

Distributed Real-time Architecture for
Mixed Criticality Systems

Metamodels for platform-specific modelling

D 1.6.1

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date 30.06.2016 Deliverable No. D 1.6.1

Contact Person Simon Barner Organisation fortiss

Phone +49 (0)89360352222 E-Mail barner@fortiss.org

mailto:barner@fortiss.org

Contributors

Name Partner

Simon Barner FORTISS

Alexander Diewald FORTISS

Carmen Carlan FORTISS

Fernando Eizaguirre IKL

Lionel Havet RTAW

Ramon Serna Oliver TTT

Ali Syed TUKL

Alfons Crespo UPV

Patricia Balbastre Betoret UPV

Table of Contents

Contributors .. 2

1 Introduction ... 6

1.1 Structure of the Deliverable .. 6

1.2 Positioning of the Deliverable in the Project ... 6

2 Architecture of DREAMS Platform-Specific Metamodel ... 7

3 Resource Utilization Metamodel ... 9

3.1 Virtual Links Metamodel ... 9

3.1.1 Communication Deployment .. 9

3.1.2 Example ... 12

3.1.3 Reference Documentation .. 14

3.2 Schedule Metamodel .. 20

3.2.1 Hierarchical Resource Schedules ... 20

3.2.2 Example ... 21

3.2.3 Reference Documentation .. 24

3.3 Reconfiguration Metamodel ... 29

3.3.1 Resource Reconfiguration ... 29

3.3.2 Example ... 30

3.3.3 Reference Documentation .. 32

3.4 Extension of Timing Metamodel ... 35

3.4.1 Timing decomposition ... 35

3.4.2 Example ... 36

3.4.3 Reference Documentation .. 38

4 Service Configuration Viewpoint ... 41

4.1 Configuration Infrastructure Metamodel .. 42

4.1.1 Overview .. 42

4.1.2 Reference Documentation .. 42

4.2 Physical On-Chip Network Interface Configuration Metamodel ... 43

4.2.1 Overview .. 43

4.2.2 Reference Documentation .. 45

4.3 Simulated On-Chip Network Interface Configuration Metamodel 48

4.3.1 Overview .. 48

4.3.2 Reference Documentation .. 49

4.4 Simulated Off-Chip Network Components Configuration Metamodel 53

4.4.1 Overview .. 53

4.4.2 Reference Documentation .. 54

4.5 XtratuM Hypervisor Configuration .. 59

4.5.1 System Specification .. 59

4.5.2 DREAMS Contributions .. 60

4.5.3 Configuration File Binary Representation ... 63

4.6 TTEthernet Network Configuration ... 64

5 Tool-Specific Formats .. 65

5.1 Xoncrete .. 66

5.1.1 Preferences .. 67

5.1.2 Hardware ... 67

5.1.3 Hypervisor ... 68

5.1.2 Partitions ... 70

5.1.3 Mutual exclusion resources (MERs) .. 74

5.1.4 Communications .. 75

5.1.5 Devices ... 76

5.1.6 End to end flows (ETEFs) ... 77

5.1.7 Plans .. 78

5.2 TTPlan .. 80

5.3 MCOSF ... 80

5.3.1 Mode Types ... 81

5.3.2 Black-out Slots ... 81

5.3.3 Input Schema ... 81

5.3.4 Output Schema .. 86

5.4 Extension of Safety Compliance Metamodel .. 87

5.4.1 Overview .. 87

5.4.2 New classes for Safety Case Argumentations ... 89

5.4.3 Class members added to existing classes .. 94

6 Bibliography ... 97

A. Annex ... 99

A.1 MCOSF Input Schema .. 99

A.2 MCOSF Output Schema ... 106

Executive Summary

This deliverable describes the DREAMS Metamodels for platform-specific modelling. It complements
the DREAMS Metamodels for Application and Platform described in [2] and consists of metamodels
to specify resource utilizations, service configurations, and tool-specific input formats.

The resource utilization metamodel can be used for the fine-grained description of the resource
consumption of mixed-criticality applications implemented on the DREAMS platform. It consists of a
virtual link metamodel that allows to describe the characteristics and routes of DREAMS virtual links,
a schedule metamodel for the specification allocation schemes (e.g., time-triggered schedules), and a
metamodel for the description of global and local reconfiguration strategies. Further, the timing
metamodel [2] is refined to support the decomposition of timing chains in order to ease their
verification.

The service configuration viewpoint contributes metamodels to describe configurations of building
blocks of the DREAMS platform. It consists of a configuration infrastructure that defines the interface
to the DREAMS configuration generation framework [10][11], as well as configuration metamodels
for the components of the virtual and physical DREAMS platform.

In addition to the resource utilization metamodel that is used as an exchange format between the
different offline resource adaptation tools developed in DREAMS, this document also specifies the
input formats of tools for partition scheduling (Xoncrete), TTEthernet network scheduling (TTPlan),
and transition mode generation (MCOSF) [8][9]. Further, the document also refines the metamodel
used by the safety constraints and rules checker [2].

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 6 of 109

1 Introduction

This deliverable discusses how platform-dependent aspects of the DREAMS platform are modelled.
The following sections give some guidance to the reader by summarizing its structure and pointing
out its role in the project.

1.1 Structure of the Deliverable

Chapter 2 describes the overall architecture of the DREAMS platform-specific metamodel, which is
summarized in the following:

 Chapter 3 refines the deployment viewpoint introduced in [2] with tool-independent
metamodels for the fine-grained description of the resource consumption of mixed-
criticality applications implemented on the DREAMS platform.

 Chapter 4 describes configuration metamodels defined for the building blocks of the
DREAMS platform.

 Chapter 5 provides an overview of the input/output formats of the offline resource
allocation tools developed in WP4.

Finally, Annex A contains the full listings of XML schemas used to define some of the above
metamodels.

In this document, the following typographic conventions are used.

 Package names, plugin names and metamodel types (classes, enumerations, etc) are set in
typewriter. Where the context is clear, the package name is omitted from class names.

 Instance objects of metamodel classes are set in italics (typically used in the discussion of
examples).

1.2 Positioning of the Deliverable in the Project

The DREAMS architectural style [1] constitutes the blueprint of the platform developed in DREAMS
and hence served as the initial input for the specification of the DREAMS platform-specific model
(PSM).

In addition, the following documents describing the fine-grained specification and actual
implementation of the building blocks of the DREAMS platform have been considered as input for
the definition of the different configuration metamodels:

 [3][17]: On-Chip Local Resource Scheduler

 [2][21]: XtratuM hypervisor

 [5]: TTEthernet off-chip communication

 [6]: Global Resource Management

The resulting configuration metamodels are defined in Chapter 4. They are used as input for the
configuration generators for the DREAMS physical platform [10][11] and the DREAMS virtual
platform [17][18][19].

As the resource utilization metamodels defined in Chapter 3 serve as the exchange format between
the different offline resource allocation tools developed in WP4, the definition of the PSM has been
performed in close collaboration with working task T4.1 ”Offline adaptation strategies for mixed
criticality” [8][9] and working task T4.4 “Tool integration and Demonstrator Support” [13].

The dissemination level of this deliverable is public (PU) i.e., once approved by the European
Commission (EC), it will be freely available for download through the DREAMS project website
(http://www.dreams-project.eu).

http://www.dreams-project.eu/

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 7 of 109

2 Architecture of DREAMS Platform-Specific Metamodel

Figure 1.2.1 gives an overview of the overall architecture of the PSM developed in DREAMS and
sketches its integration into the DREAMS tool-chain that is defined in more detail in [13]. The PSM
consists of two main parts that will be described in the following.

Figure 1.2.1: Architecture of DREAMS platform-specific model.

The Resource Utilization Metamodel (see Chapter 3) is an extension of the deployment viewpoint
introduced in [2]. Its purpose is to capture the output of the offline resource adaptation tools
developed in [8][9] in a tool and device-independent format. It can be used to describe the mapping
of elements of the logical architecture (e.g., channels, ports) to platform resources (e.g., execution
and transmission units) [2] as well as the allocation schemes (e.g., time-triggered schedules) for the
following resource types:

 Computation Resources

 Logical component to execution unit mapping (already defined in [2]):

 Partition and task schedules (see Section 3.2)

 Communication Resources

 On-chip and off-chip schedules (see Section 3.2)

 DREAMS virtual links [1] and their (static) routes (see Section 3.1).

Furthermore, the resource utilization model comprises a reconfiguration metamodel (see
Section 3.3). It can be used to describe the reconfiguration strategies determined by the offline
resource adaptation tools developed in [8][9] that enable to react on faults according to the selected
fault hypothesis by remapping applications to other platform resources and changing the underlying
resource allocation.

The Service Configuration Viewpoint (see Chapter 4) contributes metamodels that provide additional
implementation-specific parameters on top of the resource utilization metamodel. When a

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 8 of 109

configuration is generated for a given DREAMS platform building block [10][11][17][19], a model-
transformation translates the information from the resource utilization model instance to a service
configuration model, performing the required format conversions (e.g., time representation) and
setting default values for parameters that are specific to the configuration of a DREAMS building
block (e.g., synchronization strategy, use of interrupts or polling, etc.), and are hence not captured
by the resource utilization metamodel.

As illustrated in Figure 1.2.1, we distinguish between configuration metamodels that are based on
existing vendor configuration formats that have been extended in the scope of the project, i.e.,
XtratuM Hypervisor Configuration (see Section 4.5) and TTEthernet Network Configuration (see
Section 4.6), and configuration metamodels that have entirely been developed in the scope of the
project (all other configuration metamodels).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 9 of 109

3 Resource Utilization Metamodel

The Resource Utilization Metamodel extends the deployment viewpoint introduced in [2]. Its
purpose is to capture the output of the offline resource adaptation tools developed in [8][9] in a tool
and device-independent format. It comprises the following sub-metamodels

 The virtual link metamodel (see Section 3.1) allows to describe the characteristics [2] and
routes of DREAMS virtual links.

 The schedule metamodel (see Section 3.2) can be used to model allocation schemes (e.g.,
time-triggered schedules).

 The reconfiguration metamodel (see Section 3.3) can be used to describe local and global
reconfiguration strategies [8][9].

 The metamodel presented in Section 3.4 is an extension of the timing metamodel
documented in [2] that allows to decompose timing chains in order to ease their verification.

The implementation of the resource utilization metamodels is bundled with the
AutoFOCUS3/DREAMS (see [2], Section 3.2.2 for instructions on how to obtain the package).

3.1 Virtual Links Metamodel

3.1.1 Communication Deployment

The virtual links metamodel is an extension to the deployment metamodel presented in [2] that
allows to describe the characteristics of DREAMS virtual links as well as the corresponding (static)
routes.

As defined in [1], Section 1.1, virtual links are an abstraction over physical networks at different
levels of the DREAMS platform architecture. They are defined as end-to-end multicast channels
between the OutputPort of one logical sender Component and the InputPorts of multiple logical
receiver Components (see [2] for definition of logical Ports and Components). Each virtual link has a
unique identifier (ID), and defines the message’s route, traffic type (time-triggered or rate-
constraint) and timing (period or minimum inter-arrival time). Furthermore, the namespace defined
in [1] defines the mapping between the logical architecture and the platform architecture.

Figure 3.1.1: Extension of Deployment Metamodel (VirtualLinks, TransceiverPorts).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 10 of 109

Figure 3.1.2: Platform-specific TransceiverPorts defined for DREAMS platform.

In the following, it will be sketched how the concepts of virtual links summarized above is considered
in an extension of the deployment metamodel introduced in [2] (see Figure 3.1.1).

 VirtualLinks are contained by the route: RoutingAllocation field that has been
added to Deployment.

 For the definition of routes and physical names, the notion of TransceiverPorts has been
introduced. They are contained in the transceiverPortAllocation:

TransceiverPortAllocation field that has been added to Deployment.

In order to describe platform-specific parameters of endpoints and waypoints of virtual links, the
concept of TransceiverPorts has been introduced: For each virtual link, TransceiverPorts can
be allocated to the Transceivers [2] of the TransmissionUnits [2] involved in the route that
define parameters such as names, IDs, etc. Typical examples are:

 PartitionPort (allocated to InterPartitionComPort [2] of Partitions [2])
represent the communication ports of hypervisor partitions.

 OnChipNetworkInterfacePort (allocated to BusOnChipNetworkExport [2] of
NetworkInterfaces [2]) represent the communication ports of a Tile’s [2] network-
interface, i.e., the on-chip LRS.

Figure 3.1.2 gives an overview of all TransceiverPorts defined for the DREAMS architecture that
share the common base class PsmPort.

[1] defines the logical name of a message as <Criticality>.<Subsystem>.<Component>.<Message>. As
pointed out in [2], the underlying architecture is modelled as a ComponentArchitecture that
contains a logical Component for each Subsystem. The Component is also modelled as logical
Component that is contained by the respective subsystem-Component. The Message-based

interface of Components is modelled using OutputPorts.

Now, the logical name is defined as a 4-tuple of integers (IDs are based on the following annotations
introduced below):

 Criticality: annotated to Subsystem logical Component using the SafetyIntegrityLevel

annotation [2].

 Subsystem: ComponentId (annotated to Subsystem logical Component).

 Component: ComponentId (annotated to Component logical Component).

 Message: MessageId (annotated to logical OutputPort).

For the physical name <Cluster>.<Node>.<Tile>.<Port>, the following annotations have been
introduced below (see [2] for definition of PlatformArchitecture elements Cluster, Node, and
Tile and Section 3.1.3.4 for the definition of the ID types):

 Cluster: ClusterId (bound to Clusters).

 Node: NodeId (bound to Nodes).

 Tile: TileId (bound to Tiles).

 Port: OnChipNetworkInterfacePortId (bound to OnChipNetworkInterfacePorts,
see Section 3.1.3.2).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 11 of 109

The one-to-one mapping of the logical name to the physical name introduced in [1] is implemented
by an extension of the TransceiverAllocation. In [2], the TransceiverAllocation has been
introduced as mapping of logical Ports to Transceivers attached to TransmissionUnits. Now,
a TransceiverAllocation allows to additionally specify a TransceiverPort allocated to the
corresponding Transceiver. Since every logical Component is mapped to a Partition of a
Hypervisor, the TransceiverAllocation maps the Component’s InputPorts and
OutputPorts to the PartitionPort allocated to the Partition’s InterPartitionComPort.

VirtualLinks are contained by a Deployment’s RoutingAllocation. A VirtualLink is
characterized by its endpoints, parameters, and its route.

 Endpoints
o Given a VirtualLink, its sender / receiver PartitionPorts can be determined

using the VlSender / VlReceivers annotation.
o Using the TransceiverAllocation, the resulting PartitionPorts can be

resolved to the corresponding logical OutputPort / InputPorts for which the
VirtualLink has been created.

 Parameters
o VlTrafficType defines the VirtualLink’s type (time-triggered or rate-

constraint).
o VlTempRepetition defines the temporal requirements onto the virtual link

(period for time-triggered virtual links, minimum inter-arrival time for rate-
constraint virtual links).

o VlPayloadSize defines the maximum payload size for the given virtual link.

 Route
o VirtualLinks represent multi-cast communication in a distributed system. Hence,

its route is represented as a tree of Segments, where a segment represent one hop
of a route, i.e., from one Transceiver to another. The tree representation
assumes that there is only one possible route between each sender and receiver,
which reflects the capabilities of the current implementation of the underlying
platform services. However, the VirtualLink class could easily be changed to use
a directed graph to represent routes (using Transceivers / TransceiverPorts
as vertices, and Segments as edges). E.g. during configuration generation, all routes
could be explored by traversing this graph from the route vertex (Transceiver /
TransceiverPort of sender) using a depth-first search.

o A TransceiverPortsSegment represents a Segment that ends in a
Transceiver for which a dedicated TransceiverPort concretization has been
defined in the metamodel (the corresponding TransceiverPort instance is
allocated in TransceiverAllocation).

o A TransceiverSegment represents a Segment that ends in a Transceiver for
which no TransceiverPorts have been defined.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 12 of 109

3.1.2 Example

Figure 3.1.3: Starting the Virtual Link generation for a specific deployment model

In this section, the virtual link metamodel and the corresponding tool-support will be illustrated
based on the example depicted in Figure 3.1.4. Virtual links are contained in a RoutingAllocation
of a deployment, which can be accessed via the deployment editor (see [2], Section 6.4). The tab
Virtual Links opens the corresponding virtual link viewer. The context menu of the empty pane or an
existing RoutingAllocation allows to (re-)generate the Virtual Links that are implicitly defined via
the logical architecture (see [2], Section 4) and the ComponentAllocations of the Deployment
(see [2], Section 6). The route of the virtual links is calculated automatically using the shortest path
from the sending resource to the receivers. Virtual links are only generated for time-triggered and
rate-constraint messages [1]. In order to make the location of the receiver transparent to the
configuration generator for the hypervisor, (pseudo-) VirtualLink objects are also created for
messages that are exchanged between partitions that reside in the same hypervisor (the DREAMS
architectural style [1] foresees virtual links only for inter-tile or inter-node communication).

Figure 3.1.4: Virtual Link view integrated in the Deployment editor.

1

2

3

4

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 13 of 109

As pointed out in Section 3.1.1, virtual links represent multicast messages, which effectively results
in a tree-structure of traversed elements (however note that the virtual link #0 in Figure 3.1.4 has
only one receiver). Virtual links provide a bridge between the data exchanged among logical
Components and their realization as messages on the target platform. The corresponding elements
in the logical application architecture are OutputPorts, which define logical senders, and
connected InputPorts (via logical Channels [2], see Section 3.1.1), which receive the sent data. In
the target platform, the equivalent to the mentioned Ports are the Transceivers that are defined
in the port mapping of the deployment. These Transceivers are the communication interfaces of
the ExecutionUnits [2] to which the Components [2] containing the sender and receiver ports are
deployed.

From the perspective of the target platform, a virtual link is a route from the sender resource (in
DREAMS: a Partition [2]) through the involved communication resources to the target resources,
e.g., the NetworkInterface [2] and the NocRouter [2] denoted by (1) in Figure 3.1.4. The actual
route of virtual links is a tree of traversed Transceivers and TransceiverPorts (which
reference the traversed Transceivers of the traversed communication resources) in the target
platform, since the route of a Virtual Link is not uniquely defined by the involved resources. Hence,
the in- and outputs of each traversed communication resource is explicitly defined. The
Transceivers and TransceiverPorts are encoded by Transceiver- and
TransceiverPortSegments, respectively, in the VirtualLink’s route. For instance, in Figure
3.1.4, the blue circle (2) points to the Transceivers (resp. TransceiverSegments) of the
communication resource NocRouter-T1-2 that receive the virtual links and that emit it to the
successor resources. Similarly, the blue circle (3) points to the TransceiverPort of the
TransceiverPortSegment associated with the resource NetworkInterface 1-2 and to the
Transceiver referenced by the TransceiverPort.

Figure 3.1.5: Properties of a Virtual Link provided as Annotations (see [2]).

The annotation view of Deployment models provides a tabular view on the properties of a virtual
link (see Figure 3.1.5). In particular, the properties maximum payload size, Period or MINT (minimum
inter-arrival time), Virtual Link Type, and the Virtual Link ID have been implemented as annotations.
Also, the Sender Port (a PartitionPort: derived from the name of the OutputPort in the logical
architecture during the virtual link generation), and a list of Receiver Ports (also PartitionPorts)
which are derived from the route of the Virtual Link, e.g., the TransceiverPort to which the blue
circle (4) points, are provided as annotations. Further, the properties Direction and Semantics of
TransceiverPorts that are generated along with virtual links are available as annotations
(see Figure 3.1.6).

