClusterDomainElement).

 The structural elements Cluster and OffChipNetworkGateway are hierarchic model
elements (HierarchicElementBase via inheritance hierarchy).

org.fortiss.af3.platform

+getArchitectureDomainName() : EString

«interface»
«interface»

IClusterDomain

ClusterDomainElement

Cluster

+getArchitectureDomainName() : EString

«interface»
platform::IArchitectureDomain

+getPlatformConnectorUnits() : EList<PlatformConnectorUnit>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

platform::ExecutionUnit

«interface»
platform::ILogicalPlatformArchitectureElement

platform::GatewayUnit

OffChipNetworkGateway

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 65 of 124

 Clusters are modelled as ExecutionUnits, and hence they (or, model elements in
their offspring, respectively) are deployment targets (see Section 6.1) for software which is
described using logical components (see Section 4.1).

 The communication between the Clusters and the OffChipNetworkGateways is

realized by OffChipNetworkInterfaces and OffChipNetworkPorts (see Section
5.2.2). The Ports from the node meta-model are reused in the cluster meta-model since it
provides only a logical grouping.

 The mode of communication is modelled as bidirectional (base class Transceiver of
OffChipNetworkPort and OffChipNetworkInterface) with masters actively

initiating the communication (marker interface ICommunciationMaster).

5.2.1.2 Cluster Model Example Instance

Figure 5.4: Cluster domain example model instance

In Figure 5.4, a simple model consisting of two Clusters can be seen. Both Clusters are

connected via an OffChipNetworkGateway. The Clusters have attached
OffChipNetworkPorts (connectors represented by black circles) which are each connected to
an OffChipNetworkInterface of the contained OffChipNetwork and to the

OffChipNetworkInterface of the OffChipNetworkGateway element (see Section 5.2.2).
Thus, a connection between the internal OffChipNetworks of Cluster_A and Cluster_B is
modelled.

The eu.dreamsproject.platform.model.nodes package is used to model the DREAMS
node level, i.e. to model the internals of a single DREAMS cluster. Hence, a model at the node level
describes the structural elements and the topology of a physically distributed computer system. The
meta-model contains the following classes (see Figure 5.5).

 INodeDomain:
o The IArchitectureDomain identifying model elements of the node domain.
o Operations:

 getArchitectureDomainName():Returns the architecture domain's
name.

 NodeDomainElement: Base class for structural elements of the node domain

 NodeDomainConnector: Base class for IPlatformConnectorUnits of the node
domain

 Node: A DREAMS node, i.e. electronic control unit (or computer) hosting a multi-core chip
containing tiles connected by a network-on-chip

 OffChipNetwork: An off-chip network to interconnect multiple nodes

 OffChipNetworkPort: Off-chip communication port of structural elements at the node
level (Nodes, OffChipClusterGateways).

 OffChipNetworkInterface: Communication interface of an OffChipNetwork.

 PowerSupply: Model element of an individual (independent) power supply.

 PowerOut: NodeDomainConnector attached to PowerSupply for connecting
Nodes.

 PowerIn: NodeDomainConnector allowing to connect power supplies to Nodes.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 66 of 124

5.2.2 Node Domain

5.2.2.1 Node Meta-Model

Figure 5.5: DREAMS Platform Meta-Model / Node (UML Diagram of package

eu.dreamsproject.platform.model.node)

o
rg

.fo
rtiss.a

f3
.p

la
tfo

rm

+g
etA

rch
itectu

reD
o

m
a

in
N

a
m

e() : EStrin
g

«
in

terface»
IN

o
d

e
D

o
m

ain

N
o

d
eD

o
m

a
in

C
o

n
n

ecto
r

O
ffC

h
ip

N
e

tw
o

rkP
o

rt
O

ffC
h

ip
N

e
tw

o
rkIn

te
rface

N
o

d
eD

o
m

a
in

Elem
en

tN
o

d
e

O
ffC

h
ip

N
e

tw
o

rk

p
latfo

rm
::Tran

sce
ive

r

+getP
latfo

rm
C

o
n

n
ecto

rU
n

its() : EList<P
latfo

rm
C

o
n

n
ecto

rU
n

it>
+getTran

sceiverU
n

its() : EList<Tran
sceiver>

+getR
eceiverU

n
its() : EList<R

eceiver>
+getTran

sm
itterU

n
its() : EList<Tran

sm
itter>

p
latfo

rm
::Execu

tio
n

U
n

it

-cap
acity : EIn

t

p
latfo

rm
::Tran

sm
issio

n
U

n
it

+g
etA

rch
itectu

reD
o

m
a

in
N

a
m

e() : EStrin
g

«
in

terface»
p

latfo
rm

::IA
rch

itectu
reD

o
m

a
in

«
in

terface»
p

latfo
rm

::IC
o

m
m

u
n

ica
tio

n
M

a
ster

«
in

terface»
p

latfo
rm

::IB
o

xP
la

tfo
rm

A
rch

itectu
reElem

en
t

«
in

terface»
p

latfo
rm

::IP
la

tfo
rm

P
o

rt
«

in
terface»

p
latfo

rm
::IP

latfo
rm

In
te

rface

P
o

w
e

rSu
p

p
ly

P
o

w
e

rO
u

t
P

o
w

e
rIn

«
in

terface»
p

latfo
rm

::IG
e

n
e

ricP
latfo

rm
Targe

tC
o

n
n

e
cto

r

«
in

terface»
p

latfo
rm

::IG
e

n
e

ricP
latfo

rm
So

u
rce

C
o

n
n

e
cto

r

+getP
latfo

rm
C

o
n

n
ecto

rU
n

its() : EList<IP
latfo

rm
C

o
n

n
ecto

rTyp
e>

+getTran
sceiverU

n
its() : EList<Tran

sceiver>
+getR

eceiverU
n

its() : EList<R
eceiver>

+getTran
sm

itterU
n

its() : EList<Tran
sm

itter>

p
latfo

rm
::G

en
ericP

latfo
rm

U
n

it

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 67 of 124

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1):

 The base marker interface IBoxPlatformArchitectureElement of
NodeDomainElement and NodeDomainConnector indicates that the system entities
modelled by the node domain are electronic devices which provide a dedicated housing.

 The structural elements Node, OffChipNetwork and OffChipClusterGateway are
hierarchic model elements (HierarchicElementBase via inheritance hierarchy).

 Nodes are modelled as ExecutionUnits, and hence they (or, model elements in their
offspring, respectively) are deployment targets (see Section 6.1) for software which is
described using logical components (see Section 4.1).

 Likewise, OffChipNetworks being modelled as TransmissionUnits, and

OffChipClusterGateways being modelled as GatewayUnits, are part of the
communication facilities of a DREAMS system.

The mode of communication is modelled as bidirectional (base class Transceiver of
OffChipNetworkPort and OffChipNetworkInterface) with masters actively initiating
the communication (marker interface ICommunciationMaster). Here,
OffChipNetworkPorts constitute the interface of Nodes and OffChipClusterGateways
to the OffChipNetwork (whose is interface is modelled by OffChipNetworkInterface).

5.2.2.2 Node Model Example Instance

Figure 5.6: Node domain example model instance

An exemplary model from the Node domain is shown in Figure 5.6, i.e. the internal structure of a

Cluster. The example consists of two Nodes, one OffChipNetwork, and two
PowerSupplys. The OffChipNetwork, which represents e.g. a TTEthernet network or an

EtherCAT network, has three attached OffChipNetworkInterfaces. Three
OffChipNetworkPorts (represented by black connectors) at the Nodes and at the right hand
side of the OffChipClusterGateway are connected to these
OffChipNetworkInterfaces. The NetworkInterface located at the left side of the
OffChipNetwork in the example is connected to an OffChipNetworkPort of the containing

Cluster.

As pointed out in Section 5.2.1.2, the Cluster’s OffChipNetworkPort can be connected to

the OffChipNetworkInterface of an OffChipNetworkGateway. Since Clusters only
represent a logical grouping of platform elements, the OffChipNetworkGateway (that is used
to describe the connection of the off-chip networks of two different clusters) resides at the cluster-
domain. In contrast to that, OnChipOffChipGateways (see Section 5.2.3.2 for an example) and
NetworkInterfaces (see Section 5.2.5.2 for an example) are used to route communication from
different levels of the architecture. Hence, OnChipOffChipGateways and

NetworkInterfaces reside at the lower of the two architecture levels that are connected by

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 68 of 124

them (tile-domain, and processor-domain, respectively) and their interface to the containing
architecture level is expressed using specializations of IPlatformExport

(OnChipOffChipExport and OnChipNetworkExport, respectively).

Each of the two Nodes present in the example is connected to an independent PowerSupply. The
connection is established via PowerOuts at the PowerSupplys and PowerIns attached to the
Nodes. The information about the power supply of Nodes can be considered during safety analysis
(e.g., shared vs. separated power supply)

5.2.3 Tile Domain

5.2.3.1 Tile Meta-Model

Figure 5.7: DREAMS Platform Meta-Model / Tile (UML Diagram of package

eu.dreamsproject.platform.model.tile)

The eu.dreamsproject.platform.model.tile package is used to model the DREAMS tile
level, i.e. to model the internals of a single DREAMS node. Hence, a model at the tile level describes
the structural elements and of a multi-processor system on-chip whose elements are interconnected
by an on-chip network. The meta-model contains the following classes (see Figure 5.7).

 ITileDomain:
o The IArchitectureDomain identifying model elements of the tile domain.
o Operations:

 getArchitectureDomainName():Returns the architecture domain's
name.

 TileDomainElement: Base class for structural elements of the tile domain

 TileDomainConnector: Base class for IPlatformConnectorUnits of the tile
domain

 Tile: A DREAMS tile, i.e. a multi-core or single-core processing unit that is connected to the
OnChipNetwork via its OnChipNetworkPort.

 OnChipNetwork: An on-chip network to connect multiple tiles

org.fortiss.af3.platform

+getArchitectureDomainName() : EString

«interface»
ITileDomain

TileDomainConnector

OnChipNetworkPort OnChipNetworkInterface OnChipOffChipExport

TileDomainElement

Tile IpCoreOnChipNetwork OnChipOffChipGateway

platform::Transceiver

+getPlatformConnectorUnits() : EList<PlatformConnectorUnit>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

platform::ExecutionUnit

+getPlatformConnectorUnits() : EList<IPlatformConnectorType>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

platform::GenericPlatformUnit

«interface»
platform::IIpCorePlatformArchitectureElement

«interface»
platform::ICommunicationMaster

+getArchitectureDomainName() : EString

«interface»
platform::IArchitectureDomain

-capacity : EInt

platform::TransmissionUnit

platform::GatewayUnit

«interface»
platform::IPlatformExport

«interface»
platform::IPlatformPort

«interface»
platform::IPlatformInterface

«interface»
platform::IGenericPlatformTargetConnector

«interface»
platform::IGenericPlatformSourceConnector

Clock

ClockIn ClockOut

WatchDog

WatchDogIn WatchDogOutGeneralPurposeInput GeneralPurposeOutput

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 69 of 124

 OnChipOffChipGateway: A gateway from the on-chip to the off-chip level.

 IpCore: A placeholder for a generic IP core that is connected to the OnChipNetwork via
its OnChipNetworkPort.

 OnChipNetworkPort: On-chip communication port of structural elements at the tile
level (Tiles, OnChipOffChipGateways).

 OnChipNetworkInterface: Communication interface of on-chip communication
network

 OnChipOffChipExport: It is required to model the communication routes to other
nodes.

 WatchDog: Model element representing a watchdog timer which can trigger a reset of
connected elements that fail the reset the watchdog timer in time and hence are considered
to be in a “failed” state.

 WatchDogIn: Connector to be attached to elements which shall be monitored by a
WatchDog.

 WatchDogOut: Connector at the WatchDog to which monitored elements can be
connected.

 Clock: Model element that represents clock sources.

 ClockIn: Connector of the model element to which a clock signal shall be provided.

 ClockOut: Connector at the clock source from which a clock signal to connected
elements is emitted.

 GeneralPurposeInput: Connector representing a digital input port of the respective
model element.

 GeneralPurposeOutput: Connector representing a digital output port of the respective
model element.

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1):

 The base marker interface IIpCorePlatformArchitectureElement of

TileDomainElement and TileDomainConnector indicates that the system entities
modelled by the tile domain are IP cores that possibly are contained in the same package.

 The structural elements Tile, IpCore, OnChipNetwork and
OnChipOffChipGateway are hierarchic model elements

(HierarchicElementBase via inheritance hierarchy).

 Tiles are modelled as ExecutionUnits, and hence they (or, model elements in their
offspring, respectively) are deployment targets (see Section 6.1) for software which is
described using logical components (see Section 4.1).

 Likewise, OnChipNetworks being modelled as TransmissionUnits, and

OnChipOffChipGateways being modelled as GatewayUnits, are part of the
communication facilities of a DREAMS system.

 The mode of communication is modelled as bidirectional (base class Transceiver of
OnChipNetworkPort and OnChipNetworkInterface) with masters actively
initiating the communication (marker interface ICommunciationMaster). Here,

OnChipNetworkPorts constitute the interface of Tiles, IpCores and

OnChipOffChipGateways to the OnChipNetwork (interface modelled by

OnChipNetworkInterface). As mentioned above, in addition to
OnChipNetworkPorts, also OnChipOffChipExports can be attached to
OnChipOffChipGateway. Then, the route to the off-chip communication can be
described using a link from the OnChipOffChipExport to the
OffChipNetworkPort owned by the Node that contains the respective

OnChipOffChipGateway.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 70 of 124

 WatchDogs and Clocks can be connected to Tiles level to model different Clock
Domains and the monitoring of Tiles (which represent multi-core processors). This is
especially relevant for safety analysis. Note that each WatchDog must be connected to a
Clock source since its nature as a timer requires a clock signal.

