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Abstract 
This deliverable presents the architectural style of DREAMS, which was defined based on the 
requirements and constraints for a mixed-criticality architecture of networked multi-core chips.  

The architectural style includes a system model, which describes the physical system structure of a 
platform that consists of networked multi-core chips, as well as a logical system structure of the 
application. Platform services for communication, global time, execution and resource management 
are part of a waistline architecture, which enables different underlying implementation options and 
a broad spectrum of refinements for different applications and industrial areas (e.g., avionics, 
healthcare, wind power). Building blocks are introduced for these platform services and mapped to 
the logical and physical system structure. 

The communication services provide services for the message-based real-time communication 
among components. We establish end-to-end channels over hierarchical, heterogeneous and mixed-
criticality networks respecting mixed-criticality safety and security requirements. The shared 
memory model is supported on top of message-based NoCs and message-based off-chip networks.   

The time services offer a global time base, which is globally synchronized within the system of 
networked multi-core chips and within each multi-core chip. Therefore, internal and external clock 
synchronization is supported in each chip. This global time is foundation for the temporal 
coordination of activities and the establishment of a deterministic communication infrastructure. 

The execution services enable the sharing of on-chip tiles with one or more processor cores among 
mixed-criticality applications. The introduced software architecture and the virtualization layer 
support both type 1 and type 2 hypervisors, while ensuring real-time guarantees, time/space 
partitioning, health monitoring and security. The execution services also provide APIs for the other 
platform services such as communication, resource management and time. 

The resource management services provide services for system-wide adaptivity of mixed-criticality 
applications. The resource management services separate system-wide decisions from the local 
execution on individual resources. Resources are monitored individually with abstract information 
provided to the global resource manager. The global resource manager can take global decisions to 
be adopted by the local resource management. Thereby, system-wide constraints (e.g., end-to-end 
timing) can be addressed without incurring the complexity of individual negotiations among 
resources directly. 

The certification strategy outlines a modular safety case with the relationship and scope for IEC 
61508-2 / IEC 61508-3. Modularization of the DREAMS architecture including the hypervisor, the 
networks and COTS components is considered for the hardware and software safety argumentation. 
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Introduction 

This deliverable describes the architectural style of a mixed-criticality system built according to 
DREAMS. The architectural style provides structuring rules according to several integration levels. At 
the chip-level a multi-core chip is decomposed into tiles interconnected by a Network-on-a-Chip 
(NoC) where each tile contains partitions established by a hypervisor. At the cluster-level the system 
is decomposed into nodes interconnected by off-chip networks. At the different levels, the 
architecture provides platform services, which separate the application functionality from the 
underlying platform technology in order to reduce design complexity and to facilitate the 
achievement of temporal and spatial partitioning, real-time support, reliability, security and energy-
efficiency. The architectural style supports the integration of applications with different timing 
models and different safety assurance levels. 

This deliverable introduces architectural building blocks and services including on-chip and off-chip 
communication services, global time services, execution services as part of a mixed-criticality 
software architecture as well as local and global resource management services. Certification is 
discussed using a safety concept based on these building blocks. 

 

Structure of the Deliverable 

Part I introduces the system model for mixed-criticality systems with a logical and physical system 
structure. A waistline structure of services is established with communication, time, execution and 
resource management services that are mapped to this system structure. Finally, fault assumptions 
are presented with the assumption w.r.t. fault containment units, failure modes and threats. 

Part II of the deliverable describes these services. The communication services encompass on-chip 
and off-chip networks, network interfaces, IO services and gateways. The time services include on-
chip and off-chip synchronization services. The focus of the execution services is a software 
architecture with a DREAMS virtualization layer. The resource management services consists of 
services for global resource management, local resource management and resource monitoring at 
the different levels of the hierarchical system comprised of networked multi-core chips. The optional 
services are discussed based on an example, namely a voting service for active redundancy. 

Part III is an annex that presents the Application Programming Interface (API) that is provided to the 
DREAMS applications. Each interface is in detail described by providing information such as Synopsis, 
category, declaration, description, return value and usage examples. 

 

Process for Preparation of the Deliverable 

Working groups lead by experts of the respective area were established to work on the different 
parts of the architectural style (see Table 1). The establishment of the architectural style involved 
numerous meetings and telephone conferences for discussions within the working groups as well as 
WP1 meetings and telephone conferences for integration and alignment between the working 
groups for the overall architectural style. The document was prepared in several iterations with 
internal reviews within DREAMS. In particular, the feedback from the industrial partners of the 
application domains lead to improvements w.r.t. the suitability for the considered industrial areas. 

 

Working Group Lead Partner Responsible 

System model USIEGEN Roman Obermaisser 
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Communication services USIEGEN Roman Obermaisser 

Global time TTT Arjan Geven 

Resource management TUKL Gerhard Fohler 

Optional services FORTISS Simon Barner 

Certification strategy IKL Leire Rubio 

Table 1: Working Groups 

Architectures from previous projects served as the starting point and input. For example, the 
GENESYS architectural style and corresponding time-triggered architectures from ACROSS and 
INDEXYS provided a starting point for the communication and time services. Hypervisors and 
certification concepts from MULTIPARTES were analyzed to define the DREAMS execution services. 
The results of the input projects FRESCOR and ACTORS were considered for the definition of the 
resource management services. Although these inputs served as a starting point, substantial 
contributions and extensions beyond these prior results were provided in order to establish the 
DREAMS architectural style for networked multi-core chips. 

 

Relationship to other DREAMS Deliverables 

The requirements document D1.1.1 served as the primary input for the architectural style. The 
system model, the architectural services and the safety concept were defined to comply with the 
respective requirements. The architectural style is the foundation for the subsequent, parallel work 
within DREAMS. Based on the defined services, WP2 will develop on-chip communication, time, 
execution and resource management services. The development of these services at the cluster level 
is the focus of WP3. D1.2.1 is also an important input for WP4, where the adaptation strategies are 
based on the overall system model and the configurability of the architectural services as defined in 
D1.2.1. WP5 requires D1.2.1 as an input for the definition of the modular safety-case as well as for 
developing the simulation and fault injection framework. Furthermore, D1.2.1 is essential for the 
development of the demonstrators in WP6-8. 

 

Consideration of Requirements 

The definition of the architectural style was driven by the requirements from D1.1.1. In the 
following, an overview of the relationship to the requirements is given. The detailed analysis of the 
satisfaction of the requirements by the DREAMS architecture is the goal of the assessment (cf. 
D1.8.1, D1.8.2). 

The overall system model provides the logical and physical system models for networked multi-core 
chips with corresponding architectural services. This hierarchical system model is essential for the 
evolvability, scalability and complexity management of mixed-criticality systems. The waistline 
architecture with domain and technology independent core services addresses the corresponding 
requirements from D1.1.1. The core services allow to abstract from the platform technology such as 
network protocols and types of processor cores as long as the architectural properties and services 
of DREAMS can be established. The introduced fault hypothesis is the foundation for satisfying the 
requirements on fault detection, containment and masking. 

The communication services support the timing models (i.e., periodic, sporadic and aperiodic) 
demanded in D1.1.1 along with real-time support, security and temporal/spatial partitioning based 
on the enforcement of time-triggered schedules, rate-constraints and permitted address 
information. The gateway services address the requirements for a system perspective of mixed-
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criticality applications by combining the chip-level and cluster-level networks and by performing 
protocol transformations between heterogeneous networks. Heterogeneity is also considered by 
mapping heterogeneous networks to technology-independent network interfaces. The 
communication services further include the required reconfiguration support as the basis for 
resource management. 

The global time services fulfill the demand for a consistent global time base in a system of 
networked multi-core chips with bounded precision and bounded accuracy. In addition, the global 
time services are the foundation for satisfying the requirement of synchronized activities.  Therefore, 
the deliverable also explains the use of the global time base for communication and execution 
services. 

The execution services introduce a software architecture with a virtualization layer to support the 
requirements for real-time, security, temporal/spatial partitioning, fault isolation and management. 
The requirement for technology independence is addressed by considering different types of 
hypervisors such as bare-metal hypervisors (e.g., Xtratum) and type 2 hypervisors that are hosted by 
an operating system (e.g., Linux KVM). 

The resource management services support the requirements for resource management in 
networked multi-core chips based on local resource monitoring, local resource scheduling, local 
resource management and global resource management. We introduce a hierarchy with a global 
resource manager at the top, which directly supervises and controls a set of local resource managers 
and has a complete view of the system. A primary focus of D1.2.1 is the characterization of these 
resource management building blocks, the description of the interactions between global and local 
activities as well as the resource management for different resource types (e.g., communication 
resources, computational resources, I/O). 

The optional services allow the refinement of the architecture towards different applications and 
industrial domains. They are essential for fulfilling the requirement of domain-independence. In 
addition, we introduce fault-tolerance services to mask component failures according to the 
DREAMS fault hypothesis. 

The certification strategy provides a safety concept that is driven by the requirements for 
certification from D1.1.1.  It addresses a modular safety case, cross-domain dependability patterns 
as reference designs and product line certification. 
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1 System Model of a Mixed-Criticality System 

Foundation for the architectural style is a clear definition of the system model of a mixed criticality 
system. Therefore the following sections provide necessary definitions and explanations on system 
structure, waistline of services as well as architectural building blocks. 

1.1 System Structure 

This section describes the physical system structure of a platform that consists of networked multi-
core chips. In addition, a logical system structure of the application and a corresponding namespace 
is defined (see Figure 1)   

 

View
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Logical View 
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sage

 

Component

Application 
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Partition
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Off-Chip Network

Criticality 
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Figure 1: System Structure of Application (Logical View) and Structure of Platform (Physical View) 

 

1.1.1 Structure of the Platform and Resources 

The overall system is physically structured into a set of clusters, where each cluster consists of nodes 
that are interconnected by a real-time communication network in a corresponding network topology 
(e.g., bus, mesh, star, redundant star, ring). Inter-cluster gateways serve as the connection between 
clusters. 

Each node is a multi-core chip containing tiles that are interconnected by a Network-on-Chip (NoC). 
Each tile provides a Network Interface (NI) to the NoC and can have a complex internal structure. 
The NI offers ports each of which serves for the transmission or reception of the NoC’s messages. 
According to application and architecture requirements the NoC has a corresponding topology with 
interconnected on-chip routers (e.g., mesh, torus, folded torus, hypercube, octagon).  

A tile can be processor cluster with several processor cores, caches, local memories and I/O 
resources. Alternatively, a tile can also be a single processor core or an IP core (e.g., memory 
controller that is accessible using the NoC and shared by several other tiles). 

A chip-to-cluster gateway is responsible for the redirection of messages between the NoC and the 
off-chip communication network. In analogy to the cluster-level, the NoC exhibits timing properties 
determined by the communication protocol and the topology of the NoC. 

Off-chip and on-chip networks are responsible for time and space partitioning between nodes or 
tiles respectively. They ensure that a node or tile cannot affect the guaranteed timing (e.g., bounded 
latency and jitter, guaranteed bandwidth) and the integrity of messages sent by other nodes and 
tiles. 

The processor cores within a tile can run a hypervisor that establishes partitions, each of which 
executes a corresponding software component (or component for short). The hypervisor establishes 
time and space partitioning, thereby ensuring that a software component cannot affect the 
availability of computational resource in other partitions (e.g., time and duration of execution on 
processor core, integrity and timing of memory). 
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1.1.2 Logical System Structure of the Application 

The overall system is logically structured into criticality levels. Several criticality levels are 
distinguished in different application domains such as Classes A to E in avionics, ASILA to D in 
automotive and SIL1-4 in multiple domains according to IEC-61508. 

For each criticality level, there can be multiple application subsystems. In the automotive domain, 
steer-by-wire and brake-by-wire would be examples of subsystems belonging to the highest 
criticality level (ASILD). An application subsystem can be further subdivided into components, which 
interact by the exchange of messages via ports. 

Each component provides services to its environment. The specification of a component’s interface 
defines its services, which are the intended behavior as perceived by the transmission of messages 
as a response to inputs, state and the progression of time. 

Three types of messages are distinguished based on their timing: 

1. Periodic messages represent time-triggered communication. Their timing is defined by a 
period and phase with respect to a global time base. 

2. Sporadic messages represent rate-constrained communication with minimum interarrival 
times between successive message instances.  

3. Aperiodic messages have no timing constraints on successive message instances and no 
guarantees with respect to the delivery and the incurred delays. 
 

1.1.1 Namespace 

Based on the structure of the application and platform, we introduce the following namespace: 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦. 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡.𝑀𝑒𝑠𝑠𝑎𝑔𝑒⏟                              
𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝑁𝑎𝑚𝑒 (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

= 𝐶𝑙𝑢𝑠𝑡𝑒𝑟. 𝑁𝑜𝑑𝑒. 𝑇𝑖𝑙𝑒. 𝑃𝑜𝑟𝑡⏟                
𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑁𝑎𝑚𝑒 (𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚)

 

Examples of names are as follows: 

 ClassA.FlightControl.SensorComponent1.Altitude 

 ClassA.FlightControl.SensorComponent1.Velocity 

 ClassD.Cabin.SensorComponent1.Temperature 

 FuselageCluster.Node1.ARMCore1.Port0 

Components are only aware of logical names, whereas the platform requires physical names for the 
routing of messages. The conversion between logical and physical names can occur using a 
translation layer (in software or hardware) between the components and the communication 
system. Alternatively, components and messages can be hard-bound to the platform by fixing the 
translation to the physical namespace at development time. 

 

1.1.2 Mapping of Application to Platform 

In order to provide the services, components require resources of the underlying platform as 
identified in the physical system structure. Each component must be assigned to a partition with 
suitable computational resources (e.g., CPU time, memory). Messages must be mapped to the 
communication networks with suitable timing and reliability properties. Since components can be 
mapped to partitions residing on different nodes and even different clusters, messages must be 
transmitted over different on-chip and off-chip networks. 

Virtual Links (VLs) are an abstraction over these networks and hide the physical system structure of 
the platform from the components. The timing and reliability of the VL is determined by the 
properties of the constituent physical networks.  

A VL is an end-to-end multicast channel between the output port of one sender component and the 
input ports of multiple receiver components. This end-to-end connection is identified using a Virtual 
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Link ID (VLID), which implicitly defines the source port, the destination ports, the path on the on-chip 
and off-chip networks, the message with its semantic content and the traffic type (i.e., periodic or 
sporadic) and the message timing.  

 

VLID Data 

Table 2: Message Format: Periodic or Sporadic Message on Virtual Link 

Time-triggered VLs serve for the time-triggered transmission of periodic messages at the specified 
period and phase with respect to a global time base. Rate-constrained VLs establish the transport of 
sporadic messages with minimum interarrival times. A rate-constrained VL also has a priority that 
determines how contention with other rate-constrained VL is resolved. Rate-constrained 
communication guarantees sufficient bandwidth allocation for each transmission with defined limits 
for delays and temporal deviations. 

Aperiodic messages do not require VLs, but are subject to a connectionless transfer. Therefore, each 
aperiodic message must include naming information for routing through the network (see Table 3). 

 

Logical Name of Sender Physical Name of Receiver Data 

Table 3: Message Format – Aperiodic Message with Connectionless Transfer 

The one-to-one mapping between ports and VLs enables the system to determine the parameters of 
a message (e.g., timing, receivers) by having either the VLID or any of the sender or receiver ports of 
the VL. As a consequence the gateways and NIs are able to establish the protocol-specific addresses 
for each network. Conceptually we pair each message with a VLID in order to extract the required 
address information. 

For instance when it comes to the end-to-end path of a periodic or aperiodic message, the 
communication will be triggered at the NI by writing a message to the respective port (which resides 
physically at the NI). Based on the portID, the NI knows the physical address of the destination and 
generates a protocol-specific NoC address. In case the destination is physically located on the same 
node, the destination of the target-tile will be generated. Otherwise, the message, including the 
VLID will be redirected to the gateway. The off-chip path will then be generated at the gateway 
based on the VLID. In case the message is destined to a tile in another node, the on-chip/off-chip 
gateway will generate the address to the respective target node, while the on-chip/off-chip gateway 
on the target-node will generate another protocol-specific NoC address before the message enters 
the on-chip network.  

In case of aperiodic messages the procedure is similar, but instead of VLIDs the physical address of 
the destination must be used. Figure 2 depicts the procedure as well as the address translations 
graphically. 
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Figure 2: Address domains 

1.2 Waistline Structure of Services 

In order to support cross-domain usability and an independent development of platform services, 
the platform services of the DREAMS architecture are structured in a waistline as shown in Figure 3. 
This waistline structuring of services is inspired by the Internet, where the Internet Protocol (IP) 
provides the waist for different communication technologies and protocols. Towards the bottom, a 
variety of implementation choices is supported. IP can be implemented on Ethernet networks, ATM 
networks, different wireless protocols, etc. Towards the top, different refinements to higher 
protocols depending on the application requirements occur. IP can be refined into UDP or TCP, 
thereafter into HTTP, FTP, etc. 
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 Figure 3: Waistline Structure of Services  

In a similar way, the services of the DREAMS architecture are structured. The core services are a 
stable waist encapsulating all those capabilities that are required in all targeted application domains 
for the realization of mixed-criticality systems. These core services also lay the foundation for 
exploiting the economies of scale as they can be implemented in a space and energy efficient way in 
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hardware for a multitude of application domains. The core services offer capabilities that are 
required as the foundation for the construction of higher platform services and application services. 

Different underlying implementation options exist for each of the core services. For example, the 
core communication services can be realized using different protocols in NoCs or off-chip networks. 
DREAMS is not restricted to specific protocols (e.g., TTNoC and Spidergon NoC as used in WP2), but 
any protocol providing the core services is a suitable foundation for the DREAMS architecture. In 
analogy, variability increases towards the waistline’s top where the application services are 
implemented. Platform services can be successively refined and extended to construct more 
specialized platform services. 

Four core services are mandatory and part of any instantiation of the DREAMS architecture, since 
they represent capabilities that are universally important for mixed-criticality systems and all 
considered application domains. The core services are absolutely necessary to build higher services 
and to maintain the desired properties (e.g., TSP) of the architecture. 

1. Secure and fault-tolerant global time base: The global time service of DREAMS provides to 
each component a local clock, which is globally synchronized within the system of networked 
MPSoCs and within each MPSoC. The main rationale for the provision of a global time is the 
ability for the temporal coordination of activities, the establishment of a deterministic 
communication infrastructure and the ability for establishing a relationship between 
timestamps from different components. 

2. Timely and secure communication services for time and space partitioning: DREAMS provides 
services for the message-based real-time communication among components. The DREAMS 
communication services establish end-to-end channels over hierarchical, heterogeneous and 
mixed-criticality networks respecting mixed-criticality safety and security requirements. Based 
on an intelligent communication system with a priori knowledge about the allowed behaviour 
of components in the value and time domain, DREAMS ensures TSP. The shared memory 
model is supported on top of message-based NoCs and message-based off-chip networks. 
Thereby, application subsystems are able to exploit programming models based on shared 
memory, while TSP of the message-based network infrastructure ensures segregation.  