Figure 3.1.6: Properties of TransceiverPorts provided as Annotations (see [2]).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 14 of 109

3.1.3 Reference Documentation

In the following, the newly introduced/extended packages and classes will be documented.

3.1.3.1 Package org.fortiss.af3.deployment

Table 3.1.1 provides an overall summary of the implementation and dependencies of the
deployment metamodel

Name Deployment Metamodel (extended)

Description The deployment metamodel establishes the link between the logical architecture and
the platform that realizes the logical architecture.

Ecore file deployment.ecore

Plugin org.fortiss.af3.deployment

Packages org.fortiss.af3.deployment

Dependencies org.fortiss.af3.component

org.fortiss.af3.platform

org.fortiss.af3.timing

org.fortiss.af3.project

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.1.1: Extended Deployment Metamodel.

3.1.3.1.1 Extension of Deployment

The extension of the org.fortiss.af3.deployment to implement the concept of virtual links is
anchored in the Deployment class. Since it has already been introduced in [2], only the extensions
are described in the following:

 Deployment:
o “Root” class that contains the mapping between the logical architecture and the

hardware platform (see [2]).
o Attributes:

 routingAllocation: Contains the Deployment’s

RoutingAllocation, i.e., the set of VirtualLinks corresponding to all
messages in the system (see Section 3.1.3.1.3)

 transceiverPortAllocation: Contains the Deployment’s

TransceiverPortAllocation (see Section 3.1.3.1.2)

 TransceiverAllocation:
o Attributes:

 port: Logical Port for which the Transceiver and optionally also the
TransceiverPort should be specified. In hierarchic
PlatformArchitectures, the Transceiver and optionally also the
TransceiverPort that constitute the endpoints of the communication link
are specified. In this case, the TransceiverPorts of the intermediate hops
can be determined by investigating the corresponding VirtualLink.

 transceiver: Transceiver to which the logical Port is allocated.
 transceiverPort: Resource reservation within the Transceiver to

which the given logical Port is mapped. This field is optional and required
for the fine-grained description of communication deployment.
TransceiverPorts are owned by the TransceiverPortAllocation

map (see Section 3.1.3.1.2).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 15 of 109

3.1.3.1.2 TransceiverPorts

The concept of TransceiverPorts is based on the following classes (see Figure 3.1.2 for concrete
TransceiverPorts defined for the communication components of the DREAMS platform).

 TransceiverPortAllocation:
o Assigns a TransceiverPort to a Transceiver.
o Attributes:

 transceiver: Transceiver for which a TransceiverPort has been
allocated.

 transceiverPort: TransceiverPort allocated for the given
Transceiver.

 TransceiverPort:
o Resource reservation within a Transceiver. This abstract class must be

concretized by ports for specific platforms, e.g., to represent ports in hypervisor
partitions, etc. (see Section 3.1.3.2).

o Operations:
 getTransceiver():Obtain Transceiver for which this

TransceiverPort has been allocated.

3.1.3.1.3 Virtual Links

The following classes have been introduced to describe deployment of communication. They are
parameterized with universal (see Section 3.1.3.2) and DREAMS-specific annotations (see
Section 3.1.3.4).

 RoutingAllocation:
o Specifies how communication is deployed, i.e., the set VirtualLinks

corresponding to all messages in the system.
o Attributes:

 virtualLinks: Set of VirtualLinks required to deploy the
communication for the Deployment owning this RoutingAllocation.

 VirtualLink:
o Specifies how a single (multi-cast) message is deployed in the system. While this

model only specifies the message's (static) route, for specific platforms further
attributes (IDs, traffic type, temporal properties) can be added using
IAnnotatedSpecifications.

o Attributes:
 rootSegment: The root-Segment of the tree representing this

VirtualLink.
o Operations:

 getName(): Returns the VirtualLink’s name.

 setName(): Sets the VirtualLink’s name.

 Segment:
o Base class to define one hop of a multicast message's (static) route.
o Attributes:

 next: The Segments following this Segment.
o Operations:

 getParentSegment(): Returns the parent Segment of this Segment.
For the root Segment, null is returned.

 getVirtualLink():Returns the VirtualLink that contains this
Segment.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 16 of 109

 TransceiverSegment:
o Concrete Segment that is characterized by the sending Transceiver.

(TransceiverPorts cannot be allocated for Transceiver types).
o Attributes:

 transceiver: The source Transceiver of this TransceiverSegment.

 TransceiverPortSegment:
o Concrete Segment that is characterized by the sending Transceiver's

TransceiverPort.
o As described in Section 3.1.3.2, TransceiverPorts have only been defined for

those Transceiver types where message-specific information is required (e.g.,
name, ID, etc.).

o Attributes:
 transceiverPort: The TransceiverPort at the source Transceiver

of this TransceiverPortSegment.

3.1.3.2 Package eu.dreamsproject.psm.model.port

Name DREAMS Platform-Specific Ports

Description DREAMS-specific TransceiverPort concretizations

Ecore file psm.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.model.port

Dependencies org.fortiss.af3.deployment

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.1.2: DREAMS-specific TransceiverPort concretizations.

The org.fortiss.af3.psm.port package is contained by the psm.ecore metamodel and consists of
the classes below (see Figure 3.1.2):

 PsmPort:
o Base class for DREAMS platform-specific ports.

 OffChipNetworkGatewayPort:
o Ports defined for Transceivers of OffChipNetworkGateways [2].

 OnChipNetworkInterfacePort:
o Ports defined for Transceivers of NetworkInterfaces [2], i.e., for

BusMasterPorts [2].

 OnChipOffChipGatewayPort:
o Ports defined for Transceivers of OnChipOffChipGateways [2].

 PartitionPort:
o Ports defined for Transceivers of Partitions [2].

Parameters are assigned to PsmPorts using annotations (see Sections 3.1.3.3.1 and 3.1.3.4.3).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 17 of 109

3.1.3.3 Package org.fortiss.af3.deployment.annotation

This package provides annotations for TransceiverPorts and VirtualLinks that are
generally applicable to model communication deployment.

Name Deployment Metamodel / Annotations

Description Annotations for TransceiverPorts and VirtualLinks

Ecore file deployment.ecore

Plugin org.fortiss.af3.deployment

Packages org.fortiss.af3.deployment.annotation

Dependencies org.fortiss.af3.component

org.fortiss.af3.platform

org.fortiss.af3.timing

org.fortiss.af3.project

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.1.3: Annotations for TransceiverPorts and VirtualLinks.

3.1.3.3.1 Annotations for TransceiverPorts

The org.fortiss.af3.deployment.annotation package contributes the following annotations for

TransceiverPorts:

 TransceiverPortDirection:

o IAnnotatedSpecification providing the direction of TransceiverPorts.
o Operations:

 getDerivedValue(): Returns the annotated TransceiverPort's
direction depending on the VirtualLink that referenced the
TransceiverPort. In case the TransceiverPort is not referenced by
any VirtualLink, TrafficDirection.NOT_ASSIGNED is returned.

 TransceiverPortSemantics:

o IAnnotatedSpecification providing the semantics of TransceiverPorts.
o Attributes:

 semantics: Returns the PortSemantics assigned to the annotated
TransceiverPort, i.e., whether it is a state or an event port.

 TransceiverPortAccessRights:
o IAnnotatedSpecification defining the access rights for a given

TransceiverPort, i.e., the list of ExecutionUnits that may read (for INPUT
ports) or write (for OUTPUT ports) the TransceiverPort.

o Attributes:

 admissibleExecutionUnits: list of ExecutionUnits that may read
(for INPUT ports) or write (for OUTPUT ports) the TransceiverPort.

3.1.3.3.2 Annotations for VirtualLinks

Furthermore, the org.fortiss.af3.deployment.annotation package contributes the following
annotations for VirtualLinks:

 VlTrafficType:
o IAnnotatedSpecification providing the TrafficType of VirtualLinks.
o Attributes:

 type: TrafficType of the annotated VirtualLink, i.e., whether it is
TIME_TRIGGERED or RATE_CONSTRAINT.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 18 of 109

 VlSender:
o DerivedAnnotation providing the sender TransceiverPort of VirtualLinks.

o Operations:
 getDerivedValue(): Returns the sender TransceiverPort of

VirtualLinks.

 VlReceivers:

o IAnnotatedSpecification providing the list of receiver PartitionPorts of
VirtualLinks.

o Operations:

 getDerivedValue(): Returns the list of receiver TransceiverPorts of
VirtualLinks.

 VlTempRepetition:
o IDerivedAnnotation providing the period (for periodic VirtualLinks) or the

minimum inter-arrival time (for sporadic VirtualLinks).
o Attributes:

 periodOrMint: Period (for periodic VirtualLinks) or the minimum
inter-arrival time (for sporadic VirtualLinks) (in seconds).

 VlPayloadSize:
o IAnnotatedSpecification providing the maximum allowed size of the payload

associated with a VirtualLink (in bytes).
o Attributes:

 maxSize: Maximum allowed size of the payload associated with a
VirtualLink (in bytes).

3.1.3.4 Package eu.dreamsproject.psm.model.annotation

Name DREAMS Platform-Specific Metamodel / Annotations

Description DREAMS-specific annotations for communication deployment.

Ecore file psm.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.model.annotation

Dependencies org.fortiss.af3.timing

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.1.4: DREAMS-specific annotations related to communication deployment.

This package provides annotations required for communication deployment that are specific to the
DREAMS platform (mainly element IDs).

3.1.3.4.1 Annotations for ComponentArchitecture elements

 ComponentId:
o IAnnotatedSpecification providing the IDs of Components.
o Attributes:

 componentId: Provides the ID of the Component.

 MessageId:
o IAnnotatedSpecification providing the IDs of logical OutputPorts (i.e.,

messages according to the nomenclature introduced in [1]).
o Attributes:

 messageId: Provides the message ID.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 19 of 109

3.1.3.4.2 Annotations for PlatformArchitecture elements

 ClusterId:
o IAnnotatedSpecification providing the IDs of Clusters.
o Attributes:

 clusterId: ID of the Cluster.

 NodeId:
o IAnnotatedSpecification providing the IDs of Nodes.
o Attributes:

 nodeId: ID of the Node.

 TileId:
o IAnnotatedSpecification providing the IDs of Tiles.
o Attributes:

 tileId: ID of the Tile.

 CoreId:
o IAnnotatedSpecification providing the ID of Cores.
o Attributes:

 coreID: ID of the Core.

 PartitionId:
o IAnnotatedSpecification providing the IDs of Partitions.
o Attributes:

 partitionId: ID of the Partition.

 OnChipNetworkInterfaceId:
o IAnnotatedSpecification providing the IDs of OnChipNetworkInterfaces.
o Attributes:

 onChipNetworkInterfaceId: ID of the NetworkInterface.

 OnChipVirtualNetworkId:
o IAnnotatedSpecification providing the ID of the virtual network served by the

annotated NetworkInterface.
o Attributes:

 virtualNetworkId: Provides the ID of the virtual network served by the
annotated NetworkInterface.

3.1.3.4.3 Annotations for TransceiverPorts / PsmPorts

 OffChipNetworkRouterPortId:
o IAnnotatedSpecification providing the IDs of

OffChipNetworkRouterPorts.
o Attributes:

 offChipNetworkRouterPortId:
ID of the OffChipNetworkRouterPort.

 OnChipNetworkInterfacePortId:
o IAnnotatedSpecification providing the IDs of

OnChipNetworkInterfacePorts.
o Attributes:

 onChipNetworkInterfacePortId:
ID of the OnChipNetworkInterfacePort.

3.1.3.4.4 Annotations for VirtualLinks

 Vlid:
o IAnnotatedSpecification providing the IDs of VirtualLinks.
o Attributes:

 vlid: ID of the VirtualLink.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 20 of 109

3.2 Schedule Metamodel

3.2.1 Hierarchical Resource Schedules

The schedule metamodel is a device- and tool-independent metamodel to represent hierarchical
schedules. It is a format that can capture the output of the different device-/platform-service
specific scheduling tools and allows to exchange schedules between them (as part of the DREAMS
toolchain [13]). Figure 3.2.1 provides an overview of the schedule metamodel.

Figure 3.2.1: Schedule Metamodel.

A SystemSchedule collects the schedules for all involved resources in its Deployment (that
defines the mapping of the elements of the logical ComponentArchitecture to the
PlatformArchitecture it references [2]). The Major Frame (MAF) is the period of time to be
considered when computing the task allocation and scheduling. The MAF of the SystemSchedule
is normally equal to the least-common multiple (LCM) of the periods of all ResourceSchedules,
but can be less than this value under certain conditions such as harmonicity or geometricity of
periods (see [9], Section 6.1.4).

The schedule of each individual resource is described using a ResourceSchedule. It has the
following main attributes:

 resource: a reference to a resource in the physical platform architecture contained by the
Deployment’s PlatformArchitecture. Since in DREAMS, the Deployment references a
system software PlatformArchitecture, the actual physical resources are contained in
the PlatformArchitecture model of the underlying hardware platform (see [2]).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 21 of 109

o In the case of Partition schedules, the corresponding ResourceSchedule

references a Core. For multi-core Partitions, a ResourceSchedule is defined
for each core.

o In the case of on-chip communication schedules, the corresponding
ResourceSchedule references an (on-chip) NetworkInterface.

o etc.

 hyperperiod: Typically the LCM of the periods of all referenced ResourceAllocations,
but see comment above about length of MAF.

The allocation of a share of the resource referenced by a ResourceSchedule is expressed using a
ResourceAllocation. The containment relationship between Schedules and
ResourceAllocations is expressed using the containedElements field inherited from
IHierarchicElement. A ResourceAllocation has the following main attributes

 The SchedulableEntity contains a reference to the IModelElement to be scheduled
onto the referenced resource: For example:

o In the case of partition schedules, the ResourceAllocation’s
SchedulableEntity references a Partition.

o In the case of task schedules, the ResourceAllocation’s SchedulableEntity
references a Component (see discussion of SubSchedules below).

o In the case of communication schedules, the ResourceAllocation’s
SchedulableEntity references a VirtualLink.

 duration: Time for which the resource is reserved for the referenced
SchedulableEntity.

 trigger: A Trigger object is used to specify the temporal activation pattern of the
ResourceAllocation (see below for a description of the available trigger types).

The schedule metamodel is designed to express hierarchical schedules: The share of a resource
described by a ResourceAllocation allocated in ResourceSchedule can be further sub-divided
by declaring a SubSchedule for it. SubSchedules apply the concept recursively, i.e., they also
contain ResourceAllocations that reference a SchedulableEntity and a Trigger object. A
SubSchedule does not reference a platform resource, since it refines a ResourceAllocation. In
DREAMS, this concept is used to define task schedules for the Partitions within partitions
schedules.

Triggers are an extensible way to specify the temporal activation pattern of
ResourceAllocations. In the scope of DREAMS, the following Triggers are relevant:

 PeriodicTimeTriggers allow to specify the period and phase of a
ResourceAllocation and are intended for strictly time-triggered activities.

 APeriodicTimeTriggers provide the start time of aperiodic activities.

 RateConstraintTriggers define the maximum jitter and the minimum inter-arrival time
of sporadic activities.

3.2.2 Example

While schedules are typically computed by tools (see [13]), they can be viewed (and instantiated,
e.g., for testing), in the AF3 Model Navigator (see Figure 3.2.2).

When a system schedule is selected in the navigation pane, the properties view allows the user to
reference a Deployment model for which the schedule is modelled and displays the calculated Major
Application Frame (MAF) of the schedule (see Figure 3.2.3).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 22 of 109

Figure 3.2.2: Create a System Schedule.

Figure 3.2.3: Properties of a System Schedule.

Sub-elements of a schedule model can be added via the context menu of the model navigator (see
Figure 3.2.4). A system schedule is organized as ResourceSchedules of the
IPlatformResources that are present in the target hardware platform (see Figure 3.2.5). In the
following, Resource Schedule - Core 1-1-1 will be discussed that specifies the schedules of the
hypervisor Partitions that are allocated to Core 1-1-1. This ResourceSchedule contains
ResourceAllocations of the Partitions (e.g., Resource Allocation – Partition -1-1-1) which are
assigned to the corresponding Cores via a ResourceLink annotations in the System Software
Platform model (see [2], Sections 5.2.6 and 5.3.7). Each ResourceAllocation for a Partition
contains a Subschedule (e.g., Tasks @ Partition 1-1-1) that represents the schedule of the tasks
executed within the Partition. These SubSchedules are again a list of ResourceAllocations
that point to a Component in the logical architecture (e.g., Resource Allocation – Component Sender
VL1, Resource Allocation – Component Sender VL1NOC, etc.).

Figure 3.2.4: Adding Elements to a Schedule.

Figure 3.2.5: Tree of Schedule Elements.

The properties of each of the entities mentioned in the previous paragraphs are accessible via the
properties view (see Figure 3.2.6 and Figure 3.2.7). This view allows the user to reference the
corresponding entities from the logical architecture or the platform architecture models. For
instance, one ResourceSchedule in the example references Core 1-1-1 which implies that it
defines the schedule executed on this resource (see Figure 3.2.6). Similarly, the contained
ResourceAllocation references Partition 1-1-1 implying that this entity is scheduled on Core 1-1-
1 with the corresponding properties (see Figure 3.2.7).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 23 of 109

Figure 3.2.6: Properties of a ResourceSchedule.

Figure 3.2.7: Properties of a ResourceAllocation.

In addition to the tree representation in the model navigator, a Gantt chart viewer can be opened by
selecting the Schedule View via the quick access menu in the top-right corner of AF3-DREAMS
edition (see Figure 3.2.8).

Figure 3.2.8: Opening the Schedule View.

When the Schedule View is opened, it displays a Gantt chart of the SystemSchedule in the model
navigator (see Figure 3.2.9). In the example, the ResourceAllocations Partition 1-1-1 and
Partition 1-1-2, which are assigned to and scheduled in Core 1-1-1, are shown.

Figure 3.2.9: Gantt Chart of a sample System Schedule.

The Subschedule of a ResourceAllocation can be opened in a dedicated tab using the middle
mouse button. Further, the view can be zoomed to a range selected using the left mouse button, or
zoomed in (out) using the left (right) mouse button. Figure 3.2.10 illustrates the task schedule
associated to Partition 1-1-1.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 24 of 109

Figure 3.2.10: Gantt Chart of a sample Task Schedule.

3.2.3 Reference Documentation

3.2.3.1 Package org.fortiss.af3.schedule

Name Schedule Metamodel

Description Device-independent hierarchical schedule metamodel.

Ecore file schedule.ecore

Plugin org.fortiss.af3.schedule

Packages org.fortiss.af3.schedule

Dependencies org.fortiss.tooling.base

org.fortiss.tooling.kernel

org.fortiss.af3.deplyoment

org.fortiss.af3.timing

org.fortiss.af3.platform

Table 3.2.1: Device-independent Hierarchical Schedule Metamodel.

The package org.fortiss.af3.schedule implements the hierarchical schedule metamodel
introduced in the previous section. Its classes are structured into three groups that will be explained
in the following:

3.2.3.1.1 Schedule

The following classes are used to represent hierarchical schedules:

 ScheduleCollection:
o Base class to define collections of Schedules.
o Operations:

 getScheduleList():Returns the list of Schedules contained in this
ScheduleCollection.