5.2.3.2 Tile Model Example Instance

Figure 5.8: Tile domain example model

Figure 5.8 shows an exemplary model at the Tile-level, i.e. the internal structure of a Node. There
are two Tiles, one OnChipNetwork, and an OnChipOffChipGateway. The white connectors
attached to the OnChipNetwork represent the OnChipNetworkInterfaces. Likewise, the

connectors attached to the Tiles and at the right hand side of the OnChipOffChipGateway
represent OnChipNetworkPorts that are connected to the corresponding
OnChipNetworkInterfaces of the OnChipNetwork.

The OnChipOffChipGateway depicts the gateway of the OnChipNetwork shown in this
example to the network at the containing layer (i.e., an OffChipNetwork at the Node layer). The

connector in the very bottom left of the figure represents the OffChipNetworkPort of the

Node that contains the model shown in Figure 5.8. It is connected to an OnChipOffChipExport
(left connector of OnChipOffChipNetworkGateway) that is used to model the connection to

the containing Node’s OffChipNetworkPort.

In the example, a common Clock source provides a clock signal via ClockOuts to the connected
Tiles which receive the signal via attached ClockIns. Furthermore, WatchDogs are connected

to the two present Tiles via WatchDogOuts (at the WatchDogs) and WatchDogIns (at the
Tiles). Since WatchDogs are essentially timers, they require a clock signal and, hence, they are

connected to the Clock that provides the signal to the Tiles. The Tile Tile_AA_2 additionally
has an attached GeneralPurposeOutput Port and a GeneralPurposeInput Port
modelling the generic GPIOs of processors or boards.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 71 of 124

5.2.4 NoC Domain

5.2.4.1 NoC Meta-Model

The eu.dreamsproject.platform.model.noc package is used to model the internals of
OnChipNetworks (see Section 5.2.3). It contains the following classes (see Figure 5.9).

 INocDomain:
o The IArchitectureDomain identifying model elements of the NoC domain.
o Operations:

 getArchitectureDomainName():Returns the architecture domain's
name.

 NocDomainElement: Base class for structural elements of the tile domain

 NocDomainConnector: Base class for IPlatformConnectorUnits of the NoC
domain

 NocRouter: A router of the OnChipNetwork.

 NocInputUnit: An input unit of a NocRouter of the OnChipNetwork.

 NocOutputUnit: An output unit of a NocRouter of the OnChipNetwork.

Figure 5.9: DREAMS Platform Meta-Model / NoC (UML Diagram of package

eu.dreamsproject.platform.model.noc)

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1):

 The base marker interface IIpCorePlatformArchitectureElement of
NodeDomainElement and NodeDomainConnector indicates that the system entities
modelled by the node domain are IP cores that possibly are contained in the same package.

 NocRouters are modelled as TransmissionUnits and constitute the most fine-
grained level of in the model of the DREAMS communication facilities.

org.fortiss.af3.platform

+getArchitectureDomainName() : EString

«interface»
INocDomain

NocDomainConnector
NocDomainElement

NocRouterNocInputUnit NocOutputUnit

+getArchitectureDomainName() : EString

«interface»
platform::IArchitectureDomain

platform::Transceiver
«interface»

platform::IIpCorePlatformArchitectureElement

platform::TransmissionUnit

-capacity : EInt

«interface»
platform::IPlatformInterface

«interface»
platform::IPlatformPort

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 72 of 124

 The internal structure of an on-chip network is modelled using directed
TransmissionConnections between the OnChipNetworkInterfaces of the
OnChipNetwork and the InputUnits / the OutputUnits of the NocRouters
contained by the OnChipNetwork.

5.2.4.2 NoC Model Example Instance

Figure 5.10: NoC domain example model

Figure 5.10 shows an exemplary model at the NoC-Domain, i.e. the internal structure of an
OnChipNetwork. The black connectors at the left and at the upper side of the figure represent the
OnChipNetworkInterfaces of the containing OnChipNetwork. The example contains four

NoCRouters whose communication interfaces are represented by Input- and OutputUnits.
The InputUnits are represented by the white connectors, while the black connectors attached to
NoCRouters are OutputUnits, respectively. Note the internal structure of the

OnChipNetwork, i.e. the interconnection between the different NoCRouters is modelled using
directed connections (arcs) which allows to model complex communication topologies for
OnChipNetworks. For instance, this can be used to segregate the communication of the platform

components (e.g., Tiles) connected to the corresponding OnChipNetworkInterfaces into
different classes. In the topology depicted in the simple example in Figure 5.10 does not impose any

restrictions onto the communication flow between Tiles connected to the corresponding
OnChipNetworkInterfaces, but provides redundant communication routes.

It should be noted, that on all other levels of the platform meta-model, communication links are
modelled as undirected connections (edges). Hence – unlike InputUnits and OutputUnits –
OnChipNetworkInterfaces are modelled as bidirectional communication elements.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 73 of 124

5.2.5 Processor Domain

5.2.5.1 Processor Meta-Model

Figure 5.11: DREAMS Platform Meta-Model / Processor (UML Diagram of package

eu.dreamsproject.platform.model.processor)

The package eu.dreamsproject.platform.model.processor is used to model the
DREAMS processor level, i.e. the internals of a DREAMS tile. Thus, the system elements of this
package include busses, cores, memories and network interfaces. Hence, it is possible to describe
multicore processors whose cores are connected via a bus and are able to access the

OnChipNetwork using NetworkInterface that is connected to the bus. The meta-model
contains the following classes (see Figure 5.11):

 IProcessorDomain:

o The IArchitectureDomain used to identify model elements that belong to the
domain of processors.

o Operations:
 getArchitectureDomainName():Returns the architecture domain's

name.

 ProcessorDomainElement: Base class of the structural elements that describe a Tile.

 ProcessorDomainConnector: Base class of the structural elements used to describe
the communication of ProcessorDomainElements.

 Core: Structural model element used to describe a single Core of a processor.

 Memory: Base class used to describe memory (storage) elements of a processor. Accessible
via the Bus of the same parent Tile.

 RAM: Model element used to describe Memory which that is volatile.

 ROM: Model element used to describe read-only, non-volatile Memory.

org.fortiss.af3.platform

+getArchitectureDomainName() : EString

«interface»
IProcessorDomain

ProcessorDomainConnector

BusOnChipNetworkExport

ProcessorDomainElement

CoreNetworkInterface Bus Memory

platform::Transceiver
+getPlatformConnectorUnits() : EList<PlatformConnectorUnit>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

platform::ExecutionUnit

-capacity : EInt

platform::TransmissionUnit platform::MemoryUnit

+getArchitectureDomainName() : EString

«interface»
platform::IArchitectureDomain

«interface»
platform::IIpCorePlatformArchitectureElement

«interface»
platform::ICommunicationMaster

«interface»
platform::ICommunicationSlave

BusMasterPort

BusMasterInterface

BusSlavePort

BusSlaveInterface

RAM ROM

platform::GatewayUnit

«interface»
platform::IPlatformPort

«interface»
platform::IPlatformExport

«interface»
platform::IPlatformInterface

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 74 of 124

 Bus: Model element describing the (main) communication resource on processor level
which connects Cores, Memory, and NetworkInterfaces.

 NetworkInterface: Model element that connects the processor elements to the
OnChipNetwork via a BusOnChipNetworkExport to which this Tile is connected.

 BusMasterInterface: Model element to describe interfaces of a processor Bus which
is capable of handling bus master arbiters.

 BusSlaveInterface: Model element to describe interfaces of a processor Bus which is
only capable of serving slave devices.

 BusMasterPort: The Port of a ProcessorDomainElement which is connected to a

BusMasterInterface of a processor Bus. The ProcessorDomainElement must

be capable of fulfilling the role of a Bus master.

 BusSlavePort: The Port of a ProcessorDomainElement which is connected to a
BusSlaveInterface of a processor Bus. The ProcessorDomainElement cannot
take over the master role at this Bus.

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1):

 The base marker interface IIpCorePlatformArchitectureElement of
ProcessorDomainElement and ProcessorDomainConnector indicates that the
system entities modelled by the tile domain are IP cores that possibly are contained in the
same package.

 The structural elements Core, Memory, Bus and NetworkInterface are hierarchic

model elements (HierarchicElementBase via inheritance hierarchy).

 Cores are modelled as ExecutionUnits, and hence they are possible deployment
targets (see Section 6.1) for software which is described using logical components (see
Section 4.1).
Nevertheless, the typical lowest deployment granularity within a DREAMS architecture will
consider Partitions as deployment targets. Those will be executed on top of Cores and
within Hypervisors providing the middleware between both model elements.

 Likewise, Buses are modelled as TransmissionUnits, and NetworkInterfaces are

modelled as GatewayUnits which both are part of the communication resources of a
DREAMS system.

 Furthermore, Memory, which appears at this level in the form of RAM and ROM, is modelled
as a MemoryUnit that describes any kind of memory or storage. Thus, RAM and ROM are
also hierarchical elements.

 The mode of communication is modelled as bidirectional (base class Transceiver of
ProcessorDomainConnector) with masters actively initiating the communication
(marker interface ICommunciationMaster). Here, BusMaster- and
BusSlavePorts constitute the interface of Cores, Memories and
NetworkInterfaces to the Bus whose interfaces are modelled as BusMaster- and

BusSlaveInterfaces. As mentioned above, BusOnChipNetworkExports can be
attached to NetworkInterfaces in addition to BusMaster- and BusSlavePorts.
Then, the route to the off-chip communication can be described using a link from the

OnChipOffChipExport to the OffChipNetworkPort owned by the Node that
contains the respective OnChipOffChipGateway.

 In contrast to the DREAMS meta-models described in the previous sections, the
communication role (master or slave) is especially important considering the Bus
architecture where one device must have absolute control over the communication.
Otherwise, interfering access would render any information on the Bus unusable. Hence,
the explicit separation into master and slave ports and interfaces here.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 75 of 124

5.2.5.2 Processor Model Example Instance

Figure 5.12: Processor domain example model

Figure 5.12 contains an exemplary model at the processor domain, i.e. the internals of a Tile. The
model contains two Cores, one RAM and one ROM Memory, a Bus, and a NetworkInterface
(NI). All mentioned elements are connected via the Bus. The Ports (black connectors) attached to
the Cores and to the NetworkInterface are MasterPorts since they need to be able to

initiate communication via the Bus. These MasterPorts are connected to
BusMasterInterfaces, and thus, the model elements mentioned above are able to
communicate. In contrast, the Memory elements are connected via BusSlavePorts to the

BusSlaveInterfaces of the Bus, as these elements do not initiate any communication (passive
elements).

The left hand side of the NetworkInterface is a model of the gateway to the

OnChipNetwork at containing layer (i.e., to the Node layer). The left-most black connector is the
OnChipNetworkPort of the Tile that contains the discussed example model. This Port is
connected to the NetworkInterface’s OnChipNetworkExport (left connector of
NetworkInterface component) that depicts the interface of the processor domain to the on-
chip-network.

As a result (and also considering the meta-models of the other levels of the DREAMS architecture
discussed in the previous sections) the model describes that there is a possible communication route
from the two Cores shown in Figure 5.12 to resources in located in other Tiles (via the

OnChipNetwork) or Nodes (via OnChipNetworks and OffChipNetworks) . Likewise, the
model contains the relevant information to determine routes to the Cores and the Memorys from
Figure 5.12 from remote resources.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 76 of 124

5.2.6 Hypervisor Domain

5.2.6.1 Hypervisor Meta-Model

Figure 5.13: DREAMS Platform Meta-Model / Hypervisor (UML Diagram of package

eu.dreamsproject.platform.model.hypervisor)

o
rg

.fo
rtiss.a

f3
.p

la
tfo

rm

+g
etA

rch
itectu

reD
o

m
a

in
N

a
m

e() : EStrin
g

«
in

terface»
IH

yp
erviso

rD
o

m
a

in

H
yp

e
rviso

rD
o

m
ain

C
o

n
n

e
cto

r

In
te

rP
artitio

n
C

o
m

P
o

rt
In

te
rP

artitio
n

C
o

m
In

te
rface

In
te

rP
artitio

n
O

n
C

h
ip

N
e

tw
o

rkExp
o

rt

H
yp

e
rviso

rD
o

m
ain

Ele
m

e
n

t

P
artitio

n
O

n
C

h
ip

N
e

tw
o

rkD
rive

r
In

te
rP

artitio
n

C
o

m

+g
etA

rch
itectu

reD
o

m
a

in
N

a
m

e() : EStrin
g

«
in

terface»
p

latfo
rm

::IA
rch

itectu
reD

o
m

a
in

«
in

terface»
p

latfo
rm

::ILo
g

ica
lP

la
tfo

rm
A

rch
itectu

reElem
en

t

p
latfo

rm
::Tran

sce
ive

r

«
in

terface»
p

latfo
rm

::IV
irtu

a
liza

tio
n

P
la

tfo
rm

A
rch

itectu
reElem

en
t

«
in

terface»
p

latfo
rm

::IC
o

m
m

u
n

ica
tio

n
M

a
ster

p
latfo

rm
::G

ate
w

ayU
n

it

-cap
acity : EIn

t

p
latfo

rm
::Tran

sm
issio

n
U

n
it

«
in

terface»
IV

irtu
alizatio

n
Laye

rD
o

m
ain

H
yp

e
rviso

r

«
in

terface»
p

latfo
rm

::IP
la

tfo
rm

P
o

rt

«
in

terface»
p

latfo
rm

::IP
la

tfo
rm

Exp
o

rt
«

in
terface»

p
latfo

rm
::IP

latfo
rm

In
te

rface

+getP
latfo

rm
C

o
n

n
ecto

rU
n

its() : EList<P
latfo

rm
C

o
n

n
ecto

rU
n

it>
+getTran

sceiverU
n

its() : EList<Tran
sceiver>

+getR
eceiverU

n
its() : EList<R

eceiver>
+getTran

sm
itterU

n
its() : EList<Tran

sm
itter>

p
latfo

rm
::Exe

cu
tio

n
U

n
it

M
e

m
o

ryA
re

a

M
e

m
o

ryR
e

q
u

ire
m

e
n

t
M

e
m

o
ryC

o
n

n
e

cto
r

H
e

alth
M

o
n

ito
rC

o
n

figu
ratio

n

H
e

alth
M

o
n

ito
rR

e
q

u
ire

m
e

n
t

H
e

alth
M

o
n

ito
rC

o
n

n
e

cto
r

p
latfo

rm
::M

e
m

o
ryU

n
it

+getP
latfo

rm
C

o
n

n
ecto

rU
n

its() : EList<IP
latfo

rm
C

o
n

n
ecto

rTyp
e>

+getTran
sceiverU

n
its() : EList<Tran

sceiver>
+getR

eceiverU
n

its() : EList<R
eceiver>

+getTran
sm

itterU
n

its() : EList<Tran
sm

itter>

p
latfo

rm
::G

en
ericP

latfo
rm

U
n

it

«
in

terface»
p

latfo
rm

::IG
e

n
e

ricP
latfo

rm
Targe

tC
o

n
n

e
cto

r

«
in

terface»
p

latfo
rm

::IG
e

n
e

ricP
latfo

rm
So

u
rce

C
o

n
n

e
cto

r

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 77 of 124

The package eu.dreamsproject.platform.model.hypervisor is used to model
hypervisors within system software layer of a DREAMS application. The model of the system

software layer is instantiated in a separate PlatformArchitecture that is linked to the model
of the physical platform layer using the ResourceLink annotation (see Section 5.3.7). The meta-
model contains the following classes (see also Figure 5.13):

 IHypervisorDomain:

o The IArchitectureDomain to identify model elements belonging to the
domain of hypervisors.

o Operations:
 getArchitectureDomainName():Returns the architecture domain's

name.

