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Executive Summary 

This deliverable defines meta-models for the description of mixed-criticality applications and 
instances of the DREAMS platform. It is structured into four viewpoints that provide meta-models 
for the description of different aspects of DREAMS systems. The presentation of each of the 
viewpoints comprises a specification of the corresponding meta-models, an explanation of their 
utilization, and a discussion of example model instances. 

The Architecture Viewpoint clusters meta-models used to describe structural aspects of the system. 
It comprises a Logical Viewpoint that provides a meta-model for the platform-independent 
description of applications, a Technical Viewpoint capturing the structure of instances of the 
DREAMS platform, and a Deployment Viewpoint for the description of mappings between the model 
elements of the logical and the technical viewpoint. The Temporal Viewpoint provides meta-models 
that can be used to express timing requirements and temporal properties of applications. The Extra-
Functional Viewpoint groups meta-models for the description of application requirements and 
platform properties related to safety, security and power consumption. Finally, the Variability 
Viewpoint provides a meta-model that can be used to create separate specifications of variation 
points of a given (product) model. 

In addition to the definition of the meta-models, this document describes editors that can be used to 
create and manipulate model instances. The toolset is based on both existing tool implementations 
(that have been extended in the scope of DREAMS Task T1.4) and newly created tool prototypes. All 
tools are implemented as plugins for the Eclipse platform which allows to integrate the model 
editors for the different parts of the meta-model. 
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1 Introduction 

This deliverable defines meta-models for the description of mixed-criticality applications and 
instances of the DREAMS platform. Furthermore, it introduces editors that can be used to create 
model instances.  

 

1.1 Structure of the Deliverable 

The DREAMS application and platform meta-model has been structured into four main viewpoints 
that provide meta-models for the description of different aspects of DREAMS systems. In the 
following, these viewpoints that are defined in Chapter 2 will be summarized: 

 The group of Architecture Viewpoints clusters meta-models used to describe structural 
aspects of the system. It includes a Logical Viewpoint that provides meta-model for the 
platform-independent description of applications, a Technical Viewpoint capturing the 
structure of instances of the DREAMS platform, and a Deployment Viewpoint for the 
description of mappings between the model elements of the logical and the technical 
viewpoint. 

 The Temporal Viewpoint provides meta-models that can be used to express timing 
requirements and temporal properties of applications. 

 The Extra-Functional Viewpoint groups meta-models for the description of application 
requirements and platform properties related to safety, security and power consumption. 

 The Variability Viewpoint provides a meta-model that can be used to create separate 
specifications of variation points of a given (product) model. 

Section 3 will describe the model editors that can be used to create instances of the meta-models 
defined in this deliverable. The toolset is based on both existing tool implementations (that have 
been extended in the scope of DREAMS Task T1.4) and newly created tool prototypes. All tools are 
implemented as plugins for the Eclipse platform which allowed integrating the model editors for the 
different parts of the meta-model. Finally, the main part of the document (Chapters 4-9) contains a 
detailed description of the meta-models defined by viewpoints summarized above. 

 

1.2 Positioning of the Deliverable in the Project 

The architectural style document D1.2.1 (which was a direct result of the requirements elicitation in 
D1.1.1) served as the primary input for the specification of the DREAMS application and platform 
meta-models. Furthermore, D1.3.1 contains a description of the use of models in the DREAMS 
development process and also includes an initial overview of some meta-models. 

The application and platform meta-models defined in this document will be complemented by 
platform-specific meta-models (D1.6.1) that define the meta-models related to the configuration of 
the building blocks of the DREAMS platform. Hence, D1.6.1 will add additional meta-models to the 
viewpoints defined in this document. Furthermore, deliverables D4.1.2 and D4.1.3 provide 
information about meta-models for the specification of design goals and constraints. 

The meta-models defined in this document D1.4.1 will be used as input specification of the methods 
and tools developed in the following tasks: 

 T4.2 “Offline Adaptation Strategies for Mixed Criticality”: Deliverables D4.1.2 and D4.1.3 

 T4.3 “Explicit Variability Configuration”: Deliverables D4.3.2 and D4.3.3 

 T5.2: “Simulation, Verification and Fault-injection Framework”: Deliverables D5.2.1 and 
D5.2.2 
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The dissemination level of this deliverable is public (PU) i.e. once approved by the European 
Commission (EC), it will be freely available for download through the DREAMS project website 
(http://www.dreams-project.eu). 

In the scope of this documents, small example model instances of the meta-models defined in this 
documents will be presented. In course of the intermediate integration, example models based on 
the current specification of the use cases from the application demonstrators will be created. They 
will be presented in the integration report D1.5.1 whose dissemination level (confidential / CO) 
matches the one of the demonstrator use case descriptions. 

  

http://www.dreams-project.eu/
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2 Viewpoints 

In this chapter, the criteria for structuring the application and platform meta-models defined in this 
document will be presented. 

2.1 Introduction 

The main goal of this document is to present meta-models that are suitable for the 

 Platform-independent description of mixed-criticality applications, and the 

 Description of instances of the DREAMS HW/SW platform. 

Since the focus of both of the above points is on the description of architecture of a particular 
system-of interest (here DREAMS systems, i.e. a given mixed-criticality applications deployed to an 
instance of the DREAMS HW/SW platform), the relevant concepts defined in ISO/IEC/IEEE 42010 [1] 
will be summarized in the following, and related to the corresponding sections in this document. 

 

 
Figure 2.1: Conceptual model of architecture description [1] 

An architecture description framework is structured into different architecture viewpoints that are 
defined as “way[s] of looking at systems”. Each of the viewpoints covers one or more concerns of the 
description of an architecture. 
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For each architecture viewpoint, there exist one or more model kinds that define the corresponding 
conventions and (modelling) languages. In this document, meta-models are used to define the used 
model kinds that contain the following information: 

 Entities: major sorts of elements 

 Attributes: properties of entities  

 Relationships: relations between entities 

 Constraints 

The main part of this document (sections 4 - 9) is concerned with the detailed definition of the meta-
models that realize the different viewpoints. For some of the view-points such as the deployment 
viewpoint (Section 5.3) additional meta-models will be presented in D1.6.1 “Meta‐models for 
platform‐specific modelling”. 

Finally, Section 3 provides an overview of the different tools and editors that have been developed 
and / or extended to create architecture views (i.e., (architecture) models conforming to the meta-
models defined in this document) that correspond the selected architecture viewpoints. 
Additionally, this section will provide a definition of fundamental meta-models that are not specific 
to the selected viewpoints, but provide modelling constructs shared between different meta-
models. 

Figure 2.2 on the one hand sketches the use of different viewpoints to provide information about 
different aspects of the system. On the other, the figure also illustrates the granularity dimension as 
a second dimension of abstraction used in the DREAMS meta-models: A system is decomposed into 
sub-systems which are at a lower granularity level and which can themselves be regarded as 
systems. The process can be applied recursively, until finally basic building blocks are reached. 

 

Figure 2.2: Dimensions of abstraction: viewpoints and granularity-levels 

In the following, the viewpoints that have been defined to describe DREAMS system will be 
presented. On the one hand, this comprises a summary of the meta-models constituting the 
different view-points. On the other hand, the interface between the different meta-models will be 
sketched. 
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2.2 Architectural Viewpoints 

The Architecture Viewpoints clusters meta-models used to describe structural aspects of the system 
description. They are separated into three sub-viewpoints that will be described in the following. 
The meta-models provided by the architectural viewpoints are based on the AutoFOCUS3 tool (see 
Section 3.2). 

 

2.2.1 Logical Viewpoint 

The Logical Viewpoint (see Section 4) provides meta-models to describe the logical, or functional, 
aspects of a mixed-criticality application in a platform-independent way. The main meta-model is the 
Logical Component Architecture Meta-Model that provides a meta-model for the description of a 
component architecture of an application. This meta-model of the application’s structure is 
augmented with additional information provided by further meta-models, e.g.  

 For the specification of a component’s behaviour (e.g., using state automata or mode 
automata). 

 For the specification of extra-functional properties of a component (e.g., the component’s 
criticality level or the component’s security requirements). 

Furthermore, the Logical Component Architecture Meta-Model is referenced by a number of meta-
models from other viewpoints, such as the deployment meta-model (see Section 6), the safety 
compliance meta-model (see Section 8.1) and the meta-models defined in the temporal viewpoint 
(see Section7). 

 

2.2.2 Technical Viewpoint 

The Technical Viewpoint (see Section 5) provides meta-models used to describe the structure of the 
DREAMS hardware/software platform. It consists of a Platform Architecture Meta-Model that 
provides a framework for the description of hierarchic platform architectures. Based on this, meta-
models for the layers defined in the DREAMS Architectural Style (see D1.2.1) have been defined. 
These meta-models are augmented with additional information, e.g. 

 Specification of extra-functional properties of platform elements (e.g., clock speed of cores, 
parameters related to power consumption, component reliability annotations, security 
mechanisms provided by platform elements). 

 Linking between different layers of a platform model. In the presented approach, one 
platform model is used to describe the hardware architecture of a DREAMS platform. 
Another platform model is used to abstract the (system) software part of the platform that 
contains links to the elements of the hardware architecture onto which the corresponding 
system software component has been deployed to. 

Lastly, also the meta-models provided by the Technical Viewpoint are referenced by meta-models 
defined in other viewpoints, including the deployment meta-model (see Section 6) and the safety 
compliance meta-model (see Section 8.1). 

 

2.2.3 Deployment Viewpoint 

The Deployment Viewpoint collects all deployment related model kinds. For this deliverable D1.4.1, it 
only comprises meta-models required to describe the mapping of model elements from the logical 
view to model elements of the technical view. The follow-up document D1.6.1 “Meta-models for 
platform-specific modelling” will focus on enhancing this viewpoint with description mechanisms for 
the allocation of platform resources. 
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2.3 Temporal Viewpoint 

The Temporal Viewpoint is composed of one meta-model (see Section 7). It is an adapted version of 
the meta-model defined in the Timmo-2-use project1 for the AutoFOCUS3 framework (see Section 
3.2), allowing making the link between temporal constraint and logical architecture elements (see 
Section 4).  

 

2.4 Extra-functional Viewpoints 

2.4.1 Safety Viewpoint 

2.4.1.1 Scope in the DREAMS V-Life-Cycle development process 

The Safety Model is associated to the Logical Component Architecture Model and the Platform 
Architecture Model. It aims at the early detection of some errors during the realization phase. In 
Figure 2.3, the V-Life-Cycle according to IEC 61508-1 [2] is illustrated for the following phases: 

 The architectural specification of a system or family of systems (e.g., Wind Power Turbines). 

 The process of choosing the specific architecture of a specific system by resolving variability 
(e.g., producing a specific wind turbine). 

 Also, during the step of defining a deployment for the specific wind turbine. 

 

 
Figure 2.3: IEC 61508-1 (Edition 2.0): General requirements 

 

The safety model defined for a given system (a) is used to support the checking of safety 
consistency rules that can help designers in the design of mixed-criticality solutions reducing the risk 
of late discovery of safety related expensive design pitfalls (that would prevent a certification) and 

                                                           
1 https://itea3.org/project/timmo-2-use.html  

https://itea3.org/project/timmo-2-use.html
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(b) is used to help in a certification process by providing some evidences of safety aspects that have 
taken into account during the realization phase.  

 

The consistency rules to be implemented (as part of the SafetyConstraintChecker class to be 
implemented in WP4, see section devoted to this class below for a brief introduction) are not 
described in deliverable D1.4.1 (devoted to meta-models). However, a list of examples is given 
below. The set of consistency rules implemented in DREAMS can be easily extended to enrich the 
capability of catching early errors. 

The IEC 61508 distinguishes between hardware integrity (expressed in SILx) and the systematic 
capability (expressed in SCy). However it is assumed that the expression “SILx” covers the hardware 
integrity of SILx as well as the systematic capability of SCy. 

As mentioned above, the safety model defined for a given system is used to support the checking of 
safety consistency rules. In the following, some examples will be presented: 

 

 Example Rule - If a HW Node (DREAMS Node) claims to be SIL3 with hardware fault-
tolerance (HFT)=1 and is composed by two processors (i.e., DREAMS Tiles (see D1.2.1)), one 
claiming SIL3 and the other SIL2, then a warning is given. This way the designer realizes there 
is an inconsistency. 

 Example Rule – If a HW element (e.g., DREAMS Node, Tile) claims to be SILx with HFT=1 and 
is composed of two HW elements (for example a Node composed of two Tiles) that are (two 
sub examples cases to clarify): 

o SIL(x-1) and SCy (System Capability in IEC 61508), then a warning would be given 
saying “Warning: Acceptable provided they are part of independent channels” 

o SIL(x-1) and SC(y-1), then an error would be given, because claimed SILx cannot be 
achieved). 

 Example Rule - If a HW node is using a “Program Sequence” technique (e.g. IEC 61508-2 
Table A.10 “Watch-dog with separate time base without time-window), it is checked that the 
node: 

1. Has an external HW watchdog. 
2. The watchdog is connected to the processor. 
3. They are connected to two independent clocks. 

 Example Rule - It is checked that if the safety manual declares having a Medium Diagnostic 
Coverage of (90-99%) and HFT = 0, the maximum allowable SIL level is SIL 2 according to IEC 
61508-2 Table 3 (type B components). In case the claimed SIL level was higher a warning is 
given. 

 Example Rule - If a Partition (certified or not) claims a SIL3 level, but is deployed to a 
Hypervisor (certified or not) that claims for example a SIL2 level, and error is given in case 
the safety function requires SIL3. In case the safety function requires SIL2 this would be 
acceptable. 

 Example Rule - Similarly if a Hypervisor (certified or not) claims a SIL3 but is deployed to a 
processing unit that claims to be SIL2, then an error is given in case the safety function 
requires SIL3. In case the safety function requires SIL2 this would be acceptable. 

 Etc. 

 

To implement these consistency rules, the Safety Manual class defined in the meta-model (see 
Section 8.1) do not include the full set of attributes defined in Annex D (of both IEC 61508-2 [3] and 
IEC 61508-3 [4]). Instead, it comprises only those attributes needed to implement consistency rules: 

 FSM (Functional Safety Management), IEC 61508, 

 SIL level (Safety Integrity Level, SIL1, SIL2, SIL·, SIL4)) 
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 SC (Systematic Capability, SC1, SC2, SC3, SC4)  

 HFT (Hardware Fault Tolerance, HFT1, HFT2, HFT3) 

 Diagnosis and Measure Techniques and Hypothesis values and ranges. 
 

The Safety Model and, therefore also the consistency rules, scope mainly the ‘architectural 
specification’ phase within the system ‘realization’ because of the following reasons: 

 The analysis, planning, installation and operation of the system do not usually consider the 
internal implementation details of the system (e.g. multicore partitioning technology); this is 
only relevant in the ‘realization’ phase. Therefore, it is interesting to focus the scope in 
discovering early errors in the realization phase of multicore partitioning scenarios. 

 Within the ‘realization’ phase, the ‘system architectural specification’ needs to deal with the 
non-trivial integration of mixed-criticality applications; multiple partitions mapped to 
multicore platform(s). This is the phase in which the definition of rules for consistency 
checking can provide higher benefits; improving productivity and reducing the risk of late 
discovery of safety related design pitfalls. 

To summarize the scope of safety meta-models (and therefore also the consistency rule checker 
provided by WP4) is to support discovering errors during the realization phase of the hardware 
architecture, and also with a basic support to discover basic errors in the integration of software 
partitions, hypervisors and deployment of components in a mixed criticality multicore scenario. The 
focus of the approach is on IEC 61508-2 [3] and also in part on IEC 61508-3 [4] (but not going in 
depth in IEC 61508-3). 

 

2.4.1.2 Safety Meta-models 

The Safety Viewpoint is composed of a set of three meta-models. The main meta-model is the Safety 
Compliance Model that gathers the safety specification of the DREAMS Architecture. The complete 
set of safety meta-models is composed of: 

 IEC 61508 and Diagnostic and Measures Safety Standard Meta-Model: This meta-model 
enumerates the IEC 61508 SIL and ASIL safety integrity levels. In addition to this, this meta-
model is used to represent the Diagnostic Techniques and Measures recommended in IEC 
61508-2 [3], Annex A, to control failures caused by random faults during operation (tables 
A.2 to A14) and related to the systematic integrity (tables A.15 to A.18) during operation. 
Safety Manuals declare the techniques used. This way, consistency rules can perform some 
checks during the realization phase (as shown above) about SIL claimed, etc. Fault avoidance 
measures for the development of software according to IEC 61508-3, Annex A, are not 
considered at this point in time since they are applied in a later phase of the assumed overall 
system development process. 

 Safety Compliance Meta-Model: This meta-model is used to add safety properties/attributes 
related to safety and IEC 61508-specific concepts to a hierarchy of Safety Compliant Items 
(SCI, to be described later). Each SCI item provides a ‘Safety Manual’. As described in the 
previous section, the Safety Manual will contain just the information needed by consistency 
rules to detect errors early in the realization phase and not all information defined by Annex 
D of IEC 61508-2 [3] and IEC 61508-3 [4]. 

 Safety Compliance Constraint Meta-Model: This meta-model is used to model the 
constraints to be met by the deployment of the system in order to achieve a correct 
deployment/partitioning from the safety point of view. 
 

A more detailed description of the above meta-models can be found in Section 8.1. 
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2.4.2 Security Viewpoint 

The Security Viewpoint contains the security meta-model. It allows the modelling of the security 
services in DREAMS. It uses annotations to extend the logical and the technical viewpoint. 

 

2.4.3 Power Viewpoint 

The Power Viewpoint in Section 8.3 presents a solution for power modelling for interconnects IPs 
(ICN) to perform power analysis at system level. 

 

2.5 Variability Viewpoint 

The Variability Viewpoint clusters meta-models that can be used to define variability of a given base-
meta-model in an orthogonal way, i.e. using a separate variability specification meta-model. 

The required variability specification meta-models are provided by the BVR tool from SINTEF (see 
Section 3.3). 

 

 
Figure 2.4: BVR conceptual architecture 

Figure 2.4 sketches the approach to variability in BVR. The orange ovals as well as violet polygon 
represent BVR elements whereas the blue ovals depict models in any third-party language. The 
picture clearly shows that BVR does not amalgamate third-party languages (base models) with 
variability concepts rather defines variability in a separate model and links the base model by means 
of references. The BVR execution engine uses specified references to operate on base models to 
yield resolved models, i.e. products. 

In Section 9.3.1, it will be illustrated, how variability models can be used to define variations of a 
model of a DREAMS system model. After that, in Section 9.3.2, these concepts are applied to the 
safety meta-model where a Safety Feature model is used to express variations of Safety Compliance 
models. Here, a variability model is defined using the BVR tool to express the variability of a Safety 
Compliance model. 
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3 Model Editors and Toolsets 

This section provides an overview of the different model editors and toolsets that have been 
developed and / or extended to create views that correspond to the architecture viewpoints 
described in the previous section (i.e., models conforming to the meta-models defined in this 
document). 

In this section, exclusively the modelling functionality of the mentioned toolsets is described, which 
is the scope of this document. It should be noted that these toolsets also provide additional 
functionality such as analysis, optimization, model transformation and generation of different 
artefacts such as program code, configuration and reports. The interfaces between the tools 
described below, as well as additional tools required for the development of DREAMS-systems have 
been defined in D1.3.1 “Description of Development Process with Model Transformations”. 

Additionally, this section gives an overview of fundamental meta-models that are not specific to the 
selected viewpoints, but provide modelling constructs shared between different meta-models. 

 

3.1 Overview 

To create model instances from the DREAMS meta-model defined in this document, the following 
model editors are provided which will be described in the remaining sections of this chapter. 

 AutoFOCUS3 (see Section 3.2),  

 Base Variability Resolution (BVR) Tools (see Section 3.3), and 

 Mixed-Criticality Product Line Editor (see Section 3.4). 

All of the above model editors are based on the Eclipse Modelling Framework (EMF) 2 [5], and can be 
installed into the same Eclipse installation. In order to install all model editors, it is recommended to 
start with an installation of the AutoFOCUS3 Eclipse RCP that has been released for the DREAMS 
project (see Section 3.2.2), and to install the BVR toolset into this AutoFOCUS3 DREAMS RCP 
installation (see 3.3). Both the Mixed-Criticality Product Line Editor and the model editor for the 
DREAMS timing meta-model are already bundled with the AutoFOCUS3 DREAMS RCP. 

The result of this full installation is an integrated model editor for the application and platform meta-
models defined in this document, which allows the creation of interlinked instances of the models 
from the different viewpoints defined in Section 2. In other words, the model editors operate on 
separate models that contain references to models from other tools listed above. Since the tools are 
installed in the same eclipse instance they share a common workspace and, hence, the inter-model 
references are consistent, assuming the model files are not moved manually. 

As can be seen in Figure 3.1, models created by the BVR Tool (Variability Viewpoint) contain 
references to AutoFOCUS3 models and to models generated by the Mixed Criticality Product-line 
editor (Safety Viewpoint). The safety and temporal model instances contain only references to 
AutoFOCUS3 model instances. 

Due to the generality of the variability modelling approach (see Section 9.1), generic EObject-
references are used to point from the variability meta-model to the respective foreign meta-model. 
In contrast to that, specific references are used in all other cases to establish links between different 
meta-models. 

The integration of editors (required to specify references to the corresponding foreign meta-model) 
is as follows: An extension interface of the BVR tooling has been used to support the selection of 

                                                           
2 http://www.eclipse.org/emf/  

http://www.eclipse.org/emf/
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model elements in the graphical diagram model editors provided by AutoFOCUS3. In all other cases, 
the integration of editors relies on the mechanisms provided by the generated EMF tree-editors [5]. 

 

 
Figure 3.1: Model Editors and References between Models from different Viewpoints. 

Figure 3.2 shows a screenshot of the full model editor installation discussed above. In the Navigator 
on the left side of the figure, an AutoFOCUS3 model (DREAMS_Example_ControlUnit.af3_23), a 
safety compliance model (Safety-DREAMS_Example_ControlUnit.drm_safetycompliance), and a 
variability model (Var-DREAMS_Example_ControlUnit.bvr) can be seen. These models are opened in 
their corresponding model editors shown on the right side of the figure. An example for inter-model 
references can be seen in the lower right part of the figure where the safety compliance model 
references an AutoFOCUS3 model.  

 

AutoFOCUS3
 Logical Viewpoint (FORTISS)
 Technical Viewpoint (FORTISS)
 Deployment Viewpoint (FORTISS)
 Security Viewpoint (USIEGEN-DCS)

Base Variability
Resolution Tooling (BVR)

 Variability Viewpoint (SINTEF)

Timing Editor
 Temporal Viewpoint (RTAW)

Mixed Criticality Product-
Line Editor

 Safety Viewpoint (IKERLAN)

References to specific elements of the 
referenced meta-model

Generic references (EObject) to referenced 
meta-model
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Figure 3.2: AutoFOCUS3 DREAM RCP, with BVR and Mixed Criticality Product Line Editor installed. 

The descriptions of each the underlying meta-models will provide an overview of its interface to 
other meta-models, i.e. a list of the referenced entities. As pointed out in the introduction, small 
example instances of the meta-models will be presented in this document, whereas models of the 
DREAMS application demonstrators will be presented in deliverable D1.5.1. 

 

3.2 AutoFOCUS3 

3.2.1 Tool Summary 

AutoFOCUS33 (AF3) is a tool based on the Eclipse Modelling Framework (EMF) [5] that supports the 
development of embedded systems based on the Focus modelling theory [6]. AF3 uses models in all 
development phases including requirements analysis, design of the logical architecture, platform 
architecture, implementation and deployment. Furthermore, AF3 features formal analyses and 
synthesis methods. 