 SystemSchedule:
o Collection of all required schedules for a given Deployment.
o Attributes:

 deployment: The Deployment on which this SystemSchedule is based
on.

 majorFrame: System's major frame (MAF), i.e., usually the LCM of all
ResourceSchedules owned by this SystemSchedule.

 Schedule:

o Base class for ResourceSchedules and SubSchedules.
o Operations:

 getResourceAllocationList(): Returns the list of
ResourceAllocations defining this Schedule.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 25 of 109

 ResourceSchedule:
o Schedule for a single resource of the system (specification how the resource is time-

shared between the allocated SchedulableEntitys.
o Attributes:

 resource: IPlatformResource whose usage is defined by this
ResourceSchedule.

 hyperPeriod: ResourceSchedule’s hyper-period.
 SubSchedule:

o A SubSchedule refines the given ResourceAllocation by defining a Schedule
that further divides the use of the corresponding IPlatformResource.

o Operations:

 getRefinedResourceAllocation(): Returns the
ResourceAllocation that is refined by this SubSchedule, which further
divides the use of the corresponding IPlatformResource.

3.2.3.1.2 Resource Allocation

Resource allocations are used to specify the allocation of resources (e.g., time-slot) within a schedule
for a given schedulable entity (e.g., task, or message).

 ResourceAllocation:
o Specification how the Schedule containing this ResourceAllocation reserved

a share of its IPlatformResource for the referenced SchedulableEntity.
o Attributes:

 trigger: Reference to the Trigger (see Section 3.2.3.1.3) that defines the
activation condition for this ResourceAllocation.

 schedulableEntity: Handle to the IModelElement for which the
allocation of a particular IPlatformResource is described by this
ResourceAllocation.

 duration: Total amount of time reserved on the underlying
IPlatformResource for the execution of the referenced
SchedulableEntity (for the time instant specified using the given
trigger).

 subSchedule: Sub-Schedule that divides this ResourceAllocation

(optional).
 fragments: Optional specification how execution of the referenced

IModelElement is split. Must not be set for non-pre-emptive schedules.
o Operations:

 getOwner(): Returns the Schedule owning this
ResourceAllocation.

 getResource(): Returns the owning Schedule's IPlatformResource
that serves this ResourceAllocation.

 getPhysicalResource(): Returns the physical IPlatformResource
that serves this ResourceAllocation, i.e., the IPlatformResource
associated to the top-level ResourceSchedule.

 isPreemptive():Predicate if the execution of the SchedulableEntity
referenced by the given ResourceAllocation is pre-emptive.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 26 of 109

 ResourceAllocationFragment:
o A fraction of a ResourceAllocation (optional field of ResourceAllocation

that may only be set for pre-emptive schedules).
o Attributes:

 trigger: Specification of this ResourceAllocationFragment’s
activation condition.

 duration: Time on resource managed by the ResourceSchedule
containing this ResourceAllocationFragment.

 ScheduableEntity:
o Handle to the IModelElement for which the allocation of a particular

IPlatformResource is described by the ResourceAllocation containing this
SchedulableEntity.

o Attributes
 modelElement: Reference to the IModelElement whose scheduling is

specified by this SchedulableEntity.

3.2.3.1.3 Trigger

Triggers provide a temporal-specification when the schedulable entity associated to a resource
allocation is executed. The following classes are available to represent triggers:

 Trigger:
o Base class for specification of a ResourceAllocation’s activation condition.
o Operations:

 getResourceAllocation():Returns the ResourceAllocation whose
activation condition is specified by this Trigger.

 ResourceAllocationTrigger:
o Marker interface if a concrete Trigger subclass can be used to specify the

activation condition of a ResourceAllocation.

 TimeTrigger:
o Base class for Triggers that are based on a direct specification of the start-time.
o Attributes:

 startTime: Start time / phase (computed by the scheduler).

 absolute: Indicates whether the specified startTime is absolute (i.e.,
relative to the major frame of the SystemSchedule), or relative to the
period of the SubSchedule that refines a particular
ResourceAllocation.

 APeriodicTimeTrigger:
o A TimeTrigger for aperiodic activities.

 PeriodicTimeTrigger:
o A TimeTrigger for ResourceAllocations for which a period is defined.
o Attributes:

 period: Period of a periodic activity for which the starting time has been
specified using the startTime field of the TimeTrigger base class.

 RateConstraintTrigger:
o Activation condition for rate-constraint / sporadic activation of

ResourceAllocations.
o Attributes:

 mint: (Specified) minimum inter-arrival time of a rate-constraint activity.
 jitter: Maximum execution jitter as determined during the scheduling of

rate-constraint activity.
 priority: Priority of rate-constraint / sporadic activity.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 27 of 109

 ResourceAllocationFragmentTrigger:
o Marker interface if a concrete Trigger subclass can be used to specify the

activation condition of a ResourceAllocationFragment.

 ResourceAllocationFragmentTimeTrigger:
o The start time is relative to the period of the SubSchedule that refines a particular

ResourceAllocation.

3.2.3.2 Package eu.dreamsproject.psm.model.annotation

Name DREAMS Platform-Specific Metamodel / Annotations

Description DREAMS-specific annotations for schedules

Ecore file psm.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.model.annotation

Dependencies org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.2.2: DREAMS-specific annotations related to schedules.

The following DREAMS specific properties can be annotated to schedule models:

 IntegrationPolicy:
o IAnnotatedSpecification providing to ResourceSchedules the integration

policy applied to resolve media access conflicts, i.e., if a high-priority message
arrives while a low-priority message is being processed.

o Attributes:

 integrationPolicy: Integration policy applied to resolve media access
conflicts, i.e., if a high-priority message arrives while a low-priority message
is being processed. The following values are admissible

 UNDEFINED: The media access resolution policy has not been
defined.

 TIMELY_BLOCK: The switch will not forward any message at times
when a time-triggered message is expected.

 SHUFFLING: If a low-priority message is relayed when a high-
priority message arrives, the high-priority message is delayed until
the processing of the low-priority message has finished (i.e., at most
for a maximum-sized low priority message).

 PREEMPTION: If a low-priority message is relayed when a high-
priority message arrives, the relay process of the low-priority
message is stopped. After the minimum time of silence on the
transmission channel and a delay defined a priori, the high-priority
message is relayed.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 28 of 109

3.2.3.3 Package eu.dreamsproject.psm.model.schedule

Name DREAMS Platform-Specific Scheduling Metamodel

Description DREAMS-specific extensions for schedules

Ecore file psm.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.model.schedule

Dependencies org.fortiss.af3.schedule

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.2.3: DREAMS-specific annotations related to schedules.

The following DREAMS extensions have been provided to the schedule meta-model in order to
support the concept of guarding and bypass windows (see configuration meta-model of physical and
virtual on-chip network interface in Sections 4.2 and 4.3). These windows result from particular
design choices for the DREAMS harmonized platform and are hence provided as separate package.

 WindowSchedulableEntity:
o SchedulableEntity specialization used to define reserved windows in a

ResourceSchedule. In contrast to its base class, it does not reference a particular
model element (such as a Component or an OutputPort), but only reserves a
certain amount of time in the schedule.

o Attributes:
 windowType: Type of reserved window. The following values are

admissible:

 UNDEFINED: The window type has not been defined.

 GUARDING_WINDOW: Guarding windows used in DREAMS to reserve
time-slots in in which no event triggered messages are allowed to be
injected into the NoC.

 BYPASS_WINDOW: Bypass windows are used to define slots where
the accesses to the TTE and DDR controllers my bypass the on-chip-
LRS.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 29 of 109

3.3 Reconfiguration Metamodel

3.3.1 Resource Reconfiguration

Figure 3.3.1: Reconfiguration Metamodel.

In DREAMS, recovery strategies based on global and local reconfiguration are expressed using
reconfiguration graphs (see [6], and [8], Chapter 7). Figure 3.3.1 provides an overview of a
reconfiguration metamodel that implements these concepts based on the AutoFOCUS3 Hierarchic
Element Metamodel (see [2], Section 3.2.6.2).

ReconfigurationGraphs are organized using a hierarchic element model of
ConfigurationContainers. All children of a given ConfigurationContainer may be of
exactly one of the following types:

 ConfigurationContainer: Further refinement of ReconfigurationGraph’s structure.
In DREAMS, ConfigurationContainers are used to define one “folder” for the system’s
global reconfiguration graph, and one folder for each of the system’s Nodes that contains
sub-folders for the local reconfiguration graphs of the respective Tiles.

 LocalConfiguration: Node in a local reconfiguration graph (see below).

 CompositeConfiguration Node in a global reconfiguration graph (see below).

LocalConfigurations define the system’s recovery strategy at the Tile level. For each Tile, the
recovery strategy is encoded as a graph (typically a tree), whose vertices are LocalConfiguration
objects that reference a ScheduleCollection (see Section 3.2) using the
ReferencedScheduleCollection annotation. The edges of the graph are represented by
Transitions that specify the condition to switch from one local configuration to another (in
DREAMS: list of failed resources defined using the
PhysicalPlatformArchitectureElementFailure annotation). The initial mode is marked
using the InitialConfiguration annotation and references a SystemSchedule that provides a
ResourceSchedule for all platform resources contained by the Tile. Subsequent
LocalConfigurations reference partial SystemSchedules that are based on updated
Deployments that exclude the list of failed resources and update the ResourceSchedule of the
remaining resources (ResourceSchedules that did not change in comparison to the predecessor in
the graph may be omitted).

The recovery strategy at the system level (see [6]) is expressed as a graph (typically a tree) whose
nodes are GlobalConfigurations and whose edges are Transitions. The initial
GlobalConfiguration is specified using the InitialConfiguration and references the set of
all initial LocalConfigurations using the ReferencedConfigurations annotation. For each
subsequent vertex, the GlobalConfiguration references the set of new local configurations to
be activated (for Tiles whose local configuration should not be changed, nothing is specified).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 30 of 109

It is important to note that global reconfiguration usually also involves a reconfiguration of the
communication. Hence, the Deployments referenced by the LocalConfigurations, which are
referenced by the corresponding GlobalConfiguration, also update the routes of the underlying
VirtualLinks and the allocation of PsmPorts (see Section 3.1).

3.3.2 Example

While reconfiguration graphs are typically computed by tools (see [13]), they can be viewed (and
instantiated, e.g., for testing), in the AF3 Model Navigator (see Figure 3.2.2 that also shows the
menu entry for reconfiguration graphs).

Model elements that comprise a ReconfigurationGraph can be added via the Model Element
library depicted in Figure 3.3.2, or via the context menu in the Model Navigator, similar to the
creation of the ReconfigurationGraph itself.

Figure 3.3.2: Additional Elements are added via the Element Library (right).

A ReconfigurationGraph is structured using ConfigurationContainers. Figure 3.3.3 shows
the typical structure, where one ConfigurationContainer contains the global reconfiguration
graph, and where there is one ConfigurationContainer for each Node. The
ConfigurationContainer for Node 1 contains two sub-ConfigurationContainers for its
Tiles Tile 1-1 and Tile 1-2.

Figure 3.3.3: Global and local modes (Nodes and Tiles) contained in a reconfiguration graph.

In the example of Figure 3.3.4, there exist two global modes: Global Mode 1 and Global Mode 2
between which a transition is defined.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 31 of 109

Figure 3.3.4: A global is a graph of CompositeConfigurations.

Figure 3.3.5 shows the LocalConfigurations (i.e., local modes) of Tile 1-1. There exist three local
modes: Mode A, Mode B, and Mode C. A transition exists from Mode A to Mode B and from Mode A
to Mode C and defines when to switch the local mode (see below for specification of transition
condition).

Figure 3.3.5: Local modes and their transitions of a Tile.

The main properties of the modes contained in a ReconfigurationGraph are defined via
annotations (see Figure 3.3.6). CompositeConfigurations have an annotation (Configurations)
that allows the user to reference other configurations such that global modes are actually defined
via its set of local modes. For each mode, it can also be defined whether a particular mode is the
initial mode of its corresponding resource, and whether it is a continuous or a transition mode
(Mode Type). The conditions to switch from one mode to another are defined via the Failed Resource
annotation that is attached to Transitions. It allows the user to select the set of resources which
need to fail such that the transition is triggered. For each of the local modes, there exists a further
annotation which references a system schedule (Schedule Collection). Initial modes will reference a
complete schedule of the system, whereas alternate modes, which are activated after some failures
in the system, reference partial system schedules that provide a schedule for the resources for which
the mode is defined.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 32 of 109

Figure 3.3.6: Annotations of a reconfiguration graph.

3.3.3 Reference Documentation

3.3.3.1 Package org.fortiss.af3.reconfiguration

Name Reconfiguration Metamodel

Description Local and global reconfiguration graph.

Ecore file reconfiguration.ecore

Plugin org.fortiss.af3.reconfiguration

Packages org.fortiss.af3.reconfiguration

Dependencies org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.3.1: Reconfiguration Metamodel.

The reconfiguration metamodel has the following classes (see Figure 3.3.1):

 ReconfigurationGraph:
o IProjectRootElement that hosts a reconfiguration specification.

 Configuration:

o Base class for configurations. The ReconfigurationGraph specifies the set of
available Configurations, and the Transition conditions between them.

o Operations:
 getTransitionConnectors(): Returns the TransitionConnectors

that must be added to Configurations in order to be able to define
Transitions.

 LocalConfiguration:
o A local configuration. It references a configuration artifact using

IAnnotatedSpecifications (e.g., ScheduleCollections).
 CompositeConfiguration:

o A composite Configuration that references a set of other Configurations.

 ConfigurationContainer:
o Container that groups several configurations or further sub-

ConfigurationContainers. AF3 compositors ensure that within a given
ConfigurationContainer, there can be only child elements of the same type.

o Operations:
 getSubConfigurationContainers(): Returns the sub-

ConfigurationContainers owned by this ConfigurationContainer.
 getConfigurations(): Returns the Configurations owned by this

ConfigurationContainer.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 33 of 109

 TransitionConnector:
o TransitionConnectors must be added to Configurations in order to be able

to define Transitions.

 TransitionExitConnector:
o The source connector of Transitions.

 TransitionEntryConnector:
o The target connector of Transitions.

 Transition:
o Transition between two Configurations. Conditions are specified using

IAnnotatedSpecifications.

3.3.3.2 Package org.fortiss.af3.reconfiguration

Name Reconfiguration Metamodel / Annotations

Description Annotations provided by reconfiguration metamodel.

Ecore file reconfiguration.ecore

Plugin org.fortiss.af3.reconfiguration

Packages org.fortiss.af3.reconfiguration.annotation

Dependencies org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.3.2: Reconfiguration Metamodel (annotation package).

The reconfiguration metamodel comprises an annotation package, which contains the classes below:

 ReferencedScheduleCollection:

o IAnnotatedSpecification to reference a ScheduleCollection from a
LocalConfiguration.

o Attributes:

 scheduleCollection: Referenced ScheduleCollection

 ReferencedConfigurations:
o IAnnotatedSpecification to reference a set of Configurations from a

CompositeConfiguration.
o Attributes:

 configurations: Referenced Configurations

 PhysicalPlatformArchitectureElementFailure:

o IAnnotatedSpecification to define TransitionCondition based on failures
of IPhyscialPlatformArchitectureElements.

o Attributes:

 physcialPlatformArchitectureElement: The
IPhysicalPlatformArchitectureElements that must fail in order
enable the Transition to which this IAnnotatedSpecification is
bound.

 InitialConfiguration:

o IAnnotatedSpecification to specify the initial Configuration.
o Attributes:

 initial: Boolean flag to specify the initial Configuration.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 34 of 109

3.3.3.3 Package eu.dreamsproject.psm.model.annotation.reconfiguration

Name Reconfiguration Metamodel / Annotation

Description DREAMS-specific annotations for local and global reconfiguration graphs.

Ecore file psm.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.model.annotation.reconfiguration

Dependencies org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 3.3.3: Reconfiguration Annotation Metamodel.

The eu.dreamsproject.psm.model.annotation.reconfiguration package has the following
classes:

 BlackoutSlot:

o IAnnotatedSpecification providing a flag if a given ResourceAllocation

represents a black-out slot (only applicable for time-triggered slots).
o Attributes:

 blackout: Flag if the annotated ResourceAllocation represents a
black-out slot (only applicable for time-triggered slots).

 ConfigurationModeType:

o IAnnotatedSpecification to specify the Configuration's mode type (see
below).

o Attributes:
 modeType: Configuration mode type.

 ModeType:

o Enumeration to define the type of mode Configuration.
 MODE_CONTINUOUS: A continuous mode is one that is executed cyclically

until there is a switching event (e.g., core failure).
 MODE_TRANSITION: A transition mode is one that is executed at most once

and switches to a continuous mode when there is a safe point to switch.
Safe points are where the black-out parameter of a time slot is false (black-
out property is defined by the scheduler).

 HypervisorSwitchTimeDelay:

o IAnnotatedSpecification defining the delay time required by a Hypervisor

to switch its plan.
o Attributes:

 delay: Delay time required by a Hypervisor to switch its plan (in
seconds).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 35 of 109

3.4 Extension of Timing Metamodel

The DREAMS timing metamodel [1] is enriched to provide new elements required for the
decomposition of timing chains in a DREAMS application modelled using the DREAMS application
metamodel [1]. This section lists the modifications carried out on the DREAMS timing metamodel.

3.4.1 Timing decomposition

A requirement on an end-to-end timing chain may not be easily verified directly when many
components are involved in the path. Splitting the timing chain and the timing requirement may
ease the verification of the global timing requirement.

This time budgeting decomposition is illustrated in Figure 3.4.1. The initial requirement of 53 ms is
split in 4 budgets (either arbitrarily or guided by a tool):

 16 ms for the scheduling of A, B and C on Node0,

 10 ms for the network on-chip traversal time,

 17 ms for the network off-chip ,

 10 ms for the scheduling of D and E on Node1.
Each of these 4 constraints can be more easily verified locally by dedicated tools.

Figure 3.4.1: Timing chain A->E decomposition

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 36 of 109

3.4.2 Example

The updated timing viewpoint is instantiated for the timing requirements of an on-chip/off-chip
scenario, as shown on Figure 3.4.2.

Figure 3.4.2: Timing Model Sample Scenario

The timing metamodel enables the specification of an end-to-end timing constraint at the
component level as illustrated in Figure 3.4.3. The timing chain can already be decomposed with the
WCET from each component in the path.

Figure 3.4.3: End to end timing chain from G to I

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 37 of 109

The refinement principle allows the user to refine timing budgets amongst entities in the path flow
of an end-to-end latency constraint for a given deployment.

The latencies introduced by the on-chip network communication of Node0 and Node1 and the off-
chip communication of TTEthernet are introduced in a refined decomposition related to the chosen
deployment. This decomposition is illustrated in Figure 3.4.4. This decomposition of the G to I end-
to-end latency constraint is split in 5 segments:

 The Tile1 segment, for execution time of components G and E. This execution time accounts
between the stimulus event at input of G until the response event at output of E.

 The Noc0 segment, for the transmission time of data over Node0 on-chip network. From the
stimulus event at the output of E to the response event at the on-chip/off-chip gateway of
Node0.

 The off-chip segment, for the transmission time of data over the cluster off-chip network.
From the stimulus event at the on-chip/off-chip gateway of Node0 to the response event at
the on-chip/off-chip gateway of Node1.

 The Noc1 segment, for the transmission time of data over Node1 on-chip network. From the
stimulus event at the on-chip/off-chip gateway of Node0 to the response event at the input
of component F.