 IVirtualizationLayerDomain: The IArchitectureDomain to identify model
elements providing virtualization services.

 Hypervisor: Class representing a hypervisor, i.e. a system software layer module that
virtualizes ExecutionUnits of the physical platform (e.g., a processor (Tile)). The

virtualized physical resources are designated by the ResourceLink annotation (see
Section 5.3.7).

 HypervisorDomainElement: Base class for structural elements that are attached to

Hypervisors or that are sub-elements of Hypervisors.

 HypervisorDomainConnector: Base class for describing communication structure of

HypervisorDomainElements.

 Partition: Isolated and virtualized execution environment for software components
provided by a Hypervisor. Using the ResourceLink annotation, it is linked to
ExecutionUnits of the physical platform resource to which its containing Hypervisor

is linked (e.g., Cores of the corresponding Tile).

 OnChipNetworkDriver: Model element representing a system partition of
Hypervisor that has access to the OnChipNetwork resource of the physical platform
layer (referenced using the ResourceLink annotation).

 InterPartitionCom: Class to express communication facility provided by the
Hypervisor that provides message exchange between Partitions.

 InterPartitionComPort: Communication port of virtual structural elements, i.e.
Partitions.

 InterPartitionComInterface: Communication interface located at

InterPartitionCom that provides the inter-partition communication service.

 MemoryArea: Model element used to represent memory areas assigned to Partitions
or to Hypervisors. A partition can have one or more assigned MemoryAreas, and a

MemoryArea can be shared by multiple partitions to model shared memory.
MemoryAreas assigned to Hypervisors have a 1:1 relation. Each MemoryArea is
linked to a MemoryUnit of the underlying physical platform using the ResourceLink
annotation.

 MemoryRequirement: HypervisorDomainConnector that is attached to
Partitions or Hypervisors to model their need of and the connection to an allocated
MemoryArea.

 MemoryConnector: HypervisorDomainConnector that provides access to
MemoryAreas.

 HealthMonitorConfiguration: Model element of the health status self-monitoring
capabilities of Hypervisors. It can be connected to Hypervisors and parametrized by
annotations to model the configuration of a health monitor.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 78 of 124

 HealthMonitorRequirement: HypervisorDomainConnector attached to
Hypervisors to model their need of a HealthMonitorConfiguration.

 HealthMonitorConnector: HypervisorDomainConnector attached to
HealthMonitorConfiguration to establish a connection to an associated
Hypervisor.

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1):

 The base marker interface IVirtualizationPlatformArchitectureElement of
Hypervisor, HypervisorDomainElement, and HypervisorDomainConnector
indicates that these system elements are part of the virtualization layer of the DREAMS
system, i.e. no hardware platform elements.

 Additionally, Hypervisor inherits from the base marker interface
ILogicalPlatformArchitectureElement which indicates that this system
element is a logical entity, i.e. it has no concrete physical realization (in the hardware sense).

 The structural elements Partition, OnChipNetworkDriver, and

InterPartitionCom are hierarchic model elements (HierarchicElementBase via
inheritance hierarchy).

 Partitions and Hypervisors are modelled as ExecutionUnits, and hence they are
(possible) deployment targets (see Section 6.1) for software which is described using logical
components (see Section 4.1).

 Likewise, OnChipNetworkDrivers are modelled as GatewayUnits, and

InterPartitionComs are modelled as TransmissionUnits, both being part of the
communication facilities of a DREAMS system.

 The communication within the IHypervisorDomain is modelled being bidirectional
(base class Transceiver of HypervisorDomainConnector) with masters actively

initiating the communication (marker interface ICommunciationMaster). Here,
InterPartitionComPorts constitute the interface of Partitions and

OnChipNetworkDrivers to the InterPartitionCom that is provided by the
Hypervisors. As mentioned above, InterPartitionOnChipNetworkExports can
be attached to OnChipNetworkDrivers in addition to InterPartitionComPorts.
Then, the route to the off-chip communication can be described using a link from the

OnChipOffChipExport to the OffChipNetworkPort owned by the Node that
contains the respective OnChipOffChipGateway.

5.2.6.2 Hypervisor Model Example Instance

Figure 5.14: Instantiation of system software layer

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 79 of 124

As pointed out in Section 5.2.6.1, Hypervisors are model elements to describe a virtualization of
processor Tiles. In the meta-model provided by the Technical View, it is represented by an
additional PlatformArchitecture that hosts the Hypervisor model elements that are
linked to the corresponding Tiles of the physical platform architecture. Figure 5.14 shows, how
Hypervisors in the system software layer are added using the “Add virtualization layer”
command from the context menu of Tile model elements.

Figure 5.15: Example of the hypervisor layer of a virtual platform model

The resulting system software PlatformArchitecture that includes an example instance of
the Hypervisor meta-model is shown in Figure 5.16. In the example, two Hypervisors are defined
where a MemoryArea and a HealthMonitorConfiguration are attached to one

Hypervisor. The mapping of a Hypervisor to the corresponding Tile is represented by a
ResourceLink annotation that is bound to the Hypervisor instance (see Section 5.3). The

structure above the Hypervisors reflects the structure of the referenced physical platform
architecture, i.e. the node and cluster level is mirrored by corresponding logical
PlatfomArchitectureElementGroup model elements.

Figure 5.16: Example of a Hypervisor/Partition model.

The internal structure of a Hypervisor is illustrated in Figure 5.16. The model includes
Partitions, MemoryAreas, InterPartitionComs and an OnChipNetworkDrivers. As
pointed out above, Partitions are modelled as ExecutionUnits of the system software layer
that are linked to Cores that are contained in the Tile to which the Hypervisor is linked.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 80 of 124

The Hypervisor’s partition-to-partition communication facility that enables the exchange of
messages between the partitions hosted by the same hypervisor instance is represented by the
InterPartitionCom model element. The connection is established by connecting

InterPartitionComPorts (black connector) of Partitions with
InterPartitionComInterfaces (white connectors) attached to InterPartitionCom
model elements. Furthermore, system partitions such as the OnChipNetworkDrivers can be
connected to InterPartitionComs by which the access to the OnChipNetwork of the
Hypervisor is modelled. The resource mapping of these system partitions is again described

using ResourceLink annotations (i.e., the OnChipNetwork hosted by the Tile to which the
given Hypervisor is linked).

Finally, the access of partitions to physical memory resources is described using MemoryAreas that

can be assigned to one or more Partitions. The MemoryAreas from the example are linked to the
RAM resource hosted by the Tile_AA2 using ResourceLink annotations.

ResourceLink annotations (i.e., the OnChipNetwork hosted by the Tile to which the given
Hypervisor is linked).

Finally, the access of partitions to physical memory resources is described using MemoryAreas that

can be assigned to one or more Partitions. The MemoryAreas from the example are linked to the
RAM resource hosted by the Tile_AA2 using ResourceLink annotations.

5.3 Platform Architecture Annotations

The following tables provide an overview of annotations registered for meta-model entities from the
Platform Architecture Meta-Model. Annotations that are registered for super classes (like

ExecutionUnits) are naturally attached to all inheriting classes (like Tiles).

5.3.1 Annotations registered for all Platform Elements

Annotation Name Corresponding plugins Description

ArchitectureDomainLabel

[DerivedAnnotation]

org.fortiss.af3.platform Returns a label that denotes the
IArchitectureDomain of the annotated
model element.

PlatformArchitectureElem
entTypeLabel

[DerivedAnnotation]

org.fortiss.af3.platform Returns a label indicating the “physical” type
of the annotated model element, like a logical
element or part of an IP Core.

5.3.2 Annotations registered for ExecutionUnits

Annotation Name Corresponding plugins Description

ExecutionUnitPower

eu.dreamsproject.platform The average power consumption of the
annotated hardware element when executing
a software Component for a given time.

DeploymentGranularity

[DerivedAnnotation]

eu.dreamsproject.platform Boolean flag that allows to specify the
ExecutionUnits onto which

Components shall be mapped. If the flag is

set to true for a given ExecutionUnit ex,
child ExecutionUnits of ex are not considered
as deployment targets. Hence, this annotation
can be used to define the deployment
granularity of a hierarchical
PlatformArchitecture.

FailureRate eu.dreamsproject.platform The failure rate of the annotated hardware
element given as its failure probability.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 81 of 124

SafeFailureFraction org.fortiss.af3.safety The Safe Failure Fraction of the annotated
hardware element as defined in IEC 61508.

5.3.3 Annotations registered for Cores

Annotation Name Corresponding plugins Description

ProcessorSpeed

org.fortiss.af3.platform Maximum CPU frequency that can be
achieved by the annotated Core.

5.3.4 Annotations registered for TransmissionUnits

Annotation Name Corresponding plugins Description

FailureRate eu.dreamsproject.platform The failure rate of the annotated hardware
element given as its failure probability. In case
the TransmissionUnit represents a so-
called black channel, this parameter is the
“residual error rate” according to IEC 61784-3
with the assumption of a bit error rate of 10-2.

SafeFailureFraction org.fortiss.af3.safety The Safe Failure Fraction of the annotated
hardware element as defined in IEC 61508.

TransmissionUnitBand-
width

org.fortiss.af3.timing Bandwidth of the annotated
TransmissionUnit given in Mbyte per
second. Describes the raw throughput.

TransmissionUnitPower eu.dreamsproject.platform Power consumption of the annotated
TransmissionUnit for transmitting a
single byte.

5.3.5 Annotations registered for MemoryUnits

Annotation Name Corresponding plugins Description

MemoryAddress org.fortiss.af3.platform The start address of the annotated
MemoryUnit. Used in hardware platforms
for global address spaces and for segregation
of virtual memory allocations.

MemorySize org.fortiss.af3.platform Capacity of a MemoryUnit in Bytes.

5.3.6 Annotations registered for RAM

Annotation Name Corresponding plugins Description

RamType org.fortiss.af3.platform Allows a fine-grained specification of the RAM
type that is used to implement the annotated
RAM element.

5.3.7 Annotations registered for Tiles , Partitions and MemoryAreas

Annotation Name Corresponding plugins Description

ResourceLink org.fortiss.af3.platform Resource requirements (1:n relationship)
between platform elements in different layers
of the platform, e.g. from elements of the
system software layer to elements of the
physical platform.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 82 of 124

5.3.8 Annotations registered for Partitions

Annotation Name Corresponding plugins Description

PartitionFlags eu.dreamsproject.platform Flags to be set when configuring the
annotated Partitions.

- None
- System
- Boot
- ICache disabled
- DCache disabled
- Floating point support

5.3.9 Annotations registered for HealthMonitorConfigurations

Annotation Name Corresponding plugins Description

HealthMonitorConfigurati
on

eu.dreamsproject.platform Actions that shall be triggered by the health
monitor of the connected hypervisor if the
defined (faulty) behaviour is detected.
Furthermore, it can be defined whether
monitored misbehaviour shall be logged.

The following events are defined:

- Internal error
- Unexpected trap
- Partition error
- Partition integrity
- Mem protection
- Overrun
- Scheduler error
- Watchdog timer
- Incompatible interface
- Undefined instruction
- Prefetch abort
- Data abort
- Data alignment fault
- Data background fault
- Data permission fault
- Instruction alignment fault
- Instruction background fault
- Instruction permission fault

The following action can be triggered:

- Ignore (= do nothing)
- Shutdown
- Partition cold reset
- Partition warm reset
- Hypervisor cold reset
- Hypervisor warm reset
- Suspend
- Halt
- Propagate
- Switch to maintenance

5.4 Interfaces to other Meta-Models

The technical architecture meta-model does not contain references to meta-models from other
viewpoints described in this document. However, as pointed out in Section 2.2.2, the technical
architecture meta-model is referred to by a number of meta-models defined in other viewpoints.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 83 of 124

6 Deployment Viewpoint

This viewpoint collects all deployment related model kinds. For this deliverable, it only comprises
meta-models required to describe the mapping of model elements from the logical view to model
elements of the technical view. The follow-up document D1.6.1 “Meta-models for platform-specific
modelling” will focus on enhancing this viewpoint with description mechanisms for the allocation of
platform resources.