It should be noted that in the scope of DREAMS, the model of execution defined in the DREAMS 
architectural style (see D1.2.1) is used rather than the one defined by the Focus modelling theory. 
Hence, in the following, a number of fundamental AutoFOCUS3 meta-models will be described that 
provide the basis for the implementation of meta-models appropriate in a DREAMS context. In this 
document, the following meta-models provided by AF3 are used and extended to support the 
following viewpoints defined in Chapter 2. 

 Logical viewpoint: In AutoFOCUS3, systems are described using component models of the 
software architectures which are enriched with specifications of the executable behaviour 
(see Section 3). 

 Technical viewpoint: The execution platform is described using a topology model containing 
the corresponding hardware and software elements such as execution units, communication 
transmission units and endpoints (see Section 4). 

 Deployment viewpoint: A mapping model is used to specify how an application (described in 
the logical viewpoint) is a mapped to the platform (see Section 5). 

                                                           
3 http://af3.fortiss.org/  

http://af3.fortiss.org/
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In the scope of DREAMS, AutoFOCUS3 provides the following: 

 (Graphical) model editors for meta-models defined by the viewpoints listed above. 

 Multi-objective design-space exploration (DSE) that supports the system architect in finding 
Pareto-optimal mappings of models of mixed-criticality applications to models of the 
DREAMS platform. A description of the implementation and the use of the DSE can be found 
in Chapter 3 of deliverable D4.1.2. 

 

3.2.2 Installation 

In order to allow for an easy installation of an AutoFOCUS3 for use in the DREAMS project, a 
dedicated Eclipse RCP application (based on Eclipse Kepler SR2) can be obtained by members of the 
DREAMS consortium4 as follows: 

3.2.2.1 System requirements 

 An x86-based computer running a 32- or 64-bit version of Windows, Linux or MacOSX. 

 Java Runtime Environment (JRE) version 8. This requirement actually stems from the BVR 
tool-set (see Section 3.2.6), AutoFOCUS3 runs on JRE version 6 and above. 

 

3.2.2.2 Obtaining and Installing AutoFOCUS3 DREAMS Edition 

 Go to https://download.fortiss.org/projects/dreams/af3/rcp/. 

 Download and extract the archive matching your platform. This will create the AF3-

DREAMS directory. 

 Launch the platform-specific executable (e.g., AF3-DREAMS/autofocus3-

phoenix.exe on Windows). 

 Close the welcome screen. 

 To install additional components (such as the Base Variability Resolution Tool, see Section 
3.2.6), use the Help  Install New Software menu. 

 

3.2.3 Overview of Tool Architecture 

As pointed out in Section 3.2.1, AutoFOCUS3 is based on Eclipse. In order provide an overview on the 
AutoFOCUS3 modules that are relevant for this deliverable, the tool architecture will be briefly 
presented in the following. Each AutoFOCUS3 module consists of a plugin containing the 
functionality (e.g., a meta-model, an analysis, etc.) and user-interface (UI) plugin required to interact 
with the modules’ functionality. Depending on the modules functionality, its UI contribution can 
consist of providing new model elements to the model element library, graphical model editors, or 
user interfaces to algorithms. Figure 3.3 shows the dependency graph of the plugin 
eu.dreamsproject.platform.ui. This plugin has dependencies to all AutoFOCUS3 plugins 
described in this deliverable. 

 

                                                           
4 Since the AutoFOCUS3 distribution for use in the DREAMS project also contains contributions provided by 
confidential deliverables (e.g., from T4.2), and confidential example models from the application 
demonstrators, the download site is restricted to members of the DREAMS consortium. The login credentials 
may be obtained from the project internal web-based collaboration tool:  

https://dreams.teams.uni-
siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DRE
AMS%20Edition)%20Download%20Information  

https://download.fortiss.org/projects/dreams/af3/rcp/
https://dreams.teams.uni-siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DREAMS%20Edition)%20Download%20Information
https://dreams.teams.uni-siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DREAMS%20Edition)%20Download%20Information
https://dreams.teams.uni-siegen.de/work_packages/wp01/Shared%20Documents/Working%20Document/D1.4.1/AutoFOCUS3%20(DREAMS%20Edition)%20Download%20Information
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Figure 3.3: Dependency graph of the plugin eu.dreamsproject.platform.ui. 

 

3.2.4 Getting Started With AutoFOCUS3 

This section provides a brief “getting started” guide to the development of models using the 
graphical editors provided by AutoFOCUS3. More details on model editing and all further features 
can be found in the AutoFOCUS3 user guide5. 

Most graphical model editors use the hierarchical meta-model that will be introduced in Section 
3.2.6.2 as backend. In the following, the steps required to create AutoFOCUS3 models will be 
illustrated. In AutoFOCUS3, new models are instantiated by creating a new AutoFOCUS3 project, as 
shown in Figure 3.4. 

 

 
Figure 3.4: Creating a new AutoFOCUS3 project. 

From the context menu of an AutoFOCUS3 project, new architectures, e.g. component architectures 
(see Section 4), can be created (shown in Figure 3.5).  

                                                           
5http://af3.fortiss.org/docs/ User Documentation or the Help  AF3 Help menu in the AutoFOCUS3 RCP 
application. 

http://af3.fortiss.org/docs/
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Figure 3.5: Creating a new Component Architecture 

Hierarchical element models are usually edited using the diagram editor (see centre of Figure 3.6). 
On the left side of the user interface, the model navigator displays the AutoFOCUS3 workspace with 
all available projects and a tree view of the contained (hierarchical element) models. 
 

 
Figure 3.6: Screenshot of an AutoFOCUS3 Component Architecture. 

New model elements can be added to the architecture by dragging them from the model element 
library (highlighted by the red rectangular in Figure 3.6) into the diagram editor. The model element 
dynamically updates the set of offered model elements (i.e., it only offers element that are 
syntactically compatible with the current model). 
Likewise, the diagram editor enforces the syntactical correct composition of model elements. 

Connections (e.g., between Ports of logical Components) can be created by dragging from the 
source connector to the target connector with the ALT-key pressed. The editors of many meta-
models also support to drag the connection directly between Components (the Ports are created 
automatically in this case). 
All architecture models are edited using these diagram editors, which includes the DREAMS platform 
meta-model (see Figure 3.7). 
 

 
Figure 3.7: Screenshot of an AutoFOCUS3 Platform Architecture containing a DREAMS platform model. 
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3.2.5 Model Element Attributes 

AutoFOCUS3 provides three different ways to model attributes of model elements. The purpose of 
this section is to give a general overview on these attribute specification mechanisms, and to briefly 
introduce the corresponding graphical views. A detailed description of the individual attributes can 
be found in sections that describe the corresponding part of DREAMS meta-model. 

 Properties: intrinsic model element attributes (i.e., that always exist if the corresponding 
model element is instantiated). The Properties View provides a local view on all properties 
provided by the respective model element. 

 Specifications: attributes that are explicitly added by the user to the respective model 
element. Specifications are indicated in the Model Navigator and usually provide dedicated 
editors. 

 Annotations: model element attributes that always exist if the corresponding model element 
is instantiated. The Annotation View provides a global view on the annotations of all model 
elements of a project root element (e.g., a component architecture, see Section 4). 

In the following, the different ways and the associated views will be described based on the simple 
component architecture shown below. 

 

 

Figure 3.8: Example for different was of specifying model element attributes 

The example is restricted to the attributes contributed by the component architecture plugin, i.e. 
Eclipse plugin implementing the logical component architecture. It should be noted that other 
plugins will contribute further attributes for Components. 

 

3.2.5.1 Properties 

The Properties View provides a local view on all properties of the currently selected component. The 
following screenshot illustrates the properties of Component1.  

 

Figure 3.9: Model Element Properties 
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The following properties are always available (in the General tab) for any model element type (i.e., 
not restricted to Components: 

 Name 

 Comment 

 

3.2.5.2 Specifications 

Specifications are attributes that are derived from IModelElementSpecification. They can 
optionally be added to any IModelElement model element that is compatible with the respective 
specification type. 

 

 

Figure 3.10: Model Element Specifications 

The instantiation of IModelElementSpecifications can be performed in the following two 
ways: 

 Programmatically, i.e. specifications may be attached to model elements during their 
construction or as the result of a computation that processes the corresponding model. 

 Interactively, i.e. specifications can also be selectively added by the user. For this, the 
corresponding specification must be made available in the Model Elements library (see right-
hand side of Figure 3.10). The specifications that have been added to model element are 
indicated in the Model Navigator (see left-hand side of Figure 3.10). A double-click on these 
specifications opens an editor dedicated to the respective specification type. 

 

3.2.5.3 Annotations 

Although the concept of specifications offers a lot of flexibility, it has the following drawbacks: On 
the one hand, the effort to create new specifications into the tool is relatively large. On the other 
hand, IModelElementSpecifications are not suitable for mandatory attributes since the 
user would have to explicitly add them to every model element. Also, mandatory attributes could be 
implemented by directly defining attributes in the corresponding classes. However, this approach 
would not scale well when sharing attributes between classes that are not in a direct inheritance 
relationship and would require a change of the meta-model in case attributes or their assignment to 
meta-model elements is changed. 

In AutoFOCUS3, the concept of annotations provides an approach that (from the developer’s 
perspective) simplifies and - as far as possible - automates the integration of additional (mandatory) 
attributes into the tool. 

In the meta-model, annotations are derived from IAnnotatedSpecification and define one 
or more EAttribute or EReference to be annotated to IModelElements. For the 
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integration of the annotation (i.e., the instantiation for the matching model elements and the 
integration into the GUI) the following steps are required: 

 Implementation of an annotation specific IAnnotationValueProvider (see below). 

 Binding of the model element to be annotated with the corresponding 
IAnnotationValueProvider using the annotation Eclipse extension point. This 
registration ensures instantiation of the annotation and the integration into a tabular view 
(see Figure 3.12). 

Annotations can be defined within any plugin that (also indirectly) imports 
org.fortiss.af3.tooling.base. 

 To create simple annotations that provide a parameter of a primitive type as, a concrete 
class inheriting from both IAnnotatedSpecification and 

IHiddenSpecification must be created that contains the desired attribute(s). In this 
case, the value provider should inherit from 
EStructuralFeatureValueProviderBase. 

 Annotations that do not contain attributes entered by the user, but values that are result of 
a calculation should inherit from the DerivedAnnotation base class and employ the 
DerivedAnnotationValueProvider. 

In example given in Figure 3.11, the MemorySize annotation inherits from 
IAnnotatedSpecification (and IHiddenSpecification) and uses a value provider 
based on EStructuralFeatureValueProviderBase. The code example in the lower right 
corner of the figure illustrates the registration MemorySizeValueProvider for all elements of 

type eu.dreamsproject.platform.model.RAM with the annotation extension point 
(typically in the plugin.xml file of the plugin where the corresponding 

IAnnotatedSpecification is declared). 

From the users’ perspective, the Annotation View (see Figure 3.12) provides a global view on all 
model element annotations within the current project root element (e.g., within a Component 
Architecture or a Platform Architecture). In the view, each model element is represented as a row. 
The row for the model element that is currently selected in the associated model diagram editor is 
highlighted with a green background. 
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Figure 3.11: Integrating a new annotation type (example: MemorySize annotation) 

 

The view's columns represent the annotations that are associated with the respective model 
element. Here, the following three cases can be distinguished: 

 White cell - the model element contains the respective annotation that is editable by the 
user. 

 Grey cell - the model element does not contain the respective annotation. 

Blue cell - the model element contains the respective annotation. However, its value is the result of 
a calculation (and hence the cell is read-only). 

org.fortiss.tooling.base.model.element
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+getValue() : T
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Figure 3.12: Model Element Annotation View 

Like the Properties View, the Annotation View provides the following two annotations for any model 
element.  

 Name 

 Comment 

In fact, the Name and Comment annotations provide an alternative way to access the corresponding 
properties. 

Again, different plugins may contribute annotations to different model element types. In the 
example, the component architecture plugin contributes the following two annotations to 
Components: 

 Memory: local: Memory need of a component (annotated by user - white cell). 

 Memory: accumulated: Memory of a component and all children (calculated based on 
Memory: local annotation - blue cell). 

It can be seen that the memory annotations are not contributed to the Output port (grey cell). 

At the bottom, the Annotation View provides a number of row and column filters. 

Here, the following row filters can be used to restrict the set of model elements that is shown in the 
view: 

 Filter model element name: only model elements are shown whose name matches the filter 
string. 

 Filter model element type: if checked, only model elements are shown that have the same 
type as the model element that is selected in the associated model diagram editor. 

 Filter model element hierarchy level: Filters the set of model elements based on the model 
structure. The following options are available:  

o Show all levels: Any model element beneath the currently selected project root 
element is shown. 

o Show current level: Only model elements are shown that have the same hierarchy 
level as the currently selected model element. 

o Show selected sub-model: The currently selected sub-model and its entire offspring 
is shown. 

The following column filters can be used to restrict the set of annotations that is shown in the view: 

 Filter annotations name: only annotations are shown whose name matches the filter string. 

 Filter annotation type: Either all annotation types or only annotations of the selected type 
are shown. 
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3.2.6 Fundamental Meta-Models 

In the following, a number of meta-models will be presented that provide the basis for all 
AutoFOCUS3 based meta-models. 

The following description (and also the description of all other AutoFOCUS3-based meta-models) is 
structured as follows: 

 A table lists general information on the meta-model 
o Brief description 
o Name of EMF Ecore-File in which the meta-model is defined 
o Name of Eclipse-plugin which hosts the meta-model in an AutoFOCUS3 installation. 

As pointed out in Section 3.2.3 in more detail, for each meta-model the 

corresponding graphical editor is provided by a companion plugin <name of 

model plugin>.ui. 
o Java base package of the classes defined by the meta-model.  

 A UML class diagram visualizing the meta-model 

 A description of the meta-models classes (and their attributes) 
 

While users of the AutoFOCUS3 tool cannot directly create instances of these meta-models, for them 
mainly the attributes defined in the base classes described in this section are relevant. 

For developers who contribute new AutoFOCUS3-based meta-models, or who develop algorithms 
based on the DREAMS meta-model, these fundamental meta-models provide a generic and abstract 
interface to process DREAMS models, which – for most meta-models – includes a number of classes 

with utility methods to process the given meta-model (in Java package <name of model 
plugin>.utils.) 

 

3.2.6.1 AutoFOCUS3 Kernel Meta-Model 

The AutoFOCUS3 kernel meta-model provides fundamental modelling entities that are shared 
between meta-models of all AutoFOCUS3 meta-models. 

Table 3.1 provides an overview: 

Name AutoFOCUS3 Kernel Meta-Model 

Description The goal of the kernel meta-model is to provide fundamental modelling entities 
shared between meta-models of arbitrary viewpoints 

Ecore file kernel.ecore 

Plugin org.fortiss.af3.kernel 

Packages org.fortiss.af3.kernel.model Kernel meta-model 

Dependencies N/A 

Table 3.1: AutoFOCUS3 Kernel Meta-Model (overview) 
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Figure 3.13: AutoFOCUS3 Kernel Meta-Model (UML Diagram of package org.fortiss.tooling.kernel.model) 

The meta-model consist of a single package org.fortiss.af3.kernel.model that contains 
following classes (see Figure 3): 

 

 IIdLabeled 

o Model elements implementing this interface have a unique identifier. 
o Attributes: 

 id: The element’s ID 

 INamedElement 

o Model elements implementing this interface have a unique id and a name. 
o Attributes: 

 name: The elements name 

 INamedCommentedElement 

o Model elements implementing this interface have a unique id, a name and a 
comment. 

o Attributes: 
 comment: A comment describing the model element. 

 IElementWithURI 

o Elements that can be referenced using a URI. 

 IProjectRootElement 

o Super class of all root elements contained in the project. 

 ILibraryRootElement 

o Super class of all root elements contained in the libraries. 

 ILibrary 

o Super class of all libraries. 
o Attributes: 

 rootElements: Root elements of the library 

 

-id : EInt

IIdLabeled

-name : EString

INamedElement

-comment : EString

INamedCommentedElement

«interface»
ILibraryRootElement

«interface»
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«interface»
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1
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1
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-idReference : EInt
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-libraryElements
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 ILibraryPackage 

o Super class of all library package (that can contain library elements and/or sub-
packages) 

o Attributes: 
 libraryElements: Elements contained in this package 
 subPackages: Sub-packages of this package 

 ILibraryElementReference 

o Super class of all references to elements contained in a library. 

 ILibraryElement 

o Super class of all elements contained in a library. 
o Attributes: 

 wrappedElement: Element referenced by this library entry 

 

3.2.6.2 AutoFOCUS3 Hierarchic Element Meta-Model 

The AutoFOCUS3 hierarchic element meta-model provides the basis for hierarchical meta-models. It 
is based on the on the AutoFOCUS3 kernel meta-model (see Section 3.2.6.1). 

In this document, the meta-models for the following view-points are based on this meta-model. 

 Logical viewpoint (see Section 3). 

 Technical viewpoint (see Section 4). 

 Mapping meta-model of deployment viewpoint (see Section 5). 

 Temporal viewpoint (see Section 7) 

 

Table 3.2 provides an overview of the AutoFOCUS3 Kernel Meta-Model. 

Name AutoFOCUS3 Hierarchic Element Meta-Model 

Description The goal of the hierarchic element meta-model is to provide the basis for hierarchical 
models (e.g., component models) 

Ecore file base.ecore 

Plugin org.fortiss.af3.tooling.base 

Packages org.fortiss.af3.tooling.base.model.element 

org.fortiss.af3.tooling.base.model.base 

org.fortiss.af3.tooling.base.model.layout 

Hierarchic Element MM interface 

Base classes for concrete MMs 

GUI layout information store 

Dependencies org.fortiss.tooling.kernel 

Table 3.2: Hierarchic Element Meta-Model (overview) 

 

The meta-model consists of three packages that will be described in the following. 
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3.2.6.2.1 Hierarchic Element Interface 

The package org.fortiss.af3.tooling.base.model.element defines the interface of the 
hierarchic element meta-model (see Figure 3.14) that is shared with derived concrete meta-models. 
It can be used by (plugin) developers to interface with AutoFOCUS3-based meta-model in a generic 
way. 

 

 
Figure 3.14: Hierarchic Element Meta-Model (UML Diagram of Interface package 

org.fortiss.tooling.base.model.element) 

It contains the following classes: 

 IModelElement 

o Super class of first class model elements. 
o Attributes: 

 specifications: List of model element specifications providing 
additional model element properties (see Section 3.2.5). 

 referencedBy: List of model element references. 
o Operations: 

 addSpecification(IModelElementSpecification): Adds an 
IModelElementSpecification to the given IModelElement 

 IModelElementReference 

o Super class of EObjects referencing model elements. 
o Attributes: 

 reference: The referenced model element. 

org.fortiss.tooling.kernel

«datatype»
IModelElementSpecificationArray

+addSpecification(eing. )

IModelElement

-referencedBy 0..*

-reference

0..1

-specificationOf0..1

-specifications0..*

-container
0..1

-containedElements
0..*

-connectors

0..*

-owner

0..1

-owner

0..1

-connections
0..*

+getValue() : EJavaObject
+getDerivedValue() : EJavaObject
+getDerivedFeature() : EStructuralFeature
+isUserAnnotatedValuePreferred() : EBoolean
+getUserAnnotatedValue() : EJavaObject

«interface»
IDerivedAnnotation

«interface»
IModelElementReference

«interface»
IModelElementSpecification

«interface»
IHiddenSpecification

«interface»
IAnnotatedSpecification «interface»

IHierarchicElementContainer

«interface»IConnector «interface»IConnection

-source
0..1

-outgoing

0..*

-incoming
0..*

-target
0..1

-id : EInt

kernel::IIdLabeled

«interface»
IHierarchicElement
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 IModelElementSpecification 

o Super class of model element specifications. Such specifications provide additional 
pluggable properties. 

o Attributes: 
 specificationOf: The IModelElement which owns this specification 

 IHiddenSpecification 

o Super class of model element specifications, which should be excluded from the 
navigator view. 

 IAnnotatedSpecification: 
o Super class of model element specifications that represent annotations (i.e., 

specifications that are guaranteed to exist exactly once for the model elements for 
which the annotation has been registered). 

 IDerivedAnnotation 

o Interface for IAnnotationSpecifications that are derived from the state of 
other annotations and/or model elements. 

 Concrete specifications must provide a specialized getValue() 
EOperations that perform the required calculation. 

 Concrete specifications may provide additional EOperations that provide 
an advanced query interface to the annotation. 

 The corresponding IAnnotationValueProvider should be based on 
DerivedAnnotationValueProviderBase. 

o Operations: 

 getValue():Wrapper method for returning derived (calculated) values. It 
may return values annotated by the user if the calculation fails, or the user 
input is preferred, based on the configuration of the concrete annotation. 

 getDerivedValue(): Returns the actual derived (calculated) values. It 
may return values annotated by the user if the calculation fails, or the user 
input is preferred, based on the configuration of the concrete annotation. 

 getDerivedFeature(): Returns the EStructuralFeature that 
stores the annotation of the model element associated with this 
IDerivedAnnotation. Returns null if no element specific behaviour is 
desired. 

 isUserAnnotatedValuePreferred():Default implementation of a 
method indicating whether the user annotated value, if available, shall be 
preferred over the derived one. The default is true, i.e. user annotated 
values are preferred. Shall be overridden, if a different behaviour is desired. 

 getUserAnnotatedValue():Returns the EAttribute which is used 
to store the user annotated values, if the concrete annotation is designed 
therefore. By default, this function returns null, indicating no user 
annotated values are supported. This method must be re-implemented by 
concrete annotations if any other behaviour is desired. 

 IModelElementSpecificationArray 

o An array of model element specifications. 

 IConnector 

o Super class of connectors. Connectors reference incoming and outgoing connection 
model elements. 

o Attributes: 
 incoming: The incoming connections. 
 outgoing: The outgoing connections. 
 owner: The IModelElement which owns this connector 
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 IConnection 

o Super class of connections. Connections are aggregated in a hierarchic model 
element and reference two connectors from that element or any direct sub-
element. 

o Attributes: 
 source: The connection's source connector. 
 target: The connection's target connector. 
 owner: The IModelElement which owns this connection 

 IHierarchicElementContainer 

o Super class of hierarchic model elements. 
o Attributes: 

 containedElements: The contained hierarchic model elements. 

 IHierarchicElement 

o Super class of hierarchic model elements. 
o Attributes: 

 connections: List of aggregated connection model elements. Usually a 
hierarchic element aggregates all connections of its direct sub-structure. 

 connectors: List of aggregated connectors. 
 container: The container which this element belongs to. 

 

3.2.6.2.2 Hierarchic Element Base Classes 

 

 
Figure 3.15: Hierarchic Element Meta-Model (UML Diagram of base class package 

org.fortiss.tooling.base.model.base) 

The package org.fortiss.af3.tooling.base.model.base (see Figure 3.15) provides base classes 
that implement the interface defined in org.fortiss.af3.tooling.base.model.element. They are 
used as a basis for concrete hierarchical element meta-models such as the logical (see Section 3), 
technical (see Section 4) and the mapping meta-model provided by the deployment viewpoint (see 
Section 5). 

The package defines the following classes: 

 LibraryElementBase 

o Base class for members of the model element library 

org.fortiss.tooling.baseorg.fortiss.tooling.kernel

HierarchicElementBaseConnectorBase

EntryConnectorBase ExitConnectorBase LocalConnectorBase

ConnectionSegmentBase
+getURI() : EString
+getName() : EString

LibraryElementBase

-comment : EString

kernel::INamedCommentedElement

«interface»
layout::ILayoutedModelElement

«interface»
kernel::ILibraryElement

«interface»
element::IConnector

«interface»
element::IConnection

-source
0..1

-outgoing
0..*

-incoming
0..*

-target
0..1

«interface»
element::IHierarchicElement
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 HierarchicElementBase 

o Base class for hierarchic model elements 

 ConnectorBase 

o Base class for connectors 

 EntryConnectorBase 

o Base class for connectors with incoming connections 

 ExitConnectorBase 

o Base class for connectors with outgoing connections 

 LocalConnectorBase 

o Base class for connectors with local connections 

 ConnectionSegmentBase 

o Base class for connections 

 

3.2.6.2.3 Hierarchic Element GUI Layout Data Store 

The package org.fortiss.af3.tooling.base.model.layout (see Figure 3.16) provides a data 
store for graphical representations (see Section 0) of hierarchic element models that are based on 
org.fortiss.af3.tooling.base.model.element. 