 The Tile1 segment, for the execution time of components F and I. This execution time
accounts between the stimulus event at input event of F until the response event at output
of I.

Figure 3.4.4: Timing decomposition

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 38 of 109

The decomposition allows the designer to split an end-to-end latency constraint into sub-constraints
for the different scheduling domains:

 tasks scheduling,

 on-chip communication scheduling,

 off-chip communication scheduling.
This way, the overall scheduling problem is decomposed into sub-problems that can be resolved
independently, see [9].

3.4.3 Reference Documentation

The temporal viewpoint consists of the timing metamodel described in this section. It is based on the
Timmo-2-use timing metamodel [24] adapted for the DREAMS specificities [2].

Name DREAMS Timing Metamodel

Description The goal of the DREAMS timing metamodel is to describe all the timing requirements
and properties of a DREAMS application.

Ecore file timing.ecore

Plugin eu.dreamsproject.rtaw.timing

Packages eu.dreamsproject.rtaw.timing

Dependencies org.fortiss.af3.component

org.fortiss.tooling.kernel

Table 3.4.1 : DREAMS Timing Metamodel

The following classes are defined to describe timing information (see Figure 3.4.5 for the class
diagram of the metamodel):

 TimingProject

o Root element for timing information metamodel that contains
TimingDescriptions.

 TimingDescription

o Element containing the collections of timing descriptions, namely events, timing
chains, timing constraints and timing chains decompositions.

 EventsFolder

o Element containing the collection of Event proxy elements which can reference the
following elements:

 A Port of a Component in the logical ComponentArchitecture
(InputEvents and OutputEvents, see below).

 A Component of the logical ComponentArchitecture (EventTrigger,
see below).

 An OffChipNetworkRouterPort, or an OnChipNetworkRouterPort
allocated in an Deployment to the PlatformArchitecture.

 TimingConstraintsFolder

o Element containing the collection of TimingConstraint.
 TimingChainsFolder

o Element containing the collection of EventChain.
 TimingDecomposition

o Element containing the collection of EventChainDecomposition.
o Attributes

 deployment: references the Deployment for which the decomposition is
achieved.

 decompositions: collection of EventChainDecomposition.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 39 of 109

 EventChain

o Element describing an event flow chain between entities.
o Attributes

 stimulus: originating Event, start of the chain.
 response: terminating Event, end of the chain.
 segments: collection of sub EventChain allowing the decomposition of

the EventChain.
 Constraint: TimingConstraint associated to the EventChain.

 EventChainDecomposition

o Element describing the decomposition of an EventChain for a given Deployment.
o Attributes

 reference: references the EventChain that is decomposed.
 eventChainsSegments: collection of EventChain used for the

decomposition.

Figure 3.4.5: Timing Metamodel (class diagram of package eu.dreamsproject.rtaw.timing.model)

3.4.3.1 Timing Constraints

Timing constraints are almost not modified, please refer to [1].

Only to class PeriodicConstraint, a new attribute offset has been added which is the
effective release of a periodic event with respect to a reference clock (value in seconds).

3.4.3.2 Events

New Events are added in order to link timing model elements to on-chip and off-chip communication
elements defined in the PlatformArchitecture.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 40 of 109

 OnChipNetworkEvent:
o This links the timing model elements to an OnChipNetworkPort.
o Attributes:

 ref: References the OnChipNetworkPortAnnotation from the platform
architecture metamodel.

 OffChipNetworkEvent:
o This links the timing model elements to an OffChipNetworkPort.
o Attributes:

 ref: References the OffChipNetworkPortAnnotation from the
platform architecture metamodel.

 InputEvent, OuputEvent, EventTrigger : please refer to [2].

Figure 3.4.6 Timing model Event classes

3.4.3.3 Interface to other Metamodels

The DREAMS timing metamodel contains new references to the platform architecture metamodel
and the deployment metamodel, the timing metamodel now references in particular:

 OnChipNetworkPort (via OnChipNetworkPortAnnotation)

 OffChipNetworkPort (via OffChipNetworkPortAnnotation)

 Deployment (via DeploymentReference)

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 41 of 109

4 Service Configuration Viewpoint

The Service Configuration Viewpoint contributes metamodels that provide additional
implementation-specific parameters on top of the resource utilization metamodel.

The rationale for the PSM’s two-level architecture (see Figure 1.2.1) is:

 To simplify the resource utilization metamodel by avoiding building block specific
parameters. As a result, the unified schedule metamodel is applicable to all types of
resources for which offline schedules are required.

 To simplify the implementation of code/configuration templates for configuration
generators based on the framework developed in [10][11] since default values for
implementation specific parameters can be consistently injected to the resulting
configuration model during the model-transformation.

 A separate configuration model makes the configuration generation process more robust
since all configuration information is available at the model level where it can be verified
more easily based on the coherent interface provided by the metamodel, as opposed to
validating the ultimate configuration files required to configure the respective platform
services. Checks are either automated, or performed by an expert in the provided PSM
model editors. Furthermore, this intermediate level helps mitigate changes in the
configuration file format and enables the system integrator to perform manual adjustments
using the respective configuration model editor.

In this chapter, the following metamodels will be described

 Configuration infrastructure: Basic metamodels that define the interface to the
configuration generation framework described in [10].

 Configuration metamodels for the DREAMS virtual platform. The configuration metamodel
for the virtual platform follows the same structure as the implementation of the simulator
(see [17], Chapter 2), and hence provides a dedicated metamodel for the following simulator
modules:

o Simulated on-chip network interface (see Section 4.3)
o Simulated off-chip network components (see Section 4.4)

 Configuration metamodels for the DREAMS physical platform
o Physical on-chip network interface (see Section 4.2)
o XtratuM hypervisor (see Section 4.5)
o TTEthernet network (see Section 4.6)

We will not present examples in this section, since the configuration metamodels are typically not
created manually, but are the result of a model-to-model transformation that converts the
information contained in the resource utilization metamodel (see Section 3) into the corresponding
service-/device-specific format.

The implementation of the service configuration metamodels described in Sections 4.1 to 4.4 is
bundled with AutoFOCUS3/DREAMS (see [2], Section 3.2.2 for instructions on how to obtain the
package). The configuration metamodels for the XtratuM hypervisor and TTEthernet are bundled
with the respective installation package.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 42 of 109

4.1 Configuration Infrastructure Metamodel

4.1.1 Overview

The metamodel described in this section is the basis for the configuration metamodels entirely
developed in the scope of DREAMS (see Sections 4.2, 4.3, and 4.4). The other configuration
metamodels are extensions of existing formats and hence are only loosely integrated into this
infrastructure (see Sections 4.5 and 4.6).

Figure 4.1.1: Service Configuration Metamodel.

The configuration metamodel is intended to support the generation of configuration files for
component of the DREAMS platform. Hence, the IConfiguration interface provides a link to a
systemModelReferenceElement and defines the (relative) folder where the configuration should
be generated. Since for a platform resource to be configured, potentially more than one
configuration file is required, the definition of the file name(s) is performed in the corresponding
configuration generators code template (see [10]). The Configuration class is the base class for
the concrete configurations defined in the next sections. ConfigurationCollections are used to
cluster sets of configurations, e.g., the configuration of the DREAMS virtual and physical platform
(VirtualPlatformConfiguration, PhysicalPlatformConfiguration), or the root model
element ConfiguationProject itself. The ExternalConfigurationReference can be used to
link an external configuration (e.g., for XtratuM or TTEthernet). That way, the resulting
ConfiguationProject clusters all configuration artefacts for a particular deployment.

4.1.2 Reference Documentation

Name Configuration Metamodel

Description Configuration Infrastructure

Ecore file psm.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.configuration

Dependencies org.fortiss.tooling.kernel

Table 4.1.1: DREAMS Platform-Specific Metamodel (configuration package).

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 43 of 109

The configuration infrastructure metamodel consists of the org.fortiss.af3.psm.configuration
package, which is composed of the classes presented below (see Figure 4.1.1):

 Path:
o Representation of file paths.

 IConfiguration:
o Common interface of all configuration metamodels (including

ConfigurationCollections).
o Attributes:

 folder: Folder for output generation.
 systemModelReferenceModelElement: Reference to model in the

system model whose configuration is described by this IConfiguration.
o Operations:

 getOwner(): Returns the IConfiguration owning this
IConfiguration, or null if this IConfiguration is the top-level
ConfigurationProject).

 getWorkspaceRelativeFolder(): Returns the workspace relative path
where this IConfiguration is generated to.

 ConfigurationCollection:
o A collection of IConfigurations.
o Attributes:

 configurations: Sub-IConfigurations
 name: Human readable name
 description: Human readable description

 VirtualPlatformConfiguration:
o Configuration of DREAMS virtual platform.

 PhysicalPlatformConfiguration:
o Configuration of DREAMS physical platform.

 ExternalConfigurationReference:
o Reference to external configuration model.

 ConfigurationProject:
o Root node of configuration model. It serves as entry point for the configuration

generation for DREAMS systems [10][11].

 Configuration:
o Abstract base class for configuration metamodels (whose instances serve as direct

input to the generation of configuration files).

4.2 Physical On-Chip Network Interface Configuration Metamodel

4.2.1 Overview

This section describes a metamodel for the configuration of the LRS for the physical on-chip network
interface (see [3] for the implementation of the on-chip LRS, and [11] for the specification of the
configuration file format).

As depicted in Figure 4.2.1, the OnChipNetworkConfiguration collects information required to
generate the configuration of all LRSs of a single physical OnChipNetwork. It comprises the
following sub-elements:

 Two OnChipSchedParams objects to define the scheduling parameters for time-triggered
and rate-constraint on-chip network traffic.

 One OnChipNiLrsConfiguration for each of the on-chip NetworkInterfaces
connected to the OnChipNetwork to be configured.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 44 of 109

An OnChipNiLrsConfiguration references a ResourceSchedule (see Section 3.2) for the
respective on-chip NetworkInterface and consists of the following sub-configurations:

 A PortConfiguration for all on-chip NI ports to be defined for the given
NetworkInterface. It is a collection of PortConfigurationItems that define low level
parameters such as buffer size, queue length, etc. for the referenced
OnChipNetworkInterfacePort (see Section 3.1).

 A TimeTriggeredCommunicationSchedule that defines the configuration of the
schedule for the time-triggered traffic handled by the on-chip NetworkInterface

referenced by the OnChipNiLrsConfiguration. In order to match the configuration
interface of the physical on-chip NI LRS [3], time-triggered schedules are represented as a
set of linked lists of TimeTriggeredCommunicationScheduleEntrys that provide
operations to obtain the ID of the port to be scheduled, its index in the list, and its phase.

 EventTriggeredCommunicationSchedules define static schedules for rate-constraint
traffic as linked lists (see above). However, instead of defining schedules for network
interface ports, the EventTriggeredCommunicationScheduleEntrys control the on-
chip interleaver of the on-chip NI using operations, that control the admission of event-
triggered traffic using guarding windows (GW_OPEN, GW_CLOSE) and by-pass windows for
the TTE and DDR controllers (BP_OPEN, BP_CLOSE).

Figure 4.2.1: Physical On-Chip Network Interface Configuration Metamodel.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 45 of 109

4.2.2 Reference Documentation

Name Physical On-Chip Network Interface Configuration Metamodel

Description Configuration of physical on-chip network-interface’s LRS

Ecore file onchip.phy.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.onchip.phy

Dependencies eu.dreamsproject.psm

eu.dreamsproject.platform.dreams

org.fortiss.af3.timing

org.fortiss.af3.schedule

org.fortiss.af3.deployment

org.fortiss.af3.platform

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 4.2.2: Physical On-Chip Network Interface Configuration Metamodel.

The classes defined in package eu.dreamsproject.psm.onchip.phy (see Figure 4.3.2) can be dived
into three groups.

4.2.2.1 On-chip Network Configuration

The following classes have been defined to capture the overall configuration of an on-chip network
of the physical platform:

 OnChipNetworkConfiguration:
o Hardware configuration of all LRS of a single physical OnChipNetwork.
o Attributes:

 integrationPolicy: Integration policy applied to resolve media access
conflicts, i.e., if a high-priority message arrives while a low-priority message
is being processed. This attribute is of type IntegrationPolicy that has
been introduced in Section 3.2.3.2.

 ttOnChipSchedParams: Global scheduling parameters for TT messages.
 rcOnChipSchedParams: Global scheduling parameters for RC messages.

o Operations:
 getNumTiles(): Returns the number of Tiles referenced by this

OnChipNetworkConfiguration.

 OnChipSchedParams:
o Global scheduling parameters.
o Attributes:

 msbPeriodBit: This constant refers to the bit in the time format of the
global time base that is the period bit of the longest period. All shorter
periods are aligned to the right of this bit. The constant periodDelta (see
below) determines the distance in the time format of the global time base
between the period bits of two neighbouring periods.

 periodDelta: This constant specifies the distance (in number of bits)
between the period bits of two successive periods.

 nrPeriods: Number of periods that are supported by the NoC.

 phaseSliceWidth: This constant identifies the number that corresponds
to the width of a phase slice of a period's phase in the time format of the
global time base.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 46 of 109

 OnChipNiLrsConfiguration:
o Configuration of the on-chip NetworkInterface.
o Attributes:

 networkInterface: The NetworkInterface whose configuration is
described by this OnChipNiLrsConfiguration.

 schedule: ResourceSchedule for the NI-LRS configured by this
OnChipNiLrsConfiguration.

o Operations:
 getPorts(): Returns the OnChipNetworkInterfacePorts configured

for the referenced Tile.

4.2.2.2 Port Configuration

Based on the following classes, the configuration of a single port allocated to an on-chip network
interface’s LRS is described:

 PortConfiguration:
o Port configuration parameters of on-chip LRS.
o Attributes:

 ports: PortConfigurationItems for the ports defined for the on-chip
LRS configured by the OnChipNetworkConfiguration that owns this
PortConfiguration.

 PortConfigurationItem:
o Parameters of a single port of the on-chip LRS (entry of PortConfiguration).
o Attributes:

 niPort: OnChipNetworkInterfacePort allocated in the Deployment

model for which both derived and additional configuration parameters are
defined in this PortConfigurationItem.

 enable: Flag whether this port is enabled or not.

 bufferSize_Words: The size of the port buffer in words.
 queueLength: Determines the queue length for event ports. In case of

state ports, this field should be 1.
o Operations:

 getTrafficType(): Returns the TrafficType for which the
referenced OnChipNetworkInterfacePort is used.

 getDirection(): Returns the TrafficDirection of the referenced
OnChipNetworkInterfacePort.

 getSemantics(): Returns the PortSemantics of the referenced
OnChipNetworkInterfacePort.

 getClusterId(): Returns the ClusterId of the Cluster that contains
the referenced OnChipNetworkInterfacePort.

 getNodeId():Returns the NodeId of the Node that contains the
referenced OnChipNetworkInterfacePort.

 getTileId(): Returns the TileId of the Tile that contains the
referenced OnChipNetworkInterfacePort.

 getPortId(): Returns the OnChipNetworkInterfacePortId of the
referenced OnChipNetworkInterfacePort.

 getVirtualLink(): Returns the VirtualLink that the referenced
OnChipNetworkInterfacePort corresponds to. For best-effort
OnChipNetworkInterfacePorts, null is returned. This can be used to
determine parameters such as the MINT or the virtual link ID associated to
the referenced port.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 47 of 109

4.2.2.3 Schedule Configuration

Based on the following classes, the time and event triggered schedule configuration for the on-chip
network are described:

 TimeTriggeredCommunicationSchedule:
o Cyclic lists of time-triggered message emission times.
o Attributes:

 ttComSchedule: List of
TimeTriggeredCommunicationScheduleEntrys defining this
TimeTriggeredCommunicationSchedule.

 EventTriggeredCommunicationSchedule:
o Cyclic lists of gate operations.
o Attributes:

 etComSchedule: List of
EventTriggeredCommunicationScheduleEntrys defining this
EventTriggeredCommunicationSchedule.

 ScheduleEntry:
o Base class for a single entry into a TimeTriggeredCommunicationSchedule or

EventTriggeredCommunicationSchedule.
o Attributes:

 resourceAllocation: The ResourceAllocation that is contained in
the schedule to be represented in the schedule configuration described by a
sub-class of ScheduleEntry.

 next: Reference to next ScheduleEntry.

 TimeTriggeredCommunicationScheduleEntry:
o Schedule configuration for time-triggered traffic.
o Operations:

 getPortId(): Returns the OnChipNetworkInterfacePortId of the
OnChipNetworkInterfacePort whose dequeuing into the NoC is
described by this TimeTriggeredScheduleEntry.

 getNextTimeTriggeredCommunicationScheduleEntry(): Returns
the next TimeTriggeredCommunicationScheduleEntry.

 getPhase_s(): Returns the phase (in seconds) at which the
OnChipNetworkInterfacePort referenced by the SchedulableEntity

that is referenced by the given ResourceAllocation is scheduled.
 getIndex(): Returns the schedule entry's index (i.e., its position in the

time-triggered schedule's entry list) that corresponds to the line number in
the configuration file. In case the schedule entry is not contained in a
TimeTriggeredCommunicationSchedule, -1 is returned.

 EventTriggeredCommunicationScheduleOperation:
o IDs of operations used by the ET-interleaver to eliminate the chance of temporal

interferences for the time-triggered messages, by restricting the injection of event-
triggered messages (e.g., rate-constraint or best-effort) and accesses to the TTE and
DDR controller.

 GW_OPEN: Opening the guarding window, in which no ET messages is
allowed to be injected into the NoC.

 GW_CLOSE: Closing the guarding window, which allows that the queued
event-triggered messages be injected into the NoC.

 BP_OPEN: Letting the accesses to the TTE and DDR controllers bypass the
LRS.

 BP_CLOSE: Prohibiting the accesses to the TTE and DDR controllers bypass
the LRS.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 48 of 109

 EventTriggeredCommunicationScheduleEntry:
o Schedule configuration for event-triggered traffic.
o Attributes:

 operationId: Operation used by the ET-interleaver to eliminate the
chance of temporal interferences for the time-triggered messages, by
restricting the injection of event-triggered messages (e.g., rate-constraint or
best-effort) and accesses to the TTE and DDR controller.

o Operations:
 getNextEventTriggeredCommunicationScheduleEntry():Returns

the next EventTriggeredCommunicationScheduleEntry.
 getPhase_s(): Returns the phase of the given

EventTriggeredCommunicationScheduleEntry's

ResourceAllocation, or null if the ResourceAllocation does not
reference a WindowSchedulableEntity (see Section 3.2.3.3). This
method evaluates the
EventTriggeredCommunicationScheduleEntry#getOperationId()
in order to distinguish the start and end phase of bypass and guarding
windows.

 getIndex(): Returns the schedule entry's index (i.e., its position in the
event-triggered schedule's entry list) that corresponds to the line number in
the configuration file. In case the schedule entry is not contained in an
EventTriggeredCommunicationSchedule, -1 is returned.

4.3 Simulated On-Chip Network Interface Configuration Metamodel

4.3.1 Overview

The simulated on-chip network interface configuration metamodel abstracts the information
required to configure the virtual resources of the on-chip network simulator (see [17][18] for the
implementation and the configuration file format of the building block).