3. Timely and secure execution for time and space partitioning: For the sharing of processor 
cores among mixed criticality applications, including safety-critical ones, partitioning OSes and 
hypervisors (e.g., XtratuM and KVM) are used, which ensure TSP for the computational 
resources. The scheduling of computational resources (e.g., processor, memory) in DREAMS 
ensures that each task obtains not only a predefined portion of the computation power the 
processor core, but also that execution occurs at the right time and with a high level of 
temporal predictability. On one hand, DREAMS supports static scheduling, where an offline 
tool creates a schedule with pre-computed scheduling decisions for each point in time. In 
addition, we support dynamic scheduling by employing a quota system in the scheduling of 
tasks in order to limit the consequences of faults. Safety-critical partitions establish execution 
environments that are amenable to certification and worst-case execution time analysis, 
whereas partitions for non safety-critical partitions provide more intricate execution 
environments (e.g., based on Linux). In addition, the separation between safety-critical and 
non safety-critical applications is supported using dedicated on-chip tiles with respective OSes. 

4. Integrated resource management for time and space partitioning: DREAMS provides services 
for system-wide adaptivity of mixed-criticality applications consuming several resources via 
global integrated resource management. The approach is based on the separation of system-
wide decisions to meet global constraints from the local execution on individual resources: 
resources are monitored individually with abstract information provided to global resource 
management (GRM). If significant changes should demand adaptation, the GRM takes 
decisions on a system-wide level, based on offline computed configurations, with orders, such 
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as bandwidth assignment, or scheduling parameters for all resources, which are controlled by 
local resource management (LRM). Thus, system-wide constraints, such as end-to-end timing, 
reliability, of energy integrity, can be addressed without incurring the complexity and 
overhead of individual negotiations among resources directly. 

The distinction between mandatory core services and optional higher services allows to prevent 
deep service chains that would make real-time guarantees difficult and increase the level of 
uncertainty. The modular DREAMS architecture introduces a minimal set of services for safety-
critical subsystems for ensuring the required properties of the DREAMS architecture. Application 
with less stringent timing and certification requirements can use optional services with increased 
functionality and flexibility. 

The DREAMS architecture supports the information exchange between safety-critical and non-safety 
critical subsystems. While the information flow from safety-critical towards non safety-critical parts 
is supported with no restriction, the reverse direction requires restrictions, namely the separation of 
interactions by communication channels with temporal and spatial partitioning. The DREAMS 
technologies contribute hardware and software solutions for this constraint.  

 

1.3 Architectural Building Blocks for the Provision of the Platform 
Services in Networked Multi-Core Chips 

The mapping of the DREAMS platform services of the waistline architecture to the networked multi-
core chips is depicted in Figure 4. 

 

Node Node Node Node
System Node: Global 
Res. Manager (GRM)

DREAMS SYSTEM OF NETWORKED MULTI-CORE CHIPS

Tile: System Core

Memory GW

Application Tile Application Tile Application Tile

Tile: System Core

Off-Chip/On-Chip GW

Tile: System Core

I/O

System Node

Off-Chip GW

Local Resource 
Mngmt.

On-Chip Interconnect

Off-Chip Network Off-Chip Network

P
a

rt
it

io
n

s

DRALOS

S
ys

te
m

 C
o

m
p

o
n

e
n

t
O

p
ti

o
n

a
l S

e
rv

ic
e

DREAMS Virtualization Layer

Processor 
Cores

Network 
Interface

DRALOS

S
ys

te
m

 C
o

m
p

o
n

e
n

t
O

p
ti

o
n

a
l S

e
rv

ic
e

DRALOS

Optional 
Service 
(MW)

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

e
n

t

DRALOS

Optional 
Service 
(MW)

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

e
n

t

    

 
 Figure 4: Realization of Platform Services in Networked Multi-Core Chips (core services in yellow, optional services in 

blue, application services in red) 

1.3.1 Building Blocks for Core Services 

The core communication services are realized at the chip-level by the (1) network interfaces, (2) the 
on-chip interconnect, (3) memory gateways and (4) on-chip/off-chip gateways. The network 
interface acts as the injection point for messages (and their constituting packets and flits) generated 
by a tile or core. The on-chip interconnect transports the messages between network interfaces 
inside one chip. The memory gateway establishes access to external memory (e.g., DRAM) and 
supports the shared memory paradigm on top of the message-based NoC. An on-chip/off-chip 
gateway relays selected messages from the NoC to an off-chip network and vice versa, while 
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performing the necessary protocol transformations. At off-chip level, the (1) off-chip networks and 
(2) off-chip gateways belong to the core communication services. Each cluster has a corresponding 
off-chip network, where the networks of different clusters can be connected through an off-chip 
gateway. 

The core execution services are realized by a virtualization layer inside a tile. Either each processor 
core run its own hypervisor or the virtualization layer manages the entire tile including one or more 
processor cores. The virtualization layer establishes the partitions for the execution of components 
with guaranteed computational resources. Within each partition, an operating system and a 
DREAMS Abstraction Layer (DRAL) are deployed to provide software-support for utilizing the 
platform services from the application software (e.g., including communication drivers, drivers for 
time services, domain-specific APIs such as ARINC653). 

The resource management services are realized by a Global Resource Manager (GRM) in 
combination with local building blocks for resource management. A DREAMS system contains a 
single GRM, which can be realized by a single node or a set of nodes for improved fault-tolerance 
and scalability. The GRM performs global decisions with information from local resource monitors. It 
provides new configurations for the virtualization of resources (e.g., partition scheduling tables, 
resource budgets). The GRM configuration can include different pre-computed configurations of 
resources (e.g., time-triggered schedules) or parameter ranges (e.g., resource budgets). 
Alternatively, the GRM can dynamically compute new configurations.   

Three local building blocks for resource management are distinguished: (1) Local Resource Managers 
(LRMs), (2) Local Resource Schedulers (LRSs) and (3) Resource Monitors (MON). These local resource 
management building blocks are located at the individual resources at chip and cluster level. The LRS 
is responsible for controlling the access to particular resource based on a configuration that has 
been set by the LRM. Each resource has a corresponding built-in LRS such as the on-chip network 
interface, the hypervisor layer inside a tile, the memory gateway, the I/O gateway, the on-chip/off-
chip gateway and the off-chip network interfaces. For example, the LRS in the on-chip network 
interface is responsible for dispatching time-triggered messages according to the schedule tables in 
the network interface and for traffic shaping of sporadic messages. 

The Local Resource Scheduler (LRS) performs the runtime scheduling of resource requests (e.g., 
execution of tasks on processor, processing of queued memory and I/O requests). The LRS in 
DREAMS will support different scheduling policies (e.g., dispatching of time-triggered actions, 
priority-based scheduling). 

The LRMs adopt the configuration from the GRM at particular resources (e.g., processor core, 
memory, I/O). It is responsible for mapping global decisions to the local scheduling policy of the LRS. 
In some cases LRMs are able to take decisions for local reconfiguration. 

The Resource Monitor (MON) monitors the resource availability (e.g., energy). Resource monitors 
also observe the timing of components (e.g., detection of deadline violations), check the application 
behavior (e.g., stability of control) and perform intrusion detection. Small changes will be handled 
locally, while significant changes will be reported to the GRM, who in turn can provide a different 
configuration at system-level. 

1.3.2 Building Blocks for Optional Services 

On top of the core services, the optional platform services establish higher-level capabilities for 
certain domains (e.g., control systems, multimedia). Optional services are capabilities that are not 
needed in all targeted applications, thus they can be integrated when needed or omitted if 
unnecessary to minimize resource consumption. In addition, using optional services we can support 
complex platform services for non safety-critical applications without affecting certification of 
safety-critical application subsystems. 
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Optional services are subject to partitioning and segregation performed by the core services. Hence, 
any fault of an optional service only affects the application and other optional services building on 
top of it. This fault containment is a key enabler for modular certification, because optional services 
not used by an application subsystem do not need to be considered in its certification. 

One can distinguish three implementation choices for optional services: 

1. System core: Optional services are implemented as self-contained IP cores with a message-
based interface towards the NoC. The segregation is established by the NoC. 

2. System component in a partition: An optional service is realized as a component within a 
partition. The optional service is provided to components in other partitions inside the tile 
using inter-partition communication mechanisms of the virtualization layer. In addition, the 
platform service can be made available using the NoC. 

3. Middleware in a partition: The platform service is realized as middleware within a 
component and provides services to the application component within the same partition. 

 

1.3.3 Building Blocks for Application Services 

An application service is realized by an application component inside a partition. The application 
service provides its service to other components using the core communication services, where a 
partition with an application service is a communication end point. 

 

1.3.4 Technology Independence of Architectural Style 

The architectural style including the logical system structure, the physical structure and the 
architectural services is not restricted to a particular implementation technology. Different types of 
processors, on-chip networks, off-chip networks and operating systems can serve as the starting 
point for the establishment of the DREAMS architecture. 
At the chip-level, we can distinguish the following categories of instantiations of the architectural 
style depending on the type of the underlying multi-core processor: 

 Shared memory-based chip architectures are a special case of the architectural style with a 
multi-core chip containing only a single tile. This single tile contains multiple cores that 
interact via a shared memory. Instead of realizing the off-chip gateway via the NoC, there 
exists a dedicated (memory-mapped) I/O peripheral for the off-chip network interface. 
Instantiations of the DREAMS architectural style using PowerPC P4080 and x86 belong to this 
category. 

 NoC-based architectures are another instantiation where the multicore architecture 
contains tiles each of which contains only a single core. The tiles are interconnected by a 
message-based NoC.  Instantiations of the DREAMS architectural style using TTSoC belong to 
this category. 

 Full-scale architecture instantiations provide multiple tiles with multiple cores per tile. The 
tiles are interconnected by an NoC. Each tile can contain a shared memory for the 
interaction within the tile. The interaction between the tiles is message-based, although a 
shared memory interaction can be realized on top of message passing based on a tile serving 
as a memory gateway (e.g., DDR controller). 

Likewise, different scales can be distinguished at the cluster level including single-cluster and multi-
cluster DREAMS mixed-criticality systems. The latter types of systems depend on off-chip gateways 
in-between the off-chip networks of different clusters. 
Based on the different integration levels, the architectural style supports different types of 
communication mechanisms:  
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1. The intrapartition communication between tasks within a partition is the responsibility of 
the application software or guest operating system within the partition and thus transparent 
to the DREAMS architecture. 

2. Interpartition communication between partitions on the same tile is supported by the 
hypervisor and can be implemented using the local shared memory within the tile. 

3. Interpartition communication between partitions on different tiles of the same chip occurs 
using the message-based NoC. Shared memory interactions are possible using a memory 
gateway and shared memory accesses on top of message passing. 

4. Interpartition communication between partitions on different chips occurs using the on-
chip/off-chip gateway. The gateway is accessed using either the NoC or via the tile’s shared 
memory depending on whether a single-tile or multi-tile node is considered. 

The application interface for interpartition communication is identical, regardless of which 
communication type (2 to 4) is used. 
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2 Fault Assumptions 

The fault hypothesis specifies assumptions about the types of faults, the rate at which components 
fail and how components may fail [10].  The fault hypothesis is a central part in any safety-relevant 
system and provides the foundation for the design, implementation and test of the fault-tolerance 
mechanisms [11]. 

The consideration of security mechanisms for the DREAMS architectural style requires a clear 
definition of threats. Section 3.3 provides this information. 

 

2.1 Fault containment regions 

A Fault Containment Region (FCR) is a subsystem that operates correctly regardless of any arbitrary 
logical or electrical fault outside the region [10]. A FCR is a set of subsystems that share one or more 
common resources that one single fault may affect. Based on the distinction between design faults 
and physical faults, one can distinguish corresponding FCRs (see Table 4).  

 

Fault Fault Containment Region 

Containment Coverage 

(Correlated Failures per 
Hour) 
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Design fault of the application 
component in the partition or 
the guest OS of the partition 

Partition  < 10-9 

Replicated design fault in 
copies of a component or the 
same guest OS 

Multiple partitions 
containing the same 
application component or 
the same guest OS 

< 10-9 

Design fault of virtualization 
layer in an application tile 

Application tiles with the 
virtualization layer 

< 10-9 

Design fault of a system tile 
(e.g., I/O gateway, memory 
GW) 

System tile < 10-9 

Design fault of on-chip 
network (including network 
interfaces and on-chip 
routers) 

Nodes with the on-chip 
network  

< 10-9 

Design fault of off-chip 
network 

Cluster with the off-chip 
network 

< 10-9 

Design fault of global 
resource manager 

Dynamically 
reconfigurable  part of the 
platform and respective 
application subsystems 

< 10-9 
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Affected physical resource of 
a node (e.g., power supply, 
clock source, on-chip 
network) 

Node < 10-9 

Affected physical resource of 
the off-chip network (e.g., 
short circuit of physical link, 
clock source of router) 

Off-Chip router with 
corresponding physical 
links 

< 10-9 

Affected physical resource 
only required for a tile (e.g., 
local memory) 

Tile 10-5  to 10-6 

Table 4: Fault Containment Regions 

An FCR restricts the immediate impact of a fault, but fault effects manifested as erroneous data can 
propagate across FCR boundaries. For this reason the system must also provide error containment 
[10] to avoid error propagation by the flow of erroneous messages. An Error Containment Region 
(ECR) is a subsystem of the mixed-criticality system that is encapsulated by error-detection 
interfaces such that there is a high probability that the consequences of an error that occurs within 
this subsystem will not propagate outside this subsystem without being detected and/or masked [2]. 
The error detection mechanisms must be part of different FCRs than the message sender. Otherwise, 
the error detection mechanism may be impacted by the same fault that caused the message failure. 

 

2.1.1 Fault Containment Regions for Design Faults 

Design faults include hardware and software faults that are introduced during the development of 
the platform and the application. 

For design faults, we can distinguish between the faults affecting the DREAMS platform (e.g., system 
tiles, DREAMS virtualization layer, communication networks) and the application software within the 
partitions.  

For design faults affecting the application software and guest operating systems, we regard a 
partition as a FCR.  Mechanisms for temporal and spatial partitioning of the DREAMS virtualization 
layer provide design fault containment between partitions. If a software component is replicated 
along multiple partitions (possibly located on multiple tiles or nodes) as part of a fault-tolerance 
concept, the FCR includes all partitions with distributed replicas of the software component. 
Replicated software components cannot be assumed to fail independently, since all replicas of a 
software component are based on the same programs and use the same input data.   

The role of software components as design FCRs holds also in case of software diversity. When 
design diversity is applied for addressing common mode failures, replicas are necessarily different 
and ideally employ different specifications in addition to separate implementations. Consequently, 
we denote these diverse replicas as separate software components. Nevertheless, the decision of 
regarding the respective partitions with these software components as different design FCRs 
depends on the independence of the diverse software versions. Practical analyses of software 
diversity have demonstrated that diverse implementations often exhibit correlation with respect to 
design faults. 

Since all partitions hosted on a tile depend on the correct behaviour of the DREAMS virtualization 
layer, the partitions cannot be assumed to be unaffected by a fault affecting the virtualization layer. 
Therefore, all tiles on which a particular virtualization layer is deployed represent a common FCR 
for design faults affecting the virtualization layer. The virtualization layer is thus a critical resource in 
the mixed-criticality system. It is thus necessary to ensure the absence of software faults in the 
virtualization layer. In particular, the system software needs to be designed for validation and kept 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 25 of 121 

simple in order to permit a thorough validation (e.g., including formal verification). Moving 
functionality from the virtualization layer into the partitions is a viable strategy to achieve this goal, 
which is similar to the well-known concept of micro-kernels in operating system design. 

A system tile is an FCR for a design fault of the respective higher platform service (cf. Section 1.2). 
An example is a design fault of an input/output gateway, which affects the corresponding higher 
platform service provided on top of the core platform services of DREAMS. 

The entire node is an FCR for design faults for shared resources that are required for the correct 
operation of the node. For example, the on-chip network is a critical resource for the entire node 
where a design fault of a network interface or router has the potential to disrupt the timely 
communication of any tile. 

In case of design faults affecting an off-chip communication network, the respective cluster is a FCR. 
Faults of the global resource manager can affect the dynamically reconfigurable parts of the 
platform and the respective applications, whereas static subsystems remain unaffected. 

 

2.1.2 Fault containment Regions for Physical Faults 

A physical fault affects physical resources, such as mechanical or electronic parts. Physical faults 
typically originate from conditions that occur during operation. Examples are physical deterioration 
(i.e. wear-out) and external interference through physical phenomena (e.g., lightning stroke). Early 
and premature wear-out failures are caused by the displacement of the mean and variability due to 
manufacturing, assembly, handling, and misapplication. 

To form a fault containment boundary around a collection of hardware elements, one must provide 
independent power and clock sources and additionally electrical isolation and spatial separation. 
These requirements make it impractical to provide more than one FCR within a node at a safety-
critical rigor (at a containment coverage with a probability of correlated failures of 10−9 failures per 
hours).   

We also regard each off-chip router with the corresponding physical links to the nodes as a FCR. For 
example, a central guardian of a time-triggered network (e.g., TTEthernet switch) serves as a 
FCR [20]. 

For physical faults, the hardware approach can provide certain containment coverage by providing 
spatial separation of the tiles and cores and multiple clock domains and pin-out (e.g., grounding) on 
the chip layout (e.g., for SEEs [21]). These on-chip FCRs for physical faults (i.e., tiles) work only at 
single chip failure probabilities (e.g., around 10−5 to 10−6 correlated failures per hour [22] ). 

Physical fault containment and design fault containment are orthogonal properties. Physical fault 
containment does not assure design fault containment and vice-versa. For instance, one may use 
two separated chip processors (two FCRs for physical faults) to implement a function but both can 
fail simultaneously due to a single design fault on the software. In the same way, a hypervisor can 
assure design fault containment for two independent operating systems within the same chip and a 
single physical fault can make both fail. 

 

2.2 Failure modes 

The assumed failure modes include those identified by IEC-61508-2, according to which transmission 
errors, deletion, corruption, delay, repetitions, masquerading and insertion need to be 
addressed [13]. Furthermore, additional critical failure modes for mixed-criticality systems are 
introduced. 

The following failure modes are distinguished: 
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 Babbling idiot failure: This failure occurs when an application core or an off-chip router 
starts sending untimely messages (e.g., insertions according to IEC-61508-2), possibly 
generating a high traffic load by generating more messages than specified. 

 Delay: Faulty core or off-chip router can delay the transmission of messages. 

 Masquerading:  A masquerading failure is an erroneous core that assumes the identity of 
another core. In case of periodic and sporadic communication, a faulty core sends messages 
with the incorrect virtual link identification. For aperiodic messages, the core will send 
messages with an incorrect logical namespace. 

 Component crash: The crash failure occurs when the DREAMS chip or the off-chip router 
exhibits a permanent fault and produces no outputs. 

 Link failures: The link failure occurs when the link exhibits a permanent or transient failure 
and fails to redirect a message. In combination with the component crash, this failure 
corresponds to the transmission error according to IEC-61508-2. 