6.1 Deployment Meta-Model

The mapping meta-model is used to describe the mapping of a model element from the logical view
to model elements of the technical view, e.g. of Components to Cores or Partitions, or of
(logical) Ports to Transceivers provided by the platform.

A Deployment of the mapping model can be instantiated as follows:

 Manually by the designer, using the deployment model editor provided by AutoFOCUS3 (see
Section 6.4).

 As the result of a Design Space Exploration (see Chapter 3 of deliverable D4.1.2). Here, the
exploration evaluates the Events defined in temporal viewpoint and the

DeploymentGranularity annotation of ExecutionUnits to derive the relevant
model elements considered by the exploration. Thereby, Events are used to select the
components to be deployed from the hierarchical logical architecture. Components

(including their attached Ports) that are not referenced by any Event will not be
considered in the exploration. If a Component or at least one of its associated Ports is

referenced by an Event, but none of its contained elements, only the containing
Component is deployed by the DSE (since it contains the most fine-grained activation
specification in the corresponding sub-model). Hence, for a given

ComponentArchitecture, the temporal viewpoints allows to specify the granularity at
which the deployment of logical Components to the PlatformArchitecture should
be performed. The deployment targets (Partions in DREAMS) of the DSE are defined by

the DeploymentGranularity annotation that allows specifying the set of
Partitions considered by the DSE.

Name Deployment Meta-Model

Description The goal of the deployment meta-model is creating a link between the logical
architecture and the platform which realizes the logical architecture.

Ecore file deployment.ecore

Plugin org.fortiss.af3.deployment

Packages org.fortiss.af3.deployment

org.fortiss.af3.deployment.generator

AutoFOCUS3 deployment meta-model

Package for deployment-dependent code
generation (currently empty)

Dependencies org.fortiss.af3.component (see Section 4.1)

org.fortiss.af3.platform (see Section 5.1)

org.fortiss.tooling.base (see Section 3.2.6.2)

org.fortiss.tooling.kernel (see Section 3.2.6.1)

Table 6.1: Deployment Meta-Model

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 84 of 124

In Figure 6.1, the UML class diagram of the mapping meta-model is shown.

Figure 6.1: Mapping Meta-Model (UML Diagram of package org.fortiss.af3.deployment.model)

The following classes are defined to describe a mapping:

 Deployment:
o “Root” class that contains the logical architecture ↔ hardware platform mapping.
o Attributes:

 generatedDeployment: indicates whether this deployment is the
result of a Design Space Exploration.

o Operations:

 hasDeploymentParameters(): Returns whether this Deployment
has deployment specific parameters (via annotations).

 clearDeploymentParameters(): Removes all parameters defined in
the DeploymentKeyToDeploymentParameterValueMap of this
Deployment.

 instantiateDeploymentParameter(Component,

ExecutionUnit): Instantiates the

DeploymentKeyToDeploymentParameterValueMap considering
each possible Component-ExecutionUnit combination.

 removeDeploymentParameter(Component, ExecutionUnit):
removes the deployment specific parameters of s given Component-
ExecutionUnit pair from the
DeploymentKeyToDeploymentParameterValueMap.

 getDeploymentParameter(Component, ExecutionUnit,

EJavaClass<IAnnotatedSpecification>, EString,

EString): Returns the deployment specific parameter of a given

Component-ExecutionUnit pair and the
IAnnotatedSpecification defining the parameter.

 setDeploymentParameter(Component, ExecutionUnit,

EJavaClass<IAnnotatedSpecification>, EString): Sets the

org.fortiss.tooling.baseorg.fortiss.tooling.kernel

generator

«interface»
PortAllocation

-inputPort : InputPort
-receiver : Receiver

InputPortAllocation

-outputPort : OutputPort
-transmitter : Transmitter

OutputPortAllocation

-port : Port
-tansceiver : Transceiver

TransceiverAllocation

-component : Component
-executionUnit : ExecutionUnit

ComponentAllocation ComponentArchitectureReference

+getDeploymentParameterValue(Deployment, Component, ExecutionUnit)()
+getAnnotationEntry(Deployment, Component, ExecutionUnit)()
+setDeploymentParameter(Deployment, Component, ExecutionUnit, Class<IAnnotatedSpecification>, String)()
+getDeploymentParameter(Deployment, Component, ExecutionUnit, Class<IAnnotatedSpecification>, String)()
+removeDeploymentParameters(Deployment, Component, ExecutionUnit)()
+instantiateDeploymentParameters(Deployment, Component, ExecutionUnit)()

-generatedDeployment : EBoolean

Deployment

-componentAllocations
0..*

-componentArchitectureReference

0..1

-platformArchitectureReference

0..1

-portAllocations
0..*

base::HierarchicElementBase «interface»
element::IModelElementReference

«interface»
kernel::IProjectRootElement

DeploymentKeyToDeployementParameterValueMap

-componentExecutionUnitParameters0..*

PlatformArchitectureReference

+getName() : EString
+setName(EString)()
+getDeployment() : Deployment

-component : Component
-executionUnit : ExecutionUnit

DeploymentParameterValue

-key
1

-value
1

+hashCode() : int
+equals(EJavaObject)() : EBoolean

-hashCode : EInt

DeploymentParameterKey

+addSpecification(eing.)

element::IModelElement

-comment : EString

kernel::INamedCommentedElement

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 85 of 124

deployment specific parameter of a given Component-ExecutionUnit
pair and the IAnnotatedSpecification defining the parameter.

 ComponentArchitectureReference:
 References the ComponentArchitecture whose subelements are

deployed onto a PlatformArchitecture.

 PlatformArchitectureReference:
o References the PlatformArchitecture onto which a defined

ComponentArchitecture is deployed.

 ComponentAllocation:
o Connects a Component with an ExecutionUnit that executes the Component’s

realization.
o Attributes:

 component: References the Component of this
Component↔ExecutionUnit allocation, i.e. the deployment source.

 executionUnit: References the ExecutionUnit of this

Component↔ExecutionUnit allocation, i.e. the deployment target.

 PortAllocation:
o Marker interface for allocations of Ports and Transceivers.

 TranceiverAllocation:
o Allocates the Port of a Component to a Transceiver of the given hardware

platform. The Transceiver naturally needs to be located at the same

ExecutionUnit onto which the respective Component has been allocated.
o The PortAllocation is needed for ExecutionUnits that are connected via

bidirectional interfaces to communication resources like busses.
o Attributes:

 port: References a Port(input or output) that is allocated to a
Transceiver.

 transceiver: References a Transceiver to which a Port(input or
output) is allocated.

 InputPortAllocation:
o Allocates the InputPort of a Component to a Receiver of the given hardware

platform. The Receiver naturally needs to be located at the same

ExecutionUnit onto which the respective Component has been allocated.
o The InputPortAllocation is required instead of the PortAllocation if

the connected communication resource of the ExecutionUnit differentiates
between incoming and outgoing messages.

o Attributes:
 inputPort: References an InputPort that is allocated to a

Receiver.
 receiver: References a Receiver to which an InputPort is

allocated.

 OutputPortAllocation:
o Allocates the OutputPort of a Component to a Transmitter of the given

hardware platform. The Transmitter naturally needs to be located at the same
ExecutionUnit onto which the respective Component has been allocated.

o The OutputPortAllocation is required instead of the PortAllocation if
the connected communication resource of the ExecutionUnit differentiates
between incoming and outgoing messages.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 86 of 124

o Attributes:
 outputPort: References an OutputPort that is allocated to a

Transmitter.
 transmitter: References a Transmitter to which an OutputPort

is allocated.

 DeploymentKeyToDeploymentParameterValueMap:

o Map that relates a pair consisting of a Component and an ExecutionUnit to a
set of parameters describing the properties of an ComponentAllocation of the
defined pair.

o Attributes:
 key: DeploymentParameterKey that defines a pair of a Component and an

ExecutionUnit that is used to identify their deployment specific
parameters.

 value: DeploymentParameterValue to which the parameters for a
pair of a Component and an ExecutionUnit are bound (as
annotations).

 DeploymentParameterKey:

o Used to identify the deployment specific parameters of a pair of a Component and
an ExecutionUnit.

o Attributes:

 hashCode: Contains the hash code of the DeploymentParameterKey
that is derived from the hash codes of the corresponding Component and

ExecutionUnit.
o Operations:

 hashCode(): Returns the hashCode that identifies a

DeploymentParameterKey object, i.e. a specific Component-

ExecutionUnit pair.
 equals(EJavaObject): Evaluates whether the object on which the

method is called equals the object given as a parameter.

 DeploymentParameterValue:

o Contains the deployment specific parameters of a pair of a Component and an
ExecutionUnit.

o Attributes:

 component: References the Component of the associated Component-
ExecutionUnit pair.

 executionUnit: References the ExecutionUnit of the associated
Component-ExecutionUnit pair.

o Operations:
 getName(): Returns the name of the referenced component and

executionUnit in the form of a tuple of their names.
 setName(EString): Overriden in order to make the name of

DeploymentParameterValue read-only.

 getDeployment(): Returns the Deployment which contains this
DeploymentParameterValue.

Ports model all inbound and outbound interfaces of Components. This includes communication
between components as well the connection of the modelled system with its environment
(reception of sensor values and control commands for actuators).

Hence, the mapping of ports from the logical component architecture is divided into
TranceiverAllocations, InputPortAllocations, and OutputPortAllocations.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 87 of 124

 In a deployed application, communication between Components corresponds to the
exchange of messages over TransmissionUnits connecting the corresponding
ExecutionUnits. In case the Transceivers of ExecutionUnits is capable of
performing bidirectional communication, the mapping of a Port (i.e., an OutputPort in

case of a sending Component, and an InputPort, in case of a receiving Component)
used as an interface for inter-Component communication is captured by the attributes of a
TranceiverAllocation.

 If the platform element to which a logical Port should be mapped to allows only
unidirectional communication, the mapping is described using Input- and
OutputPortAllocations. On the one hand, this is the case in if the InputPort

(OutputPort) of a Component is mapped to the Receiver (Transmitter) provided
by sensor (actuator) of the platform. Aside from interfacing sensors and actuators, the
separation of inbound and outbound communication in the mapping can also be relevant for
TransmissionUnits that provide (separated) unidirectional communication channels.

6.2 Deployment Annotations

In the deployment model, each deployment-specific parameter can be specified for every possible

mapping of Components to ExecutionUnits. Those parameters are realized as annotations
that are bound to DeploymentParameterValues which are contained in the Deployment’s
DeploymentKeyToDeploymentParameterValueMap. The map identifies the parameters of

a specific Component-ExecutionUnit pair using DeploymentParameterKeys. In the
following table, the annotated parameters are summarized.

Annotation Name Corresponding plugins Description

EnergyConsumption org.fortiss.af3.platform Contains the average energy consumption (in
Joule) when executing the Component of

the annotated Component-

ExecutionUnit pair on the corresponding

ExecutionUnit.

Wcet org.fortiss.af3.timing Allows the user to define the WCET (in
seconds) when executing the Component of

the annotated Component-

ExecutionUnit pair on the corresponding

ExecutionUnit.

6.3 Interfaces to other Meta-Models

As described in Section 6.1, the Deployment Meta-Model describes the mapping of model elements
of a logical component architecture (see Section 4) to the model elements of a platform architecture
(see Section 5). As side from that, the Deployment Meta-Model does not relate to any other meta-
model defined in this document.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 88 of 124

6.4 Deployment Model Example Instance

Figure 6.2: Deployment Editor

Figure 6.2 shows the editor that can be used to edit and display mappings of elements of the logical
component architecture to elements of the technical platform architecture mappings. Logical

Components (located in the tree-view on the left side of Figure 6.2) can be allocated to
ExecutionUnits contained in the platform architecture using drag-and-drop. By double-clicking
onto hierarchical platform elements, and using the breadcrumb widget on the bottom of the editor
it is possible to navigate to the desired ExecutionUnit. The highlighted components in the left

listing in Figure 6.2 indicate those Components that are allocated to the selected
ExecutionUnit in the graphical editor. As pointed out in Section, 6.1 the result of such

Component-to-ExecutionUnit mapping is described using a ComponentAllocation within
the edited deployment model. All ComponentAllocations contained in a deployment model
can also be viewed in the separate tab Raw Mappings (see Figure 6.3).

Figure 6.3: Table with “raw” component-partition allocations of a deployment model

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 89 of 124

The deployment-specific parameters introduced in Section 6.1 and 6.2 can be edited in the
annotation view of a selected Deployment. As shown in Figure 6.4, each Component-

ExecutionUnit pair is represented as a row – for each of the deployment-specific parameters,
the table contains a dedicated column.

Figure 6.4: Deployment-specific parameters (accessible in Annotation View)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 90 of 124

7 Temporal Viewpoint

The temporal viewpoint provides the elements required for the description of the timing properties
of a DREAMS application in AutoFOCUS3.

7.1 DREAMS Timing Meta-Model

The temporal viewpoint consists of the timing meta-model described this section. It is based on the
Timmo-2-use1 timing meta-model [10] adapted for the DREAMS specificities.

Name DREAMS Timing Meta-Model

Description The goal of the DREAMS timing meta-model is to describe all the timing requirements
and properties of a DREAMS application.

Ecore file timing.ecore

Plugin eu.dreamsproject.rtaw.timing

Packages eu.dreamsproject.rtaw.timing DREAMS timing meta-model

Dependencies org.fortiss.af3.component (see Section 4.1)org.fortiss.tooling.kernel (see
Section 3.2.6.1)

Table 7.1: DREAMS Timing Meta-Model

In Figure 7.1, the UML class diagram of the timing meta-model is shown.

Figure 7.1: Timing Meta-Model (UML Diagram of package eu.dreamsproject.rtaw.timing.model)

The meta-model consist of the package eu.dreamsproject.rtaw.timing.model that
contains the definition of the timing meta-model.