As shown in Figure 4.3.1, the metamodel provides two ConfigurationCollections: the
OnChipNetworkConfiguration that captures the information for each DREAMS
OnChipNetwork that is present in a system, and the OnChipNiLrsConfiguration that defines
the configuration of a single LRS. Each OnChipNetworkConfiguration contains the
OnChipNiLrsConfigurations of its connected network interfaces that are associated with the
corresponding resource in the platform model and a ResourceSchedule (see Section 3.2) for this
resource.

The behaviour of the on-chip network developed in DREAMS is defined by the configuration for
periodic and rate-constraint virtual links (see [1]). Hence, the PortConfiguration,
EgressBridgingUnitTimeTriggeredSchedule, and the SerializationUnitSchedule

allow to define the required parts of the network interfaces (see [18], Section 6.3). The
VirtualLinkConfiguration allows to obtain the required information about the VirtualLinks
(see Section 3.1) that traverse the on-chip network. The corresponding parameters are defined
in [18], Section 6.3, where also a mapping between parameters in the metamodel and the
configuration parameters is defined.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 49 of 109

Figure 4.3.1: Simulated On-Chip Network Interface Configuration Metamodel.

4.3.2 Reference Documentation

Name Simulated On-Chip Network Interface Configuration Metamodel

Description Configuration of simulated on-chip network-interface’s LRS

Ecore file onchip.sim.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.onchip.sim

Dependencies eu.dreamsproject.psm

eu.dreamsproject.platform.dreams

org.fortiss.af3.timing

org.fortiss.af3.schedule

org.fortiss.af3.deployment

org.fortiss.af3.platform

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 4.3.1: Simulated On-Chip Network Interface Configuration Metamodel.

The classes defined in package eu.dreamsproject.psm.onchip.sim (see Figure 4.3.1) can be dived
into three groups.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 50 of 109

4.3.2.1 On-chip Network Configuration

The following classes have been defined to capture the overall configuration of an on-chip network
of the virtual platform:

 OnChipNetworkConfiguration:
o Configuration of all LRS of a single OnChipNetwork.
o Attributes:

 simulationTicksPerSecond: Conversion factor to convert 1 s (real-
time) into simulation ticks. The current default value of 1000000000 means
that one simulation tick corresponds to 1 ns.

 onChipNiLrsConfigurations: The configurations of the on-chip NIs
connected to a single OnChipNetwork.

o Operations:
 getHyperPeriod_s(): Returns the hyperperiod of all NI-LRS schedules

(in seconds).
 getNumTiles(): Returns the number of Tiles referenced by this

OnChipNetworkConfiguration.

 OnChipNiLrsConfiguration:
o Configuration of the referenced NetworkInterface.
o Attributes:

 schedule: ResourceSchedule for the NI-LRS configured by this
OnChipNiLrsConfiguration.

 networkInterface: The NetworkInterface whose configuration is
described by this OnChipNiLrsConfiguration.

o Operations:

 getTileId(): Returns the TileId of the Tile that owns the
referenced NetworkInterface.

 getCores(): Returns the Cores contained by the referenced Tile.

 getPartitions(): Returns the Partitions configured for the given Core
that is contained by the referenced Tile.

 getPorts(): Returns the OnChipNetworkInterfacePorts

configured for the referenced Tile.

4.3.2.2 Port Configuration

Based on the following classes, the configuration of a single port allocated to an on-chip network
interface’s LRS is described:

 PortConfiguration:
o Port configuration parameters of on-chip LRS.
o Attributes:

 ports: PortConfigurationItems for the ports defined for the on-chip
LRS configured by the OnChipNetworkConfiguration that owns this
PortConfiguration.

 PortConfigurationItem:
o Parameters of a single port of the on-chip LRS (entry of PortConfiguration).
o Attributes

 queueLength: Number of frames that can be queued.
 buffersize: Port’s buffer size (in bytes).
 niPort: OnChipNetworkInterfacePort allocated in the Deployment

model for which both derived and additional configuration parameters are
defined in this PortConfigurationItem.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 51 of 109

o Operations:
 getPortId(): Returns the OnChipNetworkInterfacePortId of the

referenced OnChipNetworkInterfacePort.
 getCoreId(): Returns the CoreId of the Core that has the right to

read from / write into the referenced OnChipNetworkInterfacePort.
 getPartitionId(): Returns the PartitionId of the Partition that

as the right to read from / write into the referenced
OnChipNetworkInterfacePort.

 getPhysicalName(): Returns the referenced
OnChipNetworkInterfacePort’s physical name as a String.

 getLogicalName(): Returns the referenced
OnChipNetworkInterfacePort’s logical name as a String.

 getTrafficType(): Returns the TrafficType for which the
referenced OnChipNetworkInterfacePort is used.

 getVirtualLinkId(): Returns the VirtualLinkId of the
VirtualLink which the referenced OnChipNetworkInterfacePort
corresponds to. For best-effort OnChipNetworkInterfacePorts, -1 is
returned.

 getDirection(): Returns the TrafficDirection of the referenced
OnChipNetworkInterfacePort.

 getSemantics(): Returns the PortSemantics of the referenced
OnChipNetworkInterfacePort.

4.3.2.3 Virtual Link Configuration

The following classes describe the virtual links to be simulated:

 VirtualLinkConfiguration:
o Virtual links relevant for configuration of the given on-chip LRS.
o Attributes:

 virtualLinks: The VirtualLinkConfigurationItems for the
VirtualLinks configured by this VirtualLinkConfiguration.

 VirtualLinkConfigurationItem:
o Configuration of a single virtual link (for configuration of on-chip LRS)
o Attributes:

 virtualLink: The VirtualLink whose configuration is described in this
VirtualLinkConfigurationItem.

o Operations:
 getVirtualLinkId(): Returns the VirtualLinkId of the

VirtualLink referenced by the given
VirtualLinkConfigurationItem.

 getTrafficType(): Returns the TrafficType of the VirtualLink
referenced by the given VirtualLinkConfigurationItem.

 getSourcePhysicalName():Returns the physical name of the sender
OnChipNetworkInterfacePort of the VirtualLink referenced by
the given VirtualLinkConfigurationItem as a String.

 getDestinationsPhysicalNameList(): Returns the physical names
of the receiver OnChipNetworkInterfacePorts of the VirtualLink
referenced by the given VirtualLinkConfigurationItem as an EList
of String.

 getPeriodMint_s(): Returns the period of time-triggered
VirtualLinks / the minimum inter-arrival time (MINT) of rate-constraint

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 52 of 109

VirtualLinks of the VirtualLink referenced by the given
VirtualLinkConfigurationItem in seconds.

4.3.2.4 Schedule Configuration

Based on the following classes, the time and event triggered schedule configuration for the on-chip
network are described

 EgressBridgingUnitTimeTriggeredSchedule:
o Configuration of time-triggered schedules of on-chip LRS' Egress Bridging Units

(EBUs).
o Attributes:

 entries: EgressBridgingUnitTimeTriggeredScheduleEntrys
defining this EgressBridgingUnitTimeTriggeredSchedule.

 ScheduleEntry:
o Base class for EBU and Serialization Unit schedules.
o Attributes:

 resourceAllocation: The ResourceAllocation that is contained in
the schedule to be represented in the schedule configuration described by a
sub-class of ScheduleEntry.

 EgressBridgingUnitTimeTriggeredScheduleEntry:
o A single entry of a time-triggered schedule for the egress bridging unit.
o Operations:

 getTileId(): Returns the TileId of the Tile that contains the
OnChipNetworkInterface owning the
OnChipNetworkInterfacePort whose access from an EBU is described
by this EgressBridgingUnitTimeTriggeredScheduleEntry.

 getPhase_s(): Returns the phase (in seconds) at which the access of the
EBU to the OnChipNetworkInterfacePort referenced by the
SchedulableEntity that is referenced by the given
ResourceAllocation is scheduled.

 getPortId(): Returns the OnChipNetworkInterfacePortId of the
OnChipNetworkInterfacePort whose access from an EBU is described
by this EgressBridgingUnitTimeTriggeredScheduleEntry.

 SerializationUnitSchedule:
o Configuration of time-triggered schedule of on-chip LRS' Serialization Units.
o Attributes:

 integrationPolicy: Integration policy applied to resolve media access
conflicts, i.e., if a high-priority message arrives while a low-priority message
is being processed. This attribute is of type IntegrationPolicy that has
been introduced in Section 3.2.3.2.

 entries: SerializationUnitTimeTriggeredScheduleEntrys
defining this SerializationUnitTimeTriggeredSchedule.

 SerializationUnitTimeTriggeredScheduleEntry:
o A single entry of a time-triggered schedule for the serialization unit.
o Operations:

 getTileId(): Returns the TileId of the Tile to whose Serialization
Unit schedule this SerializationUnitTimeTriggeredScheduleEntry
belongs.

 getPeriod_s(): Returns the period of the guarding window.
 getOpeningPhase_s(): Returns the opening phase of the guarding

window (only considered if the corresponding

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 53 of 109

OnChipNiLrsConfiguration#mediaAccessConflictResolutionPol
icy is set to TIMELY_BLOCK.

 getClosingPhase_s(): Returns the closing phase of the guarding
window (only considered if the corresponding
OnChipNiLrsConfiguration#mediaAccessConflictResolutionPol
icy is set to TIMELY_BLOCK.

4.4 Simulated Off-Chip Network Components Configuration
Metamodel

4.4.1 Overview

The simulated off-chip network components configuration metamodel abstracts the configuration
parameters for the simulated off-chip network (see [17], Chapter 2, and [18], Section 6.2 for the
implementation and the configuration file format of the building block). As illustrated in Figure 4.4.1,
the OffChipNetworkConfiguration is a ConfigurationCollection that clusters the
following configurations for the components of the off-chip network simulator:

 BlackboxNodeConfigurations: Nodes that do not have an on-chip network, or whose
network is not simulated.

 SwitchConfigurations: Switches of the off-chip network

 GatewayConfigurations: On-/Off-Chip network switches

Each of the above configurations is populated with the respective sub-class of
ConfigurationItem that represents a single entry of the respective configuration file
(BlackBoxNodeConfigurationItem, etc.). A ConfigurationItem establishes the link with the
resource utilization metamodel that hosts the schedule used as a basis for the configuration of the
off-chip network simulation by means of a reference to the respective VirtualLink (see
Section 3.1.1) a ResourceAllocation (see Section 3.2).

Figure 4.4.1: Simulated Off-Chip Network Interface Configuration Metamodel.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 54 of 109

Figure 4.4.2 depicts the simulation configuration metamodel that contains additional information to
be provided to the simulator, such as the set of messages to be simulated (cf.
MessageConfiguration), and their injection times (cf. TraceConfiguration) [18].

Figure 4.4.2: Simulation Configuration Metamodel.

4.4.2 Reference Documentation

4.4.2.1 Package eu.dreamsproject.psm.offchip.sim

Name Simulated Off-Chip Network Components Configuration Metamodel

Description Configuration of simulated off-chip network components.

Ecore file offchip.sim.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.offchip.sim

Dependencies eu.dreamsproject.psm

org.fortiss.af3.timing

org.fortiss.af3.schedule

org.fortiss.af3.deployment

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 4.4.1: Simulated Off-Chip Network Interface Configuration Metamodel.

The eu.dreamsproject.psm.offchip.sim metamodel contains following classes (see Figure
4.4.1):

4.4.2.1.1 Off-chip network configuration

This group contains the foundation for the configuration metamodel for the simulated off-chip
network.

 QueueId:

o Data type to represent buffer identifications (queue IDs).

 OffChipNetworkConfiguration:

o Configuration of simulated off-chip network.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 55 of 109

 ConfigurationItem:
o This abstract class represents the common set of attributes associated to the

configuration of the simulated platform.
o Attributes:

 virtualLink: VirtualLink defined in the Deployment model that is
used to obtain the following configuration parameters: virtual link ID, traffic
type, message size.

 resourceAllocation: The ResourceAllocation contained in a
ResourceSchedule that describes the temporal characteristics of by the
configuration described in the concrete ConfigurationItem that have
been determined by a schedule (phase / jitter / priority).

 queueId: The buffer identification (QueueID).
 queueLength: Number of frames that can be queued.

o Operations:

 getVirtualLinkId(): Returns the VirtualLinkId configured using this
ConfigurationItem.

 getTrafficType(): Returns the ConfigurationItem's traffic type.
 getPayloadSize_bytes(): For time-triggered virtual links, returns the

period, for rate-constraint virtual links returns the MINT.
 getPeriodMint_s(): For time-triggered virtual links, returns the period,

for rate-constraint virtual links returns the MINT.

4.4.2.1.2 Off-chip network switch configuration

The following classes represent the configuration of off-chip network switches:

 SwitchConfiguration:
o Configuration of simulated off-chip network switch.
o Attributes:

 switchConfigurationItems: List of SwitchConfigurationItems
contained by this SwitchConfiguration (one per
OffChipNetworkRouter [2]).

 SwitchConfigurationItem:
o Contribution to SwitchConfiguration for a single VirtualLink.
o Operations:

 getPhaseJitter_s(): For time-triggered virtual links, returns the
phase. For rate-constraint virtual links returns the jitter. Both values are
derived from the ResourceAllocation referenced by this
SwitchConfigurationItem.

 getSenderPortId(): Returns the OffChipNetworkRouterPortId of
the sender port (i.e., the port via which the switch receives the message).

 getReceiverPortsIdList(): Returns the EList of
OffChipNetworkRouterPortIds of the receiver ports (i.e., the ports via
which the switch forwards the message) of the referenced VirtualLink.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 56 of 109

4.4.2.1.3 Black box node configuration

The following classes represent the configuration of black box nodes, i.e., nodes which do not
contain an on-chip network, or for which the on-chip network is not simulated:

 BlackBoxNodeConfiguration:
o This class represents the black box node configuration for the simulated platform.
o Attributes:

 blackBoxNodeConfigurationItems: List of
BlackBoxNodeConfigurationItems contained by this
BlackBoxNodeConfiguration (one per Node for which the
OnChipNetwork is not simulated [2]).

 BlackBoxNodeConfigurationItem:
o Contribution to BlackBoxNodeConfiguration for a single VirtualLink.
o Operations:

 getSendingStartTime_s(): For time-triggered virtual links, it returns
the phase at which the message is sent. For rate-constraint virtual links, it
returns the sending time of the first message (the sending time of the
subsequent messages is simulated according the VirtualLink's MINT.
Here, the ResourceAllocation must be contained in the CPU schedule
that contains the sender task.

4.4.2.1.4 On-chip/Off-chip Gateway configuration

The following classes represent the configuration of simulated on-chip/off-chip gateways:

 GatewayConfiguration:
o This class represents the gateway configuration.
o Attributes:
o gatewayConfigurationItems: List of GatewayConfigurationItems

contained by this GatewayConfiguration (one per OnChipOffChipGateway
[2]).

 GatewayConfigurationItem:
o This abstract class represents all configuration items for gateways.
o Operations:

 getTrafficDirection(): Returns the direction of the message from
the point-of-view of the gateway configured by this
GatewayConfigurationItem.

 PeriodicGatewayConfigurationItem:
o This class represents the gateway configuration for periodic messages.
o Operations:

 getPhase_s():Returns the phase defined ResourceAllocation in the
communication schedule for the gateway to which this
PeriodicGatewayConfigurationItem belongs.

 SporadicGatewayConfigurationItem:
o This class represents the gateway configuration for sporadic (rate-constraint)

messages.
o Operations:

 getPriority(): Returns the priority as defined in the
ResourceAllocation in the communication schedule for the gateway to
which this SporadicGatewayConfigurationItem belongs.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 57 of 109

4.4.2.2 Package eu.dreamsproject.psm.simulation

Name DREAMS Simulation Metamodel

Description Configuration of the simulation experiment

Ecore file simulation.ecore

Plugin eu.dreamsproject.psm

Packages eu.dreamsproject.psm.simulation

Dependencies eu.dreamsproject.psm

org.fortiss.af3.timing

org.fortiss.af3.schedule

org.fortiss.af3.deployment

org.fortiss.af3.component

org.fortiss.tooling.base

org.fortiss.tooling.kernel

Table 4.4.2: DREAMS Simulation Metamodel.

The metamodel consists of the package org.fortiss.af3.psm.annotation.model which contains
following classes (see Figure 4.4.2):

 MessageConfiguration:
o Catalogue of messages to be injected into the simulation.
o Attributes:

 Messages: Messages to be injected into the simulation.

 MessageConfigurationItem:
o A single message to be injected into the simulation.
o Attributes:

 virtualLink: VirtualLink for which this message to be injected into
the simulation is specified (i.e., for TT and RC messages). If this attribute is
non-null, the senderPort field will be ignored (should not be set in this
case).

 senderPort: The OnChipNetworkInterfacePort from which a BE
message is sent. This field is only respected if the virtualLink field is
null.

 deadline_s: Message deadline.
o Operations:

 getMessageId: Returns the MessageId of the message to be injected
into the network.

 getTrafficType: Returns the TrafficType of the message to be
injected into the network.

 getVirtualLinkId: In case of time-triggered and rate-constraint
messages, returns the VirtualLinkId, -1 otherwise.

 getPayloadSize_bytes: Returns the referenced VirtualLink's
payload size.

 TraceConfiguration:
o Trace file that defines the sequence in which messages from the

MessageConfiguration catalogue are injected into the system.
o Attributes:

 messageInstance: Instance of a message described by a
MessageConfigurationItem.

 TraceConfigurationItem:

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 58 of 109

o Singe entry into the TraceConfiguration file, i.e., a single instance of a message
described by a MessageConfigurationItem.

o Attributes:
 message: MessageConfigurationItem classifying the message for which

a single instance is described by this TraceFileConfigurationItem.
 ResourceAllocation: in the ResourceSchedule that defines the

injection time of the message.
 Receivers: The logical InputPorts which receive a best-effort message,

i.e. this field needs only be set for best-effort messages.
 payload: Message payload as sequence of integers.

 injectionTime: Message injection time (in seconds).
o Operations:

 getTileId: Returns the TileId of the Tile from which the message is
injected into the network.

 getMessageId: The MessageId of the message to be injected into the
network.

 getPortId: The OnChipNetworkInterfacePortId of the
OnChipNetworkInterfacePort from which the message is injected into
the network.

 getDestinationsLogicalNamelist: For best-effort messages, returns
the EList of logical names of the receivers as a String. For time-triggered
and rate-constraint message null is returned.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 59 of 109

4.5 XtratuM Hypervisor Configuration

The XtratuM hypervisor is configured statically. The configuration is specified in an XML file where
the main components of the system are defined [21]. The integration of the configuration file in the
deployment phase of a system is depicted in Figure 4.5.1.

Figure 4.5.1: Configuration of XtratuM during system deployment phase.

Figure 4.5.1 shows the different processes involved in the system development:

 Hypervisor configuration and compilation: It permits to configure XtratuM for a specific
processor and board and generates the hypervisor binary or core.

 Partition development: It involves the development of the partitions and the generation of
the partition’s binaries.

 System configuration: It takes the XML specification of the system and generates a binary
representation of the configuration file.

 System deployment: it collects the result of the previous processes and generates the final
system to be loaded in the target.

This section is related with the system configuration process and more specifically with the
definition of the XM:CF.XML file that is the input of this process.

4.5.1 System Specification

The system specification file details the configuration parameters to be managed by the hypervisor
to execute the system. The configuration file sections are:

 Hardware description: It details the hardware information such as the memory layout,
processor information including the schedules for all processors and devices in the board.

 XM Hypervisor description: it defines the memory allocation and size of the hypervisor in the
target.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 60 of 109

 Resident Software description: it details the allocation and size of the system bootloader.