 

 
Figure 3.16: Hierarchic Element Meta-Model (UML Diagram of Layout Data Store package 

org.fortiss.tooling.base.model.layout) 

 

 ILayoutedModelElement 

o Super class of model elements with layout data. 
o Attributes: 

 layoutData: Stores the aggregated layout data. 

 ILayoutData 

o Super class of all layout data objects. 
o Attributes: 

 key: The layout key indicating how the layout data is to be interpreted. 

 Point 

o Layout data for 2D locations. 
o Attributes: 

 x: The horizontal X coordinate. 
 y: The vertical Y coordinate. 

-key : EString

ILayoutData

«interface»
ILayoutedModelElement

-x : EInt
-y : EInt

Point

-width : EInt
-height : EInt

Dimension

Points

-orientation : EOrientation

Orientation

OffsetOrientation

-offset : EInt

Offset

-angle : EDouble

Angle

-layoutData
0..*

+NORTH
+EAST
+SOUTH
+WEST

«enumeration»
EOrientation-points

0..*
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 Points 

o Layout data for a sequence of 2D locations. 
o Attributes: 

 points: The aggregated locations. 

 Dimension 

o Layout data for 2D dimensions. 
o Attributes: 

 width: Object width 
 height: Object height 

 EOrientation 

o Enumeration of 2D directions and orientations. 

 Orientation 

o Layout data for 2D orientations. 
o Attributes: 

 orientation: The orientation 

 Offset 

o Layout data of a single dimensional offset. 
o Attributes: 

 offset: The offset value. 

 OffsetOrientation 

o Combines an offset with an orientation. 

 Angle 

o Layout data for an angle (the interpretation of the double value is application 
dependent). 

o Attributes: 
 angle: The double value of the angle. 

 

3.3 Base Variability Resolution (BVR) Tool 

The Base Variability Resolution (BVR) [7] helps manage the variability that emerges when using 
domain specific modelling languages (DSML). Expressing variability explicitly at the model level 
enables the construction of product lines while preserving the compatibility with existing domain 
specific tooling including model editors, model analyses, model transformations, and eventually 
code generators. By fostering reuse, product lines reduce waste, improve quality, and shorten time-
to-market. 

We summarize below the key features of the BVR tool chain from the user perspective. We further 
detail the underlying data model, which captures variability, and show how one can define and 
resolve variation points. We refer the interested reader to the official documentation [8] for a 
comprehensive treatment. 

 

3.3.1 Tool Summary 

BVR is developed on the top of the Eclipse platform. Although Eclipse is primarily an integrated 
development environment (IDE) targeting Java and web development, it provides a very general 
platform to build and integrate various textual and graphical editors in a single IDE. 

BVR takes advantage of the Eclipse modelling framework (EMF)6 [5], which is the de facto standard 
for MOF-based tooling. By providing a standardized implementation of the MOF specification [9], 

                                                           
6 See http://eclipse.org/modelling/emf/ 
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EMF makes BVR compatible with a large community of model-based tools. EMF also provides 
convenient facilities such as, standard tree-based editors or XMI and XML serialization to name a 
few. 

The BVR Tool Bundle consists of the numerous plugins which support a variability engineer in 
defining variability model. The following plugins are the most essential to enable specification of 
variability: 

 BVR Model – BVR meta-model 

 BVR VSpec MVC Editor – provide editor to define VSpec tree also known as feature tree 
or variability abstraction 

 BVR Resolution MVC Editor – resolution editor to define an instance of your VSpec tree, 
i.e. define a product configuration by selecting desirable features of the future product 

 BVR MVC Realization Editor – realization editor allows an engineer to define how 
abstract feature from VSpec are actually realized in the model. Further, one may define 
fragment substitution operations to specify model modification to yield a product 

 SPLCATool – set of tools to generate an optimal set of products to perform efficient 
testing in software product lines 

 BVR :: Thirdparty – contains interfaces and default implantation to enable cooperation 
BVR with third-party tooling 

3.3.2 Installation 

3.3.2.1 Prerequisites 

• The BVR tool bundle is tested against Eclipse Kepler, which is available at: 
http://eclipse.org/downloads/packages/eclipse-modeling-tools/keplerr 

• The tool bundle is also tested against AutoFOCUS3 DREAMS edition (see Section 3.2.2).  
• Java 8 is required to run the bundle (the plugins should work on Linux as well as Windows). 
• The BVR Papyrus related plugins do not support the recent version of Papyrus, thus one 

should ensure to run Papyrus 0.9. 

3.3.2.2 BVR Tool Bundle Update Site 

• The BVR Tool Bundle update site can be found at: 
http://bvr.modelbased.net/update/site.xml 

• The detailed footage of the installation process is available from here: 
http://bvr.modelbased.net/installation.swf 

3.3.3 Getting Started with BVR Tool Bundle 

• The following demo explains and exhibits BVR concepts, editors and variability process as 
well as integration with third-party tools: 
http://bvr.modelbased.net/demo/ 

• This short demo shows briefly VSpec and Resolution editors: 
http://bvr.modelbased.net/demo2/demo.swf 

• An example of the variability definition on UML based models and Papyrus integration is 
available at: 
http://bvr.modelbased.net/demo3/demo.htm 

• Integration between BVR and AutoFOCUS3 DREAMS edition are shown at: 
http://bvr.modelbased.net/af3bvr/af3bvrdemo.htm 

 

3.3.4 Visualization of Variability Models 

BVR provides three main visualisations for the variability models: namely the Ecore tree editor, the 
table view and the feature tree view. We illustrate below these three views and provide simple 
guidelines for when to use each of these. 

http://eclipse.org/downloads/packages/eclipse-modeling-tools/keplerr
http://bvr.modelbased.net/update/site.xml
http://bvr.modelbased.net/installation.swf
http://bvr.modelbased.net/demo/
http://bvr.modelbased.net/demo2/demo.swf
http://bvr.modelbased.net/demo3/demo.htm
http://bvr.modelbased.net/af3bvr/af3bvrdemo.htm
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 The Ecore Tree-based View, is not provided by BVR per se, but is available to browse (and 
modify) any well formed Ecore model. It presents the objects that compose a given model, 
layout as a tree following the containment relationship. As BVR models are themselves Ecore 
models, it is possible to visualize and edit them using this tree-based view. This can be a 
convenient way to carry on surgical updates in corrupted models for instance, but will not 
provide any support for variability-related tasks, such as derivation of validation (see 
Section 9.2.2). 
 

 
Figure 3.17: BVR Tree View 

 The Feature Tree View is the default editor recommended to build, edit and visualize BVR 
models. Variation points are layout as a tree, which reflects the primary decomposition 
chosen to capture variability. Figure 3.18 below shows a simplified variability models for the 
DREAMS platform depicted as a feature tree. By contrast with the Ecore tree-based view 
where every object described in the BVR meta-model is shown, only user level concepts are 
represented here. 

 

 
Figure 3.18 Feature tree of the variability inherent to the DREAMS platform,  
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3.4 Mixed-Criticality Product Line Editor 

3.4.1 Tool Summary 

The Mixed-Criticality Product Line Editor is tool that helps to define the safety related concepts of 
the system. The tool is composed by the following editors: 

 The IEC61508 and Diagnostic and Measures Safety Standard editor: this editor allows the 
representation of a usable model of the IEC61508 standard and a subset of its Diagnostics 
and Measures Techniques (tables A.2 to a A.14 and A.15 to A.17), allowing to add safety 
attributes to Component, Platform and System Software entities that have safety 
requirements. 

 The Safety Compliance editor: this editor allows defining Safety Compliance models based in 
IEC61508-2 and IEC61508-3 standard, allowing adding safety attributes to Component, 
Platform and System Software entities that have safety requirements. 

 The Safety Compliance Variability editor (based on BVR) of the Safety Compliance editor: 
this editor allows defining variability in the Safety Compliance models defined with the 
previous editor. 

Safety Compliance models will be used to check correctness of the system from the safety point of 
view. 

 

3.4.2 Installation 

The Mixed-Criticality Product Line Editor is bundled with the AutoFOCUS3 DREAMS Eclipse RCP 
application (see Section 3.2.2 for installation notes). 

 

3.4.3 IEC61508 and Diagnostic and Measures Safety Standard editor 

This editor allows defining IEC61508 based standards with SIL or ASIL (ISO26262) integrity levels for 
each one. For each standard, its SafetyIntegrityLevels (SILx) are defined, and for IEC 61508 its SCy 
levels are also defined, as shown in Figure 3.19: 

In addition to this, the editor allows defining a model of the diagnosis techniques and measures for 
IEC 61508 safety standard. 

The root of the hierarchy starts with the Starting from the IEC 61508 Based Safety Standard node. 
Apart from the SIL and SC levels described above, t, the user can create one of these entities: 

 Technique Folder 

 Technique Table 

 Technique Item Description 

 Random Failure Technique 

 Systematic Failure Technique 

For each Technique Item Description, the following properties can be defined: 

 Name: Description of the item 

 Notes: Additional notes about the item 

 See IEC61508-7: Reference to the IEC61508-7 item, which describes in deeper detail the 
technique or measure. 

Figure 3.20 shows that Techniques and Measures have been represented (Techniques & Measures 
node) and tables of Annex A of the IEC 61508-2 tables A.2 to A.17 have been defined. IEC 61508-3 
part would also be interesting but goes beyond the scope of current definition of safety meta-model, 
although deployment of SW components into Partitions, and Partitions into Hypervisors, and 
Hypervisors into Tiles is checked (all these elements are SCItems with a Safety Manual defining at 
least claimed SILx and SCy). Anyway, in depth extension of safety meta-model to IEC 61508-3 in the 
future would be an interesting work. 
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Figure 3.19: Safety Integrity Levels and System Capability Levels 

 

 
Figure 3.20: Safety Standard Techniques of IEC 61508-2 Annex A 

 

For each technique, its main properties are also defined. Figure below show the properties of a given 
technique (A9.1) for Table A.10 Program Sequence of IEC61508-2. For example, each Random Failure 
Technique has the following properties (see Figure 3.21): 

 The Table it belongs to. 

 The maximum diagnostic coverage that can be achieved with this technique. 
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Figure 3.21: Example of Random Failure Technique 

And also, for each Systematic Failure Technique (as shown in Figure 3.22), the following properties: 

 Group: The user can define if this technique is mandatory or is part of a group. Two groups 
are available: 

o AtLeastOneBlackShaded. 
o AtLeastOneGreyShaded. 

At least one technique of each group must be selected. 

 

 
Figure 3.22: Example of Systematic Failure Technique 

And also the effectiveness and importance in function of the SIL level of the entity, as shown in 
Figure 3.23. 
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Figure 3.23: Effectiveness for a SIL group 

To summarise, this model allow representing IEC61508 standard in a usable way so that safety 
concepts can be associated to Component, Platform and  System Software entities, allowing to check 
safety consistency of the model being developed. 

 

3.4.4 Safety Compliance Model Editor 

3.4.4.1 Toolset Summary and Functionality 

This editor allows defining a hierarchy Safety Compliant Items (SCI), and a ‘Safety Manual’ of each 
SCI (SCItem). A SCItem can represent one of the following DREAMS entities: 

 The Root representing the whole system (HW/SW) 

 (HW) DREAMS Node 

 (HW) DREAMS Cluster 

 (HW) DREAMS Tile 

 (SW) DREAMS Hypervisor 

 (SW) DREAMS Partition 

 (SW) DREAMS Component 

Each of these SCItems may a Safety Manual (to be described later). The hierarchy partially mimics 
the structure of a DREAMS system model (see Section 2.2). Figure 3.24 shows the very root of a 
Safety Compliance Model. 

 

 
Figure 3.24: Safety Compliance model main nodes 

The root consists of a Safety Compliance Specification entity, the very root of the model. The 
specification is composed by: 

 A Safety Manual (to be described later) 

 A Component Architecture Safety Folder 

 A Platform Architecture Safety Folder 

 A System Software Safety Folder 

 

A description of the above folders follows in the next sections. 
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3.4.4.2 Component Architecture Safety Folder 

Under this folder, safety specification of components (DREAMS software Component entities) is 
given. It is important to note that this model contains only safety relevant software components 
(i.e., software components which are part of safety functions and have defined safety requirements 
components that have safety requirements). Non safety software components do not appear here. 

In the same way that a DREAMS system model can have multiple Component Architecture models, 
this folder can have multiple roots which correspond to different logical component models (see 
Figure 3.25). 

 

 
Figure 3.25: Component Architecture Safety Components Folder 

 

 
Figure 3.26: Safety Properties of a Safety Component 

 

For each component, the following safety relevant properties (see Figure 3.26) may be defined: 

 RefComponent: Reference to the Component of the project. 

 Safety Standard and Safety Integrity Level: SIL level claimed for the Component. 

 RefCore: if the safety engineer wants to make sure that any deployments involving this 
component deploys the component into a given core, this field contains a reference to the 
core. For example: The safety engineer in Wind Turbine demonstrator (WP7) wants to 
ensure (for whatever reason) that for any Deployment (determined automatically using the 
design-space exploration (provided by WP4) or even manually defined) the Supervision(D) 
software Component in Figure 3.26 always is deployed into a Partition that is finally 
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deployed into a given Core of a given Tile. The consistency rules will check that for any 
deployment the Partition is finally deployed into that core. 

 RefTile: if the safety engineer wants to make sure that any deployments involving this 
component deploys the component in a given tile, this field contains a reference to the tile. 
A similar example as above can be given here. However, in this case, the engineer wants to 
ensure that Component is deployed into a Partition that is deployed to the given Tile 
(without specifying a particular Core). 

 Isolated in One Partition (Boolean): True if the safety engineer wants to make sure (for 
whatever reason) that any deployments involving this component deploys the component 
“alone” in one partition (i.e., not shared with any other component). In other words, the 
Partition will contain only this Component. 

 NeedAccessListHWResources: List of hardware resources (watchdogs, clocks, tiles, etc.) to 
which the component need access rights. This is for example needed for a software 
Component that resets a Watchdog and is deployed into a Partition. In this case, the 
Partition has to be configured in the hypervisor as having access to those hardware 
resources. Then, when Hypervisors configuration files are generated (WP4), the hypervisor 
and Partition will have access rights to the HW resources (particularly, the watchdog). 

 

3.4.4.3 Platform Architecture Safety Folder 

Under this folder, safety specification of HW elements (DREAMS Platform Architecture elements) is 
given. It is important to note that this models only is composed by safety relevant hardware Cluster, 
Node and Tile elements which are part of safety functions and have defined safety requirements. 
Non-safety hardware elements do not appear here. 

In the same way that a DREAMS system model can have multiple Platform Architecture models, this 
folder can have multiple roots corresponding to different platform architecture models (see Figure 
3.27). 

 
Figure 3.27: Platform Architecture Safety roots 

Each Platform Architecture partially mirrors the Platform Architecture of a DREAMS system model 
(with links to the corresponding entities), and adds Safety Manuals to some of the items (see Figure 
3.28). 

 
Figure 3.28: Platform Architecture Safety elements hierarchy with Safety Manual 
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The hierarchy, relevant from the safety point of view, consist of: 

 HW Root 
o Clusters 

 Nodes 

 Tiles 

 

3.4.4.4 System Software Safety Folder 

In this folder, the safety specification of Hypervisors and Partitions (defined via the Virtualization 
Layer of the technical architecture model, see Section 5.2.6 ) is given. Figure 3.29 shows an example 
for the Wind Turbine use case. 

 

 
Figure 3.29: System Software Safety roots: Hypervisors and Partitions 

Apart from the Safety Manual that can be attached to Hypervisors and Partitions, the safety 
engineer may want to specify (for whatever reason) that a given Hypervisor be deployed into a given 
Tile, or that a given Partition be deployed to a given core. 

As SCItems, each Hypervisor and Partition will have its own safety manual (figure below). Again, non-
safety-relevant hypervisors or partitions (elements which are not part of safety functions) do not 
appear in this model. 

 

 
Figure 3.30: Safety Manuals for Hypervisors and Partitions 
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3.4.4.5 Safety Manual 

A Safety Manual defines the way in which the entity containing the manual manages safety, so that a 
given SIL level is achievable. The safety manual (see Figure 3.31) can be understood as a 
“declaration” (made by the designer or provider of the item) about how the SCItem manages safety. 

 

 
Figure 3.31: Detailed Safety Manual Example 

 

A Safety Manual contains: 

 Hardware Fault Tolerance level (HFT) only for hardware elements 

 Safety Standard (i.e. IEC 61508) 

 Safety Integrity Level (i.e. IEC61508-SIL2) claimed 

 Systematic Capability Integrity Level (i.e. IEC61508-SIL2) claimed 

 Faults Management, with the following properties: 
o List of Random Failure techniques used by the entity 
o List of Systematic Failure Techniques used by the entity 

 Hypothesis values  
o Values of parameters under which is claimed the safety level 

 Hypothesis ranges (Category - Min value - Max value) 
o Ranges of parameters under which is claimed the safety level 

In short, information consigned in the Safety Manuals will be used to asses if claimed levels of SIL are 
consistent. 

 

3.4.4.6 Hierarchy of Safety Manuals and Variability due to different Deployments 

Hierarchy of Safety Manuals is also a key aspect. For example, if one node, down in the hierarchy, 
claims a SIL1 level but, higher in the hierarchy, an ancestor claims SIL3, then at least a warning 
should be raised. Depending on the architecture components with a lower SIL may be combined to 
result in a higher SIL (e.g., see IEC 61508-2, Chapter 7.4.3) 

Variability may complicate things further because perhaps, a given node can have one tile or 
multiple tiles depending on a variation point or, for example, one component may or may not exists 
depending on the configuration of the final system. 
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The same project can also have multiple deployments, depending on the System Architect’s 
requirements. A given component, depending on the deployment, can be running on a different tile 
or a different core, and therefore, the claimed SIL must be checked against the SIL of the platform 
deployed. 

 

3.4.5 Safety Constraint Checker – F(Deployment, SafetyComplianceSpecification) 

3.4.5.1 Linking everything together and checking 

The specific mapping linking software Components, software Partitions, software Hypervisors, 
hardware Tiles and hardware Cores is given by a Deployment.  

Safety Consistency Rules checker, checks consistency for a given tuple composed by five elements 
for a given project: 

 (1) Component Model 

 (2) Platform Model  

 (3) System Software Model 

 (4) Deployment (as the glue of 1,2 and 3) 

 (5) Safety Compliance Specification Model 

This way, Safety Model and Safety Consistency Rules checking will help the DSE tool to produce valid 
Deployments from the safety point of view (for the given safety information provided in Safety 
Manuals and the set of rules implemented). The next section explains the fundamentals about how 
the safety consistency checking works. 

3.4.5.2 Safety Consistency checking 

Above sections show that safety consistency checking must be a function with the following 
parameters: 

 (4) Deployment contains 
o (1) With a Component Architecture with variability resolved (see Section 3.4.6 for an 

overview how variability is considered for safety compliance models). 
o (2) With a Platform Architecture with the variability resolved 
o (3) With a System Software Architecture with the variability resolved 
o (5) SafetyComplianceSpecification (with variability resolved) 

The class SafetyConstraintChecker contains a function (evaluateSafetyCompliance) (see Section 
8.1.3) that receives a (a) deployment, (b) a collection of safety constraints (explained in Sections 
8.1.2 and 8.1.3) and (c) a safetyComplianceSpecification, and returns a list of constraints violated by 
the deployment. The constraint model is described later in Section 8.1). 

Notice that there is no specific editor for Safety Constraints Model. The reason is that it is not the 
designer who creates this model, but it is generated automatically by the SafetyConstraintChecker 
class. 

 

3.4.6 Safety Compliance Variability Model Editor 

The goal of this editor is to create models to capture the safety compliance related variability. 

3.4.6.1 Toolset Summary 

The variability will be modelled using BVR tool provided by SINTEF (see Section 3.2.6). Following this 
approach the variability is modelled in a separate model. Then a mapping between the variability 
model and the safety consistency models must be done. After that the system is able to create 
concrete instances of the models with variability using replacement mechanisms. 

3.4.6.2 Core Meta-models 

The used meta-model is the one of BVR (see Section 9.1). The models based on these meta-models 
will describe the variability of the safety related models. 
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4 Logical Viewpoint 

 

4.1 Logical Component Architecture Meta-Model 

The (logical) component architecture meta-model is used to describe the logical, or functional, 
aspects of an application with AutoFOCUS3. The component architecture meta-model is based on 
the AutoFOCUS3 hierarchic element meta-model (see Section 3.2.6.2), i.e. a component may contain 
(hierarchical) subcomponents. Hence, the meta-model allows for the definition of the architecture 
and functional aspects the desired abstraction level. 

The components of a ComponentArchitecture have Input- and OutputPorts that 
describe the (logical) messages which a Component receives or emits. Channels link these 

Ports to describe the functional dependencies between the components. Note that in the logical 
view, ports may also remain unconnected to model “external” inputs or outputs, e.g. from sensors 
or to actuators. Components also have attached specifications and annotations contain additional 
attributes. 

Table 5.1 provides an overview of the AutoFOCUS3 component architecture meta-model. 

Table 4.1: Component Architecture Meta-Model (overview) 

The meta-model of the Component Architecture consists of the package 

org.fortiss.af3.component.model and the subpackage 
org.fortiss.af3.component.model.annotation that provides property annotations of 
logical elements. They will be described in the following. 

Name Logical Component Architecture Meta-Model 

Description The goal of the hierarchic element meta-model is to provide modelling support for 
describing the logical, or functional, aspects of an application. 

Ecore file component.ecore 

Plugin org.fortiss.af3.component 

Packages org.fortiss.af3.component 

org.fortiss.af3.component.annotation 

org.fortiss.af3.component.behavior 

org.fortiss.af3.component.generator 

AutoFOCUS3 component meta-model 

Component-related annotations 

Behaviour specification of Components 

Code generation for Components 

Dependencies org.fortiss.af3.expression (not covered in this document) 

org.fortiss.tooling.base (see Section 3.2.6.2) 

org.fortiss.tooling.kernel (see Section 3.2.6.1) 
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Figure 4.1: UML diagram of the AutoFOCUS3 Component Architecture 
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For modelling the logical architecture of an application, Components, Ports, and Channels are 
most relevant. Components are used to define functional blocks and logical groups, Ports define 
the input and and output interfaces. of Components. Finally, Channels define the data flow (or 
data dependencies) between Components. 

A description of the relevant elements of the meta-model is given in the following: 

 ComponentArchitecture 
o Root element of logical architectures, contains components 
o Operations: 

 getTopComponent(): Returns the top-level component that is 
associated with this architecture. 

 Component 
o Describes a logical/functional block 
o (May) describe a logical container for subComponents 
o Operations: 

 getSubComponents(): Returns the list of direct subComponents 
 getOutputPorts(): 
 getInputPorts(): Returns the Output-/InputPorts attached to this 

Component 
 getChannels(): Returns the Channels that are contained within this 

Component 

 getParentComponent(): Returns the direct parent of this Component 
 findSubComponent(EString): 
 findSubComponentRecursively(EString): 

Returns the (first) subComponent whose name matches the given 
EString. Returns null if no component with a matiching name is 
found. 

 findOutputPort(EString): 
 findInputPort(EString): 

Returns the (first) Output-/InputPort whose name matches the 

 given EString. Returns null if no matching Output-/InputPort is 
 found. 

 findTopComponentParent(): Returns the topmost Component. 