The following classes are defined to describe timing information:

 Timing

o Root element for timing information meta-model. The collection of timing
descriptions, namely events and event chains, and the timing constraints imposed
on these events and event chains.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 91 of 124

 TimingConstraint. This is an abstract element. It is not a design constraint but either a
requirement or the result of a validation. TimingConstraint offers several means to
constrain the time occurrences of events.

o Attributes:
 Id: a string identifier to for constraint traceability.
 Description: a string description of the constraint.

 AgeConstraint:
o An age constraint defines how long before each response a corresponding stimulus

must have occurred. It applies to a TimingChain.
o Attributes:

 minimum: Minimum value of the AgeConstraint. Value in seconds.

 maximum: Maximum value of the AgeConstraint. Value in seconds.
 scope: Reference to the TimingChain on which this constraint applies.

 DelayConstraint:
o A DelayConstraint imposes limits between the occurrences of an event called

source and an event called target.
o Attributes:

 source : Reference to the source Event
 target : Reference to the target Event

 lower: Lower value of the DelayConstraint. Value in seconds.
 upper: Upper value of the DelayConstraint. Value in seconds.

 ReactionConstraint:
o A ReactionConstraint defines how long after the occurrence of a stimulus a

corresponding response must occur.
o Attributes:

 minimum: Minimum value of the ReactionConstraint. Value in
seconds.

 maximum: Maximum value of the ReactionConstraint. Value in
seconds.

 scope: Reference to the TimingChain on which this constraint applies.

 PeriodicConstraint:
o A PeriodicConstraint describes an event that occurs periodically.
o Attributes:

 period: The effective ideal separation between two successive
occurrences of event without jitter. Value in seconds.

 jitter: Describes the local deviation from the strictly sporadic pattern.
Value in seconds.

 event: Reference to the Event on which his constraint applies.

 SporadicConstraint:
o A SporadicConstraint describes an event that occurs with a minimum

interarrival time in between successive occurrences.
o Attributes:

 minimumDistance: The effective minimum distance between any two
occurrences of event. Value in seconds.

 jitter: Describes the local deviation from the strictly sporadic pattern.
Value in seconds.

 event: Reference to the Event on which his constraint applies.

 AperiodicConstraint: An AperdiodicConstraint describes an event for which
only one instance occurs.

 EventChain:

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 92 of 124

o An EventChain is a container for a pair of events that must be causally related.
o Attributes:

 Id: a string identifier to for event chain traceability.
 Description: a string description of the event chain.
 stimulus: Reference to the Event that stimulates the steps to be taken

to respond to this event.
 response: Reference to the Event that is a response to a stimulus that

occurred before.
 segment: Ordered list of reference to EventChains in sequence.

 Event: This is a sequence of times indicating the times that each event occurrence is
predicted to occur.

 InputEvent:
o This links the timing model elements to component InputPort.
o Attributes:

 ref: References the InputPortAnnotation of an InputPort from
the logical component architecture meta-model.

 OutputEvent:
o This links the timing model elements to component OutputPort.
o Attributes:

 ref: References the OutputPortAnnotation of an OutputPort
from the logical component architecture meta-model.

 EventTrigger:

o This links the timing model elements to a Component.
o Attributes:

 ref: References the ComponentAnnotation from the logical
component architecture meta-model.

7.2 Interface to other Meta-Models

The DREAMS timing meta-model contains references to the logical component architecture meta-
model described in Section 4. In particular, the timing meta-model references:

 Component (via ComponentAnnotations)

 InputPorts (via InputPortAnnotations)

 OutputPorts (via OutputPortAnnotations)

7.3 DREAMS Timing Model Example Instance

The Timing viewpoint is instantiated for the expression of the requirements of a braking system. It is
illustrated Figure 7.2.

In this example, the following timing requirements are described:

 End-to-end delay: The vehicle must start decelerating within the driver’s reaction time
(250ms) after the driver has indicated his wish to do so.

 This End-to-end delay is further decomposed into segments allowing time budget allocation
between InputEvent and OutputEvent on Components.

 The EventTrigger on the pedal sensor allows the specification of the brake pedal
sensing period.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 93 of 124

Figure 7.2: Braking System (Timing viewpoint illustration)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 94 of 124

8 Extra-functional Viewpoints

8.1 Safety Viewpoint

Safety viewpoint consist of three meta-models that are used to add safety consistency checking
functionality to a dreams project.

In order to describe a safety model, three safety meta-models developed in the MultiPARTES
project7, have been adapted and enhanced to the more sophisticated needs.

Name Safety Viewpoint

 IEC 61508 and Diagnostic Techniques and Measures Meta-Model

 Safety Compliance Meta-Model

 Safety Compliance Constraint Meta-Model

Description The goal of these hierarchic element meta-model is to:

 Provide the basis for the description of IEC61508 SIL levels, IEC 61508
Systematic Capability (IEC 61508-2 and IEC 61508-3) related to measures
against systematic faults, and Diagnostic Techniques and Measures in
IEC 61508-2, Annex A.

 Allow specifying Safety Manuals (with a subset of IEC 61508-2 and IEC
61508-3 Annex D’s attributes) for SCItems (Safety Compliance Items
related to Component, Platform, and System Software elements.

 Allow Safety Consistency Rules to check safety consistency of
deployments.

Ecore file IEC61058.ecore

SafetyCompliance.ecore

SafetyComplianceConstraint.ecore

Plugin eu.dreamsproject.ikerlan.safetystandards

Packages eu.dreamsproject.ikerlan.

safetystandards.IEC61508

eu.dreamsproject.ikerlan.

safetystandards.SafetyCompliance

eu.dreamsproject.ikerlan.

safetystandards.SafetyComplianceCon

straint

IEC 61508 standard and Diagnostic
Techniques and Measures

Safety Compliance of a dreams project

Safety Compliance Constraints generated by
a Safety Compliance Specification

Dependencies eu.dreamsproject.platform

org.fortiss.af3.platform

org.fortiss.af3.component

org.fortiss.af3.deployment

Table 8.1: Safety Meta-Models

The following sections describe these meta-models in detail.

7 http://www.multipartes.eu/

http://www.multipartes.eu/

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 95 of 124

8.1.1 IEC 61508 and Diagnostic Techniques and Measures

This meta-model is used to represent IEC 61508 based safety standard, SIL integrity levels and
Diagnostic Techniques and Measures defined in the standard. Figure 8.1 shows the class diagram
defined in the .ecore file.

Figure 8.1: Classes of meta-model of IEC 61508 Standard with Diagnostic Techniques and Measures.

The meta-model consist of the package
eu.dreamsproject.ikerlan.safetystandards.IEC61508 that contains the core
definition of the standard and its techniques. The following classes are available:

 IEC61508BasedSafetyStandard. Root of the meta-model.

 SafetyStandards.
o Each SafetyStandard has a name.
o A SafetyStandard has N SafetyIntegrityLevels. (i.e., IEC 61508 has 4 integrity levels:

“SIL1”, “SIL2”, “SIL3”, and “SIL4”).

 SafetyStandardTechniques may have several TechniqueFolder. Each folder
keeps information of one part of the Standard. Examples are “Annex A”,
“Techniques&Measures” of IEC 61508-2

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 96 of 124

 TechniqueFolder may have TechniqueFolder inside, allowing to define a recursive
structure of TechniqueFolder.

 SafetyStandarTechnique has TechniqueItems. An example of a
TechniqueItem is “Watch-dog with separate time base and time-window”.

 TechniqueItem

o has a TechniqueItemDescription.
o Each TechniqueItem belongs to one TechniqueFolder.
o Each TechniqueItem belongs also to one TechniqueTable. An example of a

TechniqueTable is “A.10 – Program sequence (watch-dog)”.
o Each TechniqueItem has a TechniqueEffectiveness (Low, Medium, High)

 TechniqueItems are classified as well, attending to its goal:
o Some are to control Random Failures. In this case RandomFailureTechnique

entity is used, to specify the standard table and the DiagnosticCoverage
needed.

o Others are to control Systematic Failures. In this case
SystematicFailureTechnique entity is used. There techniques are grouped
in TecniquesGroups.

 There are also some other entities, which are vocabularies:

o DiagnosticCoverage :
 Low
 Medium
 High

o Effectiveness: Effectiveness of a technique.
 NonSpecified

 Low

 Medium

 High

o Group: This is used to group techniques into a table. The possible values are:
 Mandatory

 AtLeastOneGreyShaded

 AtLeastOneBlackShaded

o Importance: Importance of a technique. The possible values are:
 NonSpecified

 R (recommended)
 HR (highly recommended)
 M (mandatory)

o ApplicableTo: Classes of elements where techniques may be applied to. Values
are:

 ElectricalComponents
 ProcessingUnits

 PowerSupply

 etc.

8.1.2 Safety Compliance Meta-Model

This meta-model is used to represent safety specifications of Component Architecture, Platform
Architecture and System Software Architecture.

Figure 8.2 shows the class diagram of the SCItem class (key) and SafetyManual classes defined
in the .ecore file.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 97 of 124

Figure 8.2: Classes of SCItem and Safety Manual meta-model

The meta-model consist of the package
eu.dreamsproject.ikerlan.safetystandards.IEC61508.SafetyCompliance
that contains the core definition. The following classes are available:

 SCItem: the key class in the meta-model. Represents a Safety Compliant Item that in
DREAMS may be a software Component, hardware Cluster, hardware Node, hardware Tile,
software Hypervisor or software Partition. A SCItem may define a Safety Manual.

 SafetyManual:

o FSM, defining:
 Safety Standard (IEC61508)
 Safety Integrity Level (SIL1, SIL2, ...)
 Systematic Capability (SC1, SC2, SC3, SC4)

o FaultsManagement, defining:
 HFT: Hhardware Fault tolerance level (HFT0, HFT1, HFT2, HFT3) in case

of hardware nodes
 DiagnosticTechniquesItem: list of IEC61508-2 Annex A (tables A.2

to A.17) Diagnostic and Measures Techniques.
o A collection of HypothesisValue that specify assumptions about the types of

faults, the rate at which components fail and how components may fail

o A collection of HypothesisRanges that specify assumptions about the types of
faults, the rate at which components fail and how components may fail.

 Hypothesis: base class of Hypothesis defining the category of the hypothesis as an
enumerated value.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 98 of 124

Figure 8.3 shows the classes needed to attach and manage safety manuals to dreams project
hierarchy (Component, Platform and System Software) and to prepare the whole structure to tackle
with variability.

Figure 8.3: Classes of Safety Compliance meta-model

The following main classes are shown in the hierarchy:

 SafetyComplianceSpecification: root class of the hierarchy that represents a
complete safety specification for a dreams project and its variants.

 ComponentArchitectureSafetyFolder: Collection of
ComponentArchitectureSafety roots.

 PlatformArchitectureSafetyFolder: Collection of
PlatformArchitectureSafety roots.

 ComponentArchitectureSafety: Represents a Component or subcomponent of the
Logical viewpoint. The following properties are defined:

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 99 of 124

o RefComponent: Reference to the Component of the project.
o Safety Standard and Safety Integrity Level: SIL level claimed for the Component.
o RefCore: if the safety engineer wants to make sure that any deployments involving

this component deploys the component in a given core, then this field contains a
reference to the core.

o RefTile: if the safety engineer wants to make sure that any deployments involving
this component deploys the component in a given tile, then this field contains a
reference to the tile.

o Isolated in One Partition (Boolean): True if the safety engineer wants to make sure
that any deployments involving this component deploys the component “alone” in
one partition (not shared with any other component).

o NeedAccessListHWResources: List of hardware resources (watchdogs, clocks, tiles,
etc.) to which the component need access rights. This is for example needed for a
Component that resets a Watchdog and is deployed into a Partition. In this case the
Partition has to be configured in the hypervisor having access to those HW
resources.

 PlatformArchitectureSafety, PlatformArchitectureClusterSafety,

PlatformArchitectureNodeSafety, PlatformArchitectureTileSafety:
All of them represents SCIItem and therefore may contain a SafetyManual:

 SoftwareHypervisorSafety: It is a SCItem (generated by Virtualization Layer) and
may contain a SafetyManual. In addition to this, may contain a collection of
SoftwareHypervisorPartitionSafety

 SoftwareHypervisorPartitionSafety: Represent a Safety Partition already
certified and associated to the hypervisor by construction. It is not a Partition generated by
VirtualizationLayer. It is a SCItem and may contain a SafetyManual.

 SoftwareHypervisorPartitionSafety: Represent a Safety Partition already

 SystemSoftwareSafetyFolder: Collection of SystemSoftwareSafetyRoot
roots.

 SoftwarePartitionSafetyFolder: collection of SoftwarePartitionSafety

 SoftwarePartitionSafety: SCItem that represents a partition generated by

Virtualization layer. It is a SCItem and may contain a SafetyManual.

8.1.3 Safety Partitioning Restrictions Meta-Model

This meta-model is used to model the constraints to be met the deployment of the system in order
to help in ensuring the correctness of the system from the safety point of view (see Figure 8.4).

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 100 of 124

Figure 8.4: Classes of Safety Compliance Constraint meta-model

The following main classes are shown in the hierarchy:

 SafetyComplianceChecker: contains the evaluateSafetyCompliance function that
allows checking safety constraint for a given deployment and safety specification.

 SafetyComplianceSpecification: contains a collection of
SafetyConstraintSet.

 SafetyConstraintSet: contains a collection of SafetyConstraint.

 SafetyConstraint:represents a safety compliance constraint and may be of type:
o SwComponentMustGoWithSafetyConstraint: contains the following

parameters
 model.Component

 model.Component

 boolean physicalSeparation;

o SwComponentMustNotGoWithSafetyConstraint: contains the following
parameters

 model.Component

 model.Component

 boolean physicalSeparation;

o SwHwComponentMustBeDeployedIntoSafetyConstraint: contains the
following parameters

 model.Component

 model.ExecutionUnit

o SwHwComponentMustNotBeDeployedIntoSafetyConstraint: contains
the following parameters

 model.Component

 model.ExecutionUnit

8.1.4 Interface to other Meta-Models

Figure 8.5 provides an overview of the interfaces of the safety meta-models described in this section
to other DREAMS meta-models. Arrows indicate references from one meta-model to another one.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 101 of 124

Figure 8.5: Safety Related Meta-Models

The safety meta-models contain references to a ComponentArchitecture model, a hardware

PlatformArchitecture model, a system software PlatformArchitecture model and a
Deployment model. As mentioned before, safety models make “external references” to entities of
these models.