 Omission: An omission failure is a transmission failure where a sender is not able to 
generate a message and/or a receiver is not able to receive a message. This failure 
corresponds to the deletion according to IEC-61508-2. 

 Slightly-off-Specification (SOS): Slightly-off-specification failures can occur at the interface 
between the analog and the digital world in the value and time domain. For example, 
consider the case that the specification requires every correct node to accept an analog 
input signal if it is within a specified receive window of a parameter (e.g., timing, frequency, 
or voltage). Every individual node will have a wider actual receive window than the one 
specified in order to ensure that even if there are slight variations in manufacturing it can 
accept all input signals as required by the specification. These actual receive windows will be 
slightly different for the individual nodes. If an erroneous FCR produces an output signal (in 
time or value) slightly outside the specified window, some nodes will correctly receive this 
signal, while others might fail to receive this signal [20].   

 

2.2.1 Failure Rates and Persistence   

Part of the fault hypothesis is a specification of the failure rate of FCRs. In general, a differentiation 
of failure rate with respect to different failure modes and the failure persistence is necessary. For 
example, fault injection experiments [23] have shown that restrictive failure modes, such as 
omission failures, are more frequent by a factor of 50 compared to arbitrary failures.  

Related to the failure rates in industrial communication the residual error rate needs to be 
calculated according to IEC 61784-3. The residual error rate needs to stay below 1% of the PFH of the 
target SIL according to IEC 61508.  

Also, failure persistence is an important factor in the differentiation of failure rates. In the temporal 
domain a fault can be transient or permanent. Whereas physical faults can be transient or 
permanent, design faults (e.g., software errors) are always permanent.  While transient failures 
disappear without an explicit repair action, permanent failures prevail until removed by a 
maintenance engineer (e.g., software update in case of a software fault, replacement or repair of 
hardware in case of a hardware fault). 

The permanent failure rate of a FCR with respect to hardware faults is typically considered to be in 
the order of 100 FIT, i.e., about 1000 years [20]. Motivated by literature on SER we assume that the 
transient failure rate of a FCR with respect to hardware faults is in the order of 10.000-100.000 
FIT [24]. 
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2.3 Threats 

The DREAMS architecture defines four different core services as shown in Figure 3. These core 
services have different security requirements which have been already stated in D1.1.1 and there 
exist different potential attacks and threats which are described in this section. Threat Models as 
well as threats and attacks which are related to the cluster-level are described in more detail in 
D3.3.1, e.g., communication services, global time services and resource management services. 

 

2.3.1 Threat Models 

A threat model describes and analyses the security risks associated with the system. It identifies 
potential threats to the system as well as the vulnerabilities in the system which can be exploited. 

There are four important questions which have to be considered while creating a threat model. [25] 

 

1. Who is the attacker? 

There are two general types of attacker, a user and an application. Each one of them could be 
authorized or unauthorized to access a certain component. It is not always necessary to 
distinguish the attackers as users and/or applications. Considering attacks on the network layer 
(OSI Layer 3), the attacks are independent of the application layer (OSI layer 7). Hence, in the 
threat model for communication services, only the “internal” and “external” attackers are 
considered. 

2. What is attacked? 

A system has different parts which could be attacked. These parts of the system are components 
and applications. 

3. Where is the attacker? 

An attacker can attack a system from different locations. The attacker could be inside the system 
or he can attack the system from outside. 

4. How is the attack performed? 

The attacker has different capabilities to perform an attack. Depending on the questions “Who is 
the attacker?”, “What is attacked?” and “Where is the attacker?”, the attacker has various 
options to realize an attack. 

 

2.3.2 Threat Analysis for Communication Services 

There are different types of communication services in the DREAMS architecture: the on-chip 
communication and the off-chip communication separated by the on-chip/off-chip gateway (refer to 
Figure 5). As described in section 1.1, there is a physical and a logical view of the communication 
system. This section focuses on the physical view. Since there is a distinction between on-chip and 
off-chip communication, the security aspects can also be divided into on-chip security and off-chip 
security with different threats which are discussed as follows. 

The distinction between on-chip and off-chip security allows the division of attacks on the on-chip 
and the off-chip communication. This leads to the distinction between internal and external 
attackers which is based on [18]. The main difference between internal and external attackers is the 
access point to the system and the knowledge about secret information. The access point of an 
internal attacker is inside of a trusted part of the system. He has access to the cryptographic keys on 
the network layer including access to other secret information. Hence, he can generate valid 
messages and can act as a legal part of the system. In contrast to an internal attacker, an external 
attacker has no access to the trusted part of the system and does not know the cryptographic keys. 
Thus, an external attacker can intercept and replay existing messages but cannot generate new 
ones. 
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Figure 5: On-Chip/Off-Chip Communication 

In DREAMS, the communications take place at the on-chip network (NoC) and at the off-chip 
network respectively. These two types of communications correspond to the internal and external 
attackers respectively. An attacker who has access to the on-chip communication is an internal 
attacker and an attacker who has only access to the off-chip communication is an external attacker. 
Therefore it is assumed that the SoC, including the NoC and the gateway, is a trusted zone and is 
inaccessible to an external attacker. 

Hence, an internal attacker has access to the NoC and to the other parts of the SoC, e.g., the CPU-
cores and the memory. If the cryptographic keys are stored in the memory which is accessible to all 
components connected to the NoC, then the attacker also has access to these keys. 

An external attacker has only access to the off-chip network. He can intercept and replay previously 
sent messages, but cannot read encrypted messages. Also he cannot generate new legal messages. 

The gateway between the on-chip and the off-chip network forms the border among the two 
network types. Therefore all communication leaving the gateway towards the off-chip network 
leaves the trusted zone of the DREAMS architecture. Hence, the gateway separates an internal 
attacker from an external attacker (Figure 4). 
There are several types of attacks which can be performed on the communication services of the 
DREAMS architecture. An attacker can perform sniffing attacks, denial-of-service attacks, spoofing 
attacks, man-in-the-middle attacks, packet injection attacks and replay attacks. External and internal 
attackers have different opportunities performing an attack. These opportunities and the impact of 
the attacks are described in D3.3.1. 
 

2.3.3 Threat Analysis for Global Time Services 

The global time services should ensure that every local clock in the system has “about the same 
value” at “about the same points in real-time” (refer to section 2, Core Platform Services – Global 
Time).There are two main attack targets on the global time services. On the one hand there are 
attacks against the clocks or the time values in the components itself, on the other hand there are 
attacks against the time synchronization.  

The attacks on the time synchronization are covered in the threat analysis for communication 
services. Authorized users as well as unauthorized users could perform attacks on the 
synchronization process. An attack could aim on a single target with the result that one component 
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gets a false time value or it could aim on the entire synchronization process with the result that no 
component gets the proper time value. 

A single target can be attacked with man-in-the-middle, packet injection and replay attacks. In a 
man-in-the-middle attack, the attacker can change the time value of the synchronization message 
before sending it to the receiver. In a packet injection attack, the attacker inserts new 
synchronization messages with false time values. The receiver of the new messages synchronizes to 
the false time value. In a replay attack, the attacker sends an old message again to the receiver and 
the receiver uses the old time value. Man-in-the-middle and packet injection attacks are only 
possible for authenticated users having access to keys needed to generate new valid messages. An 
unauthorized user can only perform replay attacks because he cannot generate new valid messages. 

The entire synchronization process can be attacked by performing a denial-of-service attack on the 
master clock. Spoofing attacks can attack both a single target and the entire synchronization 
process. Denial-of-service attacks are possible for authenticated and unauthenticated users. A 
spoofing attack is only possible for an authenticated user if they have access to the needed keys 
masquerading as another user. 

The impact of an attack against the clocks in the components itself is similar to the attacks on the 
time synchronization. However, the communication process for the time synchronization is not the 
objective of this type of attacks. Attacking a clock in a component acting as a slave in the 
synchronization process only affects the behavior of this component, e.g., the component sends 
untimely messages or causes untimely actions. If an attacker changes the master clock all clocks in 
the system synchronizing with the master clock get the false time value. This might lead to 
measurements taken at the false point in time or to incorrect behavior of the system relating to real-
time. Changing the clock values needs additional access privileges and can be performed only by an 
authorized user or an attacker which can masquerade as an authorized user. 

 

2.3.4 Threat Analysis for Resource Management Services 

In the DREAMS architecture the resource management services are realized by a Global Resource 
Manager (GRM) as explained in D3.2.1. In addition to the GRM, there are Local Resource Managers 
(LRM), Local Resource Schedulers (LRS) and Resource Monitors (MON) located in the different Tiles. 
The GRM performs global decisions by selecting configurations. This decisions are based on the 
information received from the LRM. Decisions for new configurations are sent back to the LRM. The 
LRM gests information from the MON and maps the global decisions from the GRM to the LRS. 

There are several attacks on the resource management services. On the one hand there are attacks 
against the resource management components. An attacker could masquerade as one of the GRM, 
LRMs, LRSs or MONs. Acting as a trustworthy GRM or LRM, an attacker apply wrong or invalid global 
or local configurations. If an attacker acts as an LRS, he can select other scheduling tables or he can 
use invalid scheduling parameters. The MON provides monitoring services. Hence, an attacker could 
send wrong availability, energy or error information to the LRM. In addition, there are pre-computed 
configurations. If an attacker can change these offline-computed configurations, a genuine resource 
management component selects wrong configurations. This could lead to wrong configurations of 
resources, e.g., false partition scheduling tables or false resource budgets. These attacks can only be 
performed by an authenticated user who is inside of the system. An unauthenticated user has no 
access to the components. 

On the other hand there are potential attacks on the communication process of the resource 
management services. An attacker could perform sniffing attacks providing him more information 
about the behavior of the system. He could perform denial-of-service attacks suppressing the 
availability of a resource management component. Man-in-the-middle, spoofing and packet 
injection attacks could lead to wrong configurations and a wrong scheduling. The same risk applies 
for a replay attack, but at least the configuration or scheduling was valid before. Nevertheless, the 
system or a part of the system will not operate as intended. 
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2.3.5 Threat Analysis for Execution Services 

The execution services provide basic operations to run the system. The service includes the 
virtualization layer as the software layer that abstracts the underlying hardware and provides 
virtualization of the CPUs. 

The virtualization layer provides different properties that ensure protection against many attacks 
related to security. 

Spatial isolation: The address space of a partition is not accessible to other partitions. No application 
of one partition can access the data from another partition. Hence, no unauthorized as well as 
authorized user or application from one partition can attack another partition. There could only be 
an attacker inside of the partition. Therefore he can only be an application running in the partition or 
an authorized attacker who can access the partition. But the system architect can define specific 
shared memory areas between partitions. In these areas, no confidential information should be 
stored. 

Temporal isolation: The temporal isolation ensures that the execution of a partition is independent 
of the execution of other partitions. Hence, an attacker in one partition cannot prohibit the 
execution of another partition by performing attacks like sleep deprivation, where an attacker is 
keeping a partition active, so that he can prevent the calculation of other partitions than the active 
one form the attacker. Since no unauthorized user can access a partition, only authorized users or 
applications being inside of the partition can perform such attacks. 
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The DREAMS architectural services  

Part II of this document is dedicated to the introduction of the DREAMS architectural services and 
the related certification strategy. The architectural services are grouped in the four core platform 
service categories: 

 

1. Communication  
2. Global Time 
3. Execution 
4. Resource Management 

 

An additional category is the group of Optional Services providing an example for an optional 
DREAMS service that builds upon the core services according to the DREAMS services waistline 
structure shown in Figure 3. 

The four core service categories are represented by level one headings. Inside these  categories, the 
services are allocated to service groups and subcategories with level two headings whereas the 
service descriptions are described in level three section.  

 

1. Core services -Communication  
Group of services A 

1. Subcategory X 
1. Service I 
2. Service II 
3. Service III 
4. … 

2. Subcategory Y 
1. Service I 
2. Service II 
3. … 

3. … 

Group of services B 

… 

2. Core services –Global Time  
… 
 

This numbering convention allows the unique identification of each service by the section number.  
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1 Core Platform Services – Communication 

One of the four DREAMS core services categories is communication. This section provides detailed 
information on the communication core platform services of DREAMS which are grouped into the 
subcategories and groups as shown in Figure 6.  

 

-On-Chip Network Interface
-On-Chip Router

-Off-Chip Network Interface
-Off-Chip Router

-Read
-Write
-Spatial Partitioning based on memory 
maps of Nis

-Security mechanisms 
-Synchronize with other IOMMUs 
-Monitoring
-Configuration
-Translation between virtual and physical 
address space

-Refill buffers
-Real-time

-Off-Chip Gateway
-Off-Chip/On-Chip Gateway

 

Figure 6: Subcategories of communication 

 

Group of On-Chip Communication Services 
 

The message-based on-chip communication services are realized mainly by the On-Chip Network 
Interface (NI), the On-Chip Router and On-Chip Physical Links (See Figure 7). The NI serves as an 
interface to the NoC for the processing cores by injecting the messages from the cores into the NoC 
as well as delivering the received messages from the NoC to the cores. Routers on the other hand 
are responsible to relay the flits from the sender’s NI to the destination NIs. The number of input 
and output units at each router and the connection pattern of these units represent the topology of 
the on-chip network (e.g., star, ring, spidergon). The physical links act as a glue element among NIs 
and routers and realize the interconnection among them.  
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Figure 7: A typical Network-on-Chip with six tiles 

In a message-based communication system, by switching the packets, there is no need for circuit 
switching. This means instead of assigning a static configuration to each router, we use a packet-
based router configuration. In other words, to improve the efficiency of the resource allocation, we 
divide a message into packets for the allocation of control state and into flow control digits (flits) for 
the allocation of channel bandwidth and buffer capacity.  

Figure 8 shows the units in which network resources are allocated. Since messages may be arbitrarily 
long, resources are not directly allocated to messages, but rather to packets that have a restricted 
maximum length. This restriction leads to a limited time and duration of resource allocation, which is 
often important for the performance and functionality of the flow control mechanisms.  

Message

Head flit

Packet RI SN

Body flit Tail flit

PhitHead, body, 
tail etc.

Flit Type VCID

Figure 9 Units of resource allocation at the on-chip network 

A flit is the basic unit of bandwidth and storage allocation. Flits carry no routing and sequencing 
information and thus must follow the same path and remain in order. However, flits may contain a 
virtual-channel identifier (VClD) to identify which packet the flit belongs to in the system, while 
multiple packets may be in transit over a single physical channel at the same time. Based on the 
position of the flit in packet, the flit may be the head flit which carries header information, the body 
flit which includes the payload and the tail flit which indicates the end of the packet and possibly 
contains the check sum information for error detection. A flit is further subdivided into one or more 
physical transfer digits or phits, which are the unit of information that is transferred across a channel 
in a single clock cycle.  

The reason for subdividing the packet into the flits is that on the one hand, we would like to make 
packets large to amortize the overhead of routing and sequencing. On the other hand, we would like 
to make packets small to permit efficient, fine-grained resource allocation and minimize blocking 
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latency. Introducing flits eliminates this conflict. We gain low overhead by long packets and achieve 
efficient resource utilization by very flits.  

Phits are shaped by the physical link, i.e., the number of bits which can be transferred by the 
physical link in a single clock will define the phit. Hence the flit will be transferred in multiple clock 
cycles via the physical link [13].  

In order to guarantee bounded delay and low jitter in the network, we define three main priority 
classes in the architecture, each of which can possibly be composed of different further priorities 
(see Figure 10). The highest priority class in the network belongs to the periodic messages. Since 
periodic messages are sent according to the predefined schedule, there is no priority needed 
between the periodic messages. The second priority class is assigned to sporadic messages. However 
there can be different levels of priorities among different sporadic messages. In case two sporadic 
messages of different priorities compete for using a resource, the one of higher priority will win and 
the other one will wait. Aperiodic messages possess the lowest priority class in the network. There is 
no guarantees whether and when these messages arrive at the destination. According to the 
implementation, further priorities for aperiodic message can be defined.  

 

Priority: High (PE)

Periodic: Priority 1

Priority: Middle (SP)

Sporadic, Priority I

Sporadic, Priority II

Sporadic, Priority III

Priority: Low (AP)

Aperdiodic, Priority I

Aperdiodic, Priority II

Aperdiodic, Priority III

 
Figure 10: Different priorities within DREAMS 

 

1.1 On-Chip Network Interface  

The NI serves as an interface to the NoC for the processing cores by injecting the messages from the 
cores into the NoC as well as delivering the received messages from the NoC to the cores. In case the 
NI serves as a sender NI, it determines the path to the destination NIs according to the configuration 
information and generates the flits including the head flit, the body flits and the tail flit. In case the 
NI serves as a destination NI, it generates the messages out of received flits and provides the 
processor cores with the messages. 

As shown in Figure 11, the services provided by the on-chip NI can be grouped into two main blocks 
based on the provided services, the LRS and the NoC interface. As defined in the “Waistline 
Structure of Service” (cf. Part I, Section 1.2) and the “Resource Management” (cf. Part II, Section 4), 
the services in the LRS perform the runtime scheduling of resource requests such as allocating 
bandwidth or processing queued messages.  
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Figure 11: Service for on-chip network interface 

The services of the LRS control the incoming message traffic from the cores by buffering the 
messages with lower priority and relaying the messages with higher priority to the NoC Interface, 
thus providing the support for mixed-criticality systems. Inversely, they accept the messages coming 
from the NoC, classify them with respect to traffic types and destination ports and provide the 
respective core with the data.  
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Figure 12: Services for local resource scheduling of the on-chip network interface 

The LRS is also responsible to resolve contention between messages with different traffic types, so 
the NoC interface need not care about the priority of the messages or even whether the message 
originated from a high-critical component or a non-critical one. This control is done by taking care of 
periods and phases for periodic messages, the minimum interarrival times as well as priorities for 
sporadic messages and in case of available bandwidth, the transmission of aperiodic messages. 

Figure 12 depicts a logical model of the services in the LRS of the on-chip network interface and their 
relationships. The LRS realizes a set of services such as the core interface using ports, bridging of 
incoming and outgoing messages and serialization of messages. The interface between the bridging 
and the serialization of outgoing messages is provided by queues. Each queue is dedicated to a 
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single priority to provide the serialization layer with an efficient access to the messages. More details 
are provided in section 1.1.5.  

The services of NoC interface on the other hand, provide the LRS with an interface to the router by 
generating the packets and consequently flits and providing the routers with the flits. Inversely, they 
disassemble the packets and flits received from the NoC and send them to the LRS to be forwarded 
to the destination ports for incoming messages.  

For example in case the NoC is realized based on STNoC, the NoC interfacing services will be realized 
by the “Shell and Kernel”.  
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Figure 13: Services of on-chip NoC Interface 

 

1.1.1 Core Interface using Ports 

The core interface acts as the interface between the cores within the tile and the NoC by providing 
input and output ports. Each port is accessible by predefined partitions (established by the 
executions services) from the core side as well as the bridging layers from the NoC side. In case of an 
output port, the processor core writes the message into the respective outgoing port and thereafter 
the bridging services for outgoing messages read the port and disseminate the packets to be 
delivered to the NoC. In case of an input port, once the message reaches a destination NI, it will be 
placed at the input port by the bridging layer for incoming services to be read by the respective 
processing cores. In order to assure the segregation of different criticalities, requests shall be 
controlled based on the predefined configuration information (e.g., period and phase for PE 
messages, the MINT for SP messages, authorized partitions, etc.).  