 Partition Table description: It provides the memory allocation and size of the partitions in
the final system as well as the communication ports that partitions can use for sending or
receiving messages.

 Channels description: it defines the links between the partitions’ ports.

Figure 4.5.2 shows the scheme representation of the System Description component.

Figure 4.5.2: System Description Schema.

This scheme has been adapted from previous versions of the XtratuM hypervisor and contains
specific DREAMS elements that are detailed in the next section.

4.5.2 DREAMS Contributions

The XM schema has been adapted to support the DREAMS boards and the specific hardware related
to the STNoC and TTEthernet devices.

These new devices have been included in the schema definition as shown in Figure 4.5.3.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 61 of 109

Figure 4.5.3: Devices schema extended with nodes for STNoC and TTEthernet configuration.

An STNoC device is defined as shown in Figure 4.5.4.

Figure 4.5.4: STNoC configuration schema.

An example of this device is depicted below:

<Devices>

 <STNoC name="STNoC_1" baseaddress="0x40000000" >

 <Port name="port_0" type="TRAFFIC_SAMPLING" direction="destination"

 offsetaddress="0x00000000" size="64B" />

 <Port name="port_1" type="TRAFFIC_QUEUING" direction="destination"

 offsetaddress="0x00010000" size="64B" />

 <Port name="port_2" type="TRAFFIC_SAMPLING" direction="destination"

 offsetaddress="0x00020000" size="64B" />

 <Port name="port_3" type="TRAFFIC_QUEUING" direction="destination"

 offsetaddress="0x00030000" size="64B" />

 <Port name="port_4" type="TRAFFIC_SAMPLING" direction="source"

 offsetaddress="0x00040000" size="64B" />

 <Port name="port_5" type="TRAFFIC_QUEUING" direction="source"

 offsetaddress="0x00050000" size="64B" />

 <Port name="port_6" type="TRAFFIC_SAMPLING" direction="source"

 offsetaddress="0x00060000" size="64B" />

 <Port name="port_7" type="TRAFFIC_QUEUING" direction="source"

 offsetaddress="0x00070000" size="64B" />

 </STNoC>

</Devices>
Figure 4.5.5: XtratuM STNoC Configuration Example

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 62 of 109

TTEthernet devices are defined according the schema drawn in Figure 4.5.6.

Figure 4.5.6: XTratuM TTEthernet configuration schema.

These devices enable communication among partitions allocated in different tiles. In order to allow
the partitions to send or receive messages, the communication port concept at partition level has
been extended to include in the Port Table the specific ports provided by these devices.

STNoC Ports now extend the Sampling Ports while TTEthernet ports are an extension of Queuing
Ports.

The connection between ports is specified in the Channels element. A Sampling Channel can be a
Source (partition in the same tile) or an STNoC port or a TTEthernet Port. Destination ports in a
channels can be one or several ports in the same tile (Source) or connected through STNOC or
TTEthernet Ports. Figure 4.5.7 shows the definition of Sampling Channels.

Figure 4.5.7: Sampling channel configuration schema.

The same approach has been used for the definition of Queuing Channels. Figure 4.5.8 provides the
Queuing Channel element schema.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 63 of 109

Figure 4.5.8: Queuing channel configuration schema.

4.5.3 Configuration File Binary Representation

As described previously, the system configuration process receives the XML description of a system
and generates a binary representation of the configuration file (see Figure 4.5.9).

Figure 4.5.9: Generation of binary XtratuM configuration

The XM-parser tool consumes the configuration file, checks its correctness and its coherence with
the specification and generates a set of data structures in the C language that contain the
specification file parameters.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 64 of 109

XM-parser validates the configuration file both syntactically and semantically and performs the
following non-syntactical checks:

 Memory region overlapping: Checks that the memory regions (board memory blocks) are
coherent and there is not overlapping.

 Memory area overlapping: Checks that the memory areas allocated to partitions exist and
they do not overlap.

 Memory area inside any region: Checks that the memory areas allocated to a partition exist
and their attributes.

 Duplicated partition’s name and ID: Checks the coherence of partition names and identifiers.

 Allocated CPUs: Checks the coherence of the CPUs definition and allocation.

 Replicated port’s name and ID: Checks the coherence of port names and use as source or
destination.

 Cyclic scheduling plan: Checks that all partitions are allocated in the scheduling plan and
there is not slot overlapping.

 Cyclic scheduling plan slot partition IDs: Checks the slot identifiers in the scheduling plan.

 Hardware IRQs allocated to partitions: Checks the Hardware IRQ allocation to partitions and
their coherence.

 I/O port alignment and partition allocation: Checks the I/O port allocation overlapping and
alignment.

 Ports allocated to STNoC and TTEthernet devices: Checks the available defined ports in the
device definition and their allocation to partitions.

 Allowed health monitoring actions: Checks that the health monitor events and actions are
defined in the hardware model.

 Channels allocation: Checks the coherence of channels and ports defined in partitions.

The generated data structures and variables are compiled to provide a XM-CT.bin file to be
integrated in the final system using the deployment tools.

Data structures generated are coherent with the hypervisor and will be used in the system execution
as input parameters for the hypervisor.

4.6 TTEthernet Network Configuration

[10] describes the TTEthernet configuration workflow from system requirements to device
configuration artefacts as depicted in Figure 4.6.1.

Figure 4.6.1: Configuration Workflow for a TTEthernet Device Configuaration

The network configuration (NC) file, generated upon successful execution of TTE-Plan, is a human-
readable representation of the configuration artefact that is converted to the corresponding binary
artefact loaded into the TTEthernet device. A detailed description of the relevant configuration items
in the network configuration for the DREAMS specific configuration is provided in Section 4.2.4
of [10].

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 65 of 109

5 Tool-Specific Formats

The resource utilization metamodel presented in Chapter 3 is an exchange format between the
different offline resource adaptation tools developed in DREAMS (and hence is capable to capture
their output). This section presents those input formats of the respective offline scheduling and
resource adaptation tools that have been formalized as meta-models or XML schemas ([9] details
further tool input formats, e.g., for GRec, [9], Section 7.1). These file formats that will serve as an
input for the definition of the DREAMS tool-chain in [13].

Further, this section describes an update of the metamodel for the safety constraints and rules
checker introduced in [2].

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 66 of 109

5.1 Xoncrete

Xoncrete is a tool to define a partitioned system and perform the resource allocation of this system.
The way to introduce the description of the entire system is through a web browser. Therefore, the
first step to work with Xoncrete is with an empty project. The user defines all the elements of the
system using Xoncrete’s web interface. Once all elements have been defined and all resources have
been correctly allocated, Xoncrete allows to export the final configuration to a XMCF file for
XtratuM.

Xoncrete maintains its own format to save all the data into a project file. This format is known as
“eprj” format file. Normally, the user does not have to edit this file, but only to save and load it.
Nevertheless, in this project the user has to know the eprj format since Xoncrete is integrated into a
set of tools [13] and the information of the system managed by Xoncrete will not be entered in an
empty project but through an eprj file.

In the rest of this section the eprj format will be introduced. The complete description of the format
can be found in [23]. The main sections of the eprj format are shown in Figure 5.1.1.

Figure 5.1.1: Main sections of Xoncrete eprj format.

The next subsections will show the contents of the above elements. As Xoncrete generates the XML
configuration file for XtratuM, this format has a lot of common elements with XMCF format. The
elements that are obvious will not be explained. There is complete information in the Xoncrete User
Manual [22].

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 67 of 109

5.1.1 Preferences

These are the options that will apply to a Xoncrete project.

Figure 5.1.2: Xoncrete Preferences.

5.1.2 Hardware

This is the information stored about the hardware of the system.

Figure 5.1.3: Xoncrete system hardware model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 68 of 109

5.1.3 Hypervisor

Figure 5.1.4: Xoncrete hypervisor model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 69 of 109

The following elements are described using the schema shown in Figure 5.1.4:

 Partition Context Switch (CS): Worst case time required to perform a partition context
switch.

 Maximum number of virtual CPUs (max-vcpus): Maximum number of Virtual CPUs (vCPU)
available for each partition, according to the configuration parameters of XtratuM.

 Console device: To which console device events reported to the hypervisor will be logged to.

 Plan syn-Is sync: Whether or not XtratuM must synchronise the plan with an externally
provided event. If it is set to TRUE, the following options are taken into account:

o Synchronisation line: Interrupt line through which the synchronisation event is
signalled.

o Maximum clock drift: Maximum drift between the XtratuM’s reference clock and
the external clock source of the synchronisation event.

 Uncacheable: Specifies that a memory area allocated to a partition will not be cached. 

 External Ports: Each external port is an endpoint of a communication channel and belongs
to an external source.

o Name: Name of the port.

o Type: Type of the port that is either SAMPLING or QUEUING.

o Direction: If the port is a SOURCE or DESTINATION port.

o Cpu Id: The identifier of the core where the external port is available.

 Health monitoring: For the hypervisor (and for partitions) there exist a table to control the
health monitoring mechanism. The table contains a maximum of 29 entries, each of them
containing the following elements:

o Event: Unexpected event or failure.

o Action: Action to take.

o Log: If the event occurrence has to be logged for a latter examination.

5.1.1 Resident software

This element only contains its memory map.

Figure 5.1.5: Xoncrete resident software model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 70 of 109

5.1.2 Partitions

Figure 5.1.6: XtratuM partition model.

An XtratuM partition model has the following attributes (see Figure 5.1.6):

 allow-fp: The partition is allowed to use floating point instructions.

 is-system: The partition is marked as system partition.

 is-bootable: The partition is marked as boot partition.

 data-cache: Enable state for data cache.

 instruction cache: Enable state for instruction cache.

 console: To which console device events reported by the partition to the hypervisor will be
logged to.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 71 of 109

5.1.2.1 Memory Map

A list of assigned memory areas, each of them with the following attributes (see Figure 5.1.7):

 Address space: Portion of memory assigned to place code and variables.

 Unmapped: The area will not be mapped.

 Rom: The area will be rom.

 Uncacheable: The area will not be cached.

 Read-only: The area will be read-only.

 Mapped-at (optional): When specified, the partition will be mapped starting at this address
inside its virtual memory map.

Figure 5.1.7: Xoncrete memory map model.

5.1.2.2 Health Monitoring

This element is the same as for hypervisor.

Figure 5.1.8: Xoncrete health monitoring model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 72 of 109

5.1.2.3 Ports

This element is the same as for hypervisor.

Figure 5.1.9: Xoncrete ports model.

5.1.2.4 I/O Resources

The access to the whole I/O space is also partitioned. Each partition may only access the hardware
devices that it is in charge of. I/O space is partitioned by defining I/O address ranges, where all the
addresses within this range are granted access from one partition, or by defining I/O masked
registers, where a set of bits of an I/O address is assigned to a partition. Many partitions can have
access to the same I/O masked registers, but their access mask (assigned bits) must be disjoint.

Figure 5.1.10: Xoncrete I/O resources model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 73 of 109

5.1.2.5 Virtual CPUs

The allocation of Virtual CPUs to specific CPUs.

Figure 5.1.11: Xoncrete virtual CPUs model.

5.1.2.6 Schedulable Properties

Regarding the attributes of this element:

 Longest-hypercall: Time to be left unused after each slot of the partition.

 Slot: Overhead associated with internal processing for each slot assigned to the partition.

Figure 5.1.12: Xoncrete schedulable properties model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 74 of 109

Regarding the task attributes:

 Is atomic: The task cannot be pre-empted.

 Virtual CPU: Virtual CPU where the task shall be executed.

 WCET: Worst Case Execution Time.

 Interference: Fraction of the task’s WCET applied as interference generated by the task.

 Mutual-exclusion-resources: Usage of mutual exclusion to protect critical sections. Each
tuple in the list contains a mutual-exclusion-resources name, a value called cooldown time,
and a percentage of this value or interference.

5.1.3 Mutual exclusion resources (MERs)

Figure 5.1.13: Xoncrete mutual exclusion resources model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 75 of 109

5.1.4 Communications

Figure 5.1.14: Xoncrete communications model.

In Figure 5.1.14, channelEnd_t represents the identifier of the port.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 76 of 109

5.1.5 Devices

Figure 5.1.15: Xoncrete devices model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 77 of 109

5.1.6 End to end flows (ETEFs)

The attributes and description of an end-to-end flow are described in [22].

Figure 5.1.16: Xoncrete end-to-end flows model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 78 of 109

5.1.7 Plans

This element stores all the information about scheduling plan. It also stores the plans itself if the
scheduling has been run and there exist a temporal allocation.

Figure 5.1.17: Xoncrete plans model.

5.1.7.1 Assigned Workload

This element stores the ETEF identifiers that belong to a specific plan.

Figure 5.1.18: Xoncrete assigned workload model.

5.1.7.2 Analysis

This element stores the scheduling plan. The schedule element contains the time slices, i.e., the
temporal windows with the starting time, the duration and identifier of the task instance of an ETEF
(step). The schedule also contains the deadline misses if they exist.

Figure 5.1.19: Xoncrete analysis model.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 79 of 109

Figure 5.1.20: Xoncrete analysis CPU element model

The sra element contains the time slices in which a mutual exclusion resource is executing.

Figure 5.1.21: Xoncrete analysis SRAS element model

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 80 of 109

5.2 TTPlan

The TTEthernet toolchain and its configuration interfaces is described in detail in [10], Section 4.2.
Relevant to this deliverable are the description of the network configuration generator tool (TTE-
Plan, see [10], Section 4.2.2) as well as the detailed description of the network description (ND)
interface (see [10], Section 4.2.3), both depicted in the toolchain workflow in Figure 5.2.1.

Figure 5.2.1: TTEthernet Tool-Chain Workflow.

5.3 MCOSF

MCOSF is a command line tool that has 3 tasks: (1) generate transition modes to reduce the mode
switching delay, (2) embellish the reconfiguration graphs with the generated transition modes and
(3) provide information for online incorporation of event-triggered activities in a time-triggered
schedule.

The tool MCOSF takes an XML file as input and generates an XML file. The input XML file contains the
information of the system hardware, system software, and the nominal modes of operation and
software components that are to be scheduled. The output XML file contains the information of the
modes of operation including the transition modes and flexibility information. The input and output
XML formats are tailored to the DREAMS project and hence the complete details can be found in
Annex A.

Before we discuss the input and output files of the tool in detail, it is beneficial to have some basic
knowledge of the following terms:

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 81 of 109

5.3.1 Mode Types

From the perspective of scheduling, there are two types of modes of operation. The online scheduler
(i.e., LRS) needs to distinguish between the two modes of operation (these modes are defined in
detail in [8][9]). A nominal/continuous mode is a mode that is executed cyclically until there is a
switching event (e.g., core failure). This type of mode is defined by the system designer. On the
other hand, a transition/switching mode is a mode that is executed at most once and switches to a
continuous mode when there is a safe point to switch. In the case of DREAMS, a transition mode is
defined by the scheduler to improve mode switching delay.

5.3.2 Black-out Slots

The Black-out parameter of a slot defines a safe point in time to execute a mode switch. For an
independent task-set, safe points can be trivially defined at time points when no task results in
partial execution upon switching. Either it should be completely executed or not executed at all.
However, for the case of dependent task-sets, defining this point in time is not as trivial. For more
details, please see [8][9]. This parameter is defined by the scheduler during MAF. In the case of
DREAMS, the end of MAF is always a safe point to switch.

5.3.3 Input Schema

The input data elements are defined in a hierarchical structure. The trivial elements of this hierarchy
will not be defined in this section, instead they can be found in Annex A.1.

The root element of the hierarchy is defined in Figure 5.3.1. It has only one attribute, i.e., Name. It
contains the following sub-elements: platform description, set of partitions, local and global modes
of operations, set of tasks, and a set of messages communicated between tasks.

Figure 5.3.1: Project Root for MCOSF input.

5.3.3.1 Platform Architecture

The PlatformArchitecture element defines a collection of processing nodes. Note that this
element does not define the off-chip network. This information is not required by MCOSF, since the
off-chip network schedule cannot change during the operation of the system. Furthermore,
scheduling the same message with multiple phases for multiple modes can seriously overload the
off-chip network.

Figure 5.3.2: Platform architecture for MCOSF input.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 82 of 109

5.3.3.1.1 Processing Node

The processing node is defined as a collection of tiles with an identifier, i.e., Name. Note that the on-
chip network is not present in this structure.

Figure 5.3.3: Processing node element for MCOSF input.

5.3.3.1.2 Tile

A tile is defined to be a collection of cores. The communication between cores within a tile is
achieved using shared memory and/or shared caches. Since there is no need of such fine control
over caches, which can vary based on the mode of operation, this information is not available in the
Tile element.

Figure 5.3.4: Tile element for MCOSF input.

5.3.3.1.3 Core

The processing core is defined using the Core element in the input XML of MCOSF. An identifier (i.e.,
a Name) is used to mention the allocation of partitions to these cores in a certain mode.

Figure 5.3.5: Core element for MCOSF input.

5.3.3.2 System Software

The system software is defined by a set of partitions. The information regarding the hypervisor and
its containing partitions is not required for MCOSF. The Partition element defines an identifier,
i.e., a Name.

Figure 5.3.6: System Software element for MCOSF input.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 83 of 109

5.3.3.3 Modes of Operation

The ModesOfOperation element of the input XML file is used to define all local and global modes
and their transitions/reconfigurations. The attribute InitialGlobalMode provides the name of
the global mode of operation in which the system starts.

Figure 5.3.7: Modes of operation element for MCOSF input.

5.3.3.3.1 Local Mode

A local mode of operation defines a mode for a tile. It is identified by the set of core schedules used
for executing tasks. It has the following attributes:

 Name: Provides a name for identification in the reconfiguration graphs.

 Type: Defines the type of local mode as per Section 5.3.1.

 Tile: The name of the tile for which the local mode is defined.

 MafUs: The size of major application frame (MAF) in microseconds.

Figure 5.3.8: Local Mode element for MCOSF input.

5.3.3.3.2 CoreSchedule

The core schedule element defines a set of slots available for executing tasks related to specific
partitions. The element CoreSchedule also defines the core name on which these slots execute. A
visual representation of the element is provided below.

Figure 5.3.9: Core schedule element for MCOSF input.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 84 of 109

5.3.3.3.3 Slot

A partition slot is defined by the Slot element. It defines a set of components that are executed
during this slot. It has the following attributes:

 Id: A unique identifier

 StartUs: The start time of the slot from the start of current MAF.

 DurationUs: The length of the slot.

 Partition: Identifier of the partition which that this slot. By definition, only the tasks
belonging to this partition can execute during this slot.

Figure 5.3.10: Slot element for MCOSF input.

5.3.3.3.4 Component Schedule

The schedule for the component/task is defined by the element ComponentSchedule. It defines a
component identifier for which the schedule is defined and the start time for execution from the
start of MAF in microseconds. In DREAMS, the tasks are non-pre-emptive and hence no other
information is required to define a schedule for a component.

Figure 5.3.9: Component schedule element for MCOSF input.

5.3.3.3.5 Global Mode

The global mode of operation is a collection of local modes of operation that are executed in
different tiles at the same time. It has an identifier to signify the current state in the reconfiguration
graphs.

Figure 5.3.10: Global Mode element for MCOSF input.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 85 of 109

5.3.3.3.6 Mode Transitions

The reconfiguration graph defines a tree of local and global modes starting at a root mode. The
edges of this reconfiguration graph are represented in the input XML by ModeTransitions.
Therefore, the only attributes of this element are source and destination modes.