This is typically the Component associated with the 
ComponentArchitecture. 

 getParentComponents(): Returns all parent Components of this 

Component.  
 findAtomicComponents(): Returns all atomic subComponents of 

this Component. An atomic Component is a Component that does not 

contain any subComponents. 
 specialCopyHook(EMap): Used to copy Channels between 

Componnets. 
 getVerifBehaviour(): Returns the Specification that defines the 

appearance of this Component within a verification of this 

ComponentArchitecture. 
See VerifBehaviourComponentSpecification. 

 Port: 
o Defines the input or output of the Component to which the Port is attached. 
o Allows Components to interact with their “environment” 
o Ports are transparent to the subelements of the Component to which they are 

attached. 
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o Operations: 
 getPortSpecification(): Returns the PortSpecification of 

this Port (see below). 
 getComponent(): Returns the Component to which this Port is 

attached. 
 getOutgoingChannels() / getIncomingChannels(): Returns 

the outgoing / the incoming Channels of this Port. Note that both 
OutputPorts and InputPorts may have incoming and outgoing 

Channels, e.g. the OutputPort of a non-atomic Component can have 
incoming channels from sub-Components. 

 specialCopyHook(EMap): Used to copy Channels between 

Componnets. 

 InputPort: 
o Represents a Port that receives input data of a Component. 

 OutputPort: 
o Represents a Port that emits data from a Component. 

 Channel: 
o Connects Ports. 
o Used to define the data flow of a modeled application, as Channels set 

Components into relation. 

o Channels have a direction; Thereby, inter-Component dependencies can be 
defined. 

o Operations: 
 getSource(): Returns the source Port of this Channel. The source 

Port is the emitter of a  message. 
 getTarget(): Returns the target Port of this Channel. The target 

Port is thus a receiver of the message emitted by the source Port. 
 getParentComponent(): Returns the parent Component of this 

Channel. For example, if a Component A has two child Components 
A_1 and A_2, and a Channel C_12 connects A_1 and A_2, then 
C_12.getParentComponent() will return A. 

 

In additon to these basic elements, libraries may be defined withing AutoFOCUS3 which allow the 
definition of reuseable logical blocks. These blocks can the be used in a 
ComponentArchitecture while the actual detailed description resides at one location within 
the ComponentArchitecture. The elements of a library only contain references to the original 
instance, but since ComponentRef implements the Component interface, their use is 
transparent (i.e., the behave like Components that have directly been defined). 

 LibraryComponentPackage 

o Subelement of an AutoFOCUS3 library or another LibraryComponentPackage. 
o Contains references to Components, and/or relevant “data dictionaries” 
o Operations: 

 getLibraryComponents(): Returns the LibraryComponents that 
are part of this package. 

 LibraryComponent 
o Wrapped element for representing a Component within a 

LibraryComponentPackage 
o Operations: 

 getComponent(): Returns the Component associated with this 
LibraryComponent 
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 ComponentRef: 
o Class that references a Component. 
o Operations: 

 getOutputPorts(): 
 getInputPorts(): Returns the Output-/InputPorts attached to the 

referenced Component. 
 getChannels(): Returns the Channels that are contained within the 

referenced Component. 
 getSubComponents(): Returns the list of direct subComponents of 

the referenced Component. 
 getSpecifications(): Returns the list of specifications that are 

attached to the referenced Component. 
 getContainedElementList(): Returns a list of the directly 

contained IHierarchicElements of the referenced Component. 

 

4.2 Logical Component Architecture Specifications 

As pointed out in Section 3.2.3, additional attributes can be defined for model elements using fields 
in the class definition of the meta-model, specifications and annotations. The attributes 
implemented using field have been pointed out above (or respectively the operations used to access 
these fields). In addition to that, several specifications (see Section 3.2.5.2) are defined within the 
Component Architecture meta-model that will be explained in the following. 

The most relevant specifaction is the PortSpecification that allows to define the data that is 
exchanged via Ports. 

 PortSpecification: 
o Defines the type of data that is emitted or received by the Port to which  this 

specification is attached. Also defines the initial value of the associated Port. 
o Attributes: 

 type: Defines the type of data that is emitted/receiver by the associated 
Port. 

 initialValue: Defines the initial value of the attached Port. 
o Operations: 

 propagate(PropagateableSpecification): 

see PropagatableSpecification 

 PropagatableSpecification: 
o Defines a general interface that allows subclasses to propagate their properties (of 

this specification) to a target specification.  
o Operations: 

 propagate(PropagateableSpecification): Interface method 
to propagate properties of this PropagateableSpecification to the 
target PropagateableSpecification which must be given as a 
parameter. 
Empty method that must be implemented by subclasses. 
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Figure 4.2: AutoFOCUS3 Component Architecture Meta-Model (UML Diagram 2/2 of package 

org.fortiss.af3.component.model) 

 

In the following, different possibilities to specifiy a Component’s behaviour using the dedicated 
specifications will be briefly summarized. In the scope of DREAMS, a formal specification of an 
application’s behavior is not required, since models are mainly intended as input for offline design 
optimization and platform configuration generation tools. For completeness, the specifcations 
provided by AutoFOCUS3 are summarized in the following. Additionally, the ModeAutomaton 
specification could be used to define the different modes of the application demonstators, allowing 
to define different application sets (with different characteristics such as safety integrity levels and 
component WCETs for different modes). 

 CodeSpecification 
o A CodeSpecification can be used to specify the behavior of a Component at 

code level using a deditated domain-specific language. 
o AutoFOCUS provides a dedicated editor with syntax-colouring and online syntax 

checking. 

 StateAutomaton 
o A StateAutomaton can be used to define a Component’s behaviour using a 

finite-state machines. 
o Each StateAutomaton must specify an initial state, in which the Component is 

started. 
o An State of a StateAutomaton can contain another StateAutomaton, 

resulting into a so-called hierarchical state automaton. 
o A StateAutomaton can contain Data State Variables (DSV), that can be accessed 

in all states of the Component’s state automaton. 

o A StateAutomaton is defined using the following mode elements: 
 States: Define the states of a Component. 

 Transitions: Define a change from one State to another State 
defined in the StateAutomaton. 

 Guards: Define a condition or a set of conditions for triggering / firing an 
Action. 
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 Action: Defines the actions to accomplish when conditions defined in 
Guard are met. An Action should normally contain some Transition 
between one State and another State. 

o The values of DSV can trigger an Action, when a condition is met. These conditions 
are implemented using Guards. 

 ModeAutomaton 
o A ModeAutomaton controls the switching of running modes of a Component 

during the lifecycle. 
o For each ModeAutomaton, an initial Mode must be defined (i.e., the mode in 

which the mode automaton starts). 
o A ModeAutomaton is defined using the following mode elements: 

 Mode: Describes the current configuration of computational data flow a 
component is in. 

 Switch: Controls the change of the mode to execute. A Switch element 
contains Guards which specify the mode switch conditions. 

 Guards: Define a condition or a set of conditions for triggering a mode 
switch. 

 ModeComponentStructureSpecification: This specification 
encapuslates a Component that defines the behaviour of the given mode. 

 

4.3 Logical Component Architecture Annotations 

Lastly, a number of properties are contributed to model elements of the logical view using 
annotations (see Section 3.2.5.3). 

In order to provide a better overview, all annotations which are registered for model elements from 
the logical viewpoint (i.e., also if they are contributed by other viewpoints) are summarized in the 
following tables. 

 

4.3.1 Annotations Registered for Components 

Table 4.2 lists the annotations that are registered for logical Components. 

 

Annotation name plugins Description 

MemoryRequirement 

[DerivedAnnotation] 

org.fortiss.af3.component Defines the required memory of a component. The local 
value is subject to user input, while the accumulated value 
considers the memory requirements of the 
subComponents and itself. 

SafetyIntegrityLevel 

[DerivedAnnotation] 

org.fortiss.af3.safety This annotation allows defining the required safety level 
for a Component using the levels defined in different 
safety standards (e.g., SIL2 from IEC 61508). The 
annotation for the top level Component (which is 

associated with the ComponentArchitecture, is used 
to select the safety standard that defines the available 
levels (considered standards DO178C, IEC61508, and 
ISO26262). 

The information provided by the 
SafetyIntegrityLevel annotation is mainly 
intended to support the architecture design and 
deployment phase of the development process. The Safety 
View (Section 7.1) provides additional concepts that are 
used support verification and validation activities in the 
development process. Therefore, the Safety View provides 
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the Safety Standard Meta-Model (see Section 7.1.4) which 
is used internally by the corresponding tool-support (e.g., 
for safety consistency checks and report generation) and 
into which SafetyIntegrityLevel annotation form 
the logical view can easily be transformed.  

EventTriggerAnnotation eu.dreamsproject.rtaw.timing This annotation allows defining the trigger of a 
Component based on the EventTrigger defined in 
the DREAMS timing viewpoint (see Section 7). 

Table 4.2: Annotations for Components 

4.3.2 Annotations registered for Ports 

Likewise, Table 4.3 lists annotations that have been registered for logical Ports. 

Annotation Name Corresponding plugins Description 

MessageSize 

[DerivedAnnotation] 

eu.dreamsproject.application Returns the size of the raw data that is 
sent via the annotated OutputPort. 
It is given in bits and calculated via the 
data type (see PortSpecification 
in Section 4.2) that is defined for the 
annotated OutputPort. 

InputEventAnnotation eu.dreamsproject.rtaw.timing This annotation allows defining the 
event triggering at an InputPort 

based on the InputEvent defined in 
the dreams timing viewpoint (see 
Section 7). 

OutputEventAnnotation eu.dreamsproject.rtaw.timing This annotation allows defining the 
event triggering at an OutputPort 

based on the OutputEvent defined 
in the dreams timing viewpoint (see 
Section 7). 

Table 4.3: Annotations for Ports 

 

4.4 Interfaces to other Meta-Models  

The logical component architecture meta-model does not contain references to meta-models from 
other viewpoints described in this document. However, as pointed out in 2.2.1, it is referred to by a 
number of meta-models defined in other viewpoints. 
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4.5 Logical Component Architecture Model Example Instances 

4.5.1 Component Architecture with Annotations 

 
Figure 4.3: Exemplary model of a navigation application 

As an example, a model of the logical architecture of a navigation application is illustrated in Figure 

4.3. It consists of the Components SensorAcquisition (reads and pre-processes sensor data), 
Controller (algorithmic performing the navigation), MapProcessing (provides access to a stored 
map), HMI (user input / display), and ActuatorControl (controls a motor or similar). The exemplary 
application model is centered on the Controller Component that receives refined sensor data from 

the Component SensorAcquisition and performs the actual navigation using additional information 
from a map. The results from the Controller are output to the ActuatorControl Component to 

transform these results into physical actions and to the HMI Component that displays the results 
and forwards commands issued by the user to the Controller. 

Each of these Components has attached InputPorts (white circles) and OutputPorts (black 
circles) that may be used to connect Components via Channels (black arrows). Disconnected 
Ports are used to model in- and outputs from or to the environment of the logical architecture, like 

data from sensors (e.g. the GPS port at the Component SensorAcquisition) or sending commands to 
actuators (e.g. via the Actuator Port or the ActuatorCtrl Component). 

 

 
Figure 4.4: Component model of the Controller 
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The internal structure of the Controller Component is illustrated in Figure 4.4 and the annotated 
properties of the contained Components are given in Figure 4.5. Since the Components related to 
the path planning are safety-relevant due to their direct impact on the maneuvers of resulting 
vehicle, their annotated SIL value is high (SIL4), whereas the navigation function is uncritical (SIL0). 
Furthermore, the figure illustrates that further on-functional properties can be annotated to logical 
components (here: memory consumption). As it will be pointed out in Chapter 6, parameters that 

depend on the mapping of a logical Component to an ExecutionUnit provided by the platform 
(see Chapter 5) are described by the Deployment meta-model. 

 

 
Figure 4.5: Annotations of the subcomponents of the Controller Component 

 

4.5.2 Mode Automaton Specification 

As pointed out in Section 4.2, a ModeAutomaton can be used to specify mode switches inside 
logical Components. The Mode Automaton controls the mode changes of a component in distinct 
periods of the time. A component may contain different running modes in lifecycle. 

In Figure 4.6, a Mode Automaton example associated to a Component is displayed.  

 

 
Figure 4.6. Example of Mode Automation applied to a component controlling automotive driving mode. 

As defined in Section 4.2, a ModeAutomaton is composed of Modes (represented as blue ellipses) 
and Switches (represented as arrows). The linking of Modes and Switches is performed using 
input and output connectors (black and white circles, respectively). An initial mode, which the mode 
automaton starts with, is required in mode automaton. This initial mode is contains a black dot, 
which highlights that the mode node is the initial mode. 

Mode changes are defined using switches. The conditions for switching between modes are 
provided by specifying Guards of a Switch. If no Guard of an outgoing Switch is specified, the 
current Mode remains active. If a Switch can be fired (the condition specified in the Guard is 
met), then new Mode will be active, and the Component specifying the behaviour of this Mode will 
take over the computation job. 



D1.4.1 Version 1.0 Confidentiality Level: PU 

31.03.2015  DREAMS  Page 56 of 124 

A mode generally contains a component structure. A mode component structure is a computation of 
the outputs when the corresponding mode active is. Every mode must contain one sub-component 
structure. A mode component structure must have the same input and output Ports as the parent 
component, which contains this mode automaton (denoted “mode node” the following). Every time 
a switch is triggered, the corresponding mode component structure is executed. The mode 
component structure uses the mode node’s InputPorts, and delivers the result of its computation 

to the mode node’s OutputPorts. 
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5 Technical Viewpoint 

 

5.1 Platform Architecture Meta-Model 

The platform architecture meta-model provides the basis for the description of platform 
architectures in AutoFOCUS3. It consists of a platform architecture meta-model (described in this 
section) that is based on the AutoFOCUS3 hierarchic element meta-model (see Section 3.2.6.2) and 
additional attributes contributed by a number of annotations (see Section 5.3). 

In order to describe a concrete platform architecture, a specialized meta-model needs to be derived 
from the AutoFOCUS3 platform meta-model described in this section. Hence, all classes in this meta-
model are abstract types. The meta-models for the DREAMS architecture are described in next 
sections 4.2-4.6. 

 

Table 5.1 provides an overview of the AutoFOCUS3 platform architecture meta-model. 

Name Platform Architecture Meta-Model 

Description The goal of the hierarchic element meta-model is to provide the basis for the 
description of platform architectures. 

Ecore file platform.ecore 

Plugin org.fortiss.af3.platform 

Packages org.fortiss.af3.platform 

org.fortiss.af3.platform.annotation 

AutoFOCUS3 platform meta-model 

Platform-related annotations 

Dependencies org.fortiss.af3.component (see Section 4.1) 

org.fortiss.tooling.base (see Section 3.2.6.2) 

org.fortiss.tooling.kernel (see Section 3.2.6.1) 

Table 5.1: Platform Architecture Meta-Model (overview) 
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Figure 5.1: AutoFOCUS3 Platform Architecture Meta-Model (UML Diagram 1/2 of package 

org.fortiss.af3.platform.model) 
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Figure 5.2: AutoFOCUS3 Platform Architecture Meta-Model (UML Diagram 2/2 of package 

org.fortiss.af3.platform.model) 

The meta-model consist of the package org.fortiss.af3.platform.model that contains 
the core definition of the platform architecture meta-model, as well as the package 
org.fortiss.af3.platform.model.annotation that provides a number of annotations 
for platform architecture model elements. 

The org.fortiss.af3.platform.model package contributes several groups of classes. It is 
shown in Figure 5.1 and Figure 5.2. 

For the description of the platform architecture root (container element for all platform 
architectures) and the structural platform elements, the following classes are available: 

 PlatformArchitecture 

o Root element for platform architecture meta-model. 
o Attributes: 

 generated: Flag if the platform architecture has been generated. 

 IPlatformArchitectureElement 

o Base class for all platform architecture elements 
o Operations: 

 getPlatformArchitecture(): Returns the 
PlatformArchitecture for this 
IPlatformArchitectureElement. 

 IPlatformResource 

o Base marker interface for platform elements that classify the different platform 
resources. 
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 IPlatformCommunicationResource 

o Interface to mark communication resources (i.e., resources that move data in 
system). 

 IPlatformProcessingResource 

o Interface to mark processing resources (i.e., resources that support the execution of 
software) 

 IPlatformMemoryResource 

o Interface to mark memory resources (i.e., resources that support the storage of 
data). 

 IPlatformIOResource 

o Interface to mark I/O resources (i.e., resources that interface the platform to its 
environment). 

 ExecutionUnit 

o Base class for execution units, i.e., platform elements which allow the execution of 
software 

o Operations: 
 getReceiverUnits() 

 getTransmitterUnits() 

 getTransceiverUnits() 

 getPlatformConnectorUnits() 

 TransmissionUnit 

o Base class for transmission units, i.e., communication platform elements that allow 
the transmission of data (e.g., busses, networks, etc.). 

 GatewayUnit 

o Base class for gateways units, i.e. dedicated communication platform elements that 
move traffic between transmission units residing at different levels of the platform 
architecture. 

 MemoryUnit 

o Base class for memory units (e.g., RAM, ROM resources) 

 GenericPlatformUnit 

o Placeholder for generic platform elements (e.g., custom IP blocks) that are not 
described by any of more specific base classes. 

o Operations: 
 getReceiverUnits() 

 getTransmitterUnits() 

 getTransceiverUnits() 

 getPlatformConnectorUnits() 

 

For a more fine-grained specification how a platform architecture element is implemented, the 
meta-model provides the following marker interfaces that can be inherited additionally. For 
example, a concrete processor would inherit both from ExecutionUnit (see above) and 
IChipPlatformArchitectureElement. 

 IPlatformArchitectureElementType 

o Marker interface to specify the type of platform architecture elements. 

 ILogicalPlatformArchitectureElement 

o Model element is a logical grouping. 

 IPhysicalPlatformArchitectureElement 

o Base marker interface for platform elements implemented in hardware. 
 
 



D1.4.1 Version 1.0 Confidentiality Level: PU 

31.03.2015  DREAMS  Page 61 of 124 

 IBoxPlatformArchitectureElement 

o Marker interfaces for “boxes”, i.e. electronic devices hosting one or more computer 
systems (~ ECU). 

 IBoardPlatformArchitectureElement 

o Marker interface for electronic circuit boards (hosting multiple chips). 

 IChipPlatformArchitectureElement 

o Marker interface for electronic chips that can host multiple hardware IP components 
in a single package. 

 IIpCorePlatformArchitectureElement 

o Marker interface for hardware IP component (may contain chip IP components). 

 ISoftwarePlatformArchitectureElement 

o Marker interface for platform architecture elements implemented in software. 

 IVirtualizationPlatformArchitectureElement 

o Marker interface for software platform architecture elements that provide a 
virtualization layer of the underlying hardware. 

 IOperatingSystemPlatformArchitectureElement 

o Marker interface for operating systems and their sub-components. 

 IMiddlewarePlatformArchitectureElement 

o Marker interface for middleware components (i.e., platform architecture elements 
implemented in software that belong neither into the virtualization nor the 
operating system layer). 

 PlatformArchitectureElementGroup 

o Logical group of platform architecture elements. 

 

In order to allow for a modular definition of hierarchical platform architectures, and to foster the 
reuse of sub meta-models, a concept is required to define the compatibility of platform architecture 
elements. An encoding of the composition rules into the type-system provided by the meta-model is 
not flexible enough since it does not support the re-use of sub-meta-models in different contexts 
(e.g., two different concrete platform architectures might allow the use of memory elements at 
different levels). Therefore, the AutoFOCUS3 platform meta-model provides the 

IArchitectureDomain base marker interface, from which derived marker interfaces should be 
defined by meta-models providing concrete element types. For each platform meta-model that 
might combine multiple existing meta-models providing a number of platform architecture element 
domains, an implementation of the IPlatformHierarchicalCompositionRules (see 
Section 5.2.6) interface must be provided that defines the compatibility of the different architecture 
domains. 

 

 IArchitectureDomain 

o Marker interface to specify platform architecture domain of hierarchical platforms. 
Platforms / platform element libraries must provide concrete domains (and derive 
its platform elements from these domains), as well as an implementation of 
IPlatformHierarchicalCompositionRules where the composition rules 
are encoded (i.e., composability of the different domains). 

o Operations: 

 getArchitectureDomainName(): Returns the architecture domain's 
name. 

 IPlatformDomain 

o IArchitectureDomain depicting the PlatformArchitecture itself. 
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Finally, the last group of classes is used to specify the interfaces of platform architecture elements: 

 PlatformConnectorUnit 

o Base class for connectors of platform architecture elements. 

 Transmitter 

o Platform connector that supports outbound traffic, only. 

 Receiver 

o Platform connector that supports inbound traffic, only. 

 Transceiver 

o Platform connector that supports both inbound and outbound traffic. 

 TransmissionConnection 

o Connection between platform connector units of two platform architecture 

elements. It should be noted that the TransmissionConnection is a purely 
logical link that is used to model the connection of any platform architecture 
elements. All required attributes are described in the corresponding platform 
architecture elements and platform connector units. If not noted otherwise, 

TransmissionConnections are undirected (despite the fact that they inherit 
the source and target attributes from the IConnection interface). 

 ICommunicationRole 

o Marker interface to specify which role a platform element takes in the 
communication. 

 ICommunicationMaster 

o Marker interface to specify that platform element is a communication master that 
actively initiates the communication. 

 ICommunicationSlave 

o Marker interface to specify that platform element is a communication slave that can 
accept communication requests from communication masters. 

 IPlatformConnectorType 

o Marker interface to further classify the type of platform connector units 

 IPlatformPort 

o Platform connector unit is a port that be connected / that can implement a given 
platform interface. 

 IPlatformInterface 

o Platform connector unit is an interface that can be implemented by platform ports. 

 IPlatformExport 

o Platform connector unit exports services for use at the parent level. 

 IGenericPlatformSourceConnector 
o Generic platform (source) connector used to connect platform elements where 

interconnect has no special role, like transmitting communication information. 

 IGenericPlatformTargetConnector 
o Generic platform (target) connector used to connect platform elements where 

interconnect has no special role, like transmitting communication information.  
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5.2 DREAMS Platform Meta-Model 

The DREAMS platform meta-model provides the types required to describe instances of the DREAMS 
architecture (see D1.2.1 “Architectural Style of DREAMS”). It is based on the AutoFOCUS3 platform 
architecture model (see Section 5.1), and provides a number of architecture domains (each of which 
is declared in a separate sub-package of the meta-model). 

Table 5.2: DREAMS Platform Meta-Model provides an overview of the AutoFOCUS3 platform 
architecture meta-model. 

Name DREAMS Platform Meta-Model 

Description Meta-Model for the description of instances of the DREAMS architecture. 

Ecore file dreams.ecore 

Plugin eu.dreamsproject.platform 

Packages eu.dreamsproject.platform.model.cluster 

 

eu.dreamsproject.platform.model.node 

 

eu.dreamsproject.platform.model.tile 

 

eu.dreamsproject.platform.model.noc 

 

eu.dreamsproject.platform.model.hypervisor 

 

eu.dreamsproject.platform.model.processor 

eu.dreamsproject.platform.model.processor.

annotation 

Cluster: physically distributed computer 
system 

Node: multi-core chip containing tiles 
connected by a network-on-chip 

Tile: processor cluster / single processor 
core / IP core connected to the NoC 

NoC: Internal structure of network-on-
chip 

Hypervisor: virtualization of physical 
resources into partitions 

Processor: Internal structure of 
processors 

Processor domain elements annotations 

Dependen-
cies 

org.fortiss.af3.platform (see Section 5.1) 

org.fortiss.af3.component (see Section 4.1) 

org.fortiss.tooling.base (see Section 3.2.6.2) 

org.fortiss.tooling.kernel (see Section 3.2.6.1) 

Table 5.2: DREAMS Platform Meta-Model 

In the next sections, each of the architecture domains will be described in more detail. Finally, 
Section 5.2.6 describes the composition rules that specify how elements from the different 
architecture domains can be combined. 
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5.2.1 Cluster Domain 

5.2.1.1 Cluster Meta-Model 

 
Figure 5.3: DREAMS Platform Meta-Model / Cluster (UML Diagram of package 

eu.dreamsproject.platform.model.cluster) 

The eu.dreamsproject.platform.model.cluster package is used to model the DREAMS 
cluster level, i.e. to logically group the interconnection of entire physically distributed computer 
systems. The meta-model contains the following classes (see Figure 5.3): 

 IClusterDomain: 
o The IArchitectureDomain identifying model elements of the cluster domain. 
o Operations: 

 getArchitectureDomainName(): Returns the architecture domain's 
name. 