Each port composed of two main areas: 

 Port configuration is associated with each port, including the port identification, the virtual 
link identification, the data direction (i.e., in or out), the traffic type (i.e., periodic, sporadic, 
aperiodic), the timing parameters depending on the traffic type (i.e., period, phase, 
minimum interarrival time), the priority and the message size.  

 The data area is a buffer for messages which is either written by the tile in case of output 
ports or read by cores in case of input ports. The data area is a buffer with update-in-place 
semantic for periodic ports which is overwritten whenever new data becomes available from 
the core or the network. For sporadic and aperiodic messages, the buffer is a message 
queue.  
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The transmission of periodic messages is scheduled based on the predefined period and phase 
available in the port configuration. As the periodic messages carrying state values, they should not 
be queued; therefore the periodic ports employ a buffer for the data area. Since the buffer is 
accessible by processing cores as well as the bridging layers, a synchronization mechanisms such as 
double buffer or none-blocking write [HK2011:p.224] shall be employed to avoid inconsistency. In 
case of sporadic messages, instead of overwriting the data, cores can enqueue the new data and the 
bridging layer will send the data according to the timing constraints. In case of aperiodic messages, 
cores can enqueue the messages at any rate, but there will be no guarantees on whether and when 
the message arrives at the destination. The messages will be queued and in case of available unused 
bandwidth, the aperiodic message will be delivered to the NoC.  

 

1.1.2 Bridging of Outgoing Messages 

This service feeds the messages available at outgoing ports into the serialization layer. Based on the 
traffic type of each port, different actions will be taken: 

 Time-Triggered Dispatching of Periodic Messages: The service reads the periodic ports and 
feeds the data into the dedicated queue for periodic messages in the serialization layer at 
the defined instant given by the time-triggered schedule.  

 Traffic Shaping of Sporadic Messages: The service reads the sporadic messages from the 
ports and enqueues the respective buffers at the serialization layer . The sporadic messages 
will be read from the port only if the minimum interarrival time is already elapsed. This 
parameter is available in the port configuration.  

 Relaying of Aperiodic Messages: Since the aperiodic messages have no timing constraints 
on successive message instances and no guarantees with respect to the delivery and the 
incurred delays, the service only forwards them once there is new message available at the 
respective port. Afterwards, the serialization layer will send the aperiodic messages only if 
there is bandwidth available which is has not been used by the periodic and sporadic 
messages.  
 

1.1.3 Conversion from Logical to Physical Names 

Components are only aware of logical names, whereas the platform requires physical names for the 
routing of messages. The conversion between logical and physical names bridges the gap between 
the application and the communication platform at the NI. This service performs the conversion of 
names and prepares the data needed for the header according to the information given by the port 
configuration.  

As described in section 1.1.1 and 1.1.2, we pair periodic and sporadic messages with a Virtual Link ID 
(VLID) in order to extract the required address information. VLIDs implicitly define the source port, 
the destination ports, the message with its semantic content and the traffic type (i.e., periodic or 
sporadic) and the message timing. Aperiodic messages do not require VLs, but are subject to a 
connectionless transfer. Therefore, each aperiodic message must include naming information for 
routing through the network.  

The NI is responsible to establish the protocol-specific addresses of the messages. More precisely, 
when it comes to the end-to-end path of a message, the NI looks up the defined addresses paired to 
the VLIDs (in port configuration) and generates a protocol-specific NoC address. In case the 
destination is physically located on the same node, the destination of the target-tile will be 
generated. Otherwise, the message, will be redirected to the gateway.  

The destination address (including the tileID and the portID) of the message will be delivered to the 
NoC interface, so that the NoC interface generates the path to the destination to be inserted into 
the header.  

 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 39 of 121 

1.1.4 Bridging of Incoming Messages 

As the NI acts as a bridge between the NoC and the cores, it must be able to support the 
bidirectional communication. Bridging of incoming messages supports the communication from the 
NoC towards the cores. This bridging is done via packet classification and dispatching the messages 
to the destination ports. The one-to-one mapping between the VLs and the ports enables this 
service to classify the incoming messages and write them to the respective port. Thereafter the 
respective tile will be able to read the message. 

 

1.1.5 Serialization of Messages   

As described earlier, the bridging layer dequeues the messages at the core interface and feeds them 
into the serialization layer. The bridging layer is intended to apply the temporal constraints defined 
at each port, without taking into account the priorities; this part will be done by the serialization 
layer. In other words, the serialization layer consolidates all messages of the same priority and feeds 
them into the NoC interface, taking into account only the priorities.  

Priority_Queues

Queue (Sporadic Msg. Priority 0)

Queue (Sporadic Msg. Priority 1)

Queue (Aperiodic Msg.)

Queue (Periodic Msg.)

Legend: three priority classes

Priority: Middle (SP)

Priority: Low (AP)

Priority: High (PE)

Serialization LayerBridging Layer

 

Figure 14: The interface between the bridging layer and the serialization layer at on-chip NI provided by priority-queues 

As depicted in Figure 14, the interface between the bridging and serialization layer is provided by 
priority-queues.  Each priority-queue is associated with a unique priority, which determines the 
order of writing them to the NoC interface. One queue, which has the highest priority, is used for all 
periodic messages. At any point in the time, there is at most one message in this queue due to the 
conflict-free time-triggered schedule that prevents contention between periodic messages. Multiple 
queues of middle priority class can be used for the sporadic messages, where each queue exhibits a 
corresponding priority level. The messages from the sporadic ports are relayed into the priority-
queues matching the priority of the VLID. For aperiodic messages, there is one serialization queue 
with the lowest priority. The serialization layer reads the available message of the highest priority 
and feeds it into the NoC interface. 

 

1.1.6 Timely Blocking and Shuffling  

In order to assure a collision free communication, we need a mechanism to solve the collision 
between messages arriving at the NI at the same time. To resolve the collision between the periodic 
and sporadic messages we can use either timely block or shuffling, whereas to resolve the collision 
among sporadic messages and also between sporadic and aperiodic messages, only shuffling is 
employed. 
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 The timely block mechanism guarantees no collision between two messages of different 
priorities by blocking the bandwidth during a guarding window for a message of higher 
priority.  

 For the shuffling mechanism, no guarding window is needed. In such a mechanism, a 
periodic message could arrive at the NI at the instant at which a sporadic message is 
traversing and therefore the periodic message has to wait until the ongoing sporadic 
message traverses the link. In the worst-case, the periodic message will be delayed for the 
transmission duration of a maximum size message. 

This means each sporadic message or aperiodic message will be delayed for duration of a single 
message of maximum size.  
 

1.1.7 Monitoring Services 

The Reconfiguration and Monitoring Services support the online reconfiguration and monitoring of 
the NI, which is performed locally by the LRM or globally by the GRM. The reconfiguration and 
monitoring services can be employed to reconfigure the usage of the available resources based on 
the current status of the system. In addition to that these services can reflect the environmental 
changes into the system in order to either enhance the efficiency of the overall system or to switch 
the operation mode. Moreover the monitoring and reconfiguration services can be employed for 
fault recovery purposes. In all of above mentioned applications, the process of reconfiguration will 
be triggered by the monitoring services.   

For example in case of fault recovery, the process of reconfiguration is triggered by the monitoring 
services, once a fault is detected. The fault can be for instance, the temporal violation of periodic 
messages at one core. Once this violation is detected monitoring services will report this fault to the 
LRM and the LRM will choose the new configuration either by its own or possibly report it to the 
GRM (see Figure 15).  
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Figure 15 The LRM reports the monitored fault by the MON to the GRM 

 

1.1.8 Reconfiguration Services 

Reconfiguration services support the reconfiguration and rescheduling of the resource allocations 
defined by the LRM (either decided by its own or obtained from the GRM) by updating the listed 
parameters of the configuration information or port configuration. 

 Port configuration: 
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o Enabling or disabling of individual ports: individual ports can be switched off or on by the 
reconfiguration service. (see shaded ports in Figure 16)  

o Temporal parameters: the temporal parameters such as periods and phases for periodic 
messages, minimum interarrival times for sporadic messages can be updated 

o Priorities: the priority of the port is bound with the priority of VL and the message, thus 
changing the priority of the port will affect all of them 

o Buffer size: changing the size of buffer leads to the change of the length of queues for 
the messages 

 Configuration information at the NI:  
o Logical physical address-mapping: in case one core is disabled or moved to another tile, 

the other NIs need to be aware of this modification to dispatch the respective message 
correctly  

o Timely block or shuffling: whether timely block or shuffling will be employed to resolve 
the collision between PE and SP messages 

Following the example described in section 1.1.7, assume the LRM decides to shut down the 
erroneous tile and transfer its tasks into tile#2. According to the new configuration, the erroneous 
core (running J0) will be disabled, Tile#2 will take over tasks J1 and J2 and disable J3 and J4. Tile#3 
enables J3. In addition to the tasks, the new configuration covers the reconfiguration of respective 
ports (see Figure 16).  Notice that the lower priority tasks J0 and J4, together with their associated 
ports, are dropped in the new configuration. 

 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 42 of 121 

GW 

Communication Channel to GRM

Tile#3Tile#2Tile#1

NI

J0 J1 J2

MON

LRM

LRS

NI

J3 J4

NI

J5 J6

LRS MON

P01 P11 P21 P41P32P31

J3

P62P61P51 P32P31

J1 J2

P11 P21

LRM

LRSMON

LRM

Tile#3Tile#2Tile#1

MON

LRM

LRS

NI NI NI

J5 J6

P61P51 P62

On-chip Interconnect

J1 J2 J3

P31 P32P11 P21

MON

LRM

LRS MON

LRM

LRS

 
Figure 16: a) The new configuration chosen by the GRM, b) The new configuration applied by the LRMs 

 

1.1.9 Address translation and route computation 

As the DREAMS on-chip network is source-based controlled, the on-chip path is computed at the NI 
and the NoC interface inserts the path into the head flit before the packet leaves the NI.  However 
the NI provides only the on-chip address and in case the message is targeted to another chip, the 
message will be sent to the gateway. Supporting source-based path computation simplifies the 
architecture of routers, as they do not need to compute the path.  
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Figure 17: Tiles are seen as memory regions at NoC interface 

As described in Figure 2 in section 1.1.2 of Part I of the document, different parts of the system can 
use different addressing types, i.e., a protocol-specific addressing can be used for the NoC. For 
example, in case of the Spidergon STNoC on-chip tiles are seen as memory regions from the point of 
view of the NoC interface. This means that each tile is mapped to a specific address region of a 
virtual address space and will be considered as a region of the address space with the “prefix” of the 
address defining the on-chip target. In other words, instead of using a destination address 
identifying the tile, the NI needs to give addresses in the region that are mapped to the destination 
tile. Figure 17 depicts this correspondence between the memory addresses and the physical 
addresses.  

 

1.1.10 Header and packets handling services 

As shown in Figure 13, the NoC interface is mainly composed of the upstream (which is towards the 
NoC) and the downstream interface (which is towards the processing core). The address translating 
service will translate the protocol-specific addressing. After the address has been translated, the 
route computing service will compute or look up the on-chip path to the destination tile. These two 
services will be employed in case the NoC uses its own protocol-specific addressing. Assembling the 
headers and packets is supported by a set of services in the upstream interface, which encode the 
headers and packetize the messages according to the results of prior services (address translating 
and route computation) to generate the flits. In downstream interface there are services for 
depacketization of the flits and decoding the headers.  
 

1.1.11 Virtual channel allocation 

In order to achieve segregation of mixed-criticality traffic and avoid contention, we employ Virtual 
Channels. Virtual channels (VC) employ the concept of virtualization and provide several channels 
out of a single physical link by using multiple buffers at both terminals of each physical link.  

Utilizing the VCs in conjunction with the priorities delivers us the possibility to support different 
criticalities and guarantee bounded delay for high-critical messages. As shown in Figure 18, different 
buffers (which represent virtual channels) can be allocated to the priorities. For instance VC1 can be 
allocated for periodic messages, VC2, VC3 and VC4 to sporadic messages and VC5 to aperiodic 
messages. Pairing the VCs with the priorities at resources (for example at router) helps the virtual 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 44 of 121 

channel allocator to allocate the VCs based on the priorities. Arbitration between two VCs of the 
same priority (VC2 and VC3 in this example) is performed based on the round-robin scheme.  

Physical link

VC1: PE, priority  I 

VC2: SP1, priority  II 

VC3: SP2, priority  II

VC4: SP3, priority  III 

VC5: AP, priority IV

 
Figure 18: VCs in conjunction with priorities support mixed-criticality 

The allocation of VCs is packet-based and after the packet is constructed by the prior services in the 
NoC interface, the virtual channel allocation service will allocate an available VC to the packet. After 
the VC has been allocated to a packet, the process of injection of the flits will start. This process will 
be controlled by the credit-based flow control. With credit-based flow control, the NoC interface 
keeps a count of the number of free flit buffers in each virtual channel at the next router. Then, each 
time the NoC interface forwards a flit, thus consuming a buffer at the router, it decrements the 
appropriate count. If the count reaches zero, all of the buffers are full and no further flits can be 
forwarded until a buffer becomes available. Once the router forwards a flit and frees the associated 
buffer, it sends a credit to the NoC interface, causing a buffer count to be incremented. 

 

1.1.12 Message shaping 

The message shaping block is placed after the depacketization and header decoding blocks in the 
downstream interface. This service extracts the data (e.g., the payload, the destination port) from 
the head flits and the body flits and constitutes the message to be forwarded to the bridging of 
incoming message.  

 

1.1.13 Intratile routing of messages at NI 

The NI provides the cores and the partitions the communication services, by which components in 
the partitions can communicate by messages. The destination of messages can be on the same tile, 
on another tile or on another node. In latter case the message will be forwarded to the on-chip/off-
chip gateway to be forwarded to the destination node.  

In case the destination of messages generated by the components resides in the same tile, there is 
no need to pass the message through the NoC and the message can be redirected to the destination 
based on the configuration information right at the NI. This redirection service is performed by the 
dedicated loop-back interface at the NI and is synchronized by the bridging layer. This interface 
redirects the messages to the respective port and in case of scenario III (see Figure 20) delivers it to 
the bridging service to be sent via the NoC.   

The intratile routing of messages can occur in three different cases as follow:   

1- As shown in Figure 19, two cores which reside on the same tile communicate with each other. In 
this case, the NI forwards the message directly at the core interface (see Figure 11).  
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2- In Figure 20, a message originated from the outside of the tile is destined to two different cores, 
both of them residing on the same tile. In this case the message will be duplicated at the NI and sent 
to both cores at the same time.  

3- In the third scenario described in Figure 21, one core is sending a message to a core residing on 
the same tile as well as a destination outside of the tile. In this case, the NI duplicates the message 
and sends a copy to the core on the same tile.   
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Figure 19: Scenario I: Core 1 talks to Core 2, which resides in the same tile 
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Figure 20 Scenario II: Incoming message to the tile is targeted to Core 1 and Core 2, both on the same tile. 
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Figure 21 Scenario III: Originated message from Core 2 destined to Core 1 (on the same tile) and also to a core on the 

other tile 
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1.2 On-Chip Communication Router 

On-chip routers realize the cross connection between network interfaces by building the network 
on-chip in combination with the physical links. The routers relay the body flits according to the 
configuration obtained from the head flit. This configuration, whose lifecycle terminates once the 
tail flit traverses the switch, is defined per VC (as described in section 1.1) and stored in the 
respective state fields shown in Figure 21.  

Each router is composed of input and output units, configuration information, switch and control 
logics which collectively implement the flow control functions required to buffer and forward flits to 
their destinations. We will examine the services a typical on-chip router provides with regards to 
prioritization and segregation of virtual channels.  

Figure 22 depicts the services of the router which realize the on-chip communication. On the left 
hand side, the interface for incoming flits serves the NI or another router by providing the interface 
for incoming flits, whereas the interface for outgoing flits provides the outgoing interface for the NI 
or the next router. The switching and VC allocator handle the flits according to the available credits 
and the temporal condition of switch. The detailed description will be given in the following sections.  

 

1.2.1 Interface for incoming flits 

Input units act as the interface for the routers and the NIs. Each input unit includes multiple buffers, 
each of which represents one VC and consequently a priority. Each VC is characterized by “VC State 
Fields”, which include the current status of the VC (e.g., the number of available credits, the bound 
output VC, start and end address of buffer). Each unit is connected at one end to a physical link and 
at the other end to the switch. The number of interfaces depends on the architecture and the 
topology. For example, in case of a router with north, west, south and east directions, there would 
be four input units and four output units.  

 

1.2.2 Virtual Channel Allocation 

As described in section 1.2, the resource allocation at physical layer is done per packet as well as per 
flit. For instance each VC will be allocated to one packet at each time. This allocation is done by the 
Virtual Channel Allocator (VA) at the instant the head flit of the packet arrives at the router under 
the condition that there is any available VC at the output unit of the router. The VC will be 
deallocated once the tail flit traverses the switch. The availability of the VC is controlled by the 
credits.  
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Figure 22: The on-chip router 

1.2.3 Switching 

As shown in Figure 22, the switch is the central part of the router, which is fully configured by the 
Switch Allocator (SA). After the virtual channel was allocated to the packet by the request issued by 
the head flit, each flit of the packet needs to traverse the switch. The allocation of switch is per flit 
which means each flit needs to request a time slot of the switch from the SA. The SA will schedule 
the switch among the competing flits (in other words competing virtual channels), taking into 
account two criteria. First, in case multiple requests come to the SA at the same instant, the flit 
belonging to the packet of higher priority will win the competition. The second point which needs to 
be checked is the availability of a vacant buffer at the output of the switch. In case two or more 
requests of the same priority arrive the SA at the same time, the SA will allocate the switch based on 
the round robin.  
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After the flit won the competition for the switch allocation, it can traverse the switch and be stored 
either directly into the input buffer of the adjacent router or optionally in the single buffer at the 
output unit.  
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Figure 23: Services of on-chip router 

 

1.2.4 Interface for outgoing flits 

The interface for outgoing flits serves as an intermediary place for the flits, which have traversed the 
switch and waiting for the next router or the NI, to be dequeued. In case the switch has an output 
speedup of one (switch bandwidth equals output bandwidth) the switch and the output channel can 
be synchronized, otherwise, the output unit typically incorporates a queue (as shown in Figure 21) to 
decouple the switch from the output unit [14].  

 

1.2.5 Monitoring service 

Monitoring services require the availability of registers that the OS can access to understand the 
current status of the traffic. This solution is not possible at the on-chip router level due to a high cost 
of implementation (it might be tens to hundreds of routers in a NoC) but also due to the necessity of 
a distributed bus all over the SoC to access these registers. 

Instead traffic monitoring registers are available at network boundaries, i.e. Network interfaces, and 
the OS can get information here on the status of the traffic. Being aware of the routing paths and 
network topology, it will be able to react. 