Figure 5.3.11: Mode Transition element for MCOSF input.

5.3.3.4 Component List

A component list is a collection of components/tasks. Each component is defined as shown in the
figure below. It has the following attributes:

 Name: The name of the component.

 WcetUs: The worst-case execution time of the component in microseconds.

 PeriodUs: The period of this component in microseconds.

 MinExecutionOffsetUs: The minimum execution offset of the component in
microseconds.

 ReactionConstraintUs: The constraint that defines how long after the start of the period
the component needs to be completed. The time units used are microseconds.

 Partition: The name of the partition to which this component is associated to.

 SafetyLevel: The safety level of the component (i.e., DAL-A/B/C/D).

Figure 5.3.12: Component element for MCOSF input.

5.3.3.5 Message List

The message list is a collection of messages that are sent/received between the components. The
attributes of a message are defined as follows:

 Id: Message identifier.

 SourceComponent: Name of the source component.

 Destination: A collection of the destination components (to support broadcast messages)

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 86 of 109

Figure 5.3.13: Message element for MCOSF input.

5.3.4 Output Schema

The output data elements are defined, like input, in a hierarchical structure. The trivial elements of
this hierarchy will not be defined in this section, instead they can be found in Annex A.2.

Moreover, the elements similar in the input and output files are not redefined. The interested
reader may refer to Section 5.3.3.

The root element of the hierarchy is defined in the figure below. It defines a collection of modes of
operations embellished with the new information of transition modes and flexibility information. The
element ModesOfOperation in the output file is the same as defined in Section 5.3.3.3.

Figure 5.3.14: Project root in MCOSF output.

5.3.4.1 Component Schedule

The component schedule in the output file is similar to the one in the input file. An attribute is added
to provide a notion of flexibility in executing this component. The flexibility defines how much this
component can be delayed before it misses its deadline. The attribute is specified in microseconds.

Figure 5.3.15: Component Schedule element in MCOSF output.

5.3.4.2 Slot

The partition slot in the output file is similar to the one in the input file. An attribute is added which
is defined as follows:

 ModeChangeBlackOut: It defines if the slot is a blackout slot (see Section 5.3.2), i.e., a
Boolean flag.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 87 of 109

Figure 5.3.16: Slot element in MCOSF output.

5.4 Extension of Safety Compliance Metamodel

5.4.1 Overview

Extensions to Safety Compliance Metamodel are devoted to enhance WP4 safety toolset with the
ability of:

 Producing safety argumentations according to GSN Standard [20] for a specific system and
platforms according to WP5 safety certification methodology and modular safety case
patterns [14][15][16].

 Refining safety rules with more refined checks in specific software/hardware elements.

The enhancements consist of a set of new classes and extensions to already existing classes of safety
related models (that will be exploited in the final implementation of the safety toolset [12]). These
new classes and extensions enable:

 Representing GSN standard based argumentations, allowing integrating together:
o Safety Compliance Metamodel
o Safety Compliance Constraint Checker and Rule checker with GSN arguments.
o Existing AF3 GSN classes and AF3 GSN tree editor.

Figure 5.4.1: GSN argumentation example in Enterprise Architect.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 88 of 109

Figure 5.4.2: Example of GSN argumentation in AF3.

 Building a library of IEC 61508 based Safety Cases to produce specific argumentations for a
specific product (see Figure 5.4.3). The WP4 toolset will be able to instantiate arguments,
apply safety constraints checks and rule checks to produce instances of the GSN argument
patterns of WP5, etc.

Figure 5.4.3: Library of Safety Case Patterns.

 Enhancing the verification capabilities of the WP4 Toolset Safety Constraints and Rules
checker by defining entities more closely related to rules of IEC 61058, as for example:

o If IEC 61508 Double-RAM based techniques are selected for a given system it will be
possible to define the precise RAM item involved in the rule and their required
features, thus, allowing more refined checking.

o The Usage-Constraints in current Safety Manual will be enhanced so that WP4 can
verify usage properties of a given system.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 89 of 109

5.4.2 New classes for Safety Case Argumentations

Name Safety Compliance Metamodel GSN Standard Extensions

Description GSN standard based classes to implement Safety Case Argumentations

Plugin eu.dreamsproject.ikerlan.safetystandards

Packages eu.dreamsproject.ikerlan.gsn

eu.dreamsproject.ikerlan.safetycase.argumentation

Dependencies org.fortiss.af3.*

These classes are used to represent GSN argumentations of Safety Cases. The GSN graphs can be
imported from other GSN editor tools (import from Enterprise Architect has been implemented).
The Safety Compliance Constraints and Rules Checker construct GSN graphs as result of the checks.
These graphs are later used to generate part of the Safety Case Report.

AF3 Safety Case package and its GSN Editor tool are used as privileged input/output tool for the
safety constraints and rules checker. Figure 5.4.4 shows this concept.

Figure 5.4.4: Safety Compliance Metamodel GSN classes and its relationship to GSN tools.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 90 of 109

5.4.2.1 Package eu.dreamsproject.ikerlan.gsn
This package contains the classes to represents GSN standard based graphs. Figure 5.4.5 shows the
classes and the main attributes of each class.

Figure 5.4.5: Main classes of package eu.dreamsproject.ikerlan.gsn.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 91 of 109

The description of each class follows:

 GSNDiagram

o This class represents a GSN standard based diagram.
o Attributes:

 argumentModuleAF3: Link to ArgumentModule that represents this
diagram in AF3.

 Diagram_ID: Unique identification of the diagram.
 listAwayGsnDiagram: List of diagrams linked by away elements

referenced by this diagram.
 name: Name of the diagram.
 rootGsnNode: Root GSN node of diagram. This node is the root goal.

o Operations:
 GSNDiagram (): Constructs an empty GSN Diagram.
 printToConsole (): Prints the diagram description and nodes to the

console.
 printToConsoleBody (): Auxiliary recursive function of printToConsole

function.
 GSNManager

o This class manages GSN diagrams. Implements functions to import GSN diagrams
from Enterprise Architect and AF3, and implements functions to export GSN
diagrams to AF3.

o Attributes:
 argumentModule: Auxiliary argument module.
 dbName: DataBase name of Enterprise Architect Repository of GSN

Diagrams.
 dbURL: Connection to the server hosting the repository.
 MIN_GSN_AF3_ELEMENT_HEIGHT: Graphic constant.

o Operations:
 createGsnDiagramArgumentElementAF3 (): Auxiliary function to create

argumentElements in AF3.
 createGsnDiagramArgumentElementLinksAF3 (): Auxiliary function to

create argumentElements connections in AF3.
 createGsnDiagramAwayArgumentReferencesAF3 (): Auxiliary function

to create away references to argumentElements in AF3.
 exportGsnDiagramToAF3 (): This function exports to AF3 under the

safetyCase all the GSNDiagram passed in the list.
 exportSafetyCaseArgumentationPackageToAF3 (): This function

exports to AF3 under the safety case the GSNDiagram passed as parameter

 GSNManager (): Constructs an empty GSNManager.

 importSafetyCaseArgumentationPackageFromEA (): This function
imports form Enterprise Architect all the GSN Diagrams contained in the
package which ID is passes as parameter.

 GSNNode

o This class represents a GSN Node in a GSN-standard based diagram.
o Attributes:

 argumentElementAF3: Argument Element in AF3 that corresponds to the
node.

 awayArgumentElementAF3: Away Argument Element in AF3 that
corresponds to the node.

 awayparent: Away parent GSN node in the hierarchy in GSN Graph

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 92 of 109

 awaySon: Away son in the hierarchy in GSN Graph (reference to an away
goal).

 claim: Claim of the node.
 id: GSN ID of the node.
 listAF3Node: List of AF3 elements (Components, Nodes, Tiles,

Hypervisors, Partitions, etc.) related to the node.
 listGsnObjectConstraint: List of GSN Constraints.
 listSafetyComplianceNode: List of Safety Compliance elements related

to the node.
 listSons: List of sub nodes in the hierarchy in GSN Graph

 maxNumChoicesRequired: Cardinality for option nodes - maximum
number of allowed choices.

 minNumChoicesRequired: Cardinality for option nodes - minimum
number of required choices.

 multipleInstanceXOffset: Offset to apply for second and later
instances.

 multipleInstanceYOffset: Offset to apply for second and later
instances.

 name: Name of the node.
 Object_ID: Unique identification of the node.
 parent: Parent GSN node in the hierarchy in GSN Graph.
 rectBottom: Graphic position of the node (may come from Enterprise

Architect or AF3).
 rectLeft: Graphic position of the node (may come from Enterprise

Architect or AF3).
 rectRight: Graphic position of the node (may come from Enterprise

Architect or AF3).
 rectTop: Graphic position of the node (may come from Enterprise Architect

or AF3).
 selection: Cardinality of the relation in textual form (e.g., 1-of-n) in case

of option nodes.
 stereotype: Stereotype of the node (Goal, Strategy, Solution, Assumption,

etc.).
 undeveloped: True if the node is undeveloped and false otherwise

 uninstantiated: True is the node is not instantiated and false otherwise

 xOffset: Graphic offset. This is generated when one node is split in
multiple instances.

 yOffset: Graphic offset. This is generated when one node is split in
multiple instances.

o Operations:
 addConstraint (): Adds a constraint (in textual form) to the node.
 copyBasePropertiesFromArgumentElement (): Copy base properties

from ArgumentElement to a GSN Node. Used when importing AF3 GSN
diagrams.

 createArgumentElementAF3 (): Creates the AF3 Argument Element.
 createArgumentElementLinksAF3 (): Creates the links of the AF3

Argument Element.
 GSNNode (): Constructs an empty GSN Node.
 setAwayArgumentReferenceAF3 (): Sets an away argument reference to

the AF3 Argument Element.
 traceToConsole (): Miscellaneous.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 93 of 109

 GSNNodeConstraint

o This class represents a generic GSN Node constraint imposed to a node
o Attributes:

 constraintExpr: Constraint in textual form.
o Operations:

 getConstraint (): Gets the text of the constraint.
 GSN_objectConstraint (): Construct an empty constraint.
 setConstraint (): Sets the text of the constraint.

 GSNPackage

o This class represents a set of GSN Diagrams and a list of sub-GSNPackages. It is not
part of the GSN standard.

o Attributes:
 listGsnDiagram.
 listGSNPackage: GSNPackage contained.
 packageID: Package ID.
 rootGsnDiagram: GSN diagrams contained.

o Operations:
 GSNPackage (): Constructs an empty GSNPackage.

 GSNStereotypes

o This class contains the stereotypes of Connectors and Elements types defined by the
GSN Standard. It contains the elements of the following types (see below):

 Connectors

 Elements

 Connectors

o This class contains the stereotypes of Connectors types defined by the GSN
standard.

o Attributes:
 GSN_InContextOf.
 GSN_SupportedBy.

 Elements

o This class contains the stereotypes of Element types defined by the GSN standard.
o Attributes:

 GSN_assumption.
 GSN_awayContext.
 GSN_awayGoal.
 GSN_awaySolution.
 GSN_context.
 GSN_goal.
 GSN_justification.
 GSN_module.
 GSN_obligation.
 GSN_option.
 GSN_solution.
 GSN_strategy.
 GSN_undevelopedGoal.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 94 of 109

5.4.2.2 Package eu.dreamsproject.ikerlan.safetycase.argumentation
This package contains the class to import, export, generate and manage GSN standard based
argumentations for specific systems generated with the DREAMS toolset. Figure 5.4.6 shows the
class and the main attributes of the class.

Figure 5.4.6: Main classes of package eu.dreamsproject.ikerlan.safetycase.argumentation.

The description of each class follows:

 SafetyCaseArgumentationManager:

o This class contains the argument generator logic
o Attributes:
o Operations:

 instantiateGsnDiagramsForSafetyCasePattern (): This function
instantiates a given GSN argumentation pattern into an instance of
argumentation.

 instantiateGsnNodeForArgumentElementPattern (): This function
instantiates a node of a GSN Node pattern into an instance of GSN Node.
Recursively calls to the sub nodes instantiation

 isRuleApplicabletoGsnDiagram (): Auxiliary functions that checks if a
given safety rule is applicable to a GSN Diagram

 eliminateUnnecessaryOptionGsnNodes (): This function eliminates
from GSN diagrams those option nodes which selection has been made

 eliminateUnnecessaryOptionGsnNodesBody (): Auxiliary recursive
function for eliminateUnnecessaryOptionGsnNodes function

 SafetyCaseArgumentationManager ():

5.4.3 Class members added to existing classes

Name Safety Compliance Metamodel GSN Standard Extensions

Description Class members added to existing Safety Compliance Model classes

Plugin eu.dreamsproject.ikerlan.safetystandards

Packages eu.dreamsproject.ikerlan.safetystandards.SafetyCompliance

Dependencies org.fortiss.af3.*

SafetyCaseArgumentationManager

- eliminateUnnecessaryOptionGsnNodes(GSNDiagram): void

- eliminateUnnecessaryOptionGsnNodesBody(GSNNode): void

+ instantiateGsnDiagramsForSafetyCasePattern(ArgumentModule, ArgumentElement,

GSNNode, ComponentAllocationMap, SafetyComplianceSpecification,

Collection<SafetyConstraint>, boolean, boolean): GSNDiagram

- instantiateGsnNodeForArgumentElementPattern(GSNDiagram, GSNNode, GSNNode,

ArgumentElement, SfRule, ComponentAllocationMap,

SafetyComplianceSpecification, Collection<SafetyConstraint>, boolean, boolean):

List<GSNNode>

- isRuleApplicabletoGsnDiagram(String, String): boolean

+ SafetyCaseArgumentationManager(): void

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 95 of 109

5.4.3.1 Package eu.dreamsproject.ikerlan.safetystandards.SafetyCompliance
This package contains the Safety Compliance Metamodel classes that have been modified to
implement a refining of safety rules with more fine-grained checks in specific software/hardware
elements. Figure 5.4.7 shows the classes and the main attributes of the classes.

Figure 5.4.7: Main modifications to classes of package eu.dreamsproject.ikerlan.safetystandards.SafetyCompliance.

This package contains the following classes (only added class member are listed):

 IEC61508_2_RandomFailureControlTechniqueMeasureRef
o Attributes:

 listHierarchicElementBase: List of DREAMS Platform AF3 Elements
involved in the rule.

o Operations:

 getListHierarchicElementBase (): Returns the list of DREAMS
Platform AF3 Elements involved in the rule.

IEC61508_2_RandomFailureControlTechniqueMeasureRefImpl

listHierarchicElementBase: EList<HierarchicElementBase>

refTechniqueMeasure: IEC61508_2_RandomFailureControlTechniqueMeasure

IEC61508_2_SystematicFailureAv oidanceTechniqueMeasureRefImpl

listHierarchicElementBase: EList<HierarchicElementBase>

refTechniqueMeasure: IEC61508_2_SystematicFailureAvoidanceTechniqueMeasure

IEC61508_2_SystematicFailureControlTechniqueMeasureRefImpl

listHierarchicElementBase: EList<HierarchicElementBase>

refTechniqueMeasure: IEC61508_2_SystematicFailureControlTechniqueMeasure

IEC61508_3_SystematicFailureAv oidanceTechniqueMeasureRefImpl

listHierarchicElementBase: EList<HierarchicElementBase>

refTechniqueMeasure: IEC61508_3_SystematicFailureAvoidanceTechniqueMeasure

SafetyManualImpl

functions: Functions

iec61508_CertifiedSafetyCase: IEC61508_CertifiedSafetyCase

iec61508Certificate: Iec61508Certificate

itsCompliantFSM: FSM

itsFaultsManagement: FaultsManagement

safetyCase: SafetyCase

usageConstraints: UsageConstraints

SafetyCaseGsnImpl

destinationSafetyCase: SafetyCase

sourceRootArgumentModuleGoalPattern: Goal

sourceRootArgumentModulePattern: ArgumentModule

SafetyCaseImpl

safetyCaseGsn: SafetyCaseGsn

safetyCaseReport: SafetyCaseReport

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 96 of 109

 IEC61508_2_SystematicFailureAvoidanceTechniqueMeasureRef:

o Attributes:

 listHierarchicElementBase: List of DREAMS Platform AF3 Elements
involved in the rule.

o Operations:

 getListHierarchicElementBase (): Returns the list of DREAMS
Platform AF3 Elements involved in the rule.

 IEC61508_2_SystematicFailureControlTechniqueMeasureRef:

o Attributes:

 listHierarchicElementBase: List of DREAMS Platform AF3 Elements
involved in the rule.

o Operations:

 getListHierarchicElementBase (): Returns the list of DREAMS
Platform AF3 Elements involved in the rule.

 IEC61508_3_SystematicFailureAvoidanceTechniqueMeasureRef:

o Attributes:

 listHierarchicElementBase: List of DREAMS Platform AF3 Elements
involved in the rule.

o Operations:

 getListHierarchicElementBase (): Returns the list of DREAMS
Platform AF3 Elements involved in the rule.

 SafetyManualImpl

o Attributes:

 safetyCase: Safety case corresponding to the system.

 SafetyCaseImpl

o Attributes:

 safetyCaseGsn: Safety case GSN object.
 safetyCaseReport: Safety case report generated.

 SafetyCaseGsnImpl:

o Attributes:

 destinationSafetyCase: AF3 Safety Case containing the argumentation
generated by the Safety Compliance Model.

 sourceRootArgumentModulePattern: AF3 root Argument Module
pattern that has been taken as pattern to produce the argumentation.

 sourceRootArgumentModuleGoalPattern: AF3 root Goal of the root
Argument Module pattern that has been taken as pattern to produce the
argumentation.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 97 of 109

6 Bibliography

[1] D1.2.1 – Architectural Style of DREAMS, DREAMS Consortium, 7/2014.

[2] D1.4.1 – Metamodels for Application and Platform, DREAMS Consortium, 3/2015.

[3] D2.1.3 – RT-level design specifications of a) virtualization and memory interleaving support of
the Spidergon STNoC backbone at the network interface layer and b) a bus-to-noc bridge for
seamlessly interconnecting STNoC to the network gateway from WP3, DREAMS Consortium,
9/2015.

[4] D2.3.1 - XtratuM support of enhanced hypervisor layer services: description and interface,
DREAMS Consortium, 3/2015.

[5] D3.1.2 – First Implementation of Mixed-Criticality Cluster Communication Services, DREAMS
Consortium, 3/2015.

[6] D3.2.2 – First Implementation of Global Resource Management Services, DREAMS Consortium,
3/2015.

[7] D3.3.2 – First Implementation of Cluster-level Safety and Security services, DREAMS
Consortium, 3/2015.

[8] D4.1.2 – Definition of Offline Adaptation Strategies for Mixed-Criticality and Initial
Implementation, DREAMS Consortium, 3/2015.

[9] D4.1.3 – Final Implementation and Improvement of the Offline Adaptation Strategies for
Mixed-Criticality, DREAMS Consortium, 7/2016.

[10] D4.2.1 – Specification and first implementation of a platform configuration files generator,
DREAMS Consortium, 11/2015.

[11] D4.2.2 – Final implementation of a platform configuration files generator, DREAMS
Consortium, 7/2016.

[12] D4.3.3 – Final Implementation and Improvement of Variability and Testing Techniques for
Mixed-criticality Systems, DREAMS Consortium, 7/2016.

[13] D4.4.1 – Tools feature map and interoperability capabilities, DREAMS Consortium, 7/2016.