 ClusterDomainElement: Base class for structural elements of the cluster domain 

 Cluster: A DREAMS cluster, i.e. a (logical) group of nodes that are connected via an off-
chip network (see Section 5.2.2). 

 OffChipNetworkGateway: GatewayUnit providing a bridge between the 
OffChipNetworks of connected Clusters. 

As it can be seen from Figure 5.3, the model elements in this package are based on the concepts 
provided by the AutoFOCUS3 platform Meta-Model (see Section 5.1): 

 The purpose of the elements at the cluster domain is provide a logical grouping of physically 
distributed computer systems (which are modelled at the node domain, see Section 5.2.2). 
Hence, the cluster domain elements are modelled as logical elements (base marker interface 
ILogicalPlatformArchitectureElement of IClusterDomainElement). 

 The structural elements Cluster and OffChipNetworkGateway are hierarchic model 
elements (HierarchicElementBase via inheritance hierarchy). 

org.fortiss.af3.platform

+getArchitectureDomainName() : EString

«interface»
«interface»

IClusterDomain

ClusterDomainElement

Cluster

+getArchitectureDomainName() : EString

«interface»
platform::IArchitectureDomain

+getPlatformConnectorUnits() : EList<PlatformConnectorUnit>
+getTransceiverUnits() : EList<Transceiver>
+getReceiverUnits() : EList<Receiver>
+getTransmitterUnits() : EList<Transmitter>

platform::ExecutionUnit

«interface»
platform::ILogicalPlatformArchitectureElement

platform::GatewayUnit

OffChipNetworkGateway



D1.4.1 Version 1.0 Confidentiality Level: PU 

31.03.2015  DREAMS  Page 65 of 124 

 Clusters are modelled as ExecutionUnits, and hence they (or, model elements in 
their offspring, respectively) are deployment targets (see Section 6.1) for software which is 
described using logical components (see Section 4.1). 

 The communication between the Clusters and the OffChipNetworkGateways is 

realized by OffChipNetworkInterfaces and OffChipNetworkPorts (see Section 
5.2.2). The Ports from the node meta-model are reused in the cluster meta-model since it 
provides only a logical grouping. 

 The mode of communication is modelled as bidirectional (base class Transceiver of 
OffChipNetworkPort and OffChipNetworkInterface) with masters actively 

initiating the communication (marker interface ICommunciationMaster). 

 

5.2.1.2 Cluster Model Example Instance 

 

 
Figure 5.4: Cluster domain example model instance 

In Figure 5.4, a simple model consisting of two Clusters can be seen. Both Clusters are 

connected via an OffChipNetworkGateway. The Clusters have attached 
OffChipNetworkPorts (connectors represented by black circles) which are each connected to 
an OffChipNetworkInterface of the contained OffChipNetwork and to the 

OffChipNetworkInterface of the OffChipNetworkGateway element (see Section 5.2.2). 
Thus, a connection between the internal OffChipNetworks of Cluster_A and Cluster_B is 
modelled. 

The eu.dreamsproject.platform.model.nodes package is used to model the DREAMS 
node level, i.e. to model the internals of a single DREAMS cluster. Hence, a model at the node level 
describes the structural elements and the topology of a physically distributed computer system. The 
meta-model contains the following classes (see Figure 5.5). 

 INodeDomain: 
o The IArchitectureDomain identifying model elements of the node domain. 
o Operations: 

 getArchitectureDomainName():Returns the architecture domain's 
name. 

 NodeDomainElement: Base class for structural elements of the node domain 

 NodeDomainConnector: Base class for IPlatformConnectorUnits of the node 
domain 

 Node: A DREAMS node, i.e. electronic control unit (or computer) hosting a multi-core chip 
containing tiles connected by a network-on-chip 

 OffChipNetwork: An off-chip network to interconnect multiple nodes 

 OffChipNetworkPort: Off-chip communication port of structural elements at the node 
level (Nodes, OffChipClusterGateways). 

 OffChipNetworkInterface: Communication interface of an OffChipNetwork. 

 PowerSupply: Model element of an individual (independent) power supply.  

 PowerOut: NodeDomainConnector attached to PowerSupply for connecting 
Nodes. 

 PowerIn: NodeDomainConnector allowing to connect power supplies to Nodes. 
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5.2.2 Node Domain 

5.2.2.1 Node Meta-Model 

 
Figure 5.5: DREAMS Platform Meta-Model / Node (UML Diagram of package 

eu.dreamsproject.platform.model.node) 
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Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1): 

 The base marker interface IBoxPlatformArchitectureElement of 
NodeDomainElement and NodeDomainConnector indicates that the system entities 
modelled by the node domain are electronic devices which provide a dedicated housing.  

 The structural elements Node, OffChipNetwork and OffChipClusterGateway are 
hierarchic model elements (HierarchicElementBase via inheritance hierarchy). 

 Nodes are modelled as ExecutionUnits, and hence they (or, model elements in their 
offspring, respectively) are deployment targets (see Section 6.1) for software which is 
described using logical components (see Section 4.1). 

 Likewise, OffChipNetworks being modelled as TransmissionUnits, and 

OffChipClusterGateways being modelled as GatewayUnits, are part of the 
communication facilities of a DREAMS system. 

The mode of communication is modelled as bidirectional (base class Transceiver of 
OffChipNetworkPort and OffChipNetworkInterface) with masters actively initiating 
the communication (marker interface ICommunciationMaster). Here, 
OffChipNetworkPorts constitute the interface of Nodes and OffChipClusterGateways 
to the OffChipNetwork (whose is interface is modelled by OffChipNetworkInterface). 

 

5.2.2.2 Node Model Example Instance 

 

 
Figure 5.6: Node domain example model instance 

 

An exemplary model from the Node domain is shown in Figure 5.6, i.e. the internal structure of a 

Cluster. The example consists of two Nodes, one OffChipNetwork, and two 
PowerSupplys. The OffChipNetwork, which represents e.g. a TTEthernet network or an 

EtherCAT network, has three attached OffChipNetworkInterfaces. Three 
OffChipNetworkPorts (represented by black connectors) at the Nodes and at the right hand 
side of the OffChipClusterGateway are connected to these 
OffChipNetworkInterfaces. The NetworkInterface located at the left side of the 
OffChipNetwork in the example is connected to an OffChipNetworkPort of the containing 

Cluster. 

As pointed out in Section 5.2.1.2, the Cluster’s OffChipNetworkPort can be connected to 

the OffChipNetworkInterface of an OffChipNetworkGateway. Since Clusters only 
represent a logical grouping of platform elements, the OffChipNetworkGateway (that is used 
to describe the connection of the off-chip networks of two different clusters) resides at the cluster-
domain. In contrast to that, OnChipOffChipGateways (see Section 5.2.3.2 for an example) and 
NetworkInterfaces (see Section 5.2.5.2 for an example) are used to route communication from 
different levels of the architecture. Hence, OnChipOffChipGateways and 

NetworkInterfaces reside at the lower of the two architecture levels that are connected by 
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them (tile-domain, and processor-domain, respectively) and their interface to the containing 
architecture level is expressed using specializations of IPlatformExport 

(OnChipOffChipExport and OnChipNetworkExport, respectively). 

Each of the two Nodes present in the example is connected to an independent PowerSupply. The 
connection is established via PowerOuts at the PowerSupplys and PowerIns attached to the 
Nodes. The information about the power supply of Nodes can be considered during safety analysis 
(e.g., shared vs. separated power supply) 

 

5.2.3 Tile Domain 

5.2.3.1 Tile Meta-Model 

 

 
Figure 5.7: DREAMS Platform Meta-Model / Tile (UML Diagram of package 

eu.dreamsproject.platform.model.tile) 

 

The eu.dreamsproject.platform.model.tile package is used to model the DREAMS tile 
level, i.e. to model the internals of a single DREAMS node. Hence, a model at the tile level describes 
the structural elements and of a multi-processor system on-chip whose elements are interconnected 
by an on-chip network. The meta-model contains the following classes (see Figure 5.7). 

 

 ITileDomain: 
o The IArchitectureDomain identifying model elements of the tile domain. 
o Operations: 

 getArchitectureDomainName():Returns the architecture domain's 
name. 

 TileDomainElement: Base class for structural elements of the tile domain 

 TileDomainConnector: Base class for IPlatformConnectorUnits of the tile 
domain 

 Tile: A DREAMS tile, i.e. a multi-core or single-core processing unit that is connected to the 
OnChipNetwork via its OnChipNetworkPort. 

 OnChipNetwork: An on-chip network to connect multiple tiles 
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 OnChipOffChipGateway: A gateway from the on-chip to the off-chip level. 

 IpCore: A placeholder for a generic IP core that is connected to the OnChipNetwork via 
its OnChipNetworkPort. 

 OnChipNetworkPort: On-chip communication port of structural elements at the tile 
level (Tiles, OnChipOffChipGateways). 

 OnChipNetworkInterface: Communication interface of on-chip communication 
network 

 OnChipOffChipExport: It is required to model the communication routes to other 
nodes. 

 WatchDog: Model element representing a watchdog timer which can trigger a reset of 
connected elements that fail the reset the watchdog timer in time and hence are considered 
to be in a “failed” state. 

 WatchDogIn: Connector to be attached to elements which shall be monitored by a 
WatchDog. 

 WatchDogOut: Connector at the WatchDog to which monitored elements can be 
connected. 

 Clock: Model element that represents clock sources. 

 ClockIn: Connector of the model element to which a clock signal shall be provided. 

 ClockOut: Connector at the clock source from which a clock signal to connected 
elements is emitted. 

 GeneralPurposeInput: Connector representing a digital input port of the respective 
model element. 

 GeneralPurposeOutput: Connector representing a digital output port of the respective 
model element. 

 

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1): 

 The base marker interface IIpCorePlatformArchitectureElement of 

TileDomainElement and TileDomainConnector indicates that the system entities 
modelled by the tile domain are IP cores that possibly are contained in the same package. 

 The structural elements Tile, IpCore, OnChipNetwork and 
OnChipOffChipGateway are hierarchic model elements 

(HierarchicElementBase via inheritance hierarchy). 

 Tiles are modelled as ExecutionUnits, and hence they (or, model elements in their 
offspring, respectively) are deployment targets (see Section 6.1) for software which is 
described using logical components (see Section 4.1). 

 Likewise, OnChipNetworks being modelled as TransmissionUnits, and 

OnChipOffChipGateways being modelled as GatewayUnits, are part of the 
communication facilities of a DREAMS system. 

 The mode of communication is modelled as bidirectional (base class Transceiver of 
OnChipNetworkPort and OnChipNetworkInterface) with masters actively 
initiating the communication (marker interface ICommunciationMaster). Here, 

OnChipNetworkPorts constitute the interface of Tiles, IpCores and 

OnChipOffChipGateways to the OnChipNetwork (interface modelled by 

OnChipNetworkInterface). As mentioned above, in addition to 
OnChipNetworkPorts, also OnChipOffChipExports can be attached to 
OnChipOffChipGateway. Then, the route to the off-chip communication can be 
described using a link from the OnChipOffChipExport to the 
OffChipNetworkPort owned by the Node that contains the respective 

OnChipOffChipGateway. 
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 WatchDogs and Clocks can be connected to Tiles level to model different Clock 
Domains and the monitoring of Tiles (which represent multi-core processors). This is 
especially relevant for safety analysis. Note that each WatchDog must be connected to a 
Clock source since its nature as a timer requires a clock signal. 

 

5.2.3.2 Tile Model Example Instance 

 

 
Figure 5.8: Tile domain example model 

 

Figure 5.8 shows an exemplary model at the Tile-level, i.e. the internal structure of a Node. There 
are two Tiles, one OnChipNetwork, and an OnChipOffChipGateway. The white connectors 
attached to the OnChipNetwork represent the OnChipNetworkInterfaces. Likewise, the 

connectors attached to the Tiles and at the right hand side of the OnChipOffChipGateway 
represent OnChipNetworkPorts that are connected to the corresponding 
OnChipNetworkInterfaces of the OnChipNetwork. 

The OnChipOffChipGateway depicts the gateway of the OnChipNetwork shown in this 
example to the network at the containing layer (i.e., an OffChipNetwork at the Node layer). The 

connector in the very bottom left of the figure represents the OffChipNetworkPort of the 

Node that contains the model shown in Figure 5.8. It is connected to an OnChipOffChipExport 
(left connector of OnChipOffChipNetworkGateway) that is used to model the connection to 

the containing Node’s OffChipNetworkPort. 

In the example, a common Clock source provides a clock signal via ClockOuts to the connected 
Tiles which receive the signal via attached ClockIns. Furthermore, WatchDogs are connected 

to the two present Tiles via WatchDogOuts (at the WatchDogs) and WatchDogIns (at the 
Tiles). Since WatchDogs are essentially timers, they require a clock signal and, hence, they are 

connected to the Clock that provides the signal to the Tiles. The Tile Tile_AA_2 additionally 
has an attached GeneralPurposeOutput Port and a GeneralPurposeInput Port 
modelling the generic GPIOs of processors or boards. 
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5.2.4 NoC Domain 

5.2.4.1 NoC Meta-Model 

The eu.dreamsproject.platform.model.noc package is used to model the internals of 
OnChipNetworks (see Section 5.2.3). It contains the following classes (see Figure 5.9). 

 INocDomain: 
o The IArchitectureDomain identifying model elements of the NoC domain. 
o Operations: 

 getArchitectureDomainName():Returns the architecture domain's 
name. 

 NocDomainElement: Base class for structural elements of the tile domain 

 NocDomainConnector: Base class for IPlatformConnectorUnits of the NoC 
domain 

 NocRouter: A router of the OnChipNetwork. 

 NocInputUnit: An input unit of a NocRouter of the OnChipNetwork. 

 NocOutputUnit: An output unit of a NocRouter of the OnChipNetwork. 
 

 
Figure 5.9: DREAMS Platform Meta-Model / NoC (UML Diagram of package 

eu.dreamsproject.platform.model.noc) 

 

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1): 

 The base marker interface IIpCorePlatformArchitectureElement of 
NodeDomainElement and NodeDomainConnector indicates that the system entities 
modelled by the node domain are IP cores that possibly are contained in the same package. 

 NocRouters are modelled as TransmissionUnits and constitute the most fine-
grained level of in the model of the DREAMS communication facilities. 
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 The internal structure of an on-chip network is modelled using directed 
TransmissionConnections between the OnChipNetworkInterfaces of the 
OnChipNetwork and the InputUnits / the OutputUnits of the NocRouters 
contained by the OnChipNetwork. 

 

5.2.4.2 NoC Model Example Instance 

 

 
Figure 5.10: NoC domain example model 

 

Figure 5.10 shows an exemplary model at the NoC-Domain, i.e. the internal structure of an 
OnChipNetwork. The black connectors at the left and at the upper side of the figure represent the 
OnChipNetworkInterfaces of the containing OnChipNetwork. The example contains four 

NoCRouters whose communication interfaces are represented by Input- and OutputUnits. 
The InputUnits are represented by the white connectors, while the black connectors attached to 
NoCRouters are OutputUnits, respectively. Note the internal structure of the 

OnChipNetwork, i.e. the interconnection between the different NoCRouters is modelled using 
directed connections (arcs) which allows to model complex communication topologies for 
OnChipNetworks. For instance, this can be used to segregate the communication of the platform 

components (e.g., Tiles) connected to the corresponding OnChipNetworkInterfaces into 
different classes. In the topology depicted in the simple example in Figure 5.10 does not impose any 

restrictions onto the communication flow between Tiles connected to the corresponding 
OnChipNetworkInterfaces, but provides redundant communication routes. 

It should be noted, that on all other levels of the platform meta-model, communication links are 
modelled as undirected connections (edges). Hence – unlike InputUnits and OutputUnits – 
OnChipNetworkInterfaces are modelled as bidirectional communication elements. 

  



D1.4.1 Version 1.0 Confidentiality Level: PU 

31.03.2015  DREAMS  Page 73 of 124 

5.2.5 Processor Domain 

5.2.5.1 Processor Meta-Model 

 

 
Figure 5.11: DREAMS Platform Meta-Model / Processor (UML Diagram of package 

eu.dreamsproject.platform.model.processor) 

The package eu.dreamsproject.platform.model.processor is used to model the 
DREAMS processor level, i.e. the internals of a DREAMS tile. Thus, the system elements of this 
package include busses, cores, memories and network interfaces. Hence, it is possible to describe 
multicore processors whose cores are connected via a bus and are able to access the 

OnChipNetwork using NetworkInterface that is connected to the bus. The meta-model 
contains the following classes (see Figure 5.11): 

 IProcessorDomain: 

o The IArchitectureDomain used to identify model elements that belong to the 
domain of processors. 

o Operations: 
 getArchitectureDomainName():Returns the architecture domain's 

name.  

 ProcessorDomainElement: Base class of the structural elements that describe a Tile. 

 ProcessorDomainConnector: Base class of the structural elements used to describe 
the communication of ProcessorDomainElements. 

 Core: Structural model element used to describe a single Core of a processor. 

 Memory: Base class used to describe memory (storage) elements of a processor. Accessible 
via the Bus of the same parent Tile. 

 RAM: Model element used to describe Memory which that is volatile. 

 ROM: Model element used to describe read-only, non-volatile Memory. 
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 Bus: Model element describing the (main) communication resource on processor level 
which connects Cores, Memory, and NetworkInterfaces. 

 NetworkInterface: Model element that connects the processor elements to the 
OnChipNetwork via a BusOnChipNetworkExport to which this Tile is connected. 

 BusMasterInterface: Model element to describe interfaces of a processor Bus which 
is capable of handling bus master arbiters. 

 BusSlaveInterface: Model element to describe interfaces of a processor Bus which is 
only capable of serving slave devices. 

 BusMasterPort: The Port of a ProcessorDomainElement which is connected to a 

BusMasterInterface of a processor Bus. The ProcessorDomainElement must 

be capable of fulfilling the role of a Bus master. 

 BusSlavePort: The Port of a ProcessorDomainElement which is connected to a 
BusSlaveInterface of a processor Bus. The ProcessorDomainElement cannot 
take over the master role at this Bus. 

 

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1): 

 The base marker interface IIpCorePlatformArchitectureElement of 
ProcessorDomainElement and ProcessorDomainConnector indicates that the 
system entities modelled by the tile domain are IP cores that possibly are contained in the 
same package. 

 The structural elements Core, Memory, Bus and NetworkInterface are hierarchic 

model elements (HierarchicElementBase via inheritance hierarchy). 

 Cores are modelled as ExecutionUnits, and hence they are possible deployment 
targets (see Section 6.1) for software which is described using logical components (see 
Section 4.1). 
Nevertheless, the typical lowest deployment granularity within a DREAMS architecture will 
consider Partitions as deployment targets. Those will be executed on top of Cores and 
within Hypervisors providing the middleware between both model elements. 

 Likewise, Buses are modelled as TransmissionUnits, and NetworkInterfaces are 

modelled as GatewayUnits which both are part of the communication resources of a 
DREAMS system. 

 Furthermore, Memory, which appears at this level in the form of RAM and ROM, is modelled 
as a MemoryUnit that describes any kind of memory or storage. Thus, RAM and ROM are 
also hierarchical elements. 

 The mode of communication is modelled as bidirectional (base class Transceiver of 
ProcessorDomainConnector) with masters actively initiating the communication 
(marker interface ICommunciationMaster). Here, BusMaster- and 
BusSlavePorts constitute the interface of Cores, Memories and 
NetworkInterfaces to the Bus whose interfaces are modelled as BusMaster- and 

BusSlaveInterfaces. As mentioned above, BusOnChipNetworkExports can be 
attached to NetworkInterfaces in addition to BusMaster- and BusSlavePorts. 
Then, the route to the off-chip communication can be described using a link from the 

OnChipOffChipExport to the OffChipNetworkPort owned by the Node that 
contains the respective OnChipOffChipGateway. 

 In contrast to the DREAMS meta-models described in the previous sections, the 
communication role (master or slave) is especially important considering the Bus 
architecture where one device must have absolute control over the communication. 
Otherwise, interfering access would render any information on the Bus unusable. Hence, 
the explicit separation into master and slave ports and interfaces here. 
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5.2.5.2 Processor Model Example Instance 

 

 
Figure 5.12: Processor domain example model 

 

Figure 5.12 contains an exemplary model at the processor domain, i.e. the internals of a Tile. The 
model contains two Cores, one RAM and one ROM Memory, a Bus, and a NetworkInterface 
(NI). All mentioned elements are connected via the Bus. The Ports (black connectors) attached to 
the Cores and to the NetworkInterface are MasterPorts since they need to be able to 

initiate communication via the Bus. These MasterPorts are connected to 
BusMasterInterfaces, and thus, the model elements mentioned above are able to 
communicate. In contrast, the Memory elements are connected via BusSlavePorts to the 

BusSlaveInterfaces of the Bus, as these elements do not initiate any communication (passive 
elements). 

The left hand side of the NetworkInterface is a model of the gateway to the 

OnChipNetwork at containing layer (i.e., to the Node layer). The left-most black connector is the 
OnChipNetworkPort of the Tile that contains the discussed example model. This Port is 
connected to the NetworkInterface’s OnChipNetworkExport (left connector of 
NetworkInterface component) that depicts the interface of the processor domain to the on-
chip-network. 

As a result (and also considering the meta-models of the other levels of the DREAMS architecture 
discussed in the previous sections) the model describes that there is a possible communication route 
from the two Cores shown in Figure 5.12 to resources in located in other Tiles (via the 

OnChipNetwork) or Nodes (via OnChipNetworks and OffChipNetworks) . Likewise, the 
model contains the relevant information to determine routes to the Cores and the Memorys from 
Figure 5.12 from remote resources. 
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5.2.6 Hypervisor Domain 

5.2.6.1 Hypervisor Meta-Model 

 

 
Figure 5.13: DREAMS Platform Meta-Model / Hypervisor (UML Diagram of package 

eu.dreamsproject.platform.model.hypervisor) 
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The package eu.dreamsproject.platform.model.hypervisor is used to model 
hypervisors within system software layer of a DREAMS application. The model of the system 

software layer is instantiated in a separate PlatformArchitecture that is linked to the model 
of the physical platform layer using the ResourceLink annotation (see Section 5.3.7). The meta-
model contains the following classes (see also Figure 5.13): 

 

 IHypervisorDomain: 

o The IArchitectureDomain to identify model elements belonging to the 
domain of hypervisors. 

o Operations: 
 getArchitectureDomainName():Returns the architecture domain's 

name. 

 IVirtualizationLayerDomain: The IArchitectureDomain to identify model 
elements providing virtualization services. 

 Hypervisor: Class representing a hypervisor, i.e. a system software layer module that 
virtualizes ExecutionUnits of the physical platform (e.g., a processor (Tile)). The 

virtualized physical resources are designated by the ResourceLink annotation (see 
Section 5.3.7). 

 HypervisorDomainElement: Base class for structural elements that are attached to 

Hypervisors or that are sub-elements of Hypervisors. 

 HypervisorDomainConnector: Base class for describing communication structure of 

HypervisorDomainElements. 

 Partition: Isolated and virtualized execution environment for software components 
provided by a Hypervisor. Using the ResourceLink annotation, it is linked to 
ExecutionUnits of the physical platform resource to which its containing Hypervisor 

is linked (e.g., Cores of the corresponding Tile). 