 

1.2.6 Configuration service 

Unlike Wide Area Network routers, On-Chip networks must be as low-cost area as possible. While 
providing full switching and arbitration policies to forward incoming packets to output ports, their 
implementation must be reduced to the strict necessary. That’s why there are no possibilities to 
reprogram on-chip routers.  

However, it does not mean that the routing itself cannot be reprogrammed. Indeed, as well as for 
the monitoring, the reprogramming function is moved to the network boundary, i.e. the Network 
Interface. Using source routing, NoC reprogram the routing in the network interface routing 
registers, and this routing information is then embedded in the NoC packet header part. The routers 
will react differently to a new route indicated in the header of the encapsulated packet. 

In the same way, reprogramming the QoS for a packet consists in reprogramming the QoS settings in 
the NI registers and then the QoS information is part of the header. The router will react to this QoS 
information. 
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Group of Off-Chip Communication Services 
In the following the message-based off-chip communication services are described including the off-
chip network interface and the off-chip routers. The off-chip network interface provides the 
interface of a node to an off-chip network with a suitable communication protocol (e.g., TTEthernet). 
The connection between network interfaces occurs using one or more off-chip routers in a given 
topology (e.g., star, ring).  

1.3 Off-Chip Communication Network Interface 

The off-chip communication network interface is a building block to realize the gateways between 
the network-on-chip and the off-chip networks. In addition, the off-chip communication network 
interface can be used in DREAMS nodes that do not contain network-on-chip (e.g., GALILEO interface 
to DREAMS).   
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Figure 24: Off-Chip Network Interface 

The off-chip network interface acts as the injection point for messages generated by a node for the 
off-chip network. Likewise, the network interface is a sink for messages from an off-chip network 
destined to the respective node. 

Figure 24 shows a model of the network interface, which consists of a set of ports, a bridging service, 
egress queues, an ingress queue and a MAC.  

 

1.3.1 Egress queuing service 

The egress queues consist of one periodic egress queue, multiple sporadic queues and one aperiodic 
egress queue. Each sporadic queue has its own priority level. 

The deterministic behaviour of the periodic messages is ensured by the “periodic message 
scheduler” (see section 1.3.4) in combination with the higher priority than sporadic messages. The 
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deterministic behaviour guarantees that no conflict appears at the egress queue. Therefore one 
queue is sufficient, which needs to provide buffer capacity for a single periodic message of maximum 
size. 

To control the resolving of contention between the sporadic messages, we distinguish multiple 
queues according to their priorities. These queues are used to multiplex the frame flow that comes 
from the internal message queues. The queues provide guaranteed buffer capacities, which can also 
be realized by dynamic memory allocation. The guaranteed buffer capacities allow to prevent 
message loss due to the bounded accumulation of sporadic messages determined by the rate-
constraints. 

1.3.2 Ingress queuing service 

The ingress queue consists of one FIFO queue for each network. The incoming massages to the MAC 
from the network are queued into the ingress queue, then the ingress queuing service notifies the 
message bridging service.   

1.3.3 Core interface service 

This service allows the core to read and write to the ports in analogy to the on-chip network 
interface (cf. part II, section 1.1). The core interface is independent of whether the interaction 
between components occurs via an off-chip or an on-chip network. 

1.3.4 Periodic message scheduler 

The periodic message scheduler is responsible for forwarding the periodic messages from a 
corresponding virtual-link to the egress queue at the time specified in the static communication 
schedule. 
The periodic message schedule uses the port configuration parameter to determine the point in time 
when the periodic message needs to be forwarded with respect to the global time base. 

1.3.5 Sporadic traffic regulator 

The sporadic traffic regulator guarantees the minimum interarrival time between two consecutive 
instances of sporadic messages on the respective virtual link. If this timing constraint is satisfied, 
then the sporadic traffic regulator relays these sporadic messages from its queue to one of the 
sporadic queues at the egress queue according to the message priority. 

1.3.6 Ingress and egress packet handler 

The packet handler is responsible for redirecting the incoming aperiodic messages from the off-chip 
network to the respective ports. In addition, the packet handler polls the aperiodic ports and 
redirects the respective messages to lowest priority egress queue. 

1.3.7 Fusion of ingress messages 

This service performs message deduplication using different mechanisms according to the traffic 
type. 

 Periodic message: In order to hide the paths and different latencies of the different 

networks, the fusion of ingress messages service requires a priori knowledge about the time-

triggered schedule. This schedule includes information about the receiving time, the sending 

time and the corresponding buffer identification. The fusion of ingress messages service 

checks the corresponding virtual-link buffer before the sending time and takes the decision 

to send one of the redundant periodic messages accordingly. Moreover, the fusion of ingress 

messages service establishes deterministic arrival times of these messages. 

 Sporadic message: For each incoming sporadic message the fusion of ingress messages 
service checks the sequence number and compares it with the sequence number that is 
listed in the configuration parameters. The "First Valid Wins" policy is used to take the 
decision on the forwarding of redundant messages. Upon the transmission of a message, the 
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fusion of ingress messages service updates the sequence number in the configuration 
parameters. 

 Aperiodic message: NO redundant message support for the aperiodic message. 

  

1.3.8 Duplication of egress messages 

This service is responsible for creating copies of sporadic and periodic messages at the egress ports 
that are sent to the different MACs. 

 

1.3.9 Reconfiguration and monitoring services  

The off-chip network interface has two building blocks (i.e., reconfiguration and monitoring) that are 
responsible for rewriting the configuration parameters and for the observation of the 
communication resources, the message timing and for retrieving error detection information. 

The monitoring block will monitor the time of the message arrival and transmission and compare it 
with its configuration parameters (i.e., period and phase of sporadic messages with tolerance 
windows, minimum interarrival times of sporadic messages). In addition, the monitor is responsible 
for monitoring the application behavior (e.g., monitoring deadlines, overload detection).   

The LRM can check and analyse the monitored behavior and send a new configuration to the 
reconfiguration building block. The reconfiguration building block will interpret the messages from 
the GRM and adopt the modified configuration parameters of the ports. The following configuration 
parameters are supported: 

 Timing configuration of ports: This configuration parameters include the period, phase and 
tolerance windows of periodic messages, as well as the interarrival times and priorities of 
sporadic messages. 

 Address information of ports: The virtual link associated with a port can be changed. 

 Change of guaranteed buffer capacities: The queue size associated with ports, ingress and 
egress queues can be modified. 

 Replication and fusion: The redundancy degree of messages and the time for replication and 
fusion and be configured. 

 Memory map of tile interface: The address of the ports in the memory map of the tile 
interface can be changed. 

1.3.10 MAC interfacing  

The MAC interfacings sends and receives the message from the off-chip network by encapsulating 
the message in the frame or decapsulating the message from the frame. In case of incoming 
messages, the MAC layer filters messages that are not destined to this node based on the MAC 
address. 

 

1.4 Off-Chip Communication Router 

The model of the off-chip router is illustrated in Figure 25.  The off-chip router architecture includes 
several building blocks to segregate messages from subsystems of different criticality, to ensure the 
deterministic behaviour of the periodic messages and the bounded end-to-end delay of sporadic 
messages. 
The off-chip router provides multiple physical links and a bridge layer.  Each physical link contains a 
physical layer and a MAC layer. The bridge layer is responsible for handling ingress messages and 
forwarding them to the egress ports depending on the traffic type (periodic, sporadic and aperiodic). 
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Figure 25: Block Diagram of Off-Chip Router 

The router-core provides several services to redirect the messages and guarantee spatial and 
temporal partition of the critical traffic. 
 

1.4.1 Internal message queuing 

The internal message queues belong to three groups according to the message traffic type, as 
follow: 

 Periodic VL Buffer: Each periodic VL has one periodic VL buffer which provides buffer space 
for exactly one message. In case this buffer is full and another message arrives with the 
same VLID, the newer message replaces the old one. 

 Sporadic VL queue: Each sporadic VL has one queue. It is possible to store several messages 
of the respective VL in this queue. 

 Aperiodic Queue:  All aperiodic messages are stored in one queue since aperiodic messages 
have no timing constraints on successive message instances and no guarantees. 

 

1.4.2 Egress queuing service 

The egress queuing service is the same as for the off-chip network interface (cf. part II, 
section 1.3.1). 
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1.4.3 Packet classification service  

The packet classification service distinguishes between traffic types based on connection-oriented 
and connectionless communication. The connection-oriented communication is used for the periodic 
and sporadic messages. Aperiodic messages use the connectionless communication. We regard a 
message as a tuple with the following elements: 

 Message in connection-oriented communication : <type, VLID ,data>  
 Message in connectionless communication: <type, destination address, data>. 

 

For example, these traffic types can be realized in TTEthernet as follows. The packet classification 
service distinguishes between traffic types based on the destination address [7]. The destination 
address field is interpreted differently depending on the traffic type. In aperiodic traffic, the format 
for destination addresses consist of the mac address of the destination DREAMS chip. However, the 
destination address of the periodic and sporadic traffic is subdivided into a constant 32-bit field and 
a 16-bit field called the virtual link identifier (VL-ID). The constant field is extracted from the 
destination address using the bit mask 0xffffffff0000. In case the constant field has a predefined 
value, this message is either periodic or sporadic. Otherwise the message is considered as best-effort 
traffic. The bridge classification distinguishes between periodic or sporadic messages using the value 
of the VL-ID. 
When a periodic message arrives at the router-core from the MAC layer, the packet classification 
service checks the integrity and validity of the message. The integrity checking verifies that the 
message has the correct size and arrives from the correct ingress physical link as defined by a time 
triggered (TT) table (cf. part II, section1.4.7) for the virtual link of the message. Valid messages are 
put into the corresponding virtual-link buffer, which provides buffer space for exactly one frame. In 
case this buffer is full and another message arrives with the same virtual-link identifier, the newer 
frame replaces the old one.  
When a sporadic message arrives at the router-core, the message is checked in the filtering unit of 
the packet classification service. The size of the message must be below the maximum frame size 
and the ingress physical links must comply with the configuration parameters of the virtual link. 
Valid messages are enqueued into the corresponding virtual-link queue. 
 

1.4.4 Periodic scheduling service 

The periodic scheduling service is responsible for relaying the periodic message from the virtual-link 
buffer to the queue for periodic messages at the correct egress port according to a TT table. The TT 
table also determines the point in time when the periodic message is relayed, thereby ensuring the 
deterministic communication behaviour.  
 

1.4.5 Sporadic shaper service  

 The sporadic shaper realizes the traffic policy for the sporadic messages by implementing an 
algorithm known as token bucket [8]. This service checks the time interval between consecutive 
frames on the same virtual link and moves sporadic messages from the virtual-link queue to one of 
the sporadic egress queues according to the message priority.   
 

1.4.6 Aperiodic self-configuration service  

For aperiodic message the spanning tree protocol is used to establish a loop-free topology for 
communication of aperiodic messages [9]. The supported aperiodic messages include Bridge 
Protocol Data Units (BPDU) and aperiodic data messages. BPDU messages are exchanged between 
off-chip routers to determine the network topology, e.g., after a topology change has been 
observed.  
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1.4.7 Configuration parameters and reconfiguration service 

The time-triggered communication is based on a predefined schedule where there are two groups of 
parameters for each periodic message: a time-triggered receiving parameter table and a time-
triggered sending parameter table providing the message period and phase with respect to a global 
time base (see Figure 26). 

Receiving 

Parameter Table

Sending Parameter 

Table

typedef struct  {

double Reciving_win_start;

double Reciving_win_finsh;

int  VL_ID;

double  time_of_period;

double  time_of_phase;

  double size;

  int sender_port;

int queue_num;

int receiver_ports[MAX_RECEIVER_PORTS];

}TT_Table;

 

Figure 26: Time-Triggered Schedule 

The sporadic communication is based on configuration parameters that define a minimum 
interarrival time and jitter for each virtual link. The minimum interarrival time is defined as the time 
interval between two consecutive messages that are transmitted on the same virtual link. The jitter 
is the maximum timing variability that can be introduced by multiplexing the virtual links into shared 
egress queues. A message that arrives within the jitter is considered as timely, otherwise a new 
minimum interarrival time is started. The structure of the configuration parameters is shown in 
Figure 27. 

 

typedef struct {

  double BAG;
  double  max_jitter; % jitter value 
 double max_size;    % Maximum message size 
 int sender_port; 

int receiver_ports[MAX_RECEIVER_PORTS]; 
    int priority;
 int queue_num;
 int VL-ID;
  int SN; % sequence number
  Boolean jitter;
} RC_msg;  

Figure 27: Sporadic Configuration Parameters 

The global resource management can switch time-triggered tables in case the system has multiple 
scenarios of the periodic messages. In addition, the global resource management can rewrite or 
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modify the configuration for one or several virtual links for the periodic and sporadic 
communication. 
Moreover, the global resource management may modify the non-active time-triggered tables and 
later switch to this new table instead of the current one.  
 

1.4.8 Monitoring service 

The off-chip network offers a number of monitoring features that can provide the basis for 
reconfiguration decisions. These monitoring features cover the behaviour of switches themselves as 
well as the communication that is transferred by the switch. 
 
Switch level monitoring: For each off-chip network switch, at least the following is monitored by the 
off-chip monitoring service. 
 

 Invalid Switch configuration: Collects a number of flags (config not valid, wrong device ID, 
CRC error, etc…) that relate to the configuration that is loaded into the switch. If these are 
erroneous, typically the switch cannot operate in running mode and action is required. 

 Not enough Switch memory: i.e. critical traffic dropped due to lack of memory 
(bVlPartitionDropError). 

 
Network traffic monitoring: For network traffic, at least the following is monitored by the off-chip 
monitoring service on the level of each individual virtual link. 
 

 Length error (nLengthError): a frame received exceeds the configured maximum length for 
the specific VL. 

 Timing error (nTimingError): Frame received outside of the expected window (wrong 
timing). 

 Unreleased error (nUnreleased): Frame received while previous frame was still unread. 
 
 

1.4.9 Serialization service (timely block & shuffling) 

The serialization service forwards the messages from the egress queues to the MAC layer according 
to the priority. The highest priority is assigned to periodic messages, whereas aperiodic messages 
have the lowest priority. 

Also the serialization service uses one of the following mechanisms to solve the collision between 
different traffic types, the shuffling or timely block mechanisms. The timely block mechanism 
disables the sending of other messages in the router-core during a guarding window prior to the 
transmission of a periodic message. For the shuffling mechanism, no guarding window is needed. In 
the worst-case, the router-core delays a periodic message for the duration of maximum size 
message. In addition, the message serialization supports timely block and shuffling service as 
descried earlier in (part II, section 1.1.6).  

 

1.4.10 MAC interfacing 

The MAC interfacing service is identical to the one of the off-chip network interface (cf. part II, 
section 1.3.10). 

 

 

 

Group of Gateway Services 
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In order to establish the end-to-end communication over heterogeneous and mixed-criticality 
networks DREAMS gateways are used. The connection between off-chip networks, as well as 
between off-chip and on-chip networks is established through gateways as illustrated in Figure 28. 
The gateway consists of gateway core functionality, network interfacing and network MACs.  

 

The gateway core is responsible for redirecting incoming messages based on timely redirection, 
protocol conversion, monitoring and configuration services. The network interfacing provides the 
interface between the MAC and the gateway core. Furthermore, classification and serialization of 
the packets is performed in the network interfacing. In order to realize fault-tolerance, the gateway 
can include multiple network MACs. Each network MAC connects the gateway to either an off-chip 
network (e.g., TTEthernet) or an on-chip network (e.g., STNoC). In case of network redundancy, 
multiple network MACs are required. Thus, the network interfacing is responsible for merging 
identical incoming messages and duplicating outgoing messages to be sent to different MACs.   

 

 Monitoring and 
Configuration

 Packet 
classification

 Serialization 
service

 Ingress and 
egress queuing

 MAC interfacing

Gateway Core 
Functionality

Network Interfacing

Network 1 
MAC

Network 2 
MAC

Timely Redirection of Messages
 Time-triggered redirection of periodic messages
 Traffic shaping of sporadic messages
 Redirection of aperiodic messages
 Up/down sampling
Protocol Conversion
 Conversion of naming
 Conversion of control information (e.g., header)
Monitoring and Configuratuion
 Update of data structures for redirection of 

messages and protocol conversion
 Detection of timing and value failures  

Figure 28: Gateway 

We can distinguish two types of DREAMS gateway: modular gateways and integrated gateways as 
shown in Figure 29. The integrated gateway combines the gateway core with the network 
interfacing. In the modular gateway type, the gateway core is realized on top of the network 
interfaces. The functionality of both types is similar but the required buffer capacity and the delays 
of the modular gateway will be higher than in case of an integrated gateway.   

Gateway Core 
Functionality

Network 1 
MAC

Network 2 
MAC

Network 1 
NI

Network 2 
NI

Gateway Core 
Functionality

+
Network Interfacing

Network 1 
MAC

Network 2 
MAC

Modular gateway Integrated Gateway
 

Figure 29: DREAMS Gateway Types 

The network interface of the modular gateway can be instantiations of the ones presented in part II, 
sections 1.1 and 1.3. In case of the integrated gateway, the architecture is illustrated in Figure 30. 
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Figure 30:  Architecture of the Integrated Gateway 
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1.5 Gateway Core Functionality  

The services of the gateway core functionality are as follows. 

1.5.1 Configuration parameters 

The configuration parameters of the gateway are as follows:  

 Guaranteed buffer capacity: Each ingress queue, egress queue and port is associated with 
a corresponding guaranteed minimum buffer capacity.  The buffer capacity is determined 
by the maximum message and the message timing. This buffer capacity can avoid message 
omission of sporadic and aperiodic messages based on rate-constrains and message 
periods. The guaranteed buffer capacity can also be realized using dynamic memory 
management. 

 Address information of ports: The virtual link associated with a port and the data direction 
(from the off-chip network, to the off-chip network) are defined. 

 Message type: The message type is defined such as periodic, sporadic or aperiodic. 

 Timing parameters: In case of periodic messages, the parameters include the period and phase. 
For sporadic messages, the priority, the interarrival time and the jitter are specified.  In case of 
aperiodic messages, no timing parameters are required.  

  

1.5.2 Packet classification service 

This service is responsible for classifying the incoming messages from the MAC in order to decide on 
the corresponding buffer (i.e., ingress and egress) according to message type and the configuration 
parameters. Additionally, the packet classification service will check the message format and its 
control information (e.g., VLID). In case the message has an invalid message frame, it will be 
discarded. 

Moreover, the packet classification service uses the configuration parameters to check the integrity 
and validity of the periodic and sporadic messages. This includes the verification of the message size, 
checking whether messages arrive with correct VLID. In addition, it checks whether the periodic 
messages arrive within the specified receiving windows of the virtual link. 

 

1.5.3 Message scheduling service 

This service guarantees the determinism of the periodic message communication behaviour within 
the on-/off-chip gateway. Each periodic message has predefined parameters such as period and 
phase. According to the predefined configuration for the message scheduling, this service 
determines the point in time when the periodic message is relayed. 