 ComponentArchitecture model entities:

o Component and sub-Components defined

 Hardware PlatformArchitecture model entities:

o Cluster

o Node

o Core

o Tile

o RAM/ROM Memory

o GPIOSs of Tiles

o Busses connecting the internals of Tiles (and the hardware platform elements

connected by the Bus)

o Clock (and the hardware platform elements connected to it)

o Watchdog (and the hardware elements connected to the WatchDog, and the

software element acting on it)

o PowerSupply

 System Software PlatformArchitecture Model entities (Virtualization Layer):

o Hypervisor

o Partition

 Deployment Model elements, with relation between them

o Components (and ExecutionUnit assigned)

o Hypervisor (and Tiles assigned)

o Partitions (and Hypervisor and Core assigned)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 102 of 124

The Safety Compliance Constraint meta-model also references external entities. These constraints,
as explained in previous sections, are used to check if deployment model is valid from the safety
point of view.

These constraints and the referenced entities are the following (these classes are also provided in
deliverable D4.1.2 due to the strong connection of these classes with section 4.2.2 Safety Constraint
Generation for Partitioning as they are key classes for SafetyConstraintChecker):

 Constraint SwComponentMustGoWithConstraint

o Parameters

 model.Component

 model.Component

 Boolean physicalSeparation

o Semantic:

 Both components must be deployed together in the same partition

 physicalSeparation:

 If it is true, the constraint can be used to describe that only one of
the two application Components should be affected by a single
physical fault.

 If it is false, the Partitions may be hosted by the same

Hypervisor that protects them from application Component

software design fault.

 Constraint SwComponentMustNotGoWithConstraint

o Parameters

 model.Component

 model.Component

 Boolean physicalSeparation

o Semantic:

 Both Components cannot be deployed together in the same Partition

 physicalSeparation: Whether the two Partitions must run on

sufficiently separated hardware ExecutionUnits in order to withstand

physical faults

 Constraint SwHwComponentMustBeDeployedIntoConstraint

o Parameters

 model.Component

 model.ExecutionUnit

 Semantic: Component must be deployed into a given ExecutionUnit

 Constraint SwHwComponentMustNotBeDeployedIntoConstraint

o Parameters

 model.Component

 model.ExecutionUnit

o Semantic: Component must not be deployed into a given ExecutionUnit

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 103 of 124

8.2 Security Viewpoint

The security meta-model allows the modelling of the security services in DREAMS. It is based on the
AutoFOCUS3 framework described in Section 3.2. Its implementation is contained in the
AutoFOCUS3 DREAMS Eclipse RCP installation (see Section 3.2.2).

The security services include confidentiality, integrity and authenticity. DREAMS will provide these
security services for the different core services of communication, resource management and
execution. The security meta-model is not a separate model, it extends the DREAMS models of the
core services, e.g., DREAMS cross-domain application meta-model and DREAMS platform meta-
model.

The meta-models of DREAMS have different architectural views and levels of abstraction. Both cover
different security related requirements. They are described in the following section.

8.2.1 Security Meta-Model

The DREAMS system model is divided into a logical view and a physical view (D1.2.1, Architectural
Style). In the DREAMS meta-model presented in this document, this is reflected by a logical
viewpoint and a technical viewpoint which are then mapped into the deployment viewpoints. Each
of the viewpoints is implemented in terms of the corresponding meta-models. Each of these meta-
models can be augmented with additional information using annotations that can be defined based
on a generic annotation meta-model (see Section 3.2.5.3).

Figure 8.6: Security Annotation Meta-Model

Hence, the logical viewpoint (see Section 4) contains the cross-domain application meta-model
which captures the application’s architecture and optionally also its behaviour. Using dedicated
annotations (realized based on the generic annotation meta-model), the necessity of a security
service for a specific component will be expressed, e.g., does a component communication between
two applications require confidentiality, integrity and/or authenticity?

The technical viewpoint (see Section 5) contains the platform meta-model. The physical components
of the system are modelled. The security meta-model uses annotations to describe the security

Cross-domain
Application

Meta-Model

Platform
Meta-Model

Deployment
Meta-Model

Logical Viewpoint

Security
Annotation

Meta-Model

Technical Viewpoint

Deployment Viewpoint

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 104 of 124

services used by physical components communicating with other physical components. Using
dedicated annotations, it describes the services provided by the platform. For security, the model
expresses the specific algorithms that can be used to implement the required security mechanisms.
Only the algorithms that are provided by the particular platform can be used.

In the deployment viewpoint (see Section 6), the application view and the technical view are
mapped into the deployment meta-model. This models the concrete security algorithms used on the
specific platform to fulfil the security requirements expressed using the corresponding annotations
of the application model.

In the following it is described, how the security properties could be handled in the development
process, and which models are involved in which step. The example considers security requirements
for a resource management configuration message and a communication link between a gateway
and a switch.

 Annotations for the application meta-model
o The annotations for the application meta-model allow selecting which logical

connection between two components or applications needs which security services.
Confidentiality, Integrity, Authenticity

o Example: A configuration message from the GRM to a LRM needs integrity and
authenticity, but no confidentiality. Hence, the message will be secured by a message
authentication code to provide authenticity and integrity.

 Annotations for the platform meta-model
o The platform meta-model models the physical viewpoint. Using the annotations

described above, the needs for security services on a physical connection can be
modelled. The annotations for the platform meta-model allows to select which
security algorithms offered by the platform will be used for a connection between
two components (on-chip/off-chip gateways, switches, etc.).

o Example: Components of the platform, e.g., OnChipNetworkDriver or

OffChipClusterGateway offers a different set of algorithms. The
OnChipNetworkDriver could provide SHA-256, AES-CMAC-128 and AES-CMAC-
256. AES-CMAC-256 for integrity and authenticity. The

OffChipClusterGateway uses MACsec for the off-chip communication.

8.2.2 Extension of the Annotation Meta-Model

The security meta-model extends the annotation meta-model. It allows selecting the security
services in the annotation view.

For the logical viewpoint, the following annotations are defined in the security annotation meta-
model:

 LogicalAuthenticity

 LogicalConfidentiality

 LogicalIntegrity

 LogicalMACsec

In the platform viewpoint, concrete algorithms are selectable. Hence there is a list with the available
algorithms:

 TechnicalAuthenticity

 TechnicalConfidentiality

 TechnicalIntegrity

 TechnicalMACsec

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 105 of 124

The UML class diagram of the security meta-model is shown in Figure 8.7.

Figure 8.7: UML Class Diagram of Security Annotation Meta-Model

The security viewpoint is used to express the secure communication aspects and uses ports to model
the communication between components or applications. Hence, the security services can be

selected for Port classes:

 Port

o InputPort

o OutputPort

In the logical viewpoint, the security services can be selected for ports connecting two logical
components.

In the technical viewpoint, the security algorithms can be selected for components that provide
security algorithms. The security algorithms for the logical components can be selected using the

annotations of the OnChipNetworkDrivers. The algorithm used for MACsec can be selected in

the OffChipNetworkGateway.

This list of available algorithms can be adjusted in the security meta-model. The annotations show
only the available algorithms.

8.2.3 Interface to other Meta-Models

The security meta-model extends the annotation meta-model for the logical architecture meta-
model and for the platform meta-model. It references the following entities in other meta-models:

 Logical Component Meta-Model
o Port

o InputPort

o OutputPort

 Platform Meta-Model
o OnChipNetworkDriver

o OffChipNetworkGateway

LogicalAuthenticity

-authenticity : EBoolean

«interface»
element::IHiddenSpecification

«interface»
element::IAnnotatedSpecification

+getValue() : T
+getDerivedFeature() : EStructuralFeature
+isUserAnnotatedValuePreferred() : EBoolean
+getUserAnnotatedValue() : T

base::DerivedAnnotationBase

T

TechnicalAuthenticity

-algorithmValue : Authenticity_Algorithm

T:EEnumerator

LogicalConfidentiality

-confidentiality : EBoolean

LogicalIntegrity

-integirty : EBoolean

LogicalMACsec

-macsec : EBoolean

TechnicalConfidentiality

-algorithmValue : Authenticity_Algorithm

T:EEnumerator

TechnicalIntegity

-algorithmValue : Integrity_Algorithm

T:EEnumerator

TechnicalMACsec

-algorithmValue : MACsec_Algorithm

T:EEnumerator

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 106 of 124

8.2.4 Security Model Example Instances

8.2.4.1 Extension of the Application Meta-Model

In the application meta-model, the security annotation meta-model allows to select the security
services for the logical ports of a logical component. For each port the need for confidentiality,
integrity and authenticity can be selected.

Figure 8.8: Security Annotations in the logical viewpoint

Figure 8.8 shows an example model. The model includes different components with output and
input ports. For every connection from an output port to an input port the needs of authenticity,
confidentiality and integrity can be selected.

In this example, the connection from the C_A to C_C and C_D needs authenticity and integrity, but
no confidentiality. To be consistent with the output port of C_A, the input port of C_C and the input
port of C_D (the input port of C_D is not shown in the figure) needs also authenticity and integrity,
but no confidentiality. The output port of C_B and the respective input port of C_C need only
integrity. The same applies to the input port of C_D_1. The output port of C_D_1 needs authenticity,
confidentiality and integrity.

8.2.4.2 Extension of the Platform Meta Meta-Model

In the platform meta-model, the security annotation meta-model allows to select the security
algorithms used on connection. The annotations for the OffChipNetworkGateway and the
OnChipNetworkDriver provide selection menu (see Figure 8.9). Here, the used MACsec
algorithm can be chosen. In this example, only the GCM-AES-128 algorithm is selected. As described
in section 8.2.2, the list of the available algorithms can be defined in the security meta-model.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 107 of 124

Figure 8.9: Algorithm selection menu

Figure 8.10 shows the security annotations for an OffChipNetworkGateway. The selection of
the available algorithms and the used algorithm corresponds to the choice of Figure 8.9. One
algorithm is selected (GCM-AES-128) and consequently this algorithm is also used as the selected
algorithm.

Figure 8.10: Security annotations in the technical viewpoint (OffChipNetworkGateway)

The annotations for the OnChipNetworkDriver are shown in Figure 8.10. The available algorithms for
authenticity, confidentiality and integrity can be selected. For the selection the same selection menu
as shown in Figure 8.9 is used.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 108 of 124

In this example, the OnChipNetworkDriver provides HMAC-SHA-256 for authenticity, AES-128 for
confidentiality and SHA-256 for integrity.

Figure 8.11: Security annotations in the technical viewpoint (OnChipNetworkDriver)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 109 of 124

8.3 Power Viewpoint

Advanced systems are embedding today one or several interconnects IPs that links all SoC IPs
together through a complex, flexible and scalable network. Power architecture exploration and
power estimation of application or dimensioning use cases at system level are the most efficient
tracks for the power optimization compare to the optimization at implementation level (RTL to
layout).

Power architecture analysis at system level must provide power models of all the IP of the system
and in particular power models of the interconnect IPs (ICN).

This section presents a solution of ICN power modelling to perform power analysis at system level.
This solution of modelling has been developed to be used with the tool Aceplorer8 provided by the
EDA Company Docea Power.

The section starts with the description of the problems and requirements of ICN power modelling,
and the presentation of the retained solution, mixing IP power card principle and ICN traffic.

Then, it is explained how it is used in a system, and finally, the concept is validated on a multi-
processors project using the new ARM 64 bit architecture9.

8.3.1 Interconnect Modelling

Different Network on Chips (NoCs) exist and their usage depends on application. In the following,
some topology examples are illustrated.

Crossbar Butterfly Clos Benes

 Ring Chord Ring Torus Folded Torus

8 http://www.doceapower.com/
9 http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php

http://www.doceapower.com/
http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 110 of 124

 2D Mesh Fat Tree

It would be more accurate and more powerful to model interconnect with its adequate internal
topology, but practically it is not easy and may be not feasible to know power figures of each switch
(node).

For example in ARM 64 bits project, power figures are given for a full CCN-504 interconnect10.

It has been decided then to characterize the interconnect IP at its interface, without considering its
internal topology. The approach presented in this section defines a power modelling approach for
ICN such as the on-chip communication resources defined in the DREAMS Architectural Style (see

D1.2.1). In the platform meta-model, an on-chip network is represented by class OnChipNetwork
(see Section 5.2.3) whose internal structure can be described by the classes provided by the NoC-
domain meta-model (see Section 5.2.4).

8.3.2 Variables and parameters of interconnect power calculation principle

For a specified functional mode, the power consumption of an ICN IP is function of the read and
write traffics at its interface.

In the scheme below, the traffic to consider to compute the power consumption of the interconnect
is:

 For the read traffic:

o ReadInputSum = Rd1 + Rd2 + Rd3

 For the write traffic:

o WriteInputSum = Wr1 + Wr2 + Wr3

10 http://www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cache-coherent-network.php

Figure 8.12: NoC Topologies Examples

http://www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cache-coherent-network.php

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 111 of 124

More generally ReadInputSum and WriteInputSum are respectively read and write traffic activities
sums at the ICN interface. They are used as variables in the power consumption calculation.

Then other variables used in power consumption calculation are classical ones that is frequency and
supplies voltage. This is always considered in a determined context of temperature, corner, process,
and power state (functional mode).