 OnChipNetworkDriver: Model element representing a system partition of 
Hypervisor that has access to the OnChipNetwork resource of the physical platform 
layer (referenced using the ResourceLink annotation). 

 InterPartitionCom: Class to express communication facility provided by the 
Hypervisor that provides message exchange between Partitions. 

 InterPartitionComPort: Communication port of virtual structural elements, i.e. 
Partitions. 

 InterPartitionComInterface: Communication interface located at 

InterPartitionCom that provides the inter-partition communication service.  

 MemoryArea: Model element used to represent memory areas assigned to Partitions 
or to Hypervisors. A partition can have one or more assigned MemoryAreas, and a 

MemoryArea can be shared by multiple partitions to model shared memory. 
MemoryAreas assigned to Hypervisors have a 1:1 relation. Each MemoryArea is 
linked to a MemoryUnit of the underlying physical platform using the ResourceLink 
annotation. 

 MemoryRequirement: HypervisorDomainConnector that is attached to 
Partitions or Hypervisors to model their need of and the connection to an allocated 
MemoryArea. 

 MemoryConnector: HypervisorDomainConnector that provides access to 
MemoryAreas. 

 HealthMonitorConfiguration: Model element of the health status self-monitoring 
capabilities of Hypervisors. It can be connected to Hypervisors and parametrized by 
annotations to model the configuration of a health monitor. 
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 HealthMonitorRequirement: HypervisorDomainConnector attached to 
Hypervisors to model their need of a HealthMonitorConfiguration. 

 HealthMonitorConnector: HypervisorDomainConnector attached to 
HealthMonitorConfiguration to establish a connection to an associated 
Hypervisor. 

 

Application of concepts from AutoFOCUS3 platform Meta-Model (see Section 5.1): 

 The base marker interface IVirtualizationPlatformArchitectureElement of 
Hypervisor, HypervisorDomainElement, and HypervisorDomainConnector 
indicates that these system elements are part of the virtualization layer of the DREAMS 
system, i.e. no hardware platform elements. 

 Additionally, Hypervisor inherits from the base marker interface 
ILogicalPlatformArchitectureElement which indicates that this system 
element is a logical entity, i.e. it has no concrete physical realization (in the hardware sense). 

 The structural elements Partition, OnChipNetworkDriver, and 

InterPartitionCom are hierarchic model elements (HierarchicElementBase via 
inheritance hierarchy). 

 Partitions and Hypervisors are modelled as ExecutionUnits, and hence they are 
(possible) deployment targets (see Section 6.1) for software which is described using logical 
components (see Section 4.1). 

 Likewise, OnChipNetworkDrivers are modelled as GatewayUnits, and 

InterPartitionComs are modelled as TransmissionUnits, both being part of the 
communication facilities of a DREAMS system. 

 The communication within the IHypervisorDomain is modelled being bidirectional 
(base class Transceiver of HypervisorDomainConnector) with masters actively 

initiating the communication (marker interface ICommunciationMaster). Here, 
InterPartitionComPorts constitute the interface of Partitions and 

OnChipNetworkDrivers to the InterPartitionCom that is provided by the 
Hypervisors. As mentioned above, InterPartitionOnChipNetworkExports can 
be attached to OnChipNetworkDrivers in addition to InterPartitionComPorts. 
Then, the route to the off-chip communication can be described using a link from the 

OnChipOffChipExport to the OffChipNetworkPort owned by the Node that 
contains the respective OnChipOffChipGateway. 

 

5.2.6.2 Hypervisor Model Example Instance 

 
Figure 5.14: Instantiation of system software layer 
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As pointed out in Section 5.2.6.1, Hypervisors are model elements to describe a virtualization of 
processor Tiles. In the meta-model provided by the Technical View, it is represented by an 
additional PlatformArchitecture that hosts the Hypervisor model elements that are 
linked to the corresponding Tiles of the physical platform architecture. Figure 5.14 shows, how 
Hypervisors in the system software layer are added using the “Add virtualization layer” 
command from the context menu of Tile model elements. 

 

 
Figure 5.15: Example of the hypervisor layer of a virtual platform model 

The resulting system software PlatformArchitecture that includes an example instance of 
the Hypervisor meta-model is shown in Figure 5.16. In the example, two Hypervisors are defined 
where a MemoryArea and a HealthMonitorConfiguration are attached to one 

Hypervisor. The mapping of a Hypervisor to the corresponding Tile is represented by a 
ResourceLink annotation that is bound to the Hypervisor instance (see Section 5.3). The 

structure above the Hypervisors reflects the structure of the referenced physical platform 
architecture, i.e. the node and cluster level is mirrored by corresponding logical 
PlatfomArchitectureElementGroup model elements. 

 

 
Figure 5.16: Example of a Hypervisor/Partition model. 

 

The internal structure of a Hypervisor is illustrated in Figure 5.16. The model includes 
Partitions, MemoryAreas, InterPartitionComs and an OnChipNetworkDrivers. As 
pointed out above, Partitions are modelled as ExecutionUnits of the system software layer 
that are linked to Cores that are contained in the Tile to which the Hypervisor is linked. 
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The Hypervisor’s partition-to-partition communication facility that enables the exchange of 
messages between the partitions hosted by the same hypervisor instance is represented by the 
InterPartitionCom model element. The connection is established by connecting 

InterPartitionComPorts (black connector) of Partitions with 
InterPartitionComInterfaces (white connectors) attached to InterPartitionCom 
model elements. Furthermore, system partitions such as the OnChipNetworkDrivers can be 
connected to InterPartitionComs by which the access to the OnChipNetwork of the 
Hypervisor is modelled. The resource mapping of these system partitions is again described 

using ResourceLink annotations (i.e., the OnChipNetwork hosted by the Tile to which the 
given Hypervisor is linked). 

Finally, the access of partitions to physical memory resources is described using MemoryAreas that 

can be assigned to one or more Partitions. The MemoryAreas from the example are linked to the 
RAM resource hosted by the Tile_AA2 using ResourceLink annotations. 

ResourceLink annotations (i.e., the OnChipNetwork hosted by the Tile to which the given 
Hypervisor is linked). 

Finally, the access of partitions to physical memory resources is described using MemoryAreas that 

can be assigned to one or more Partitions. The MemoryAreas from the example are linked to the 
RAM resource hosted by the Tile_AA2 using ResourceLink annotations. 

5.3 Platform Architecture Annotations 

The following tables provide an overview of annotations registered for meta-model entities from the 
Platform Architecture Meta-Model. Annotations that are registered for super classes (like 

ExecutionUnits) are naturally attached to all inheriting classes (like Tiles). 

5.3.1 Annotations registered for all Platform Elements 

Annotation Name Corresponding plugins Description 

ArchitectureDomainLabel 

[DerivedAnnotation] 

org.fortiss.af3.platform Returns a label that denotes the 
IArchitectureDomain of the annotated 
model element. 

PlatformArchitectureElem
entTypeLabel 

[DerivedAnnotation] 

org.fortiss.af3.platform Returns a label indicating the “physical” type 
of the annotated model element, like a logical 
element or part of an IP Core. 

 

5.3.2 Annotations registered for ExecutionUnits 

Annotation Name Corresponding plugins Description 

ExecutionUnitPower 

 

eu.dreamsproject.platform The average power consumption of the 
annotated hardware element when executing 
a software Component for a given time. 

DeploymentGranularity 

[DerivedAnnotation] 

eu.dreamsproject.platform Boolean flag that allows to specify the 
ExecutionUnits onto which 

Components shall be mapped. If the flag is 

set to true for a given ExecutionUnit ex, 
child ExecutionUnits of ex are not considered 
as deployment targets. Hence, this annotation 
can be used to define the deployment 
granularity of a hierarchical 
PlatformArchitecture. 

FailureRate eu.dreamsproject.platform The failure rate of the annotated hardware 
element given as its failure probability. 
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SafeFailureFraction org.fortiss.af3.safety The Safe Failure Fraction of the annotated 
hardware element as defined in IEC 61508. 

 

5.3.3 Annotations registered for Cores 

Annotation Name Corresponding plugins Description 

ProcessorSpeed 

 

org.fortiss.af3.platform Maximum CPU frequency that can be 
achieved by the annotated Core. 

 

5.3.4 Annotations registered for TransmissionUnits 

Annotation Name Corresponding plugins Description 

FailureRate eu.dreamsproject.platform The failure rate of the annotated hardware 
element given as its failure probability. In case 
the TransmissionUnit represents a so-
called black channel, this parameter is the 
“residual error rate” according to IEC 61784-3 
with the assumption of a bit error rate of 10-2. 

SafeFailureFraction org.fortiss.af3.safety The Safe Failure Fraction of the annotated 
hardware element as defined in IEC 61508. 

TransmissionUnitBand-
width 

org.fortiss.af3.timing Bandwidth of the annotated 
TransmissionUnit given in Mbyte per 
second. Describes the raw throughput. 

TransmissionUnitPower eu.dreamsproject.platform Power consumption of the annotated 
TransmissionUnit for transmitting a 
single byte. 

 

5.3.5 Annotations registered for MemoryUnits 

Annotation Name Corresponding plugins Description 

MemoryAddress org.fortiss.af3.platform The start address of the annotated 
MemoryUnit. Used in hardware platforms 
for global address spaces and for segregation 
of virtual memory allocations.  

MemorySize org.fortiss.af3.platform Capacity of a MemoryUnit in Bytes. 

 

5.3.6 Annotations registered for RAM 

Annotation Name Corresponding plugins Description 

RamType org.fortiss.af3.platform Allows a fine-grained specification of the RAM 
type that is used to implement the annotated 
RAM element. 

 

5.3.7 Annotations registered for Tiles , Partitions and MemoryAreas 

Annotation Name Corresponding plugins Description 

ResourceLink org.fortiss.af3.platform Resource requirements (1:n relationship) 
between platform elements in different layers 
of the platform, e.g. from elements of the 
system software layer to elements of the 
physical platform.  
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5.3.8 Annotations registered for Partitions 

Annotation Name Corresponding plugins Description 

PartitionFlags eu.dreamsproject.platform Flags to be set when configuring the 
annotated Partitions. 

- None 
- System 
- Boot 
- ICache disabled 
- DCache disabled 
- Floating point support 

 

5.3.9 Annotations registered for HealthMonitorConfigurations 

Annotation Name Corresponding plugins Description 

HealthMonitorConfigurati
on 

eu.dreamsproject.platform Actions that shall be triggered by the health 
monitor of the connected hypervisor if the 
defined (faulty) behaviour is detected. 
Furthermore, it can be defined whether 
monitored misbehaviour shall be logged. 

The following events are defined: 

- Internal error 
- Unexpected trap 
- Partition error 
- Partition integrity 
- Mem protection 
- Overrun 
- Scheduler error 
- Watchdog timer 
- Incompatible interface 
- Undefined instruction 
- Prefetch abort 
- Data abort 
- Data alignment fault 
- Data background fault 
- Data permission fault 
- Instruction alignment fault 
- Instruction background fault 
- Instruction permission fault 

The following action can be triggered: 

- Ignore (= do nothing) 
- Shutdown 
- Partition cold reset 
- Partition warm reset 
- Hypervisor cold reset 
- Hypervisor warm reset 
- Suspend 
- Halt 
- Propagate 
- Switch to maintenance 

 

5.4 Interfaces to other Meta-Models  

The technical architecture meta-model does not contain references to meta-models from other 
viewpoints described in this document. However, as pointed out in Section 2.2.2, the technical 
architecture meta-model is referred to by a number of meta-models defined in other viewpoints. 
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6 Deployment Viewpoint 

This viewpoint collects all deployment related model kinds. For this deliverable, it only comprises 
meta-models required to describe the mapping of model elements from the logical view to model 
elements of the technical view. The follow-up document D1.6.1 “Meta-models for platform-specific 
modelling” will focus on enhancing this viewpoint with description mechanisms for the allocation of 
platform resources. 

6.1 Deployment Meta-Model 

The mapping meta-model is used to describe the mapping of a model element from the logical view 
to model elements of the technical view, e.g. of Components to Cores or Partitions, or of 
(logical) Ports to Transceivers provided by the platform. 

A Deployment of the mapping model can be instantiated as follows: 

 Manually by the designer, using the deployment model editor provided by AutoFOCUS3 (see 
Section 6.4). 

 As the result of a Design Space Exploration (see Chapter 3 of deliverable D4.1.2). Here, the 
exploration evaluates the Events defined in temporal viewpoint and the 

DeploymentGranularity annotation of ExecutionUnits to derive the relevant 
model elements considered by the exploration. Thereby, Events are used to select the 
components to be deployed from the hierarchical logical architecture. Components 

(including their attached Ports) that are not referenced by any Event will not be 
considered in the exploration. If a Component or at least one of its associated Ports is 

referenced by an Event, but none of its contained elements, only the containing 
Component is deployed by the DSE (since it contains the most fine-grained activation 
specification in the corresponding sub-model). Hence, for a given 

ComponentArchitecture, the temporal viewpoints allows to specify the granularity at 
which the deployment of logical Components to the PlatformArchitecture should 
be performed. The deployment targets (Partions in DREAMS) of the DSE are defined by 

the DeploymentGranularity annotation that allows specifying the set of 
Partitions considered by the DSE. 

 

Name Deployment Meta-Model 

Description The goal of the deployment meta-model is creating a link between the logical 
architecture and the platform which realizes the logical architecture. 

Ecore file deployment.ecore 

Plugin org.fortiss.af3.deployment 

Packages org.fortiss.af3.deployment 

org.fortiss.af3.deployment.generator 

AutoFOCUS3 deployment meta-model 

Package for deployment-dependent code 
generation (currently empty) 

Dependencies org.fortiss.af3.component (see Section 4.1) 

org.fortiss.af3.platform (see Section 5.1) 

org.fortiss.tooling.base (see Section 3.2.6.2) 

org.fortiss.tooling.kernel (see Section 3.2.6.1) 

Table 6.1: Deployment Meta-Model 
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In Figure 6.1, the UML class diagram of the mapping meta-model is shown. 

 

 
Figure 6.1: Mapping Meta-Model (UML Diagram of package org.fortiss.af3.deployment.model) 

The following classes are defined to describe a mapping: 

 Deployment: 
o “Root” class that contains the logical architecture ↔ hardware platform mapping. 
o Attributes: 

 generatedDeployment: indicates whether this deployment is the 
result of a Design Space Exploration. 

o Operations: 

 hasDeploymentParameters(): Returns whether this Deployment 
has deployment specific parameters (via annotations). 

 clearDeploymentParameters(): Removes all parameters defined in 
the DeploymentKeyToDeploymentParameterValueMap of this 
Deployment. 

 instantiateDeploymentParameter(Component, 

ExecutionUnit): Instantiates the 

DeploymentKeyToDeploymentParameterValueMap considering 
each possible Component-ExecutionUnit combination. 

 removeDeploymentParameter(Component, ExecutionUnit): 
removes the deployment specific parameters of s given Component-
ExecutionUnit pair from the 
DeploymentKeyToDeploymentParameterValueMap. 

 getDeploymentParameter(Component, ExecutionUnit, 

EJavaClass<IAnnotatedSpecification>, EString, 

EString): Returns the deployment specific parameter of a given 

Component-ExecutionUnit pair and the 
IAnnotatedSpecification defining the parameter. 

 setDeploymentParameter(Component, ExecutionUnit, 

EJavaClass<IAnnotatedSpecification>, EString): Sets the 
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deployment specific parameter of a given Component-ExecutionUnit 
pair and the IAnnotatedSpecification defining the parameter. 

 ComponentArchitectureReference: 
 References the ComponentArchitecture whose subelements are 

deployed onto a PlatformArchitecture. 

 PlatformArchitectureReference: 
o References the PlatformArchitecture onto which a defined 

ComponentArchitecture is deployed. 

 ComponentAllocation: 
o Connects a Component with an ExecutionUnit that executes the Component’s 

realization. 
o Attributes: 

 component: References the Component of this 
Component↔ExecutionUnit allocation, i.e. the deployment source. 

 executionUnit: References the ExecutionUnit of this 

Component↔ExecutionUnit allocation, i.e. the deployment target. 

 PortAllocation: 
o Marker interface for allocations of Ports and Transceivers. 

 TranceiverAllocation: 
o Allocates the Port of a Component to a Transceiver of the given hardware 

platform. The Transceiver naturally needs to be located at the same 

ExecutionUnit onto which the respective Component has been allocated. 
o The PortAllocation is needed for ExecutionUnits that are connected via 

bidirectional interfaces to communication resources like busses. 
o Attributes: 

 port: References a Port(input or output) that is allocated to a 
Transceiver. 

 transceiver: References a Transceiver to which a Port(input or 
output) is allocated. 

 InputPortAllocation: 
o Allocates the InputPort of a Component to a Receiver of the given hardware 

platform. The Receiver naturally needs to be located at the same 

ExecutionUnit onto which the respective Component has been allocated. 
o The InputPortAllocation is required instead of the PortAllocation if 

the connected communication resource of the ExecutionUnit differentiates 
between incoming and outgoing messages. 

o Attributes: 
 inputPort: References an InputPort that is allocated to a 

Receiver. 
 receiver: References a Receiver to which an InputPort is 

allocated. 

 OutputPortAllocation: 
o Allocates the OutputPort of a Component to a Transmitter of the given 

hardware platform. The Transmitter naturally needs to be located at the same 
ExecutionUnit onto which the respective Component has been allocated. 

o The OutputPortAllocation is required instead of the PortAllocation if 
the connected communication resource of the ExecutionUnit differentiates 
between incoming and outgoing messages. 
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o Attributes: 
 outputPort: References an OutputPort that is allocated to a 

Transmitter. 
 transmitter: References a Transmitter to which an OutputPort 

is allocated. 

 DeploymentKeyToDeploymentParameterValueMap: 

o Map that relates a pair consisting of a Component and an ExecutionUnit to a 
set of parameters describing the properties of an ComponentAllocation of the 
defined pair. 

o Attributes: 
 key: DeploymentParameterKey that defines a pair of a Component and an 

ExecutionUnit that is used to identify their deployment specific 
parameters. 

 value: DeploymentParameterValue to which the parameters for a 
pair of a Component and an ExecutionUnit are bound (as 
annotations). 

 DeploymentParameterKey: 

o Used to identify the deployment specific parameters of a pair of a Component and 
an ExecutionUnit. 

o Attributes: 

 hashCode: Contains the hash code of the DeploymentParameterKey 
that is derived from the hash codes of the corresponding Component and 

ExecutionUnit. 
o Operations: 

 hashCode(): Returns the hashCode that identifies a 

DeploymentParameterKey object, i.e. a specific Component-

ExecutionUnit pair. 
 equals(EJavaObject): Evaluates whether the object on which the 

method is called equals the object given as a parameter. 

 DeploymentParameterValue: 

o Contains the deployment specific parameters of a pair of a Component and an 
ExecutionUnit. 

o Attributes: 

 component: References the Component of the associated Component-
ExecutionUnit pair. 

 executionUnit: References the ExecutionUnit of the associated 
Component-ExecutionUnit pair. 

o Operations: 
 getName(): Returns the name of the referenced component and 

executionUnit in the form of a tuple of their names. 
 setName(EString): Overriden in order to make the name of 

DeploymentParameterValue read-only. 

 getDeployment(): Returns the Deployment which contains this 
DeploymentParameterValue. 

 

Ports model all inbound and outbound interfaces of Components. This includes communication 
between components as well the connection of the modelled system with its environment 
(reception of sensor values and control commands for actuators). 

Hence, the mapping of ports from the logical component architecture is divided into 
TranceiverAllocations, InputPortAllocations, and OutputPortAllocations. 
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 In a deployed application, communication between Components corresponds to the 
exchange of messages over TransmissionUnits connecting the corresponding 
ExecutionUnits. In case the Transceivers of ExecutionUnits is capable of 
performing bidirectional communication, the mapping of a Port (i.e., an OutputPort in 

case of a sending Component, and an InputPort, in case of a receiving Component) 
used as an interface for inter-Component communication is captured by the attributes of a 
TranceiverAllocation. 

 If the platform element to which a logical Port should be mapped to allows only 
unidirectional communication, the mapping is described using Input- and 
OutputPortAllocations. On the one hand, this is the case in if the InputPort 

(OutputPort) of a Component is mapped to the Receiver (Transmitter) provided 
by sensor (actuator) of the platform. Aside from interfacing sensors and actuators, the 
separation of inbound and outbound communication in the mapping can also be relevant for 
TransmissionUnits that provide (separated) unidirectional communication channels. 

 

6.2 Deployment Annotations 

In the deployment model, each deployment-specific parameter can be specified for every possible 

mapping of Components to ExecutionUnits. Those parameters are realized as annotations 
that are bound to DeploymentParameterValues which are contained in the Deployment’s 
DeploymentKeyToDeploymentParameterValueMap. The map identifies the parameters of 

a specific Component-ExecutionUnit pair using DeploymentParameterKeys. In the 
following table, the annotated parameters are summarized. 

 

Annotation Name Corresponding plugins Description 

EnergyConsumption org.fortiss.af3.platform Contains the average energy consumption (in 
Joule) when executing the Component of 

the annotated Component-

ExecutionUnit pair on the corresponding 

ExecutionUnit. 

Wcet org.fortiss.af3.timing Allows the user to define the WCET (in 
seconds) when executing the Component of 

the annotated Component-

ExecutionUnit pair on the corresponding 

ExecutionUnit. 

 

6.3 Interfaces to other Meta-Models 

As described in Section 6.1, the Deployment Meta-Model describes the mapping of model elements 
of a logical component architecture (see Section 4) to the model elements of a platform architecture 
(see Section 5). As side from that, the Deployment Meta-Model does not relate to any other meta-
model defined in this document. 
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6.4 Deployment Model Example Instance 

 
Figure 6.2: Deployment Editor 

Figure 6.2 shows the editor that can be used to edit and display mappings of elements of the logical 
component architecture to elements of the technical platform architecture mappings. Logical 

Components (located in the tree-view on the left side of Figure 6.2) can be allocated to 
ExecutionUnits contained in the platform architecture using drag-and-drop. By double-clicking 
onto hierarchical platform elements, and using the breadcrumb widget on the bottom of the editor 
it is possible to navigate to the desired ExecutionUnit. The highlighted components in the left 

listing in Figure 6.2 indicate those Components that are allocated to the selected 
ExecutionUnit in the graphical editor. As pointed out in Section, 6.1 the result of such 

Component-to-ExecutionUnit mapping is described using a ComponentAllocation within 
the edited deployment model. All ComponentAllocations contained in a deployment model 
can also be viewed in the separate tab Raw Mappings (see Figure 6.3). 

 

 

Figure 6.3: Table with “raw” component-partition allocations of a deployment model 
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The deployment-specific parameters introduced in Section 6.1 and 6.2 can be edited in the 
annotation view of a selected Deployment. As shown in Figure 6.4, each Component-

ExecutionUnit pair is represented as a row – for each of the deployment-specific parameters, 
the table contains a dedicated column. 

 

 
Figure 6.4: Deployment-specific parameters (accessible in Annotation View) 
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7 Temporal Viewpoint 

The temporal viewpoint provides the elements required for the description of the timing properties 
of a DREAMS application in AutoFOCUS3. 

7.1 DREAMS Timing Meta-Model 

The temporal viewpoint consists of the timing meta-model described this section. It is based on the 
Timmo-2-use1 timing meta-model [10] adapted for the DREAMS specificities. 

Name DREAMS Timing Meta-Model 

Description The goal of the DREAMS timing meta-model is to describe all the timing requirements 
and properties of a DREAMS application. 

Ecore file timing.ecore 

Plugin eu.dreamsproject.rtaw.timing 

Packages eu.dreamsproject.rtaw.timing DREAMS timing meta-model 

 

Dependencies org.fortiss.af3.component (see Section 4.1)org.fortiss.tooling.kernel (see 
Section 3.2.6.1) 

Table 7.1: DREAMS Timing Meta-Model 

In Figure 7.1, the UML class diagram of the timing meta-model is shown. 