 

1.5.4 Traffic shaping service 

This service is responsible for guaranteeing the minimum interarrival time between two consecutive 

sporadic messages on the respective virtual link.  The minimum interarrival time and other 
parameters are available in the port configuration for each virtual link.  

 

1.5.5 Relaying of aperiodic messages 

This service is responsible to relay the aperiodic messages between ingress and egress queues based 
on the respective direction and the destination address. 

 

1.5.6 Monitoring service 

This service is responsible for observing the system resources, timing restrictions and unexpected 
system behaviour. The monitored data will be sent to the LRM to collect feedback and observe the 
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DREAMS chip. This collected data will possibly be used later in the GRM in order to reconfigure the 
network.     

 

1.5.7 Down sampling 

This service provides the message exchanges between networks with different periods of periodic 
messages or different rate-constraints of sporadic messages. The gateway has to redirect a subset of 
the incoming messages to satisfy the timing requirements of the target network. In addition, the 
redirection needs to be synchronized to ensure the forwarding of consistent data. 

In the down sampling service, the gateway will send the most recent periodic message that arrived 
before the next sending time point. In case of the sporadic messages, the traffic shaper will drop all 
messages that arrive within the minimum interarrival time.  

 

1.5.8 Protocol conversion 

DREAMS supports virtual links over networks with different off-chip and on-chip communication 
protocol, e.g., time-triggered Ethernet, EtherCat and STNoC. Therefore, the gateway is responsible 
for adapting the message format according to the used communication protocol (e.g., header with 
address information, flow control, CRC). The conceptual logical and physical address space of 
DREAMS (cf. Part I) needs to be mapped to each network protocol. 

The protocol conversion service is responsible of two major functions, encapsulation and 
decapsulation of the incoming and outgoing messages. The message format (described in part I, 
section 1.1.2) two styles according to the traffic types which need to be mapped to the respective 
network protocol:  

 Periodic and sporadic <VLID, data>. 

 Aperiodic <logical name sender, physical name receiver, data>. 

In case of the periodic and sporadic messages, the VLID implicitly entails the source port, the 
destination ports, the path on the on-chip and off-chip networks and the message timing. For 
aperiodic messages, the information of the destination is encoded explicitly inside the message 
format as part of the logical/physical names.    

 

1.6 Network Interfacing Services 

The network interfacing services encompass several services that are also provided by the off-chip 
and on-chip network interfaces. 

 

1.6.1 Buffer capacity guarantee 

This service guarantees sufficient queue capacity for ingress and egress ports to avoid message loss 
based on the time behaviour of the periodic and sporadic messages. The buffer capacity guarantee 
can also be realized using dynamic buffer management mechanisms.   

 

1.6.2 Egress queuing service 

The egress queuing service is explained in part II, section 1.3.1. 

1.6.3 Ingress queuing service 

The ingress queuing service is explained in part II, section 1.3.2. 

1.6.4 Configuration parameters 

The configuration parameters are explained in part II, section 1.5.1. 
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1.6.5 Serialization services 

The message serialization service is identical to the serialization service of the off chip 
communication router (cf. part II, section 1.4.9). 

1.6.6 Monitoring service 

The monitoring service is explained in part II, section 1.5.6.   

1.6.7 Reconfiguration service 

The reconfiguration service is explained in part II, section 1.4.7. 

1.6.8 MAC interfacing 

The MAC interfacing service is explained in part II, section 1.3.10. 
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Group of Shared Memory Services 
 

1.7 Shared Memory Services 

The shared memory model is supported on top of message-based networks. A shared address space 
is established for external memories and input/output devices.  Thereby, application subsystems can 
exploit programming models based on shared memory in addition to message-based interactions, 
while exploiting the temporal and spatial partitioning of the message-based network infrastructure.  

1.7.1 Address space/memory mapped accesses 

Shared Memory communication allows efficient data exchanges between multiple programs running 
on the same processor of a tile. This can be further extended to the communication of multiple 
threads within a single program. 

From the hardware perspective, shared memory consists in a typically large amount of RAM that can 
be accessed by means of read/write instructions issued by several CPUs in a multiprocessor 
computer system. This requires that all CPUs implicitly share a common application memory space, 
which classically consists of several on-chip DDR memory dies accessed through on-chip DDR 
memory controllers.  

From the software perspective, two processes communicating through shared memory are using the 
same physical memory location as their regular working memory. This requires that the two 
processes are located on the same machine (running a given OS/hypervisor). While being very fast 
(the communication between the processes happens with a data rate in the order of a memory 
access), specific care must be taken with respect to memory inconsistency when the communicating 
processes are executed on two different CPUs. An underlying cache coherent architecture is 
necessary in this case. Cache coherency might be guaranteed using cache controllers coupled to OS 
services. In this case, part of the shared memory traffic will be constituted by read/write accesses 
generated by the cache controllers upon cache refill, cache miss (reads) or cache flush, clean (writes) 
events. 

Considering the DREAMS targeted architecture and assuming a 32-bits address space, a proposed 
address space map model might be the one of Table 5.  

The architectural style abstracts from the fine grain details of the on-chip/off-chip architecture as for 
example the size of the embedded RAM for each processor on chip as well as the size for the DDR 
shared memory. This will be evolving with the forthcoming definition/refinements of the DREAMS 
chip. 

 

DDR controller 0 

DDR controler 1 

CPU0 dedicated space 

... 

CPUn dedicated space 

Gateway dedicated space 

Local on-chip periph, flash... 
dedicated space 

Table 5: Memory Map example 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 63 of 121 

1.7.2 Write access service 

Write operations (also known as store operations) are used to write data in a shared memory 
location. Then any other process implied in a communication exchange may observe the data at the 
same memory mapped address. Writes are classical operations from the processor’s instruction set 
for which IP protocols and underlying on-chip communication layers such as bus or NoC offer full 
support. Note that write operations might be used not only for writing data structure (such as 
strings, tables…) but also to access memory location that can be considered as flags. Furthermore, 
write operations reaching the shared memory might not always be generated from the processor 
itself but from an intermediate communication stage, such as a cache controller executing a 
flush/invalidate/write back operation. 

 

1.7.3 Read access service 

Read operations (also known as Load operations) are used to read data in a shared memory location. 
Reads are classical operations from the processors instruction set for which IP protocols and 
underlying on-chip communication layers such as bus or NoC offer full support. Note that read 
operations might be used not only for accessing data structure (such as strings, tables…) but also to 
access memory location that can be considered as flags. Furthermore, read operations reaching the 
shared memory might not always be generated from the processor itself but from an intermediate 
communication stage, such as a cache controller executing a speculative fectch/cache refill 
operation. 

 

1.7.4 Shared memory coherency service 

To avoid data inconsistency in shared memory, when in multiprocessor context, special care must be 
taken with respect to memory coherency. Furthermore, modern (=current) generations of 
processors embed L1/L2 caches memory which speed up access to memory at the cost of an higher 
processing for maintaining the cache/shared memory coherency. 

Coupling Cache Controllers allowed operations to services offered by modern multiprocessor real-
time OS, Cache coherency and shared memory consistency is a well-defined problem with standard 
solutions. We propose to rely on existing offered SW services for this aspect in DREAMS. 

 

1.7.5 Monitoring and configuration services 

For these resource management services, a shared memory controller must be assumed. Depending 
on the model chosen, different criteria might be monitored (internal queues status, number of page 
misses/hits) or reconfigured (internal queues allocation, power-off of part of the memory area, etc.). 

However, the topic is too wide to be addressed at this point of the project without previous 
knowledge of the memory controller to be considered in DREAMS. 
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Group of IOMMU Services 
 

1.8 System Services offered by IOMMU & NoC Firewall Components 

This section provides a generic description of the I/O Memory Management Unit (IOMMU) and NoC 
Firewall services which relate to global shared physical memory and the off-chip gateway. These 
services will be further developed in DREAMS and are compliant with ARM v7 processor architecture 
and related virtualization extensions. 

 

1.8.1 IOMMU address translation service 

The I/O memory management unit (IOMMU) is a system module designed to translate addresses 
from the virtual space of a guest device to global shared physical address space, thereby managing 
how a DMA request originating from a device accesses external shared memory. This translation is 
similar to a processor's Memory Management Unit (MMU), except that the IOMMU translates 
memory accesses of fully virtualized devices rather than the CPU, as the MMU does. 

 

1.8.2 Secure memory access services with page-level granularity 

IOMMU functionality is not limited to translating device DMA addresses to physical addresses via 
virtual address translation. The IOMMU provides also secure memory access services by isolating the 
device accesses using page-level granularity. For instance, in a virtualization-aware environment, the 
hypervisor can configure (or remap) the I/O page tables of each device to safely map a device to a 
particular guest OS without risking integrity of other guests, i.e. a guest cannot break out of its 
address space with rogue DMA traffic. Additionally, the IOMMU is designed to provide an increased 
amount of security in scenarios without virtualization. In particular, the OS must be able to protect 
itself from buggy device drivers by limiting a device's memory accesses and managing the 
permissions of peripheral devices. Typically, upon an address translation request from a device, the 
IOMMU consults the I/O page table to find the physical page address. If a device tries to access 
memory without a valid entry in its I/O page table, then the IOMMU will access a default translation 
context and inform the hypervisor through an interrupt (or reject the access if configured to do so); 
notice that different types of system exceptions can occur, such as address translation requests from 
a device with uninitialized context, and even more critical security-related events, such as request 
access violations arising from malevolent or corrupt devices, such as DMA controllers. 

 

1.8.3 IOMMU monitoring service 

The IOMMU can also provide monitoring services focusing on page-level access granularity through 
a specialized hardware monitoring unit (HMU). This IOMMU module is able to monitor particular 
events related to: (i) internal IOMMU activity (counter statistics and error logs) and (ii) interface 
transactions (AMBA AXI bus). These events can be used to perform access pattern analysis, estimate 
key performance metrics, e.g. latency, throughput and resource utilization, and optimize the 
architecture by introducing novel decision control mechanisms, including system-wide services for 

 Dynamic management, such as I/O remapping, 

 Performance-oriented system adaptation, including pre-fetching and/or pinning of certain 

pages (e.g. this in particular is related to hard real-time processing at process- or VM-level), and 

 Fault tolerant services, such as dynamic reconfiguration of the page entries in order to recover 

from hardware faults. 

1.8.4 Virtualization-aware hardware NoC Firewall service 

In addition to IOMMU services, a virtualization-aware hardware NoC Firewall unit at the on/off-chip 
network interface can support VM isolation services throughout the multicore SoC by tagging NoC 
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transactions, establishing access rules for virtual components on physical address regions and 
ensuring that rules are obeyed at each network interface. One possible solution envisioned in 
DREAMS targets fine grain rule-checking at memory page-level by invoking a rules table walk to an 
external memory which stores the rules defined with page-level granularity.  

The NoC Firewall concept supports multi-compartment philosophy [Fiorin2010, Porquet2011], 
extending existing protection mechanisms available in virtualization-aware technologies, such as 
ARM v7 Trustzone architecture (and related IOMMU support) [ARM2010]. More specifically, ARM v7 
Trustzone architecture defines only two security domains (secure and non-secure) identified using 
an NS bit available within the memory page descriptors. Notice that alike our rules, the NS bit can be 
statically set (e.g. for a secure or non-secure peripheral), or dynamically modified either at boot time 
or by a system security thread.  



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 66 of 121 

Group of Communication Security Services  
In the following, the security services regarding communication are described. There are two 
different types of communication in the DREAMS architecture: the on-chip communication and the 
off-chip communication. Based on the threat model for communication services (section 2.3.2) the 
on-chip communication is proceeded in a trusted zone. Hence, security services like en-/decryption 
or authentication are only needed for off-chip communication.  

1.9 On-Chip Communication Services Security 

1.9.1 Access Control Service 

The access control service verifies if a system resource is allowed to access the requested resource. 
The on-chip communication access control service verifies the permission for components 
connected to the NoC, e.g., on-chip/off-chip gateway and memory-controller or the related network 
interfaces respectively 

1.10 Off-Chip Communication Services Security 

1.10.1 Encryption Service 

The encryption service encrypts data with a given cryptographic key. It transforms a plain text into a 
cipher text. The encryption service for off-chip communication is used for confidential 
communication between two on-chip/off-chip gateways. No component of the off-chip network as 
well as other gateways can interpret the content of the communication even if they can read it.  

 

1.10.2 Decryption Service 

The decryption service decrypts data with a given cryptographic key. It transforms a cipher text into 
a plaintext. The plaintext is correctly recovered only if the key is correct and there was no 
transmission error. The decryption service for off-chip communication is used for confidential 
communication between two on-chip/off-chip gateways. No component of the off-chip network as 
well as other gateways can interpret the content of the communication because they do not possess 
the right key for decryption. Only the on-chip/off-chip gateways owning the cryptographic key can 
decrypt the data. 

 

1.10.3 Integrity Service 

The integrity service generates a cryptographic checksum for a message, which is transmitted 
together with the message. With this checksum, any modification in the message is detectable. The 
integrity check service for off-chip communication ensures that changes during the off-chip 
communication are noticeable. 

 

1.10.4 Integrity Check Service 

The integrity check service verifies the integrity of a message by re-calculating the cryptographic 
checksum on the received message and comparing it with the received checksum. The integrity 
check service for off-chip communication ensures that changes during the off-chip communication 
are noticeable. 

 

1.10.5 Authentication Code Generation Service 

The authentication code generation service generates a message authentication code (MAC) tag or 
digital signatures on the message for ensuring the data origin as well as to verify the communication 
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partner. This service generates the authentication code at the on-chip/off-chip gateways for 
authenticating the off-chip communication. 

 

1.10.6 Authentication Code Verification Service 

The authentication code verification service verifies the data origin or the communication partner by 
verifying the received MAC tag or digital signatures along with the message. This service checks the 
authentication code at the on-chip/off-chip gateways for authenticating the off-chip communication. 
 

1.10.7 Access Control Service 

The access control service verifies, if a system resource is allowed to access the requested object. 
For off-chip communication the access control service checks, if a component has the permission to 
communicate through the on-chip/off-chip gateway. The gateway checks both directions, the on-
chip/off-chip communication and the off-chip/on-chip communication. 
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2 Core Platform Services – Global Time  

 

Synchronization Problem Formulation 
From a generic point of view the clock synchronization problem appears in systems that consist of 
entities connected to each other by using a network, where some, or all of, the entities are equipped 
with local clocks. In such systems, the aim of the clock synchronization services is then to establish a 
concept of “global time” between those entities that have local clocks. Typically, global time is 
defined as follows: 

Definition 1 – Global Time: Global time is established, when the distributed local clocks in a system, 
which are usually implemented as counters (e.g., as SW variables or HW registers) have “about the 
same value” at “about the same points in real-time” 

Clock synchronization services establish exactly that. Consequently, as the presented definition of a 
global time is vague it makes sense to discuss the clock synchronization services in a generic sense 
first and specialize them hand in hand with concretizing the definition of a global time, as we will do 
as an example for off-chip and on-chip networks. In this section we give a general overview of the 
clock synchronization problem.  
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Figure 31: Computer Time vs. Real Time 

In the following we will use Figure 31 in the discussion of the generic clock synchronization services. 
The diagram plots real time on the x-axis vs. computer time on the y-axis, where the computer time 
is the simulation of real time by the local clocks. The diagram depicts the traces of three local clocks, 
a slow clock, a fast clock, and a clock that perfectly resembles the progress of real time – the perfect 
clock. Applying Definition 1 to Figure 31, we get: at any point (or small interval) in real time, the 
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difference in computer time of the local clocks in the system (in this case the system of the three 
clocks) has an upper bound. The key challenge in clock synchronization is to design specialized 
services that ensure that a given upper bound can be guaranteed in system-specific settings.  

 

We will use the following quality aspects of synchronization in the discussion of the synchronization 
services: 

 precision: worst-case difference of any two non-faulty clocks in the system 

 accuracy: worst-case difference of the clocks in the system to an external time reference 

 startup time: worst-case time after startup of the time sources until the system is 
synchronized (with given precision and/or accuracy) 

 integration time: worst-case time for a non-synchronized component in the system to 
become synchronized 

 changeover time: worst-case time for the components in the system to change from one 
time source to another one (e.g., in the case that the original time source fails) 

 recovery time: worst-case time for the synchronized timebase to recover after global 
synchronization loss 

 

Before discussing the generic services in detail, we should note that there is frequent ambiguity by 
what “time” actually means and we have found that the following differentiations help in the 
discussion.  

 Phase synchronization vs. TAI synchronization:  
o Phase synchronization refers to clock synchronization in a way that the time 

represented by the local clocks is a circular counter, e.g., starting with 0, and 
counting up to a maximum value (usually referred to as the “epoch” of time), once 
the epoch is reached the counter wraps around and starts counting at 0 again. 
Definition 1 holds as it stands above. 

o TAI synchronization in contrast to phase synchronization means that the local clocks 
are not only synchronized to each other in conformance to Definition 1, but TAI 
synchronization also requires the local clocks to represent Time Atomique 
International (TAI time).   

 State synchronization vs. Rate synchronization  
o State synchronization refers to the process of the distributed local clocks 

instantaneously changing the current value of the counters that are used to 
implement the clocks. 

o Rate synchronization refers to the process of the distributed local clocks changing 
the rate according which the counters are updated. Rate correction can be done 
post-factum or into the future, or both: post-factum means that a local clock that 
found that it is currently deviating from other local clocks in the system applies rate 
correction for some time to gradually reach alignment with the other local clocks 
again, while into the future means that the local clock updates its rate with the aim 
not to generate a deviation to other local clocks in the first place.  

Figure 31 depicts phase and state synchronization.  

Time Representation 
The representation of the global time base within the DREAMS architecture is based on a uniform 
time format for all configurations, which has been standardized by the IEEE Standard 1588 
[IEEE1588]. A digital time format can be characterized by three parameters: granularity, horizon and 
epoch. The granularity determines the minimum interval between two adjacent ticks of a clock, i.e., 
the smallest interval that can be measured with this time format. The reasonable granularity can be 
derived from the achieved precision of the clock synchronization. The horizon determines the instant 
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when the time will wrap around. The epoch determines the instant when the measuring of the time 
starts.  

The unified time format (see Figure 32) is a binary time-format that is based on the physical second 
and nanoseconds. According to this time format, the highest possible granularity of the global time 
base is in nanoseconds.  

 

... ...

Time Horizon Time Granularity

Seconds Nanoseconds

232 secs 1 sec bit 1 nanosec bit

struct TimeRepresentation

{

UInteger32 seconds;

Integer32 nanoseconds;

};

 

Figure 32 IEEE 1588 time format [IEEE1588] 

 

The range of the absolute value of the nanoseconds member shall be restricted to: 

0 ≤ |nanoseconds|< 109 

The sign of the nanoseconds member shall be interpreted as the sign of the entire representation 
and a negative timestamp shall indicate time prior to the epoch. 