8.3.3 Power Equation

For each Active Power State, Dynamic Power Equation is described as followed:

𝑃𝑑𝑦𝑛 = 𝑃𝑟𝑒𝑓 ∗
𝐶𝑙𝑘𝑖𝑛

𝐶𝑙𝑘𝑟𝑒𝑓
∗ (

𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
)

2

∗
𝑅𝑒𝑎𝑑𝐼𝑛𝑝𝑢𝑡𝑆𝑢𝑚

𝑅𝑒𝑎𝑑𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑓
∗

𝑊𝑟𝑖𝑡𝑒𝐼𝑛𝑝𝑢𝑡𝑆𝑢𝑚

𝑊𝑟𝑖𝑡𝑒𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑓

with

 Pref: Power reference value: i.e. power value at Clkref, Vref, ReadInputRef and

WriteInputRef at simulation point

 Clkin: input clock

 Vin: input supply

 ReadInputSum: sum of all READ traffics of all traffic_container inputs.

 ReadInputRef: reference full READ traffic value in this Power State.

 WriteInputSum: sum of all WRITE traffics of all traffic_container inputs.

 WriteInputRef: Reference full WRITE traffic value in this Power State

8.3.4 IP Power Cards management

The reference values of the variables and parameters of the previous equation are obtained with an
IP power characterization.

A power characterization is done by doing a set of power estimation with relevant test benches at
the top interface of the interconnect IP. It can be done on the RTL design with tool like SpyglassPE
(Atrenta) or Power Artist (Apache), or at gate level with PrimetimePX (Synopsys).

Source1

Source2
ICN1

Source3

Rd1, Wr1

Rd3, Wr3

Rd2, Wr2

Target1

Target2

Figure 8.13: ICN power calculation principle

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 112 of 124

During an IP power characterization, the variables and parameters issued from the power
estimations are classed in IP tables that are called power cards.

As said before, the information, classed per power state (or functional mode), is:

 Voltage

 Frequency

 Activity: in the case of NoC, the activity is the read and write traffics in MIPS/MHz or
DMIPS/MHz

Other information are environment parameters: process, temperature, and corner.

8.3.5 Requirements of the interconnect power model

The particularity of an ICN power model is not only to compute the power consumption as explained
before, but also to describe the traffic transfer. The model must be adaptable to any configuration
without being modified. Below are some usage examples:

ICN model should be the same in the
2 configurations, even if source and
target change.

ICN

Source1

Source2

Target1

ICN

Source1

Source3

Target2

Traffics should be
summed

ICN

Source1

Source2 Target2

Target1

ICN

Source1

Source2 Target2

Target1

ICN model should be the same
in all configurations

Use Case 1

Use Case 2

Figure 8.14: Case of a power architecture exploration

Figure 8.15: Case of a different traffics transfers from Sources to Targets

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 113 of 124

Figure 8.16: Case of cascade of interconnects

The requirements of an ICN model are:

 Interconnect model should be the same in all configurations.

 2 traffics reaching the same Target IP they should be summed.

 Each source can have several targets.

 The traffic transfer is defined in the use case.

8.3.6 Interconnect power model

Aceplorer is the tool in which are developed the ICN power model as well as all the models of the
complete system to be analysed. The power analysis of the system is also done with Aceplorer.

8.3.6.1 Traffic container

Into Aceplorer, a STMicroelectronics customization has been done to define a dedicated type of data
that allows describing the traffic transfer in the ICN: traffic_container.

This new type permits to define in a scenario (scenario = test bench applied at the interface of the
ICN IP) the traffic from Source to Targets at the ICN I/Os.

Traffic_container is a container, or a list, of several traffics.

Format: [[Source, Target1, Rd1, Wr1], …, [Source, Targeti, Rdi, Wri], …] where:

 Source: IP generating traffic (Core, High Speed Interface…)

 Target: IP receiving this traffic (RAM, DDR, Low Speed Interface…)

 Rd, Wr: Read & Write traffic in bit/sec, or Mbit/sec, or Mbytes/sec…

ICN1

Source1

Source2 Target2

Target1

ICN2

Target4

Target3

ICN3

ICN

Source1

Source2 Target2

Target1

ICN model should be
the same in all
configurations

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 114 of 124

On top of defining traffic value on traffic pin, “traffic_container” type permits to define several
traffics independently and where these traffics should go.

8.3.6.2 Tasks of the Interconnect Power Model

The ICN power model has to achieve two tasks:

 To compute the power consumption in the ICN IP as explained in Section 8.3.3.

 To distribute the traffic between its I/Os

These tasks are done on the fly, depending of the traffic container defined in the scenario thanks to
python functions used in Aceplorer.

Python functions have been developed to compute the power equation variables ReadInputSum and
WriteInputSum:

 TrafficReadPerTrafficInput() function is used. This function sums all Read part
(∑ 𝑅𝑑𝑖) of all traffic_container inputs. ReadInputSum static is only used to calculate Power.

 TrafficWritePerTrafficInput() function is used. This function sums all Write part
(∑ 𝑊𝑟𝑖) of all traffic_container inputs. WriteInputSum is only used to calculate Power.

For the traffic distribution, inside the ICN Power Model, it is only done traffic multiplexing and
sums thanks to specific python utilities developed at STMicroelectronics:

 ICNOutputGen() function: define output traffic value for each traffic output pin.

8.3.6.3 Traffic distribution examples

Rd1 output description: Rd1 = ICNOutputGen(Tin1, Tin2)

 Rd1 output pin type is “traffic_read”

 Name of component connected to Rd1 is “Target1” (leaf cell)

 Tin1 and Tin2 values are parsed. All READ values having “Target1” as Target IP are summed
 in this case Rd1 = Rd_a + Rd_d

Wr1 output description: Wr1 = ICNOutputGen(Tin1, Tin2)

 Wr1 output pin type is “traffic_write”

 Name of component connected to Wr1 is “Target1” (leaf cell)

 Tin1 and Tin2 values are parsed. All WRITE values having “Target1” as Target IP are summed
 in this case Wr1 = Wr_a + Wr_d

Tout1 output description:

 If ICN output is “traffic_container” type, it means that output is connected to another

interconnect

Source1

Source2

[[Source1, Target1, Rd_a, Wr_a],
 [Source1, Target2, Rd_b, Wr_b],
 [Source1, Target3, Rd_c, Wr_c]]

[[Source2, Target1, Rd_d, Wr_d],
 [Source2, Target2, Rd_e, Wr_e]]

Target1

Rd_a + Rd_d

Wr_a + Wr_d

to ICN2 (cf. next page)

ICN1

Rd1

Wr1

Tin1

Tin2 Tout1

Figure 8.17: Traffic distribution example 1

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 115 of 124

So ICNOutputGen() function get name of components connected to outputs of 2nd interconnect.
This function is recursive and ICN number is not limited as in the example below:

Tout1 output description: Tout1 = ICNOutputGen(Tin1, Tin2)

 Tout1 output pin type is “traffic_container”

 Names of leaf cells potentially receiving traffic from Tout1 are “Target2” and “Target3”

 Tin1 and Tin2 values are parsed. All TRAFFIC descriptions having “Target2” and “Target3” as
Target IP are concatenated.
In this case Tout1 = [[Source1, Target2, Rd_b, Wr_b],

[Source1, Target3, Rd_c, Wr_c],
[Source2, Target2, Rd_e, Wr_e]]

The same methods as pointed out above are also applied on ICN2 and ICN3.

8.3.7 Conclusion

In this section, a flexible and scalable power model allowing to perform system level architecture
power analysis and exploration has been presented. An example that is based on real case, will be
presented in the integration report D1.5.1. The work could be extended in the topic of
characterization of the ICN.

Target3

Rd_c

Wr_c

Target2

Rd_b + Rd_e

Wr_b + Wr_e

[[Source1, Target3, Rd_c, Wr_c]]

ICN2

ICN3

[[Source1, Target2, Rd_b, Wr_b],
 [Source1, Target3, Rd_c, Wr_c],
 [Source2, Target2, Rd_e, Wr_e]]

from ICN1

Tout1:

Figure 8.18: Traffic distribution example 2

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 116 of 124

9 Variability Viewpoint

9.1 BVR Meta-Model

9.1.1 Overview

This section describes selected parts of the meta-model underlying BVR. The BVR meta-model
formalizes all the concepts (and their relationships) that can be defined in a BVR model, and we
extracted here the parts relevant for the DREAMS project. We refer the reader to the BVR
manual [8] for comprehensive description of the meta-model.

Figure 9.1 below shows the connection between the top level concepts of a BVR model. A BVR model
defines a set of variation points that characterizes a given base model. The base model is referenced
through an object handle, which contains a reference to an Ecore11 object. In addition the base
model also contains the related resolutions. By analogy with the classical product-lines terminology,
a VSpec object stands for the feature tree that characterizes a given product line (the BVR model),
and a VSpecResolution object stands for the set of concrete choices that characterizes a derived
product.

Figure 9.1: Main concepts in BVR

9.1.2 VSpec and VSpecResolution

VSpec and VSpecResolution are the key concepts in BVR. A VSpec organizes all the decision points
that govern the derivation of a product in a tree like structure, as usually done in feature

11 Ecore is the name of the implementation of the MOF standard provided by EMF

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 117 of 124

diagrams [11]. A VSpecResolution captures the result of a particular derivation, where each single
decision point is given a particular value. As shown in Figure 9.2 below, BVR supports several types
of decision points: especially Choice, Variable and VClassifier, which are primarily used.

 Choices represent Boolean decision points, and can be resolved by either true or false.

 Variables represent parameters that are resolved by a particular value, whose type matches
the one of the variable.

 A VClassifier is a VSpec whose resolution requires instantiating it zero or more times and
then resolving its sub-tree for each instance. When a repeatable variation point is bound to
a VClassifier, it will be applied once for each instance of the VClassifier during
materialization.

One can see on Figure 9.2 that the VSpecResolution structure follows the VSpec structure. For each
type of VSpec (e.g., Choice) there exists an equivalent VSpecResolution (e.g., ChoiceResolution) in the
meta-model.

Figure 9.2: Decision points and decision in BVR: VSpec and VSpecResolution

9.1.3 Constraining VSpec Trees

Expressing variability as a tree of variation points is seldom sufficient to properly capture all the
constraints within a given application domain. A feature tree results from one of the many possible
decompositions of the problem, and therefore only captures a subset of these constraints.
Additional constraints have to be encoded as logical formulae that restrict the set of legal choices
that can be made within a single feature tree. Figure 9.3 below illustrates the abstract syntax of the
logical constructs supported by BVR. In a nutshell, BVR supports logical conditions, numerical
assertions (see NumericalLiteralExp and its subclasses), and basic comparisons of text literals (see
StringLiteralExp) as well as assertion of empty values. Note that BVR only relies on propositional
formulae and therefore does not support for logical quantifiers (i.e., exists and forall).

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 118 of 124

Figure 9.3: Constraining BVR variability models

9.1.4 Fragment Substitution

For BVR to be effective, the user shall detail how BVR can "inject" the selected solution for each
variation points into the base model. This injection operation, so called "fragment substitution", is at
the heart of the BVR tooling. Figure 9.4 portrays the concepts of placements and replacements that
underpin fragments substitution. A placement denotes the specific subset in the base model which
corresponds to a specific choice, as opposed to the associated replacement which specifies the
fragment of model that shall be injected.

Figure 9.4: Specifying placements and replacements to perform fragments substitution

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 119 of 124

9.2 Variability Workflow

9.2.1 Modelling Variability

Intuitively, modelling variability is like creating a template document, where some well-identified
parts are marked for later replacement with some ad hoc content. Templates are often initially
derived from an existing document, where the parts to be specialized are stripped out or identified
as samples sections. The process associated with the use of BVR follows a very similar scheme [12]:

1. Preparing the product line can be done by looking at existing models (i.e., products) and
looking for similarities and differences. The parts that vary often map to the variation points,
as opposed to the parts that remain unchanged, which form the backbone of the future
product line.

2. Choosing a base model consists in promoting one single existing product to be the matrix of
subsequent products. BVR will use the model of this product, as input to a model-to-model
transformation, which replaces each variation point with the associated model fragment and
yields a valid new product, by substitution.

3. Identifying a library of reusable fragments significantly simplifies the use of the product
lines, but enabling derivation of new products by feature selection. Variation points often
have several possible solutions, which exist as model fragments, and which should be
available for future injection even if they are not included into the selected base model.

4. Creating a BVR model formalizes the variation points, the base models, and the library of
reusable fragments. It helps capitalize on the domain specific knowledge captured in the
product line and to proceed with further product derivation.

5. Generating products is the final step, where one can generate new product by the sole
prescription of the base model and the set of features to activate.

9.2.2 Exploiting Variability

Automated product derivation is the most emphasized feature of software product lines. By giving
the user the possibility to select the features that one needs, it becomes possible to check the
consistency of the whole product line, check the consistency of a given feature prescription, and to
assemble the prescribed products.

Checking the consistency of a product line as a whole consists in ensuring that there exists at least
one single product that meets all the constraints embedded in the associated feature model.
Interestingly feature models can be reduced to propositional logic formulae [13], and their validation
thus boils down to the satisfiability problem (SAT). Although SAT is well-known to be a NP-Complete
problem, recent advances in SPL [14] showed that industrial size SPLs form a very specific subset of
SAT instance, which existing SAT solver can address.

Checking the validity of a specific feature prescription ensures that the prescribed features meet the
constraints carried by the feature model. The prescription is valid if and only if the underlying
variable assignment satisfies the associated logical formulae. SPL thus permits to detect
automatically invalid configurations that will not work in practice.

Finally, assuming a given feature prescription is consistent with its enclosing SPL, it is possible to
automated ― possibly only partially ― the construction and the validation of the associated
products. This construction step is tightly coupled with the reuse capabilities of the underlying
execution platform.