 

 
Figure 7.1: Timing Meta-Model (UML Diagram of package eu.dreamsproject.rtaw.timing.model) 

The meta-model consist of the package eu.dreamsproject.rtaw.timing.model that 
contains the definition of the timing meta-model. 

 

The following classes are defined to describe timing information: 

 Timing 

o Root element for timing information meta-model. The collection of timing 
descriptions, namely events and event chains, and the timing constraints imposed 
on these events and event chains. 
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 TimingConstraint. This is an abstract element. It is not a design constraint but either a 
requirement or the result of a validation. TimingConstraint offers several means to 
constrain the time occurrences of events. 

o Attributes: 
 Id: a string identifier to for constraint traceability. 
 Description: a string description of the constraint. 

 AgeConstraint: 
o An age constraint defines how long before each response a corresponding stimulus 

must have occurred. It applies to a TimingChain. 
o Attributes: 

 minimum: Minimum value of the AgeConstraint. Value in seconds. 

 maximum: Maximum value of the AgeConstraint. Value in seconds. 
 scope: Reference to the TimingChain on which this constraint applies. 

 DelayConstraint: 
o A DelayConstraint imposes limits between the occurrences of an event called 

source and an event called target. 
o Attributes: 

 source : Reference to the source Event 
 target : Reference to the target Event 

 lower: Lower value of the DelayConstraint. Value in seconds. 
 upper: Upper value of the DelayConstraint. Value in seconds. 

 ReactionConstraint: 
o A ReactionConstraint defines how long after the occurrence of a stimulus a 

corresponding response must occur. 
o Attributes: 

 minimum: Minimum value of the ReactionConstraint. Value in 
seconds. 

 maximum: Maximum value of the ReactionConstraint. Value in 
seconds. 

 scope: Reference to the TimingChain on which this constraint applies. 

 PeriodicConstraint: 
o A PeriodicConstraint describes an event that occurs periodically. 
o Attributes: 

 period: The effective ideal separation between two successive 
occurrences of event without jitter. Value in seconds. 

 jitter: Describes the local deviation from the strictly sporadic pattern. 
Value in seconds. 

 event: Reference to the Event on which his constraint applies. 

 SporadicConstraint: 
o A SporadicConstraint describes an event that occurs with a minimum 

interarrival time in between successive occurrences. 
o Attributes: 

 minimumDistance: The effective minimum distance between any two 
occurrences of event. Value in seconds. 

 jitter: Describes the local deviation from the strictly sporadic pattern. 
Value in seconds. 

 event: Reference to the Event on which his constraint applies. 

 AperiodicConstraint: An AperdiodicConstraint describes an event for which 
only one instance occurs. 

 EventChain: 
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o An EventChain is a container for a pair of events that must be causally related. 
o Attributes: 

 Id: a string identifier to for event chain traceability. 
 Description: a string description of the event chain. 
 stimulus: Reference to the Event that stimulates the steps to be taken 

to respond to this event. 
 response: Reference to the Event that is a response to a stimulus that 

occurred before. 
 segment: Ordered list of reference to EventChains in sequence. 

 Event: This is a sequence of times indicating the times that each event occurrence is 
predicted to occur. 

 InputEvent: 
o This links the timing model elements to component InputPort. 
o Attributes: 

 ref: References the InputPortAnnotation of an InputPort from 
the logical component architecture meta-model. 
 

 OutputEvent: 
o This links the timing model elements to component OutputPort. 
o Attributes: 

 ref: References the OutputPortAnnotation of an OutputPort 
from the logical component architecture meta-model. 

 EventTrigger: 

o This links the timing model elements to a Component. 
o Attributes: 

 ref: References the ComponentAnnotation from the logical 
component architecture meta-model. 

 

7.2 Interface to other Meta-Models 

The DREAMS timing meta-model contains references to the logical component architecture meta-
model described in Section 4. In particular, the timing meta-model references: 

 Component (via ComponentAnnotations) 

 InputPorts (via InputPortAnnotations) 

 OutputPorts (via OutputPortAnnotations) 

 

7.3 DREAMS Timing Model Example Instance 

The Timing viewpoint is instantiated for the expression of the requirements of a braking system. It is 
illustrated Figure 7.2. 
 
In this example, the following timing requirements are described: 

 End-to-end delay: The vehicle must start decelerating within the driver’s reaction time 
(250ms) after the driver has indicated his wish to do so. 

 This End-to-end delay is further decomposed into segments allowing time budget allocation 
between InputEvent and OutputEvent on Components. 

 The EventTrigger on the pedal sensor allows the specification of the brake pedal 
sensing period. 
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Figure 7.2: Braking System (Timing viewpoint illustration) 
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8 Extra-functional Viewpoints 

 

8.1 Safety Viewpoint 

Safety viewpoint consist of three meta-models that are used to add safety consistency checking 
functionality to a dreams project. 

 

In order to describe a safety model, three safety meta-models developed in the MultiPARTES 
project7, have been adapted and enhanced to the more sophisticated needs. 

 

Name Safety Viewpoint 

 IEC 61508 and Diagnostic Techniques and Measures Meta-Model 

 Safety Compliance Meta-Model 

 Safety Compliance Constraint Meta-Model 

Description The goal of these hierarchic element meta-model is to: 

 Provide the basis for the description of IEC61508 SIL levels, IEC 61508 
Systematic Capability (IEC 61508-2 and IEC 61508-3) related to measures 
against systematic faults, and Diagnostic Techniques and Measures in 
IEC 61508-2, Annex A. 

 Allow specifying Safety Manuals (with a subset of IEC 61508-2 and IEC 
61508-3 Annex D’s attributes) for SCItems (Safety Compliance Items 
related to Component, Platform, and System Software elements. 

 Allow Safety Consistency Rules to check safety consistency of 
deployments. 

Ecore file IEC61058.ecore  

SafetyCompliance.ecore 

SafetyComplianceConstraint.ecore 

Plugin eu.dreamsproject.ikerlan.safetystandards 

Packages eu.dreamsproject.ikerlan. 

safetystandards.IEC61508 

eu.dreamsproject.ikerlan. 

safetystandards.SafetyCompliance 

eu.dreamsproject.ikerlan. 

safetystandards.SafetyComplianceCon

straint 

IEC 61508 standard and Diagnostic 
Techniques and Measures 

Safety Compliance of a dreams project 

 
Safety Compliance Constraints generated by 
a Safety Compliance Specification 

Dependencies eu.dreamsproject.platform 

org.fortiss.af3.platform 

org.fortiss.af3.component 

org.fortiss.af3.deployment 

Table 8.1: Safety Meta-Models 

The following sections describe these meta-models in detail. 

 

                                                           
7 http://www.multipartes.eu/  

http://www.multipartes.eu/
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8.1.1 IEC 61508 and Diagnostic Techniques and Measures 

This meta-model is used to represent IEC 61508 based safety standard, SIL integrity levels and 
Diagnostic Techniques and Measures defined in the standard. Figure 8.1 shows the class diagram 
defined in the .ecore file. 

 

 
Figure 8.1: Classes of meta-model of IEC 61508 Standard with Diagnostic Techniques and Measures. 

 

The meta-model consist of the package 
eu.dreamsproject.ikerlan.safetystandards.IEC61508 that contains the core 
definition of the standard and its techniques. The following classes are available: 

 

 IEC61508BasedSafetyStandard. Root of the meta-model. 

 SafetyStandards. 
o Each SafetyStandard has a name. 
o A SafetyStandard has N SafetyIntegrityLevels. (i.e., IEC 61508 has 4 integrity levels: 

“SIL1”, “SIL2”, “SIL3”, and “SIL4”). 

 SafetyStandardTechniques may have several TechniqueFolder. Each folder 
keeps information of one part of the Standard. Examples are “Annex A”, 
“Techniques&Measures” of IEC 61508-2   
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 TechniqueFolder may have TechniqueFolder inside, allowing to define a recursive 
structure of TechniqueFolder. 

 SafetyStandarTechnique has TechniqueItems. An example of a 
TechniqueItem is “Watch-dog with separate time base and time-window”. 

 TechniqueItem  

o has a TechniqueItemDescription. 
o Each TechniqueItem belongs to one TechniqueFolder. 
o Each TechniqueItem belongs also to one TechniqueTable. An example of a 

TechniqueTable is “A.10 – Program sequence (watch-dog)”. 
o Each TechniqueItem has a TechniqueEffectiveness (Low, Medium, High) 

 TechniqueItems are classified as well, attending to its goal: 
o Some are to control Random Failures. In this case RandomFailureTechnique 

entity is used, to specify the standard table and the DiagnosticCoverage 
needed. 

o  Others are to control Systematic Failures. In this case 
SystematicFailureTechnique entity is used. There techniques are grouped 
in TecniquesGroups. 

 There are also some other entities, which are vocabularies: 

o DiagnosticCoverage :  
 Low 
 Medium 
 High 

o Effectiveness: Effectiveness of a technique.  
 NonSpecified 

 Low 

 Medium 

 High 

o Group: This is used to group techniques into a table. The possible values are: 
 Mandatory 

 AtLeastOneGreyShaded 

 AtLeastOneBlackShaded 

o Importance: Importance of a technique. The possible values are: 
 NonSpecified 

 R (recommended) 
 HR (highly recommended) 
 M (mandatory) 

o ApplicableTo: Classes of elements where techniques may be applied to. Values 
are:  

 ElectricalComponents 
 ProcessingUnits 

 PowerSupply 

 etc. 

 

8.1.2 Safety Compliance Meta-Model 

This meta-model is used to represent safety specifications of Component Architecture, Platform 
Architecture and System Software Architecture.  

Figure 8.2 shows the class diagram of the SCItem class (key) and SafetyManual classes defined 
in the .ecore file.  
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Figure 8.2: Classes of SCItem and Safety Manual meta-model 

 

The meta-model consist of the package 
eu.dreamsproject.ikerlan.safetystandards.IEC61508.SafetyCompliance 
that contains the core definition. The following classes are available: 

 

 SCItem: the key class in the meta-model. Represents a Safety Compliant Item that in 
DREAMS may be a software Component, hardware Cluster, hardware Node, hardware Tile, 
software Hypervisor or software Partition. A SCItem may define a Safety Manual. 

 SafetyManual: 

o FSM, defining: 
 Safety Standard (IEC61508) 
 Safety Integrity Level (SIL1, SIL2, ...) 
 Systematic Capability (SC1, SC2, SC3, SC4) 

o FaultsManagement, defining: 
 HFT: Hhardware Fault tolerance level (HFT0, HFT1, HFT2, HFT3) in case 

of hardware nodes 
 DiagnosticTechniquesItem: list of IEC61508-2 Annex A (tables A.2 

to A.17) Diagnostic and Measures Techniques. 
o A collection of HypothesisValue that specify assumptions about the types of 

faults, the rate at which components fail and how components may fail 

o A collection of HypothesisRanges that specify assumptions about the types of 
faults, the rate at which components fail and how components may fail. 

 Hypothesis: base class of Hypothesis defining the category of the hypothesis as an 
enumerated value. 

 



D1.4.1 Version 1.0 Confidentiality Level: PU 

31.03.2015  DREAMS  Page 98 of 124 

Figure 8.3 shows the classes needed to attach and manage safety manuals to dreams project 
hierarchy (Component, Platform and System Software) and to prepare the whole structure to tackle 
with variability. 

 
Figure 8.3: Classes of Safety Compliance meta-model 

 

The following main classes are shown in the hierarchy: 

 

 SafetyComplianceSpecification: root class of the hierarchy that represents a 
complete safety specification for a dreams project and its variants. 

 ComponentArchitectureSafetyFolder: Collection of 
ComponentArchitectureSafety roots. 

 PlatformArchitectureSafetyFolder: Collection of 
PlatformArchitectureSafety roots. 

 ComponentArchitectureSafety: Represents a Component or subcomponent of the 
Logical viewpoint. The following properties are defined: 
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o RefComponent: Reference to the Component of the project. 
o Safety Standard and Safety Integrity Level: SIL level claimed for the Component. 
o RefCore: if the safety engineer wants to make sure that any deployments involving 

this component deploys the component in a given core, then this field contains a 
reference to the core. 

o RefTile: if the safety engineer wants to make sure that any deployments involving 
this component deploys the component in a given tile, then this field contains a 
reference to the tile. 

o Isolated in One Partition (Boolean): True if the safety engineer wants to make sure 
that any deployments involving this component deploys the component “alone” in 
one partition (not shared with any other component). 

o NeedAccessListHWResources: List of hardware resources (watchdogs, clocks, tiles, 
etc.) to which the component need access rights. This is for example needed for a 
Component that resets a Watchdog and is deployed into a Partition. In this case the 
Partition has to be configured in the hypervisor having access to those HW 
resources. 

 PlatformArchitectureSafety, PlatformArchitectureClusterSafety, 

PlatformArchitectureNodeSafety, PlatformArchitectureTileSafety: 
All of them represents SCIItem and therefore may contain a SafetyManual: 

 SoftwareHypervisorSafety: It is a SCItem (generated by Virtualization Layer) and 
may contain a SafetyManual. In addition to this, may contain a collection of 
SoftwareHypervisorPartitionSafety 

 SoftwareHypervisorPartitionSafety: Represent a Safety Partition already 
certified and associated to the hypervisor by construction. It is not a Partition generated by 
VirtualizationLayer. It is a SCItem and may contain a SafetyManual. 

 SoftwareHypervisorPartitionSafety: Represent a Safety Partition already 

 SystemSoftwareSafetyFolder: Collection of SystemSoftwareSafetyRoot 
roots. 

 SoftwarePartitionSafetyFolder: collection of SoftwarePartitionSafety 

 SoftwarePartitionSafety: SCItem that represents a partition generated by 

Virtualization layer. It is a SCItem and may contain a SafetyManual. 

 

8.1.3 Safety Partitioning Restrictions Meta-Model 

This meta-model is used to model the constraints to be met the deployment of the system in order 
to help in ensuring the correctness of the system from the safety point of view (see Figure 8.4). 
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Figure 8.4: Classes of Safety Compliance Constraint meta-model 

The following main classes are shown in the hierarchy: 

 SafetyComplianceChecker: contains the evaluateSafetyCompliance function that 
allows checking safety constraint for a given deployment and safety specification. 

 SafetyComplianceSpecification: contains a collection of 
SafetyConstraintSet. 

 SafetyConstraintSet: contains a collection of SafetyConstraint. 

 SafetyConstraint:represents a safety compliance constraint and may be of type: 
o SwComponentMustGoWithSafetyConstraint: contains the following 

parameters 
 model.Component 

 model.Component  

 boolean physicalSeparation; 

o SwComponentMustNotGoWithSafetyConstraint: contains the following 
parameters 

 model.Component 

 model.Component  

 boolean physicalSeparation; 

o SwHwComponentMustBeDeployedIntoSafetyConstraint: contains the 
following parameters 

 model.Component 

 model.ExecutionUnit 

o SwHwComponentMustNotBeDeployedIntoSafetyConstraint: contains 
the following parameters 

 model.Component 

 model.ExecutionUnit 

 

8.1.4 Interface to other Meta-Models 

Figure 8.5 provides an overview of the interfaces of the safety meta-models described in this section 
to other DREAMS meta-models. Arrows indicate references from one meta-model to another one. 
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Figure 8.5: Safety Related Meta-Models 

The safety meta-models contain references to a ComponentArchitecture model, a hardware 

PlatformArchitecture model, a system software PlatformArchitecture model and a 
Deployment model. As mentioned before, safety models make “external references” to entities of 
these models. 

 ComponentArchitecture model entities: 

o Component and sub-Components defined  

 Hardware PlatformArchitecture model entities: 

o Cluster 

o Node 

o Core 

o Tile 

o RAM/ROM  Memory 

o GPIOSs of Tiles 

o Busses connecting the internals of Tiles (and the hardware platform elements 

connected by the Bus) 

o Clock (and the hardware platform elements connected to it) 

o Watchdog (and the hardware elements connected to the WatchDog, and the 

software element acting on it) 

o PowerSupply 

 System Software PlatformArchitecture Model entities (Virtualization Layer): 

o Hypervisor 

o Partition 

 Deployment Model elements, with relation between them  

o Components (and ExecutionUnit assigned) 

o Hypervisor (and Tiles assigned) 

o Partitions (and Hypervisor and Core assigned) 
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The Safety Compliance Constraint meta-model also references external entities. These constraints, 
as explained in previous sections, are used to check if deployment model is valid from the safety 
point of view. 

These constraints and the referenced entities are the following (these classes are also provided in 
deliverable D4.1.2 due to the strong connection of these classes with section 4.2.2 Safety Constraint 
Generation for Partitioning as they are key classes for SafetyConstraintChecker): 

 

 Constraint SwComponentMustGoWithConstraint 

o Parameters 

 model.Component  

 model.Component  

 Boolean physicalSeparation 

o Semantic:  

 Both components must be deployed together in the same partition 

 physicalSeparation:  

 If it is true, the constraint can be used to describe that only one of 
the two application Components should be affected by a single 
physical fault. 

 If it is false, the Partitions may be hosted by the same 

Hypervisor that protects them from application Component 

software design fault. 

 Constraint SwComponentMustNotGoWithConstraint 

o Parameters 

 model.Component  

 model.Component  

 Boolean physicalSeparation 

o Semantic: 

 Both Components cannot be deployed together in the same Partition 

 physicalSeparation: Whether the two Partitions must run on 

sufficiently separated hardware ExecutionUnits in order to withstand 

physical faults 

 

 Constraint SwHwComponentMustBeDeployedIntoConstraint 

o Parameters 

 model.Component  

 model.ExecutionUnit 

 Semantic: Component must be deployed into a given ExecutionUnit 

 

 Constraint  SwHwComponentMustNotBeDeployedIntoConstraint 

o Parameters 

 model.Component  

 model.ExecutionUnit 

o Semantic:  Component must not be deployed into a given ExecutionUnit 
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8.2 Security Viewpoint 

The security meta-model allows the modelling of the security services in DREAMS. It is based on the 
AutoFOCUS3 framework described in Section 3.2. Its implementation is contained in the 
AutoFOCUS3 DREAMS Eclipse RCP installation (see Section 3.2.2). 

The security services include confidentiality, integrity and authenticity. DREAMS will provide these 
security services for the different core services of communication, resource management and 
execution. The security meta-model is not a separate model, it extends the DREAMS models of the 
core services, e.g., DREAMS cross-domain application meta-model and DREAMS platform meta-
model.  

The meta-models of DREAMS have different architectural views and levels of abstraction. Both cover 
different security related requirements. They are described in the following section. 

 

8.2.1 Security Meta-Model 

The DREAMS system model is divided into a logical view and a physical view (D1.2.1, Architectural 
Style). In the DREAMS meta-model presented in this document, this is reflected by a logical 
viewpoint and a technical viewpoint which are then mapped into the deployment viewpoints. Each 
of the viewpoints is implemented in terms of the corresponding meta-models. Each of these meta-
models can be augmented with additional information using annotations that can be defined based 
on a generic annotation meta-model (see Section 3.2.5.3). 

 

 
Figure 8.6: Security Annotation Meta-Model 

Hence, the logical viewpoint (see Section 4) contains the cross-domain application meta-model 
which captures the application’s architecture and optionally also its behaviour. Using dedicated 
annotations (realized based on the generic annotation meta-model), the necessity of a security 
service for a specific component will be expressed, e.g., does a component communication between 
two applications require confidentiality, integrity and/or authenticity?  

The technical viewpoint (see Section 5) contains the platform meta-model. The physical components 
of the system are modelled. The security meta-model uses annotations to describe the security 

Cross-domain 
Application

Meta-Model
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Meta-Model

Deployment
Meta-Model
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Security
Annotation

Meta-Model

Technical Viewpoint

Deployment Viewpoint
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services used by physical components communicating with other physical components. Using 
dedicated annotations, it describes the services provided by the platform. For security, the model 
expresses the specific algorithms that can be used to implement the required security mechanisms. 
Only the algorithms that are provided by the particular platform can be used. 

In the deployment viewpoint (see Section 6), the application view and the technical view are 
mapped into the deployment meta-model. This models the concrete security algorithms used on the 
specific platform to fulfil the security requirements expressed using the corresponding annotations 
of the application model. 

In the following it is described, how the security properties could be handled in the development 
process, and which models are involved in which step. The example considers security requirements 
for a resource management configuration message and a communication link between a gateway 
and a switch. 

 Annotations for the application meta-model 
o The annotations for the application meta-model allow selecting which logical 

connection between two components or applications needs which security services. 
Confidentiality, Integrity, Authenticity 

o Example: A configuration message from the GRM to a LRM needs integrity and 
authenticity, but no confidentiality. Hence, the message will be secured by a message 
authentication code to provide authenticity and integrity. 

 Annotations for the platform meta-model 
o The platform meta-model models the physical viewpoint. Using the annotations 

described above, the needs for security services on a physical connection can be 
modelled. The annotations for the platform meta-model allows to select which 
security algorithms offered by the platform will be used for a connection between 
two components (on-chip/off-chip gateways, switches, etc.). 

o Example: Components of the platform, e.g., OnChipNetworkDriver or 

OffChipClusterGateway offers a different set of algorithms. The 
OnChipNetworkDriver could provide SHA-256, AES-CMAC-128 and AES-CMAC-
256. AES-CMAC-256 for integrity and authenticity. The 

OffChipClusterGateway uses MACsec for the off-chip communication. 

 

8.2.2 Extension of the Annotation Meta-Model 

The security meta-model extends the annotation meta-model. It allows selecting the security 
services in the annotation view.  

For the logical viewpoint, the following annotations are defined in the security annotation meta-
model: 

 LogicalAuthenticity 

 LogicalConfidentiality 

 LogicalIntegrity 

 LogicalMACsec 

 

In the platform viewpoint, concrete algorithms are selectable. Hence there is a list with the available 
algorithms: 

 TechnicalAuthenticity 

 TechnicalConfidentiality 

 TechnicalIntegrity 

 TechnicalMACsec 
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The UML class diagram of the security meta-model is shown in Figure 8.7. 

 

 
Figure 8.7: UML Class Diagram of Security Annotation Meta-Model 

 

The security viewpoint is used to express the secure communication aspects and uses ports to model 
the communication between components or applications. Hence, the security services can be 

selected for Port classes: 

 Port 

o InputPort 

o OutputPort 

 
In the logical viewpoint, the security services can be selected for ports connecting two logical 
components. 

In the technical viewpoint, the security algorithms can be selected for components that provide 
security algorithms. The security algorithms for the logical components can be selected using the 

annotations of the OnChipNetworkDrivers. The algorithm used for MACsec can be selected in 

the OffChipNetworkGateway. 

This list of available algorithms can be adjusted in the security meta-model. The annotations show 
only the available algorithms. 

 

8.2.3 Interface to other Meta-Models 

The security meta-model extends the annotation meta-model for the logical architecture meta-
model and for the platform meta-model. It references the following entities in other meta-models: 

 Logical Component Meta-Model 
o Port 

o InputPort 

o OutputPort 

 Platform Meta-Model 
o OnChipNetworkDriver 

o OffChipNetworkGateway 

 

 

 

LogicalAuthenticity

-authenticity : EBoolean

«interface»
element::IHiddenSpecification

«interface»
element::IAnnotatedSpecification

+getValue() : T
+getDerivedFeature() : EStructuralFeature
+isUserAnnotatedValuePreferred() : EBoolean
+getUserAnnotatedValue() : T

base::DerivedAnnotationBase

T

TechnicalAuthenticity

-algorithmValue : Authenticity_Algorithm

T:EEnumerator

LogicalConfidentiality

-confidentiality : EBoolean

LogicalIntegrity

-integirty : EBoolean

LogicalMACsec

-macsec : EBoolean

TechnicalConfidentiality

-algorithmValue : Authenticity_Algorithm

T:EEnumerator

TechnicalIntegity

-algorithmValue : Integrity_Algorithm

T:EEnumerator

TechnicalMACsec

-algorithmValue : MACsec_Algorithm

T:EEnumerator
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8.2.4 Security Model Example Instances 

 

8.2.4.1 Extension of the Application Meta-Model 

In the application meta-model, the security annotation meta-model allows to select the security 
services for the logical ports of a logical component. For each port the need for confidentiality, 
integrity and authenticity can be selected. 