 

Note that the time horizon of the off-chip network and the on-chip network may differ and require 
conversion. In particular, the off-chip network provides global time only on a granularity of major 
and minor cycles of the communication as shown in Figure 33. 
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Figure 33: Off-Chip Global Time Granularity 

 

2.1 On-Chip Clock Synchronization Service 

In general, a multi-core chip cannot be assumed to provide a single clock signal for the entire chip. 
The reasons why designers introduce multiple clock domains include the handling of clock skew, the 
clocking down of individual IP blocks as part of power management, or the support for 
heterogeneous IP blocks with different speeds (e.g., high-clocked special purpose hardware and a 
slower general purpose CPU).  

Despite the existence of multiple clock domains, the DREAMS architecture will support a global time 
base at chip-level that is also externally synchronized with respect to a chip-external reference time 
(i.e., the cluster-level global time base). Figure 34 shows the global time at chip-level and the 
provision of multiple clock domains by providing different clocks to different components.  
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Figure 34: Example of different clock domains in DREAMS architecture 

2.1.1 Different Clock Domains 

The DREAMS architecture supports different clock domains by design. As shown in Figure 35, 
different parts of the system can operate at different clock speeds and components can include an 
arbitrary number of local clock domains, which are not visible outside of the tiles. For instance, a tile 
can be assembled by processor cores, memories, and network interface, which operate at their own 
frequencies.  
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Figure 35: Example of different clock speeds at different parts of the system 

On the other hand, the aim of DREAMS is to introduce an architecture which provides a system-wide 
synchronized global time base. This global time base allows the temporal coordination of actions on 
the distributed components (e.g., avoidance of contention at resources based on TDMA). In addition, 
timestamps assigned at different components can be related to each other.  Timestamps become 
also meaningful outside the component where the event has been observed. 

The global time base at chip-level embodies an independent clock domain, which typically has a 
lower frequency than the rest of the chip. This clock can be provided by a low-frequency global clock 
signal, thereby avoiding the problems that would be incurred by a high frequency global clock signal 
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on the chip (e.g., clock skew). Alternatively, the global clock signal can be generated through internal 
clock synchronization (i.e., within the chip).   

 Global clock line: as shown in Figure 36, a dedicated clock line will be available at each 
component (e.g., routers, processing cores, network interface, etc.) and each of them 
synchronizes itself with the provided clock reference.  
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Figure 36: Global time base clock line 

 Message-based synchronization: Alternatively, the value of the global time base can be 
provided to each component via a message based synchronization protocol. In this method, 
the value of global time base will be sent to the components in defined unified time format 
and they will update the local clock by either of mentioned synchronization methods. 

For example, individual clock domains can operate in the range of GHz, whereas the global on-chip 
clock signal can have a lower frequency by several orders of magnitude. 

The choice of the frequency determines the precision of the temporal coordination and the 
meaningful granularity of timestamps. In particular, the frequency of the global time base 
determines how densely a sequence of mutually exclusive distributed actions with time-triggered 
execution can be packed together while still avoiding collisions at the respective resources. (An 
example is given later for the on-chip communication.) 

The existence of multiple clock domains, particularly of a global time base, entails the decoupling of 
synchronization of actions within the system and the operation of local entities. The global time base 
is allowed to maintain a relatively slow clock domain compared to the remainder of the system and 
the frequency associated with this clock domain determines the global granularity, to which actions 
in the system are synchronized. More precisely, the activities are not driven by the global time base, 
but they are synchronized by the global time base. 

For instance, the on-chip communication of flits and phits can take place at a frequency that is 
higher than the rate of the global time base while operating in a synchronized manner with the 
global time base. The frequency at which the LRS at on-chip NI operates, is higher than the 
frequency of the global time base (as shown in Figure 34), but fully synchronized with it. In the 
example in figure 4, after every 16 clock cycles of the LRS there must be a single clock cycle of the 
global time base. This synchronization is necessary for the transmission of periodic messages. The 
global time is used at the LRS to align the start of the transmission of a periodic messages with other 
NIs, in order to guarantee bounded delay and minimum jitter for periodic messages (cf. Figure 37). In 
contrast, the global time base will not be necessary for sporadic and aperiodic transmission of 
messages.  
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Figure 37 Global time base vs. transmission of packets and flits 

2.1.2 On-Chip Synchronization 

The synchronization between the on-chip global time base and the off-chip global time base is based 
on rate correction in combination with overflow time intervals. Figure 38 shows an example, where 
the on-chip global time base is four time faster than the off-chip global time base, but supposed to 
be synchronized, in a sense that each fourth rising edge of the on-chip global time is associated with 
a rising edge of the off-chip global time base. However, the on-chip global time base runs faster and 
as shown in the figure, after the fourth occurrence, the next rising edge waits until the rising edge of 
the reference clock, i.e., the off-chip global time base. The reflow interval determines the tolerable 
deviation between the rates of the off-chip and on-chip global time base. 
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Figure 38 State synchronization for on-chip global time base 

In addition, one can adjust the rate of the on-chip global time base in a way that in coming cycles the 
drift becomes smaller.   

 

2.1.3 Loss of synchronization 

We can consider a system as clock synchronization perspective in one of the following statuses:  

 System wide synchronization: in this case, the synchronization between multiple clock 
domains is operating without any problem and all entities are well synchronized.  

 Loss of off-chip synchronization (on-chip only): in case of a loss of off-chip clock 
synchronization, the on-chip transmission of periodic messages is still possible, since the 
NoC is still able to correct the on-chip clock with the global time base. 

 Loss of global time base: if the synchronization with the global time base fails, the NoC will 
no longer be able to support the transmission of periodic messages in order to avoid 
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contention. In this case the subsystem which is unable to be synchronized with the global 
time base shall enter the safe state. 

  

2.1.4 Monitoring and Reconfiguration 

As mentioned in the previous sections, in some cases there is a need to reconfigure the clock 
system. For instance, in case of loss of the global clock line, the monitoring interface shall report the 
failure to the LRM in order to provide the new configuration. Furthermore, local modifications, for 
instance tuning frequencies in components and the communication subsystem clock parameters 
(e.g., horizon, epoch, etc.) can be established using the reconfiguration services.   

 

2.2 Off-Chip Clock Synchronization Service 

Assumptions:  

 Distributed local clocks are being driven by independent oscillators. 

 Non-negligible transport delays in the communication of the local clock values between 
nodes. 

 Off-chip network implements the SAE AS6802 standard. 

There are two different modes of operation in an off-chip network: normal operation and 
startup/restart. During normal operation the synchronization strategy assumes initial 
synchronization is established and maintains this synchrony. It is the task of the startup/restart to 
establish initial synchrony. The difficulty in designing a synchronization strategy for fault-tolerant 
systems is the transition from startup/restart to normal operation and vice versa. 

Considering the mission time of a system, the number of synchronization processes executed under 
normal operation mode will by far outnumber the number of startup/restart processes which ideally 
occurs only once per mission time. Let's give a representative example: during normal operation 
mode re-synchronization may be scheduled with a period of 50 ms. Given a 10-hour flight, this 
means that the synchronization actions in normal operation mode will be executed 720,000 times, 
while the startup/restart occurs only once. These numbers are a solid basis that underlines our 
preference to keep normal operation mode and startup/restart separated over a combined 
synchronization approach. 

Nevertheless, it must be guaranteed under a defined fault hypothesis that the startup/restart will be 
successful. The mere fact that startup/restart is an infrequent event does not relieve the algorithms 
from proper operation under failure conditions. A sound startup/restart is essential when the 
system is exposed to failure conditions that are at the limits of the failure hypothesis or even 
beyond. 

For safety-critical systems SAE AS6802 specifies a fault-tolerant Multi-Master synchronization 
strategy, in which each component is configured either as Synchronization Master (SM), 
Synchronization Client (SM), or as Compression Master (CM). An example configuration is depicted 
in Figure 39. Typically the end systems would be configured as SM, while the central role of the CM 
suggests its realization in the switch in the computer network, though this is not mandatory. All 
other components in the network are configured as SCs and only react passively to the 
synchronization strategy. The synchronization information is exchanged in Protocol Control Frames 
(PCFs). There are three types of PCFs: integration (IN) frames are communicated in normal operation 
mode, coldstart (CS) and coldstart acknowledgement (CA) frames are communicated during 
startup/restart. 
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Figure 39: Example configuration of the synchronization services for an off-chip network 

 

2.2.1 Time-preserving transmission service  

As discussed, in general entities use a network to exchange the current values of their local clocks. In 
order to allow synchronization at all, the network must provide a time-preserving transmission 
service with known timing error. For example if the local clock values are exchanged by using a 
message-based transmission service, the transmission latency and transmission jitter need to be 
predictable. The quality of the transmission latency and jitter of the service typically also directly 
influence the quality of the synchronization, i.e., the smaller the latency and jitter the better the 
local clocks can be synchronized to each other.  

The off-chip network implements a one-step transparent clock mechanism – a mechanism 
implemented in the nodes and switches in the off-chip network to measure the delay of Ethernet 
frames used for the synchronization services.  In particular the transparent clock mechanism 
operates as follows: 

Ethernet frames used for the synchronization services, called Protocol Control Frames (PCFs) contain 
a field in their payload called “transparent clock” 

The off-chip nodes and switches modify this transparent clock field in the following way 

 Nodes will measure the duration it takes from the internal trigger to send a PCF until the first 
bit of the PCF will be transmitted on the Ethernet network and add this delay into the 
transparent clock field 

o Switches will measure the duration it takes from reception of a PCF until the 
forwarding of the PCF and add this delay into to the transparent clock field 

o Additionally the nodes and switches may add delays to the transparent clock field 
that reflect the transmission delays imposed by the wiring itself 

o A receiver of a PCF will thus be able to learn from the value of the transparent clock 
field inside the PCF, for how long the PCF has been in transmission.  
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2.2.2 Synchronization Startup Service 

The synchronization startup service refers to the process of initially synchronization the local clocks 
to each other, e.g., after initial power up of the system.  

During startup/restart in a multiple-failures hypothesis the SMs execute an interactive consistency 
agreement algorithm in which they negotiate the initial point in time. For this the SMs transmit\ 
dedicated PCFs, the coldstart (CS) and coldstart acknowledge (CA) frames. The CMs will only 
interfere minor in this negotiation process and synchronize to the SMs once startup/restart is 
finished. Once, the CMs see a sufficiently high number of operational SMs they will block coldstart 
frames and so prevent startup/restart initiated by a faulty SM (only relevant in a failure scenario 
with two faulty SMs). 

For two-fault tolerance we assume an inconsistent omission failure mode for both, SMs and CMs. 
For single-fault tolerance there is also an option to configure the CMs to operate as central 
guardians. In the role of a central guardian the CM will then interfere more tightly with PCFs sent 
from the SMs which allows an arbitrary failure mode of the SMs.  

 

2.2.3 Resynchronization Service (Clock Synchronization – state/rate) 

The resynchronization service (typically referred to in literate as clock synchronization) refers to the 
process of periodically aligning the local clocks to each other. As discussed earlier re-synchronization 
can be done state-based or rate-based.  

The local clocks in the off-chip network are resynchronized in two steps. In the first step, the SMs 
send PCFs to the CMs. The CMs extract from the arrival points in time of the PCFs the current state 
of their local clocks and execute a first convergence function, the so-called compression function. 
The result of the convergence function is then delivered to the SMs in form of new PCFs (the 
compressed PCFs). In the second step the SMs/SCs collect the compressed PCFs from the CMs and 
execute a second convergence function. 

 

2.2.4 Integration Service  

The integration service refers to the process of entities joining an already synchronized system, e.g., 
in case the entity is powered-on late or after a transient failure of the entity.  

The nodes and switches in the off-chip network use information in the payload (the membership 
field) of the IN frames for the integration service: 

 The membership field in the PCFs is a bit vector that statically associates each bit with a 
specific SM in the network. 

 When the CMs generate the compressed PCFs, they will set the bit of a respective SM in the 
membership vector of the compressed PCF if the SM has provided a PCF and clear the bit 
otherwise. 

 Thus, the compressed PCFs carry in the membership field a current view on how many (and 
also which) SMs are currently supporting a given timeline.  

 A node and/or switch that is powered-up (or re-integrates) waits for at least one 
synchronization interval to receive an IN frame. 

 If the number of bits set in the membership field of a received IN frame are equal or higher 
than an offline configured threshold, then the node/switch will adopt its local clock to the 
time associated with the received IN frame.  

 

2.2.5 Clique Detection Service 

The clique detection service refers to the process of detecting global synchronization failure, in 
particular the identification of situations in which several subsets of local clocks have been formed 
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where the local clocks within the subsets are synchronized to each other but not over subset 
boundaries.  

The nodes and switches use the membership information carried in IN frames also for clique 
detection. In particular the devices execute three clique detection mechanisms: synchronous clique 
detection, asynchronous clique detection, and relative clique detection. 

 

2.2.6 Clique Resolution Service 

The clique resolution service refers to the process of resolving clique scenarios once they have been 
formed. Clique resolution typically follows clique detection as discussed above.  Once a device has 
detected a clique scenario it will resolve it by either executing the Synchronization Startup Service or 
the Integration Service.  

 

2.2.7 Synchronization Restart Service 

The synchronization restart service refers to the process of globally restarting the global time within 
a system. Synchronization restart can be a means for clique resolution.  

See Synchronization Startup Service.  

 

2.2.8 External Clock Synchronization Service 

The external clock synchronization service refers to the process of synchronizing the local clocks to a 
system-external time source. Such a system-external time source may be for example a GPS 
receiver.  

 

The nodes in the off-chip network can be configured to apply a configuration-specific value in 
addition to the value as calculated by the Resynchronization Service when resetting their local 
clocks. This mechanism can be used to synchronize the nodes to an external time source.  

 

2.2.9 Time-Hierarchy Service (Up, Down) 

The time-hierarchy service refers to the processes of translating global time between the different 
layers in the hierarchy of networks in the DREAMS architecture.  

 

2.3 Using the clock synchronization services 

At the application level these services should be transparent. To achieve this transparency, the 
Operating system or the virtualization layer should take into account the mechanisms proposed and 
offer the time services in a transparent way. 

In DREAMS, the main component to provide the time services is the virtualization layer which should 
support the selected mechanisms. The main property for clock management in real-time 
applications is to deal with a monotonic increasing clock and timers based on it. 

As stated above, the clock synchronization at node level can introduce some problems: 

1. if the local clock is faster than the global clock, at synchronization time, the local clock can 
be set "before". This situation implies that the clock is not monotonic increasing.  

2. if the local clock is slower than the global clock, at synchronization time, the local clock can 
be set "after"  This situation can generate that some timers set on this clock can be past at 
time synchronization. The property is preserved but a jump in the clock can generate that 
several timers can expire at the same time. It can generate punctual overloads that should 
have to be considered in the real-time schedulability analysis. 
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The virtualization (operating system) layer has to provide methods and techniques to deal with the 
possible problems and to guarantee the correct system behavior. One of the solutions is to use the 
local clock for all the application services and to identify synchronization points that should not 
affect to the applications. 

 

2.3.1 Synchronization time points (interval) 

The virtualization layer or operating system has to define secure synchronization points to perform 
the clock synchronization. In order to consider the adjustment instead a point it is considered an 
interval. This secure interval have to fulfill two basic requirements: 

 It shall set the local clock before or later without affecting the application behavior 

 No application timers shall be pendent 

This activity at virtualization layer or operating system has to be scheduled properly to guarantee 
the requirements. In the case of a virtualization layer with cyclic schedule, the secure interval to 
perform this synchronization is at the end of the major frame (MAF) that correspond to the 
hyperperiod. At the end of the MAF all periodic activities have been completed and no pending 
application timers should be set.  The following figure shows the scheme for the MAF 
synchronization. 

 
Figure 40: Synchronization interval at the end of the MAF 

The figure shows how the clock synchronization is achieved. Next to the end of the MAF, the 
virtualization layer waits for the synchronization periodic message from the network. When the 
synchronization message arrives, the local clock is updated and the next MAF is executed. 

 

 

Group of Global Time Security Services 
As described in the threat model for global time services, there are two main attack targets on the 
global time services. On the one hand there are attacks against the clocks or the time values in the 
components itself, and on the other hand there are attacks against the time synchronization. 
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The attacks against the clock values itself can be prevented by using access control and 
authentication services. Only users or applications that are allowed to change the clock values can 
change these values.  

The attacks focusing on the time synchronization can be prevented by using secure communication 
services. Depending on the type of the synchronization process, it could use either the services on 
the network level or the services on the application level. On the network level, the secure 
communication services from the DREAMS Communication Services will be used and on the 
application level, the secure communication services from the DREAMS execution services will be 
used.   
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3 Core Platform Services: Execution 

An important part of the DREAMS architectural core services are the execution services that provide 
basic operations to run the system.  

Software Architecture 

This section describes the software architecture supported by DREAMS, that involve several 
applications with different levels of criticality. It details the execution environment and the services 
provided to support the application execution. 

The software architecture is built on top of a DREAMS node that manages the entire tile including 
one or more processor cores.  

 
 

Figure 41: Software architectures 

 

In order to support mixed-criticality applications, the DREAMS software architecture is composed by: 

 Virtualization layer: It is a software layer that provides hardware virtualization to the 
applications. Two different approaches are considered in DREAMS depending on the 
application constraints. 

o Partitioning kernel: It provides virtualization of the hardware resources by defining a 
set of services that are used by the partitions to access the virtualized resources. The 
partitioning kernel provides spatial and temporal isolation to the partitions.  

o Interrupt Virtualization layer: This layer virtualizes the Host OS interrupts and is only 
introduced when KVM hypervisor is used. The main objective is to take hardware 
interrupts control away from Host OS and handle them in a thin layer, so as to 
preserve timing guarantees for the RTOS. Thus, an interrupt virtualization layer 
(ADEOS or similar) is introduced below the Host OS and real-time partition to 
prioritize the RTOS. 

 Partitions: A partition is the execution unit in the DREAMS architecture. It provides the basic 
infrastructure to execute an application. Different partitions are supported in the DREAMS 
architecture. 

o Basic single-thread application to be executed near a native hardware 
o Multi-thread real-time applications to be executed on top of a real-time operating 

system 
o Multi process applications to be executed on top of a full featured operating system 
o Multi-partition applications to be executed on top of a operating system that 

provides the ability to build virtualized multiple process applications. 
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Figure 41 sketches the two proposed software architectures. 

 

DREAMS Virtualization Layer 

The virtualization layer is the software layer that abstracts the underlying hardware and provides 
virtualization of the CPUs. This virtualization layer is a hypervisor that permits to execute multiple 
isolated virtual machines. Each virtual machine is a partition. 

As the virtualization layer is a common layer for all the partitions, in order to support mixed 
criticality applications, it has to achieve the highest level of criticality in the system.  

The basic properties that the virtualization layer shall accomplish are: 

 Spatial isolation: A partition is completely allocated in a unique address space (code, data, 
stack). This address space is not accessible by other partitions. The hypervisor has to 
guarantee the spatial isolation of the partitions. The system architect can relax this property 
by defining specific shared memory areas between partitions.  