[14] D5.1.2 – Modular Safety Case for COTS processor, DREAMS Consortium, 7/2015.

[15] D5.1.1 – Modular Safety Case for Hypervisor, DREAMS Consortium, 1/2015.

[16] D5.1.3 – Modular safety case for selected Mixed Criticality Networks, DREAMS Consortium,
11/2015.

[17] D5.2.1 – Specification of Simulation Framework, DREAMS Consortium, 03/2015.

[18] D5.2.2 – Prototype implementation of simulation framework for DREAMS architecture,
DREAMS Consortium, 11/2015.

[19] D5.2.3 – Fault injection framework, DREAMS consortium, 7/2016.

[20] GSN Community Standard Version 1, 11/2011, Available:
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf.

[21] XtratuM Software User Manual. XM-ARM. (Reference: 14-035-03.005.sum.01), 2016.

[22] Xoncrete User Manual. Version 3.0. (Reference: fnts-xe-um-14b). Fent Innovative Software
Solutions, 05/2016.

[23] Schema documentation for eprj-2.6.1.xsd. Fent Innovative Software Solutions, 2016.

http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 98 of 109

[24] Language syntax, semantics, metamodel V2, TIMMO-2-USE Project, 2012.

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 99 of 109

A. Annex

This annex lists the following XML schemas described in this document:

 MCOSF Input Schema (documentation: see Section 5.3.3)

 MCOSF Output Schema (documentation: see Section 5.3.4)

A.1 MCOSF Input Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 xmlns="http://rts.eit.uni-kl.de/projects/dreams/mcosf_input"

 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 attributeFormDefault="unqualified"

 ecore:nsPrefix=""

 ecore:nsURI="http://rts.eit.uni-kl.de/projects/dreams/mcosf_input"

 ecore:package="de.unikl.eit.rts.mcosf.input"

 elementFormDefault="qualified"

 targetNamespace="http://rts.eit.uni-kl.de/projects/dreams/mcosf_input">

 <!-->Defining all ENUMs</!-->

 <xs:simpleType name="ModeTypeEnum">

 <xs:annotation>

 <xs:documentation>Defines type of mode. A mode/schedule which executes repetitively until

 there is a switch request is called NOMINAL mode. A mode/schedule which executes at most

 once is called TRANSITION mode.</xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="NOMINAL"/>

 <xs:enumeration value="TRANSITION"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="SafetyLevelEnum">

 <xs:annotation>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 100 of 109

 <xs:documentation>Defines safety level confirming to DO-178B.</xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="DAL-A"/>

 <xs:enumeration value="DAL-B"/>

 <xs:enumeration value="DAL-C"/>

 <xs:enumeration value="DAL-D"/>

 <xs:enumeration value="DAL-E"/>

 </xs:restriction>

 </xs:simpleType>

 <!-->Defining all collections</!-->

 <xs:complexType name="PlatformArchitecture">

 <xs:annotation>

 <xs:documentation>Defines the platform architecture with nodes.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Node" type="Node" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Node">

 <xs:annotation>

 <xs:documentation>Defines a node with tiles.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Tile" type="Tile" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="Tile">

 <xs:annotation>

 <xs:documentation>Defines a tile with cores.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Core" type="Core" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required"/>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 101 of 109

 </xs:complexType>

 <xs:complexType name="Core">

 <xs:annotation>

 <xs:documentation>Defines core/processing unit.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="Name" use="required"/>

 </xs:complexType>

 <!--> *** </!-->

 <xs:complexType name="SystemSoftware">

 <xs:annotation>

 <xs:documentation>Defines a collection of partitions.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Partition" type="Partition" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Partition">

 <xs:annotation>

 <xs:documentation>Defines properties of a partition. The allocation parameter defines the

 core/processor/tile/node on which it is allocated. According to the T1.6, 4.3 and 4.4 joint

 meetings, a partition is allocated to a tile in the metamodel. But MCOSF will be invoked

 after Xoncrete which means that the information of partition to core allocation is available

 in the metamodel.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="Name" use="required"/>

 </xs:complexType>

 <!--> *** </!-->

 <xs:complexType name="ModesOfOperation">

 <xs:annotation>

 <xs:documentation>Provides information related to modes of operation of the

 system.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="LocalMode" type="LocalMode" maxOccurs="unbounded"/>

 <xs:element name="GlobalMode" type="GlobalMode" maxOccurs="unbounded"/>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 102 of 109

 <xs:element name="ModeTransition" type="ModeTransition" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="InitialGlobalMode" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="CoreSchedule">

 <xs:annotation>

 <xs:documentation>Defines a set of slots on a core for a certain local mode of

 operation.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Slot" type="Slot" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Core" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="LocalMode">

 <xs:annotation>

 <xs:documentation>Defines a set of core schedules for a certain local mode of operation.

 Note that there may exist any number of local modes for a specific tile. Time units are

 microseconds.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="CoreSchedule" type="CoreSchedule" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="Type" type="ModeTypeEnum" use="required"/>

 <xs:attribute name="Tile" type="xs:string" use="required"/>

 <xs:attribute name="MafUs" type="xs:int" use="required"/>

 </xs:complexType>

 <xs:complexType name="Slot">

 <xs:annotation>

 <xs:documentation>Defines a slot (i.e., a reservation for a partition). Note that this assumes

 that the partition is allocated to a core or all the cores on this tile are identical (i.e.

 homogeneous processor), otherwise it would be difficult to see where does this partition execute.

 If the assumption is not correct, an attribute called Core must be appended to this complexType

 and the one in the output XSD. Time units are microseconds.</xs:documentation>

 </xs:annotation>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 103 of 109

 <xs:sequence>

 <xs:element name="ComponentSchedule" type="ComponentSchedule" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:string" use="required"/>

 <xs:attribute name="StartUs" type="xs:int" use="required"/>

 <xs:attribute name="DurationUs" type="xs:int" use="required"/>

 <xs:attribute name="Partition" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="ComponentSchedule">

 <xs:annotation>

 <xs:documentation>Defines schedule of a task/component within a partition. StartTimeUs

 is relative phase from the start of the MAF. Time units are microseconds.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="Component" use="required"/>

 <xs:attribute type="xs:int" name="StartTimeUs" use="required"/>

 </xs:complexType>

 <xs:complexType name="GlobalMode">

 <xs:annotation>

 <xs:documentation>Defines a global mode as a collection of local modes for all the available

 nodes in the PlatformArchitecture. Note that all the local modes of a global mode must be

 of the same ModeTypeEnum.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Local" type="LocalModeName" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute type="xs:string" name="Name" use="required"/>

 </xs:complexType>

 <xs:complexType name="LocalModeName">

 <xs:annotation>

 <xs:documentation>Defines a single local mode as part of a global mode.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="Mode" use="required"/>

 </xs:complexType>

 <xs:complexType name="ModeTransition">

 <xs:annotation>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 104 of 109

 <xs:documentation>Defines a mode transition.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="SourceMode" use="required"/>

 <xs:attribute type="xs:string" name="DestinationMode" use="required"/>

 </xs:complexType>

 <!--> *** </!-->

 <xs:complexType name="ComponentsList">

 <xs:annotation>

 <xs:documentation>Defines a collection of tasks/components.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Component" type="Component" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Component">

 <xs:annotation>

 <xs:documentation>Defines properties of a task/component. Jitter is the execution jitter (-1 when

 not specified). Offset is not the release phase of the task. It is the offset after which the

 task should start execution, even when it is ready (used for latency constraints, aka ETEF

 offset). Time units are microseconds.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="Name" use="required"/>

 <xs:attribute type="xs:int" name="WcetUs" use="required"/>

 <xs:attribute type="xs:int" name="PeriodUs" use="required"/>

 <xs:attribute type="xs:int" name="MinExecutionOffsetUs" use="required"/>

 <xs:attribute type="xs:int" name="ReactionConstraintUs" use="required"/>

 <xs:attribute type="xs:string" name="Partition" use="required"/>

 <xs:attribute type="SafetyLevelEnum" name="SafetyLevel" use="required"/>

 </xs:complexType>

 <!--> *** </!-->

 <xs:complexType name="MessageList">

 <xs:annotation>

 <xs:documentation>Defines a collection of messages.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Message" type="Message" maxOccurs="unbounded"/>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 105 of 109

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DestinationComponent">

 <xs:annotation>

 <xs:documentation>Defines the destination task/component for a message.</xs:documentation>

 </xs:annotation>

 <xs:attribute name="Component" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="Message">

 <xs:annotation>

 <xs:documentation>Defines properties of a message. Time units are microseconds.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Destination" type="DestinationComponent" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:string" use="required"/>

 <xs:attribute name="SourceComponent" type="xs:string" use="required"/>

 </xs:complexType>

 <!--> *** </!-->

 <xs:complexType name="Project">

 <xs:annotation>

 <xs:documentation>Defines the complete system.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="PlatformArchitecture" type="PlatformArchitecture"/>

 <xs:element name="SystemSoftware" type="SystemSoftware"/>

 <xs:element name="ModesOfOperation" type="ModesOfOperation"/>

 <xs:element name="ComponentsList" type="ComponentsList"/>

 <xs:element name="MessagesList" type="MessageList" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute type="xs:string" name="Name" use="required"/>

 </xs:complexType>

 <xs:element name="Project" type="Project"/>

</xs:schema>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 106 of 109

A.2 MCOSF Output Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 xmlns="http://rts.eit.uni-kl.de/projects/dreams/mcosf_output"

 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 attributeFormDefault="unqualified"

 ecore:nsPrefix=""

 ecore:nsURI="http://rts.eit.uni-kl.de/projects/dreams/mcosf_output"

 ecore:package="de.unikl.eit.rts.mcosf.output"

 elementFormDefault="qualified"

 targetNamespace="http://rts.eit.uni-kl.de/projects/dreams/mcosf_output">

 <!-->Defining all ENUMs</!-->

 <xs:simpleType name="ModeTypeEnum">

 <xs:annotation>

 <xs:documentation>Defines type of mode. A mode/schedule which executes repetitively until there is

 a switch request is called NOMINAL mode. A mode/schedule which executes at most once is called

 TRANSITION mode.</xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="NOMINAL"></xs:enumeration>

 <xs:enumeration value="TRANSITION"></xs:enumeration>

 </xs:restriction>

 </xs:simpleType>

 <!-->Defining complex types</!-->

 <xs:complexType name="ModesOfOperation">

 <xs:annotation>

 <xs:documentation>Provides information related to modes of operation of the

 system.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="LocalMode" type="LocalMode" maxOccurs="unbounded"/>

 <xs:element name="GlobalMode" type="GlobalMode" maxOccurs="unbounded"/>

 <xs:element name="ModeTransition" type="ModeTransition" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="InitialGlobalMode" type="xs:string"/>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 107 of 109

 </xs:complexType>

 <xs:complexType name="CoreSchedule">

 <xs:annotation>

 <xs:documentation>Defines a set of slots on a core for a certain local mode of

 operation.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Slot" type="Slot" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Core" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="LocalMode">

 <xs:annotation>

 <xs:documentation>Defines a set of core schedules for a certain local mode of operation.

 Note that there may exist any number of local modes for a specific tile. Time units are

 microseconds.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="CoreSchedule" type="CoreSchedule" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="Type" type="ModeTypeEnum" use="required"/>

 <xs:attribute name="Tile" type="xs:string" use="required"/>

 <xs:attribute name="MafUs" type="xs:int" use="required"/>

 </xs:complexType>

 <xs:complexType name="Slot">

 <xs:annotation>

 <xs:documentation>Defines a partition slot with blackout (i.e., mode switch is not allowed

 during this slot).</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="ComponentSchedule" type="ComponentSchedule" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:string" use="required"/>

 <xs:attribute name="StartUs" type="xs:int" use="required"/>

 <xs:attribute name="DurationUs" type="xs:int" use="required"/>

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 108 of 109

 <xs:attribute name="Partition" type="xs:string" use="required"/>

 <xs:attribute name="ModeChangeBlackOut" type="xs:boolean" use="required"/>

 </xs:complexType>

 <xs:complexType name="ComponentSchedule">

 <xs:annotation>

 <xs:documentation>Defines schedule of a task within a partition. PhaseUs is relative phase from

 the start of the MAF. FlexibilityUs defines how much this task can be delayed from defined phase

 without missing any deadline in the system.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="Component" use="required" />

 <xs:attribute type="xs:int" name="StartTimeUs" use="required" />

 <xs:attribute type="xs:int" name="FlexibilityUs" use="required" />

 </xs:complexType>

 <xs:complexType name="GlobalMode">

 <xs:annotation>

 <xs:documentation>Defines a global mode as a collection of local modes for all the available nodes

 in the PlatformArchitecture. Note that all the local modes of a global mode must be of the same

 ModeTypeEnum.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Local" type="LocalModeName" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute type="xs:string" name="Name" use="required" />

 </xs:complexType>

 <xs:complexType name="LocalModeName">

 <xs:annotation>

 <xs:documentation>Defines a single local mode as part of a global mode.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="Mode" use="required" />

 </xs:complexType>

 <xs:complexType name="ModeTransition">

 <xs:annotation>

 <xs:documentation>Defines a mode transition.</xs:documentation>

 </xs:annotation>

 <xs:attribute type="xs:string" name="SourceMode" use="required" />

D1.6.1 Version 1.0 Confidentiality Level: PU

30.06.2016 DREAMS Page 109 of 109

 <xs:attribute type="xs:string" name="DestinationMode" use="required" />

 </xs:complexType>

 <xs:complexType name="Project">

 <xs:annotation>

 <xs:documentation>Defines a complete schedule for the system.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="ModesOfOperation" type="ModesOfOperation" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Project" type="Project" />

</xs:schema>

	Contributors
	1 Introduction
	1.1 Structure of the Deliverable
	1.2 Positioning of the Deliverable in the Project

	2 Architecture of DREAMS Platform-Specific Metamodel
	3 Resource Utilization Metamodel
	3.1 Virtual Links Metamodel
	3.1.1 Communication Deployment
	3.1.2 Example
	3.1.3 Reference Documentation
	3.1.3.1 Package org.fortiss.af3.deployment
	3.1.3.1.1 Extension of Deployment
	3.1.3.1.2 TransceiverPorts
	3.1.3.1.3 Virtual Links

	3.1.3.2 Package eu.dreamsproject.psm.model.port
	3.1.3.3 Package org.fortiss.af3.deployment.annotation
	3.1.3.3.1 Annotations for TransceiverPorts
	3.1.3.3.2 Annotations for VirtualLinks

	3.1.3.4 Package eu.dreamsproject.psm.model.annotation
	3.1.3.4.1 Annotations for ComponentArchitecture elements
	3.1.3.4.2 Annotations for PlatformArchitecture elements
	3.1.3.4.3 Annotations for TransceiverPorts / PsmPorts
	3.1.3.4.4 Annotations for VirtualLinks

	3.2 Schedule Metamodel
	3.2.1 Hierarchical Resource Schedules
	3.2.2 Example
	3.2.3 Reference Documentation
	3.2.3.1 Package org.fortiss.af3.schedule
	3.2.3.1.1 Schedule
	3.2.3.1.2 Resource Allocation
	3.2.3.1.3 Trigger

	3.2.3.2 Package eu.dreamsproject.psm.model.annotation
	3.2.3.3 Package eu.dreamsproject.psm.model.schedule

	3.3 Reconfiguration Metamodel
	3.3.1 Resource Reconfiguration
	3.3.2 Example
	3.3.3 Reference Documentation
	3.3.3.1 Package org.fortiss.af3.reconfiguration
	3.3.3.2 Package org.fortiss.af3.reconfiguration
	3.3.3.3 Package eu.dreamsproject.psm.model.annotation.reconfiguration

	3.4 Extension of Timing Metamodel
	3.4.1 Timing decomposition
	3.4.2 Example
	3.4.3 Reference Documentation
	3.4.3.1 Timing Constraints
	3.4.3.2 Events
	3.4.3.3 Interface to other Metamodels

	4 Service Configuration Viewpoint
	4.1 Configuration Infrastructure Metamodel
	4.1.1 Overview
	4.1.2 Reference Documentation

	4.2 Physical On-Chip Network Interface Configuration Metamodel
	4.2.1 Overview
	4.2.2 Reference Documentation
	4.2.2.1 On-chip Network Configuration
	4.2.2.2 Port Configuration
	4.2.2.3 Schedule Configuration

	4.3 Simulated On-Chip Network Interface Configuration Metamodel
	4.3.1 Overview
	4.3.2 Reference Documentation
	4.3.2.1 On-chip Network Configuration
	4.3.2.2 Port Configuration
	4.3.2.3 Virtual Link Configuration
	4.3.2.4 Schedule Configuration

	4.4 Simulated Off-Chip Network Components Configuration Metamodel
	4.4.1 Overview
	4.4.2 Reference Documentation
	4.4.2.1 Package eu.dreamsproject.psm.offchip.sim
	4.4.2.1.1 Off-chip network configuration
	4.4.2.1.2 Off-chip network switch configuration
	4.4.2.1.3 Black box node configuration
	4.4.2.1.4 On-chip/Off-chip Gateway configuration

	4.4.2.2 Package eu.dreamsproject.psm.simulation

	4.5 XtratuM Hypervisor Configuration
	4.5.1 System Specification
	4.5.2 DREAMS Contributions
	4.5.3 Configuration File Binary Representation

	4.6 TTEthernet Network Configuration

	5 Tool-Specific Formats
	5.1 Xoncrete
	5.1.1 Preferences
	5.1.2 Hardware
	5.1.3 Hypervisor
	5.1.2 Partitions
	5.1.2.1 Memory Map
	5.1.2.2 Health Monitoring
	5.1.2.3 Ports
	5.1.2.4 I/O Resources
	5.1.2.5 Virtual CPUs
	5.1.2.6 Schedulable Properties

	5.1.3 Mutual exclusion resources (MERs)
	5.1.4 Communications
	5.1.5 Devices
	5.1.6 End to end flows (ETEFs)
	5.1.7 Plans
	5.1.7.1 Assigned Workload
	5.1.7.2 Analysis

	5.2 TTPlan
	5.3 MCOSF
	5.3.1 Mode Types
	5.3.2 Black-out Slots
	5.3.3 Input Schema
	5.3.3.1 Platform Architecture
	5.3.3.1.1 Processing Node
	5.3.3.1.2 Tile
	5.3.3.1.3 Core

	5.3.3.2 System Software
	5.3.3.3 Modes of Operation
	5.3.3.3.1 Local Mode
	5.3.3.3.2 CoreSchedule
	5.3.3.3.3 Slot
	5.3.3.3.4 Component Schedule
	5.3.3.3.5 Global Mode
	5.3.3.3.6 Mode Transitions

	5.3.3.4 Component List
	5.3.3.5 Message List

	5.3.4 Output Schema
	5.3.4.1 Component Schedule
	5.3.4.2 Slot

	5.4 Extension of Safety Compliance Metamodel
	5.4.1 Overview
	5.4.2 New classes for Safety Case Argumentations
	5.4.2.1 Package eu.dreamsproject.ikerlan.gsn
	5.4.2.2 Package eu.dreamsproject.ikerlan.safetycase.argumentation

	5.4.3 Class members added to existing classes
	5.4.3.1 Package eu.dreamsproject.ikerlan.safetystandards.SafetyCompliance

	6 Bibliography
	A. Annex
	A.1 MCOSF Input Schema
	A.2 MCOSF Output Schema