 
Figure 8.8: Security Annotations in the logical viewpoint 

Figure 8.8 shows an example model. The model includes different components with output and 
input ports. For every connection from an output port to an input port the needs of authenticity, 
confidentiality and integrity can be selected. 

In this example, the connection from the C_A to C_C and C_D needs authenticity and integrity, but 
no confidentiality. To be consistent with the output port of C_A, the input port of C_C and the input 
port of C_D (the input port of C_D is not shown in the figure) needs also authenticity and integrity, 
but no confidentiality. The output port of C_B and the respective input port of C_C need only 
integrity. The same applies to the input port of C_D_1. The output port of C_D_1 needs authenticity, 
confidentiality and integrity. 

 

8.2.4.2 Extension of the Platform Meta Meta-Model 

In the platform meta-model, the security annotation meta-model allows to select the security 
algorithms used on connection. The annotations for the OffChipNetworkGateway and the 
OnChipNetworkDriver provide selection menu (see Figure 8.9). Here, the used MACsec 
algorithm can be chosen. In this example, only the GCM-AES-128 algorithm is selected. As described 
in section 8.2.2, the list of the available algorithms can be defined in the security meta-model. 
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Figure 8.9: Algorithm selection menu 

Figure 8.10 shows the security annotations for an OffChipNetworkGateway. The selection of 
the available algorithms and the used algorithm corresponds to the choice of Figure 8.9. One 
algorithm is selected (GCM-AES-128) and consequently this algorithm is also used as the selected 
algorithm. 

 

 
Figure 8.10: Security annotations in the technical viewpoint (OffChipNetworkGateway) 

The annotations for the OnChipNetworkDriver are shown in Figure 8.10. The available algorithms for 
authenticity, confidentiality and integrity can be selected. For the selection the same selection menu 
as shown in Figure 8.9 is used. 
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In this example, the OnChipNetworkDriver provides HMAC-SHA-256 for authenticity, AES-128 for 
confidentiality and SHA-256 for integrity. 

 

 
Figure 8.11: Security annotations in the technical viewpoint (OnChipNetworkDriver) 
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8.3 Power Viewpoint 

Advanced systems are embedding today one or several interconnects IPs that links all SoC IPs 
together through a complex, flexible and scalable network. Power architecture exploration and 
power estimation of application or dimensioning use cases at system level are the most efficient 
tracks for the power optimization compare to the optimization at implementation level (RTL to 
layout). 

Power architecture analysis at system level must provide power models of all the IP of the system 
and in particular power models of the interconnect IPs (ICN). 

This section presents a solution of ICN power modelling to perform power analysis at system level. 
This solution of modelling has been developed to be used with the tool Aceplorer8 provided by the 
EDA Company Docea Power. 

The section starts with the description of the problems and requirements of ICN power modelling, 
and the presentation of the retained solution, mixing IP power card principle and ICN traffic.  

Then, it is explained how it is used in a system, and finally, the concept is validated on a multi-
processors project using the new ARM 64 bit architecture9. 

 

8.3.1 Interconnect Modelling 

Different Network on Chips (NoCs) exist and their usage depends on application. In the following, 
some topology examples are illustrated. 
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8 http://www.doceapower.com/  
9 http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php  

http://www.doceapower.com/
http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php
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It would be more accurate and more powerful to model interconnect with its adequate internal 
topology, but practically it is not easy and may be not feasible to know power figures of each switch 
(node). 

For example in ARM 64 bits project, power figures are given for a full CCN-504 interconnect10. 

It has been decided then to characterize the interconnect IP at its interface, without considering its 
internal topology. The approach presented in this section defines a power modelling approach for 
ICN such as the on-chip communication resources defined in the DREAMS Architectural Style (see 

D1.2.1). In the platform meta-model, an on-chip network is represented by class OnChipNetwork 
(see Section 5.2.3) whose internal structure can be described by the classes provided by the NoC-
domain meta-model (see Section 5.2.4). 

 

8.3.2 Variables and parameters of interconnect power calculation principle  

For a specified functional mode, the power consumption of an ICN IP is function of the read and 
write traffics at its interface. 

In the scheme below, the traffic to consider to compute the power consumption of the interconnect 
is: 

 For the read traffic: 

o ReadInputSum = Rd1 + Rd2 + Rd3 

 

 For the write traffic: 

o WriteInputSum = Wr1 + Wr2 + Wr3 

 

 

 

 

 

 

 

 

                                                           
10 http://www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cache-coherent-network.php  

Figure 8.12: NoC Topologies Examples 

http://www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cache-coherent-network.php
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More generally ReadInputSum and WriteInputSum are respectively read and write traffic activities 
sums at the ICN interface. They are used as variables in the power consumption calculation. 

Then other variables used in power consumption calculation are classical ones that is frequency and 
supplies voltage. This is always considered in a determined context of temperature, corner, process, 
and power state (functional mode). 

 

8.3.3 Power Equation 

 

For each Active Power State, Dynamic Power Equation is described as followed: 

 

𝑃𝑑𝑦𝑛 = 𝑃𝑟𝑒𝑓 ∗
𝐶𝑙𝑘𝑖𝑛

𝐶𝑙𝑘𝑟𝑒𝑓
∗ (

𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
)

2

∗
𝑅𝑒𝑎𝑑𝐼𝑛𝑝𝑢𝑡𝑆𝑢𝑚

𝑅𝑒𝑎𝑑𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑓
∗  

𝑊𝑟𝑖𝑡𝑒𝐼𝑛𝑝𝑢𝑡𝑆𝑢𝑚

𝑊𝑟𝑖𝑡𝑒𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑓
 

 

with 

 Pref: Power reference value: i.e. power value at Clkref, Vref, ReadInputRef and 

WriteInputRef  at simulation point 

 Clkin: input clock 

 Vin: input supply 

 ReadInputSum: sum of all READ traffics of all traffic_container inputs.  

 ReadInputRef: reference full READ traffic value in this Power State. 

 WriteInputSum: sum of all WRITE traffics of all traffic_container inputs.  

 WriteInputRef: Reference full WRITE traffic value in this Power State 

 

 

8.3.4 IP Power Cards management 

The reference values of the variables and parameters of the previous equation are obtained with an 
IP power characterization. 

A power characterization is done by doing a set of power estimation with relevant test benches at 
the top interface of the interconnect IP. It can be done on the RTL design with tool like SpyglassPE 
(Atrenta) or Power Artist (Apache), or at gate level with PrimetimePX (Synopsys). 

Source1 

Source2 
ICN1 

Source3 

Rd1, Wr1 

Rd3, Wr3 

Rd2, Wr2 

Target1 

Target2 

Figure 8.13: ICN power calculation principle 
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During an IP power characterization, the variables and parameters issued from the power 
estimations are classed in IP tables that are called power cards.  

As said before, the information, classed per power state (or functional mode), is: 

 Voltage 

 Frequency 

 Activity: in the case of NoC, the activity is the read and write traffics in MIPS/MHz or 
DMIPS/MHz 

Other information are environment parameters: process, temperature, and corner. 

 

8.3.5 Requirements of the interconnect power model 

The particularity of an ICN power model is not only to compute the power consumption as explained 
before, but also to describe the traffic transfer. The model must be adaptable to any configuration 
without being modified. Below are some usage examples: 

 

 

  

ICN model should be the same in the 
2 configurations, even if source and 
target change. 

ICN 

Source1 

Source2 

Target1 

ICN 

Source1 

Source3 

Target2 

Traffics should be 
summed 

 

ICN 

Source1 

Source2 Target2 

Target1 

ICN 

Source1 

Source2 Target2 

Target1 

ICN model should be the same 
in all configurations 

Use Case 1 

Use Case 2 

 
Figure 8.14: Case of a power architecture exploration 

 

Figure 8.15: Case of a different traffics transfers from Sources to Targets 
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Figure 8.16: Case of cascade of interconnects 

The requirements of an ICN model are: 

 Interconnect model should be the same in all configurations. 

 2 traffics reaching the same Target IP they should be summed. 

 Each source can have several targets. 

 The traffic transfer is defined in the use case. 

 

8.3.6 Interconnect power model 

Aceplorer is the tool in which are developed the ICN power model as well as all the models of the 
complete system to be analysed. The power analysis of the system is also done with Aceplorer. 
 

8.3.6.1 Traffic container 

Into Aceplorer, a STMicroelectronics customization has been done to define a dedicated type of data 
that allows describing the traffic transfer in the ICN: traffic_container. 

This new type permits to define in a scenario (scenario = test bench applied at the interface of the 
ICN IP) the traffic from Source to Targets at the ICN I/Os. 

 

Traffic_container is a container, or a list, of several traffics. 

 

Format: [[Source, Target1, Rd1, Wr1], …, [Source, Targeti, Rdi, Wri], …] where: 

 Source: IP generating traffic (Core, High Speed Interface…) 

 Target: IP receiving this traffic (RAM, DDR, Low Speed Interface…) 

 Rd, Wr: Read & Write traffic in bit/sec, or Mbit/sec, or Mbytes/sec… 

ICN1 

Source1 

Source2 Target2 

Target1 

ICN2 

Target4 

Target3 

ICN3 

ICN 

Source1 

Source2 Target2 

Target1 

ICN model should be 
the same in all 
configurations 
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On top of defining traffic value on traffic pin, “traffic_container” type permits to define several 
traffics independently and where these traffics should go. 

8.3.6.2 Tasks of the Interconnect Power Model 

The ICN power model has to achieve two tasks: 

 To compute the power consumption in the ICN IP as explained in Section 8.3.3. 

 To distribute the traffic between its I/Os 

These tasks are done on the fly, depending of the traffic container defined in the scenario thanks to 
python functions used in Aceplorer.  

Python functions have been developed to compute the power equation variables ReadInputSum and 
WriteInputSum: 

 TrafficReadPerTrafficInput() function is used. This function sums all Read part 
(∑ 𝑅𝑑𝑖) of all traffic_container inputs. ReadInputSum static is only used to calculate Power. 

 TrafficWritePerTrafficInput() function is used. This function sums all Write part 
(∑ 𝑊𝑟𝑖) of all traffic_container inputs. WriteInputSum is only used to calculate Power. 

 

For the traffic distribution, inside the ICN Power Model, it is only done traffic multiplexing and 
sums thanks to specific python utilities developed at STMicroelectronics: 

 ICNOutputGen() function: define output traffic value for each traffic output pin. 

 

8.3.6.3 Traffic distribution examples 

 

 

 

 

 

 

 

 

 

 

Rd1 output description: Rd1 = ICNOutputGen(Tin1, Tin2) 

 Rd1 output pin type is “traffic_read” 

 Name of component connected to Rd1 is “Target1” (leaf cell) 

 Tin1 and Tin2 values are parsed. All READ values having “Target1” as Target IP are summed 
 in this case Rd1 = Rd_a + Rd_d 

 

Wr1 output description: Wr1 = ICNOutputGen(Tin1, Tin2) 

 Wr1 output pin type is “traffic_write” 

 Name of component connected to Wr1 is “Target1” (leaf cell) 

 Tin1 and Tin2 values are parsed. All WRITE values having “Target1” as Target IP are summed 
 in this case Wr1 = Wr_a + Wr_d 

Tout1 output description: 

 If ICN output is “traffic_container” type, it means that output is connected to another 

interconnect 

Source1 

Source2 

[[Source1, Target1, Rd_a, Wr_a],  
  [Source1, Target2, Rd_b, Wr_b],  
  [Source1, Target3, Rd_c, Wr_c]] 

[[Source2, Target1, Rd_d, Wr_d],  
  [Source2, Target2, Rd_e, Wr_e]] 

Target1 

Rd_a + Rd_d 

Wr_a + Wr_d 

to ICN2 (cf. next page) 

ICN1 

Rd1 

Wr1 

Tin1 

Tin2 Tout1 

Figure 8.17: Traffic distribution example 1 
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So ICNOutputGen() function get name of components connected to outputs of 2nd interconnect. 
This function is recursive and ICN number is not limited as in the example below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tout1 output description: Tout1 = ICNOutputGen(Tin1, Tin2) 

 Tout1 output pin type is “traffic_container” 

 Names of leaf cells potentially receiving traffic from Tout1 are “Target2” and “Target3” 

 Tin1 and Tin2 values are parsed. All TRAFFIC descriptions having “Target2” and “Target3” as 
Target IP are concatenated. 
In this case Tout1 = [[Source1, Target2, Rd_b, Wr_b], 

[Source1, Target3, Rd_c, Wr_c], 
[Source2, Target2, Rd_e, Wr_e]] 

 

The same methods as pointed out above are also applied on ICN2 and ICN3. 

 

8.3.7 Conclusion 

In this section, a flexible and scalable power model allowing to perform system level architecture 
power analysis and exploration has been presented. An example that is based on real case, will be 
presented in the integration report D1.5.1. The work could be extended in the topic of 
characterization of the ICN. 

  

Target3 

Rd_c 

Wr_c 

Target2 

Rd_b + Rd_e 

Wr_b + Wr_e 

[[Source1, Target3, Rd_c, Wr_c]] 

ICN2 

ICN3 

[[Source1, Target2, Rd_b, Wr_b], 
  [Source1, Target3, Rd_c, Wr_c], 
  [Source2, Target2, Rd_e, Wr_e]] 

from ICN1 

Tout1: 

Figure 8.18: Traffic distribution example 2 
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9 Variability Viewpoint 

 

9.1 BVR Meta-Model 

9.1.1 Overview 

This section describes selected parts of the meta-model underlying BVR. The BVR meta-model 
formalizes all the concepts (and their relationships) that can be defined in a BVR model, and we 
extracted here the parts relevant for the DREAMS project. We refer the reader to the BVR 
manual [8] for comprehensive description of the meta-model. 

 

Figure 9.1 below shows the connection between the top level concepts of a BVR model. A BVR model 
defines a set of variation points that characterizes a given base model. The base model is referenced 
through an object handle, which contains a reference to an Ecore11 object. In addition the base 
model also contains the related resolutions. By analogy with the classical product-lines terminology, 
a VSpec object stands for the feature tree that characterizes a given product line (the BVR model), 
and a VSpecResolution object stands for the set of concrete choices that characterizes a derived 
product.  

 

 
Figure 9.1: Main concepts in BVR 

 

9.1.2 VSpec and VSpecResolution 

VSpec and VSpecResolution are the key concepts in BVR. A VSpec organizes all the decision points 
that govern the derivation of a product in a tree like structure, as usually done in feature 

                                                           
11 Ecore is the name of the implementation of the MOF standard provided by EMF 
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diagrams [11]. A VSpecResolution captures the result of a particular derivation, where each single 
decision point is given a particular value. As shown in Figure 9.2 below, BVR supports several types 
of decision points: especially Choice, Variable and VClassifier, which are primarily used. 

 Choices represent Boolean decision points, and can be resolved by either true or false. 

 Variables represent parameters that are resolved by a particular value, whose type matches 
the one of the variable. 

 A VClassifier is a VSpec whose resolution requires instantiating it zero or more times and 
then resolving its sub-tree for each instance. When a repeatable variation point is bound to 
a VClassifier, it will be applied once for each instance of the VClassifier during 
materialization. 

One can see on Figure 9.2 that the VSpecResolution structure follows the VSpec structure. For each 
type of VSpec (e.g., Choice) there exists an equivalent VSpecResolution (e.g., ChoiceResolution) in the 
meta-model. 

 

 
Figure 9.2: Decision points and decision in BVR: VSpec and VSpecResolution 

 

9.1.3 Constraining VSpec Trees 

Expressing variability as a tree of variation points is seldom sufficient to properly capture all the 
constraints within a given application domain. A feature tree results from one of the many possible 
decompositions of the problem, and therefore only captures a subset of these constraints. 
Additional constraints have to be encoded as logical formulae that restrict the set of legal choices 
that can be made within a single feature tree. Figure 9.3 below illustrates the abstract syntax of the 
logical constructs supported by BVR. In a nutshell, BVR supports logical conditions, numerical 
assertions (see NumericalLiteralExp and its subclasses), and basic comparisons of text literals (see 
StringLiteralExp) as well as assertion of empty values. Note that BVR only relies on propositional 
formulae and therefore does not support for logical quantifiers (i.e., exists and forall). 
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Figure 9.3: Constraining BVR variability models 

 

9.1.4 Fragment Substitution 

For BVR to be effective, the user shall detail how BVR can "inject" the selected solution for each 
variation points into the base model. This injection operation, so called "fragment substitution", is at 
the heart of the BVR tooling. Figure 9.4 portrays the concepts of placements and replacements that 
underpin fragments substitution. A placement denotes the specific subset in the base model which 
corresponds to a specific choice, as opposed to the associated replacement which specifies the 
fragment of model that shall be injected. 

 

 
Figure 9.4: Specifying placements and replacements to perform fragments substitution 
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9.2 Variability Workflow 

9.2.1 Modelling Variability 

Intuitively, modelling variability is like creating a template document, where some well-identified 
parts are marked for later replacement with some ad hoc content. Templates are often initially 
derived from an existing document, where the parts to be specialized are stripped out or identified 
as samples sections. The process associated with the use of BVR follows a very similar scheme [12]: 

1. Preparing the product line can be done by looking at existing models (i.e., products) and 
looking for similarities and differences. The parts that vary often map to the variation points, 
as opposed to the parts that remain unchanged, which form the backbone of the future 
product line.  

2. Choosing a base model consists in promoting one single existing product to be the matrix of 
subsequent products. BVR will use the model of this product, as input to a model-to-model 
transformation, which replaces each variation point with the associated model fragment and 
yields a valid new product, by substitution. 

3. Identifying a library of reusable fragments significantly simplifies the use of the product 
lines, but enabling derivation of new products by feature selection. Variation points often 
have several possible solutions, which exist as model fragments, and which should be 
available for future injection even if they are not included into the selected base model. 

4. Creating a BVR model formalizes the variation points, the base models, and the library of 
reusable fragments. It helps capitalize on the domain specific knowledge captured in the 
product line and to proceed with further product derivation. 

5. Generating products is the final step, where one can generate new product by the sole 
prescription of the base model and the set of features to activate. 

 

9.2.2 Exploiting Variability 

Automated product derivation is the most emphasized feature of software product lines. By giving 
the user the possibility to select the features that one needs, it becomes possible to check the 
consistency of the whole product line, check the consistency of a given feature prescription, and to 
assemble the prescribed products.  

Checking the consistency of a product line as a whole consists in ensuring that there exists at least 
one single product that meets all the constraints embedded in the associated feature model. 
Interestingly feature models can be reduced to propositional logic formulae [13], and their validation 
thus boils down to the satisfiability problem (SAT). Although SAT is well-known to be a NP-Complete 
problem, recent advances in SPL [14] showed that industrial size SPLs form a very specific subset of 
SAT instance, which existing SAT solver can address. 

Checking the validity of a specific feature prescription ensures that the prescribed features meet the 
constraints carried by the feature model. The prescription is valid if and only if the underlying 
variable assignment satisfies the associated logical formulae. SPL thus permits to detect 
automatically invalid configurations that will not work in practice. 

Finally, assuming a given feature prescription is consistent with its enclosing SPL, it is possible to 
automated ― possibly only partially ― the construction and the validation of the associated 
products. This construction step is tightly coupled with the reuse capabilities of the underlying 
execution platform. 

The BVR Tool Bundle currently supports product sampling based on generating so-called covering 
arrays [15]. The support is provided via SPLCATool intergraded into the BVR tool. 
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9.3 Variability Model Example Instances 

9.3.1 Variation of DREAMS System Models 

We illustrate here the usage of BVR to express the variability inherent in an illustrative example 
model shipped with AutoFOCUS3. It is a system model describing an automatic cruise control 
module, hereafter denoted by ACC. In a nutshell, the ACC module computes the acceleration of the 
car from the actual and desired speeds of the car, and the actual and desired distance to the next 
vehicle. Figure 9.5 shows the logical view of such system, modelled in AF3. The current speed and 
the current distance are provided by specific sensors (see inputs SensedSpeed and SensedDist on the 
left hand side). Both measures are smoothed to detect irrelevant measures (see the two 
plauzibilization sub components), before to be fed into the Speed Controller and the Distance 
Controller units, respectively. The accelerations outputted by these two controllers are aggregated 
by the Acceleration controller, which eventually emits the final acceleration command.  

The distance control component can actually offer two alternative level of performance. The Eco 
mode aims at reducing the fatigue and the fuel consumption by avoiding strong 
acceleration/deceleration. By contrast, the Sport mode allows for a more aggressive driving. These 
two modes are also captured in the AF3 logical view of the distance controller component, shown in 
Figure 9.6. The distance controller can transition between these modes, as requested by the driver. 

 

 
Figure 9.5: The logical view of the ACC system, described in AF3 
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Figure 9.6: Internal behaviour of the "Distance Control" unit  

(modelled as a mode automaton) 

 

In the following, we will consider this model as our base model (see Section 9.2.1 above) and identify 
variation points and the related variants. A first variation point in this ACC model is the distance 
control part. A simpler ACC model may need not include a distance controller, in which case the 
distance controller and the distance plauzibilization can be replaced by a single constant value. Per 
se, three distance controllers could be built, depending on the modes they offer. The more complex 
one permit three modes (Sport, Eco and Off), but any combinations of these modes lead to an 
alternative distance controller. 

This variability can be captured in a BVR variability model, as shown on Figure 9.7. This model 
express the fact that four features are found in the ACC, namely the Speed Controller, the Speed 
Plauzibilization, the Distance Controller and the Distance Plauzibilization. While other features are 
mandatory, the Distance Controller is an optional feature. It is further decomposed into any 
combination of its two sub features, Sport and Economic. However, if one selects the Distance 
Controller, one has to also select the related distance plauzibilization feature. This is captured by the 
constraint on the left hand side of the BVR diagram. 

 

 
Figure 9.7: Modelling the variability inherent to the ACC system in BVR 

By selecting the features that makes the ACC variation of interest BVR can generate the associated 
AF3 model, which can they be used as any other regular model. In this example, BVR will replace the 
model elements associated with each variation point with the model elements associated with each 
the selected variant. For instance, Figure 9.8 illustrates the diagram associated with the model 
where all distance related features are disabled. They are replaced by a constant distance fed into 
the Acceleration Controller. 
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Figure 9.8: A simpler ACC model, where distance control is removed 

 

9.3.2 Variation of Safety Consistency Variability Models 

The variation of Safety Consistency Models is modelled using BVR tool from SINTEF. Following this 
approach, the variability of any model is modelled in a separate model. Then a mapping between the 
variability model and the original model is performed. After that, the system is able to create 
concrete instances of the models with variability using replacement mechanisms. 

In the safety meta-models, the variability comes for two points (a) the deployment and (b) the 
Safety Compliance model itself. When modelling Safety Compliance models using the editor, a 
variability model will be defined with BVR tool, to express the variability. 

 

 
Figure 9.9: Variation of Safety Consistency Models (Example) 
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Figure 9.9 illustrates the process with an example: The variability of Safety Compliance model is 
exploited in the following way: 

 A Safety Compliance model is defined with the corresponding editor. 

 A Safety Feature model (variation points) is defined and modelled with BVR editor. 

 Then, the Safety Compliance model is instantiated for a specific use case. This is done by 
selecting options (features) in the BVR model, and performing the replacement in the model.  

 Once the specific instance of the Safety Compliance model is generated, the process follows 
by checking the safety consistency for a given deployment (application and platform 
models), creating the safety consistency report, etc. 
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