The BVR Tool Bundle currently supports product sampling based on generating so-called covering
arrays [15]. The support is provided via SPLCATool intergraded into the BVR tool.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 120 of 124

9.3 Variability Model Example Instances

9.3.1 Variation of DREAMS System Models

We illustrate here the usage of BVR to express the variability inherent in an illustrative example
model shipped with AutoFOCUS3. It is a system model describing an automatic cruise control
module, hereafter denoted by ACC. In a nutshell, the ACC module computes the acceleration of the
car from the actual and desired speeds of the car, and the actual and desired distance to the next
vehicle. Figure 9.5 shows the logical view of such system, modelled in AF3. The current speed and
the current distance are provided by specific sensors (see inputs SensedSpeed and SensedDist on the
left hand side). Both measures are smoothed to detect irrelevant measures (see the two
plauzibilization sub components), before to be fed into the Speed Controller and the Distance
Controller units, respectively. The accelerations outputted by these two controllers are aggregated
by the Acceleration controller, which eventually emits the final acceleration command.

The distance control component can actually offer two alternative level of performance. The Eco
mode aims at reducing the fatigue and the fuel consumption by avoiding strong
acceleration/deceleration. By contrast, the Sport mode allows for a more aggressive driving. These
two modes are also captured in the AF3 logical view of the distance controller component, shown in
Figure 9.6. The distance controller can transition between these modes, as requested by the driver.

Figure 9.5: The logical view of the ACC system, described in AF3

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 121 of 124

Figure 9.6: Internal behaviour of the "Distance Control" unit

(modelled as a mode automaton)

In the following, we will consider this model as our base model (see Section 9.2.1 above) and identify
variation points and the related variants. A first variation point in this ACC model is the distance
control part. A simpler ACC model may need not include a distance controller, in which case the
distance controller and the distance plauzibilization can be replaced by a single constant value. Per
se, three distance controllers could be built, depending on the modes they offer. The more complex
one permit three modes (Sport, Eco and Off), but any combinations of these modes lead to an
alternative distance controller.

This variability can be captured in a BVR variability model, as shown on Figure 9.7. This model
express the fact that four features are found in the ACC, namely the Speed Controller, the Speed
Plauzibilization, the Distance Controller and the Distance Plauzibilization. While other features are
mandatory, the Distance Controller is an optional feature. It is further decomposed into any
combination of its two sub features, Sport and Economic. However, if one selects the Distance
Controller, one has to also select the related distance plauzibilization feature. This is captured by the
constraint on the left hand side of the BVR diagram.

Figure 9.7: Modelling the variability inherent to the ACC system in BVR

By selecting the features that makes the ACC variation of interest BVR can generate the associated
AF3 model, which can they be used as any other regular model. In this example, BVR will replace the
model elements associated with each variation point with the model elements associated with each
the selected variant. For instance, Figure 9.8 illustrates the diagram associated with the model
where all distance related features are disabled. They are replaced by a constant distance fed into
the Acceleration Controller.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 122 of 124

Figure 9.8: A simpler ACC model, where distance control is removed

9.3.2 Variation of Safety Consistency Variability Models

The variation of Safety Consistency Models is modelled using BVR tool from SINTEF. Following this
approach, the variability of any model is modelled in a separate model. Then a mapping between the
variability model and the original model is performed. After that, the system is able to create
concrete instances of the models with variability using replacement mechanisms.

In the safety meta-models, the variability comes for two points (a) the deployment and (b) the
Safety Compliance model itself. When modelling Safety Compliance models using the editor, a
variability model will be defined with BVR tool, to express the variability.

Figure 9.9: Variation of Safety Consistency Models (Example)

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 123 of 124

Figure 9.9 illustrates the process with an example: The variability of Safety Compliance model is
exploited in the following way:

 A Safety Compliance model is defined with the corresponding editor.

 A Safety Feature model (variation points) is defined and modelled with BVR editor.

 Then, the Safety Compliance model is instantiated for a specific use case. This is done by
selecting options (features) in the BVR model, and performing the replacement in the model.

 Once the specific instance of the Safety Compliance model is generated, the process follows
by checking the safety consistency for a given deployment (application and platform
models), creating the safety consistency report, etc.

D1.4.1 Version 1.0 Confidentiality Level: PU

31.03.2015 DREAMS Page 124 of 124

10 Bibliography

[1] International Electrotechnical Commission, „ISO/IEC 42010, Systems and software engineering -
Architecture description,“ 2011.

[2] International Electrotechnical Commission, „IEC 61508-1: Functional safety of
electrical/electronic/programmable electronic safety-related systems part 1: General
requirements,“ 2010.

[3] International Electrotechnical Commission, „IEC 61508-2: Functional safety of
electrical/electronic/programmable electronic safety-related systems part 2: Requirements for
electrical / electronic / programmable electronic safety-related systems,“ 2010.

[4] International Electrotechnical Commission, „IEC 61508-3: Functional safety of
electrical/electronic/programmable electronic safety-related systems part 3: Software
requirements,“ 2010.

[5] D. Steinberg, F. Budinsky, M. Paternostro and E. Merks, EMF: Eclipse Modeling Framework,
Amsterdam: Addison-Wesley Longman, 2008.

[6] M. Broy and K. Stølen, Specification and development of interactive systems: focus on streams,
interfaces, and refinement, Secaucus, NJ, USA: Springer, 2001.

[7] Ø. Haugen and O. Øgård, "BVR – Better Variability Results," Proceedings of the 8th International
Conference on System Analysis and Modeling: Models and Reusability (SAM '14), LNCS, vol.
8769, pp. 1-15, 29-30 Sept. 2014.

[8] Ø. Haugen, "BVR - The Language, VARIES Project D4.2," 2014.

[9] Object Management Group, "Meta Object Facility (MOF) Core Specification v2.4.1," 2014.

[10] TIMMO-2-USE Project, „Language syntax, semantics, metamodel V2,“ 2012.

[11] P.-Y. Schobbens, P. Heymans and J.-C. Trigaux, "Feature Diagrams: A Survey and a Formal
Semantics," Proceedings of the 14th IEEE International Conference on Requirements
Engineering, pp. 139-148, 11-15 Sept. 2006.

[12] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey, Ø. Haugen, Møller-Pedersen, Birger and G. K.
Olsen, "Developing a Software Product Line for Train Control: A Case Study of CVL," Proceedings
of the 14th International Conference on Software Product Lines (SPLC 2010), LNCS, vol. 6287, pp.
106-120, 13-17 Sept. 2010.

[13] D. Batory, "Feature Models, Grammars, and Propositional Formulas," Proceedings of the 9th
International Conference on Software Product Lines (SPLC '05), LNCS, vol. 3714, pp. 7-20, 26-29
Sept. 2005.

[14] M. F. Johansen, Ø. Haugen and F. Fleurey, "Properties of Realistic Feature Models Make
Combinatorial Testing of Product Lines Feasible," Proceedings of the 14th International
Conference on Model Driven Engineering Languages and Systems (MODELS '11), LNCS, vol. 6981,
pp. 638-652, 16-21 Oct. 2011.

[15] M. F. Johansen, Ø. Haugen and F. Fleurey, "An Algorithm for Generating T-wise Covering Arrays
from Large Feature Models," Proceedings of the 16th International Software Product Line
Conference (SPLC '12), vol. 1, pp. 46-55, 2-7 Sept. 2012.

	Contributors
	Executive Summary
	1 Introduction
	1.1 Structure of the Deliverable
	1.2 Positioning of the Deliverable in the Project

	2 Viewpoints
	2.1 Introduction
	2.2 Architectural Viewpoints
	2.2.1 Logical Viewpoint
	2.2.2 Technical Viewpoint
	2.2.3 Deployment Viewpoint

	2.3 Temporal Viewpoint
	2.4 Extra-functional Viewpoints
	2.4.1 Safety Viewpoint
	2.4.1.1 Scope in the DREAMS V-Life-Cycle development process
	2.4.1.2 Safety Meta-models

	2.4.2 Security Viewpoint
	2.4.3 Power Viewpoint

	2.5 Variability Viewpoint

	3 Model Editors and Toolsets
	3.1 Overview
	3.2 AutoFOCUS3
	3.2.1 Tool Summary
	3.2.2 Installation
	3.2.2.1 System requirements
	3.2.2.2 Obtaining and Installing AutoFOCUS3 DREAMS Edition

	3.2.3 Overview of Tool Architecture
	3.2.4 Getting Started With AutoFOCUS3
	3.2.5 Model Element Attributes
	3.2.5.1 Properties
	3.2.5.2 Specifications
	3.2.5.3 Annotations

	3.2.6 Fundamental Meta-Models
	3.2.6.1 AutoFOCUS3 Kernel Meta-Model
	3.2.6.2 AutoFOCUS3 Hierarchic Element Meta-Model
	3.2.6.2.1 Hierarchic Element Interface
	3.2.6.2.2 Hierarchic Element Base Classes
	3.2.6.2.3 Hierarchic Element GUI Layout Data Store

	3.3 Base Variability Resolution (BVR) Tool
	3.3.1 Tool Summary
	3.3.2 Installation
	3.3.2.1 Prerequisites
	3.3.2.2 BVR Tool Bundle Update Site

	3.3.3 Getting Started with BVR Tool Bundle
	3.3.4 Visualization of Variability Models

	3.4 Mixed-Criticality Product Line Editor
	3.4.1 Tool Summary
	3.4.2 Installation
	3.4.3 IEC61508 and Diagnostic and Measures Safety Standard editor
	3.4.4 Safety Compliance Model Editor
	3.4.4.1 Toolset Summary and Functionality
	3.4.4.2 Component Architecture Safety Folder
	3.4.4.3 Platform Architecture Safety Folder
	3.4.4.4 System Software Safety Folder
	3.4.4.5 Safety Manual
	3.4.4.6 Hierarchy of Safety Manuals and Variability due to different Deployments

	3.4.5 Safety Constraint Checker – F(Deployment, SafetyComplianceSpecification)
	3.4.5.1 Linking everything together and checking
	3.4.5.2 Safety Consistency checking

	3.4.6 Safety Compliance Variability Model Editor
	3.4.6.1 Toolset Summary
	3.4.6.2 Core Meta-models

	4 Logical Viewpoint
	4.1 Logical Component Architecture Meta-Model
	4.2 Logical Component Architecture Specifications
	4.3 Logical Component Architecture Annotations
	4.3.1 Annotations Registered for Components
	4.3.2 Annotations registered for Ports

	4.4 Interfaces to other Meta-Models
	4.5 Logical Component Architecture Model Example Instances
	4.5.1 Component Architecture with Annotations
	4.5.2 Mode Automaton Specification

	5 Technical Viewpoint
	5.1 Platform Architecture Meta-Model
	5.2 DREAMS Platform Meta-Model
	5.2.1 Cluster Domain
	5.2.1.1 Cluster Meta-Model
	5.2.1.2 Cluster Model Example Instance

	5.2.2 Node Domain
	5.2.2.1 Node Meta-Model
	5.2.2.2 Node Model Example Instance

	5.2.3 Tile Domain
	5.2.3.1 Tile Meta-Model
	5.2.3.2 Tile Model Example Instance

	5.2.4 NoC Domain
	5.2.4.1 NoC Meta-Model
	5.2.4.2 NoC Model Example Instance

	5.2.5 Processor Domain
	5.2.5.1 Processor Meta-Model
	5.2.5.2 Processor Model Example Instance

	5.2.6 Hypervisor Domain
	5.2.6.1 Hypervisor Meta-Model
	5.2.6.2 Hypervisor Model Example Instance

	5.3 Platform Architecture Annotations
	5.3.1 Annotations registered for all Platform Elements
	5.3.2 Annotations registered for ExecutionUnits
	5.3.3 Annotations registered for Cores
	5.3.4 Annotations registered for TransmissionUnits
	5.3.5 Annotations registered for MemoryUnits
	5.3.6 Annotations registered for RAM
	5.3.7 Annotations registered for Tiles , Partitions and MemoryAreas
	5.3.8 Annotations registered for Partitions
	5.3.9 Annotations registered for HealthMonitorConfigurations

	5.4 Interfaces to other Meta-Models

	6 Deployment Viewpoint
	6.1 Deployment Meta-Model
	6.2 Deployment Annotations
	6.3 Interfaces to other Meta-Models
	6.4 Deployment Model Example Instance

	7 Temporal Viewpoint
	7.1 DREAMS Timing Meta-Model
	7.2 Interface to other Meta-Models
	7.3 DREAMS Timing Model Example Instance

	8 Extra-functional Viewpoints
	8.1 Safety Viewpoint
	8.1.1 IEC 61508 and Diagnostic Techniques and Measures
	8.1.2 Safety Compliance Meta-Model
	8.1.3 Safety Partitioning Restrictions Meta-Model
	8.1.4 Interface to other Meta-Models

	8.2 Security Viewpoint
	8.2.1 Security Meta-Model
	8.2.2 Extension of the Annotation Meta-Model
	8.2.3 Interface to other Meta-Models
	8.2.4 Security Model Example Instances
	8.2.4.1 Extension of the Application Meta-Model
	8.2.4.2 Extension of the Platform Meta Meta-Model

	8.3 Power Viewpoint
	8.3.1 Interconnect Modelling
	8.3.2 Variables and parameters of interconnect power calculation principle
	8.3.3 Power Equation
	8.3.4 IP Power Cards management
	8.3.5 Requirements of the interconnect power model
	8.3.6 Interconnect power model
	8.3.6.1 Traffic container
	8.3.6.2 Tasks of the Interconnect Power Model
	8.3.6.3 Traffic distribution examples

	8.3.7 Conclusion

	9 Variability Viewpoint
	9.1 BVR Meta-Model
	9.1.1 Overview
	9.1.2 VSpec and VSpecResolution
	9.1.3 Constraining VSpec Trees
	9.1.4 Fragment Substitution

	9.2 Variability Workflow
	9.2.1 Modelling Variability
	9.2.2 Exploiting Variability

	9.3 Variability Model Example Instances
	9.3.1 Variation of DREAMS System Models
	9.3.2 Variation of Safety Consistency Variability Models

	10 Bibliography