 Temporal isolation: A partition is executed independently of the execution of other 
partitions. In other words, the execution of a partition cannot be disturbed by the execution 
of other partitions. It influences directly on the scheduling policies at hypervisor level. The 
hypervisor has to schedule partitions under a scheduling policy that guarantees the partition 
execution. 

 Fault isolation and management: A fundamental issue in critical systems is the fault 
management. Faults, when occur, have to be detected and handled properly in order to 
isolate them and avoid the propagation. A fault model to deal with the different types of 
errors is to be designed. The hypervisor has to implement the fault management model and 
permits to the partitions to manage those errors that involve the partition execution. 

 Predictability: A partition with real-time constraints has to execute its code in a predictable 
way. It can be influenced by the underlying layers of software (guest-OS and hypervisor) and 
by the hardware. From the hypervisor point of view, the predictability applies to the 
provided services, the operations involved in the partition execution and the interruption 
management of the partitions. 

 Security: All the information in a system (partitioned system) has to be protected against 
access and modification from unauthorized partitions or unplanned actions. Security implies 
the definition of a set of elements and mechanisms that permit to establish the system 
security functions.  This property is strongly related with the static resource allocation and a 
fault model to identify and confine the vulnerabilities of the system.  

 Confidentiality: Partitions cannot access to the space of other partitions neither to see how 
the system is working. From its point of view, they only can see its own partition. This 
property can be relaxed to some specific partitions in order to see the status of other 
partitions or control their execution. 

Key properties for certification 

From the point of view of certification/qualification the next properties are considered key 
elements: 

1. Spatial and temporal isolation: It will allow that applications could be independently 
developed, analyzed and, consequently, certified/qualified. With respect to the virtualization 
layer, it has to provide the mechanisms to guarantee them. The temporal isolation involves 
two key aspects: temporal allocation of resources to the applications/partitions and 
interferences due to the parallel execution on other cores. The interference of other cores 
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due to shared resources could be removed by using appropriated hardware mechanisms or 
modeling the interferences and dimensioning appropriately the applications to take into 
account them and generating partition schedules to deal with it.  
From the virtualization layer, under previous premises, the implication of the temporal 
allocation of partitions permits to offer the basic mechanisms to guarantee the temporal 
isolation.  

2. Prevent the fault propagation: faults have to be detected and handled in the way that they 
do not influence the execution of the rest of the system. Health monitoring techniques at 
virtualization layer have to deal with the detection and management of faults providing the 
mechanisms to avoid fault propagation and monitor the generated faults to implement 
additional mechanisms for global fault management.  

Static resource allocation: The system architect is the responsible of the system definition and 
resource allocation. This system definition is detailed in the configuration file of the system 
specifying all system resources, namely, number of CPUs, memory layout, peripherals, partitions, the 
execution plan of each CPU, etc. Each partition has to specify the memory regions, communication 
ports, temporal requirements and other resources that are needed to execute the partition code. 
Static resource allocation is the basis of predictability and security of the system. The hypervisor has 
to guarantee that a partition can access to the allocated resources and deny the requests to other 
not allocated resources. 

 

Interrupt Virtualization Layer 

KVM converts Host (Linux) Processes into virtual machines, and re-uses most of the common 
features provided by Host OS such as Process Scheduling, Memory Management, Interrupt Handling 
etc. In order to support a hard real-time partition, we can either introduce a thin interrupt 
virtualization layer below the Host kernel or modify most of the Host kernel sub-systems. The former 
approach is considered a better option, such as using ADEOS (Adaptive Domain Environment for 
Operating Systems) or a similar one than modifications to the Host kernel, thanks to its smaller TCB 
(Trusted Computing Base). For example, ADEOS “nanokernel” is composed of a few KLOC for ARM 
processors as opposed to a fully featured Host OS such as Linux, which has a very large TCB. Thus, an 
interrupt virtualization layer along with the KVM hypervisor is necessary for realizing the RTOS-GPOS 
co-existence use-case. 

Previous real-time efforts for KVM hypervisor ([5], [6]) have focused on either semi-automatic virtual 
machine prioritization/shielding techniques or modification of guest system to realize a paravirtual 
interface. All of these techniques have failed to produce a hard real-time virtualization solution, so 
we consider them in-adequate for DREAMS project. Moreover, maintaining a paravirtualized 
solution is difficult as it requires modifications to the guest operating systems. 

The interrupt virtualization layer schedules multiple operating system instances running above it, 
and allows for the co-existence of multiple prioritized domains (real-time and non real-time). This 
layer implements an interrupt management scheme, which allocates specialized interrupt handlers 
for the Host OS and RTOS. The RTOS-specific interrupts are given higher priority to ensure real-time 
behavior. KVM will run on the Host OS (within the non-RT domain) and create multiple virtual 
machines. 
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Execution Units: Partitions 

The execution unit in partitioning is a partition. A partition is basically a program in a single 
application environment. It can comprise: the application code, the partition runtime and the 
configuration file. A partition runtime can have a minimal layer to facilitate the application execution 
and a guest Operating System adapted to be executed on top of the virtualization layer. 

The software that resides in a DREAMS partition can be: 

– Application software: It refers to the code designed to deal with the specific application 
requirements 

– Runtime support. It provides the services to execute the application code.  

 

Different types of partitions can be built: 

 Bare Partitions: Partitions that are executed as they were on top of the hardware. The 
application code can be a single thread executed in one core or several single-threads. 

 Real-Time Partitions: These partitions shall contain a real-time operating system adapted to 
be executed on top of the DREAMS virtualization layer. Additionally, it can include the DRAL 
layer that complement the RTOS services with specific services for partitioning. The partition 
boot is managed by the RTOS. 

o Real-Time Partitions (XtratuM Case): The real-time partitions for XtratuM will be 
similar to non real-time partitions, as XtratuM is a baremetal hypervisor and can 
fully control scheduling of these partitions. 

o Real-Time Partition (KVM Case): The real-time partition for KVM will be based on a 
minimal interrupt virtualization layer, in order to ensure hard real-time behavior for 
a given RTOS. This design change is necessary as KVM uses Linux kernel for 
scheduling its virtual machines, which is soft real-time at best. Figure 42 shows the 
two types of RT partitions. 

 General purpose Partitions: These partitions shall contain a full featured operating system 
(e.g. Linux) that offers the OS services to the partitions. Additionally, it can include the DRAL 
layer that complements the OS services with specific services for partitioning. The partition 
boot is managed by the OS. 

 

 
Figure 42: Partition Classes 
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Figure 43: RT-partition types 

 

Figure 43 shows the different types of real-time partitions. Independently of the partition class, a 
partition is seen by the virtualization layer as a piece of code with an entry point and a set of access 
points (communication ports) that allow to communicate it with other partitions. Figure 44 sketches 
the partition view. 

 
Figure 44: Partition view 

 

Input and output ports permit to a partition to send/receive messages to/from other partitions. 
Services to deal with these inter-partition communications shall be defined. A message is a variable 
block of data that is sent from a source partition to one or more destination partitions. The data of a 
message is transparent to the message passing system. 

The message transport mechanism is a communication channel that is the logical path between one 
source and one or more destinations. Partitions send/receive messages through ports. The 
virtualization layer is responsible of the message transport from the memory area of a source 
partition to a memory area of the destination(s) partition(s). 

Two basic inter-partition communication ports are supported: sampling and queuing. 

 Sampling port: It provides support for broadcast, multicast and unicast messages. No 
queuing is supported in this mode. A message remains in the source port until it is 
transmitted through the channel or it is overwritten by a new occurrence of the message, 
whatever occurs first. Each new instance of a message overwrites the current message when 
it reaches a destination port, and remains there until it is overwritten. This allows the 
destination partitions to access the latest message. 

 Queuing port: It provides support for buffered unicast communication between partitions. 
Each port has associated a queue where messages are buffered until they are delivered to 
the destination partition. Messages are delivered in FIFO order. 
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Channels, ports, maximum message sizes and maximum number of messages (queuing ports) are 
entirely defined and allocated off-line. 

 

Partition Types 

Depending on the partition rights, a partition can be defined as: 

 System partition: System partitions are allowed to manage and monitor the state of the 
system and other partitions. A subset of services of DRAL dealing with the change of the 
state of the system or another partition only can be invoked if the partition is defined as 
system partition. 

 Real-time system partition: A real-time system partition only exists when an interrupt 
virtualization layer is used (KVM case). This partition is similar to a system partition, except 
that it is dedicated for real-time OS and will have a unique instance on a given DREAMS chip. 

 Normal partition: It corresponds to the partitions that have not the system attributes. 

Considering the virtual cores that a partition uses, it can be: 

1. Mono-core partition: This partition only uses a virtual core. 
2. Multi-core partition: This partition is associated with several virtual CPUs. The virtualization 

layer only boots the virtual CPU0, it is responsibility of the partition, to boot the rest of the 
virtual CPUs. 

 

Partition states and transitions 

The virtualization layer is not aware about the nature of a partition. Partitions can be based on bare 
applications or OS dependent applications. 

From the virtualization layer point of view, a partition has the states and transitions as shown in 
Figure 45. 

 

 
Figure 45: Partition states 

After the virtualization layer initialization, each partition is loaded in memory and ready to be 
booted. When the resources are allocated to a partition, it boots (that is, initializes a correct stack 
and sets up the virtual processor control registers). From the virtualization layer, the partition is in 
NORMAL state. 
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From the virtualization layer point of view, there is no difference between the BOOT state and the 
NORMAL state. 

The NORMAL state is subdivided in three sub-states: 

 Ready : The partition is ready to execute code, but it is not scheduled because it is not in its 
time slot. 

 Running : The partition is being executed by the processor. 

 Idle : If the partition does not need to use the processor during its allocated time slot, it can 
yield the processor and wait for an interrupt or for the next time slot. 

A partition can halt itself or be halted by a system partition. In the HALT state, the partition is not 
selected by the scheduler and the time slot allocated to it is left idle (it is not allocated to other 
partitions). All resources allocated to the partition are released. It is not possible to return to normal 
state. 

In SUSPENDED state, a partition will not be scheduled and interrupts are not delivered. Interrupts 
raised while in suspended state are left pending. If the partition returns to NORMAL state, then 
pending interrupts are delivered to the partition. 

 

Partition schedule 

The virtualization layer schedules partitions in a fixed, cyclic basis (ARINC-653 scheduling policy). This 
policy ensures that one partition cannot use the processor for longer than scheduled to the 
detriment of the other partitions. The set of time slots allocated to each partition is defined in the 
configuration file during the design phase by means of a cyclic plan in a temporal interval referred as 
Major Frame (MAF). 

 

Each partition is scheduled for a time slot defined as a start time and a duration. If there are several 
concurrent activities in the partition, the partition shall implement its own scheduling algorithm. This 
two-level scheduling scheme is known as hierarchical scheduling. 

Multi-core schedule 

The virtualization layer provides different policies that can be attached to any of the CPU. Two basic 
policies are defined: 

1. Cyclic scheduling: Pairs <partition, vcpu> are scheduled in a fixed, cyclic basis (ARINC-653 
scheduling policy). This policy ensures that one partition cannot use the processor for longer 
than scheduled to the detriment of the other partitions. The set of time slots allocated to 
each <partition, vcpu> is defined in the configuration file. Each <partition, vcpu> is scheduled 
for a time slot defined as a start time and a duration. Within a time slot, the virtualization 
layer allocates the system resources to the partition and virtual CPU specified. 

2. Priority scheduling: Under this scheduling policy, pairs <partition, vcpu> are scheduled based 
on the partition priority. The partition priority is specified in the configuration file. Priority 0 
corresponds to the highest priority. All pairs <partition, vcpu> in normal state (ready) 
allocated in the configuration file to a processor attached to this policy are executed taking 
into account its priority. 
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Multiple scheduling plans 

The system can define several scheduling plans or modes. A system partition can request the change 
from one plan to another. Once the change is accepted, it is effective at the end of the Major Frame 
(MAF). 

Partition offering a Virtualization Layer (TBD) 

The general purpose partition running on top of the interrupt virtualization layer will offer additional 
virtualization features for the creation of generic partitions using KVM, which will then co-exist with 
the real-time partition. These new sub-partitions will be in control of the KVM hypervisor, always in 
accordance with the RTOS system partition, and without affecting its operation. Scheduling of the 
real-time partition will always take precedence over non real-time domains, as a consequence of its 
higher priority for interrupt processing. Scheduling of non real-time partitions will be similar to the 
hierarchical scheduling, as described above, except for its dynamic nature which will depend on the 
Host scheduling algorithm in use. 

 

3.1 DRAL 

3.1.1 System Management Services 

System Management Services refer to the services that a partition can invoke to get the status of the 
virtualization layer or perform actions on it. 

Services are: 

Name  Description Constraints 

DRAL_GET_SYSTEM_STATUS  Returns the status of the virtualization layer. The result 
is a data structure that provides some information 
related to the current status. 

In the case of interrupt virtualization, this service 
will set the configuration details of such a layer, for 
instance, interrupt masking, peripheral 
binding/unbdinding, etc. 

System  

DRAL_SET_SYSTEM_MODE Provides to a partition the ability to change the status of 
the virtualization layer. Actions to be invoked are:  
- Perform a cold reset on the system. As result of this 
invokation, the system is reset and boots. A counter 
informs about the number of consecutive warm resets 
have been produced. This counter is zeroed when the 
cold reset is invoked.  
- Perform a warm reset on the system. As result of this 
invokation, the system is reset and boots. The reset 
counter is increased.  
- Perform a system halt. As result of this invokation, the 
system is halted. A physical reset is required to restart 
the system.  

System  
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3.1.2 Partition Management Services 

Partition Management Services refer to the services that a partition can invoke to get its own status 
or other partition status or perform actions on them. 

Services are: 

 

Name  Description Constraints 

DRAL_GET_PARTITION_ID Access to the partition identifier. Normal 

DRAL_GET_PARTITION_ID_BY_NAME Access to the partition identifier from the partition 
name. 

System 
/Normal 

DRAL_GET_PARTITION_STATUS Returns the status of a partition. The result is a data 
structure that provides some information related to 
the current partition status. 

System 
/Normal 

DRAL_SET_PARTITION_MODE It provides to a partition the ability to change its own 
status or the status of other partition. Actions to be 
invoked are: 
- Perform a cold reset on a partition. As result of this 
invokation, the partition is reset and boots. A 
counter informs about the number of consecutive 
warm resets have been produced. This counter is 
zeroed when the cold reset is invoked. 
- Perform a warm reset on a partition. As result of 
this invokation, the partition is reset and boots. The 
reset counter is increased. 
- Perform a partition halt. As result of this 
invokation, the partition is halted. 
- Perform a partition suspend. As result of this 
invokation, the partition is suspended. 
- Perform a partition resume. As result of this 
invokation, the partition is resumed. 

In the case of interrupt virtualization, this 
service will set the configuration details of such 
a layer, for instance, interrupt masking, 
peripheral binding/unbdinding, etc. 

System 
/Normal 

 

3.1.3 Process Management  

These services are provided by the GuestOS. 

 

3.1.4 Time Management Services 

Time Management Services refer to the services that a partition can invoke to get time information 
or set timers. 

Time can be global or local. Global time is referred to a monotonic clock of the system. Local time is 
referred to a partition clock that runs when the partition is executed. Timers can be set taking as 
reference the global or the local time. 

Services are: 

 

Name  Description Constraints 

DRAL_GET_TIME Get the current time (global or local). Normal 

DRAL_SET_TIMER Set a timer referred to the global or local clock. Normal 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 90 of 121 

 

3.1.5 Inter-Partition Communication Services 

A partition can send/receive messages to/from other partitions using sampling or queuing ports.  

Services are: 

Name  Description Constraints 

DRAL_CREATE_SAMPLING_PORT Creates a sampling port. Normal 

DRAL_WRITE_SAMPLING_MESSAGE Writes a message in a sampling port.  Normal 

DRAL_READ_SAMPLING_MESSAGE Reads a message in a sampling port.  Normal 

DRAL_CREATE_QUEUING_PORT Creates a sampling port. Normal 

DRAL_SEND_QUEUING_MESSAGE Sends a message in a queuing port. Normal 

DRAL_RECEIVE_QUEUING_MESSAGE Receives a message in a queuing port.  Normal 

DRAL_GET_QUEUING_PORT_STATUS Gets the status of a queuing port.  Normal 

DRAL_CLEAR_QUEUING_PORT Removes all messages in a queuing port. Normal 

 

3.1.6 Intra-Partition Communication 

These services are provided by the GuestOS. 

 

3.1.7 Scheduling Services 

A partition is scheduled under the virtualization layer policy. It is relevant for the partition to get the 
information related to its own schedule. On the other hand, a partition can be interested in define 
local schedules for other partitions in spare slots. How to deal with spare slots and dynamic 
allocation of resources will be discussed in WP4. 

GPOS sub-partitions created by KVM will also use these services to get scheduling policy details. In 
this use case the RTOS system partition will be able to force a scheduling policy on partitions that 
offer virtualization features (Linux/KVM partition). 

Services are: 

Name  Description Constraints 

DRAL_GET_PARTITION_SCHEDULE Gets the information of the partition schedule in a 
MAF. 

Normal 

DRAL_GET_PARTITION_SCHEDULE_STATUS Gets the information related to the current 
execution slot. 

Normal 

DRAL_SET_MODULE_SCHEDULE Requests for a schedule plan change. System 

DRAL_GET_MODULE_SCHEDULE_STATUS Gets the current schedule plan status. DRAL SET 
SPARE SCHEDULE : To be discussed 

Normal 

DRAL_GET_SPARE_SCHEDULE To be discussed Normal 

 

3.1.8 Monitoring Services (Health Monitor) 

A partition can raise health monitor (HM) events to the virtualization layer. These HM events are 
detected and generated by the application or the partition runtime. The events that the partition 
can raise are: 

 APPLICATION ERROR: An error in the application. 

 DEADLINE MISSED: A deadline miss has been detected. 

 NUMERIC ERROR: The application has detected a numeric error. 

 STACK OVERFLOW: The partition detects a stack overflow. 

 MEMORY VIOLATION: The partition detects an illegal memory access. 
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Services are: 

 

Name  Description Constraints 

DRAL_GET_ERROR_STATUS Permits to the partition to access to the reported 
errors. 

Normal 

DRAL_RAISE_APPLICATION_ERROR The partition raises an HM event that will be 
handled by the virtualization layer 

Normal 

 

3.1.9 Configuration services 

The following table summarizes what constitutes configurations services, i.e. all services that allow 
for reconfiguration of the system: 

 

Name  Description Constraints 

DRAL_SET_MODULE_SCHEDULE Requests for a schedule plan change. System 

DRAL_SET_PARTITION_MODE It provides to a partition the ability to change its own 
status or the status of other partition. Actions to be 
invoked are: 
- Perform a cold reset on a partition. As result of this 
invokation, the partition is reset and boots. A 
counter informs about the number of consecutive 
warm resets have been produced. This counter is 
zeroed when the cold reset is invoked. 
- Perform a warm reset on a partition. As result of 
this invokation, the partition is reset and boots. The 
reset counter is increased. 
- Perform a partition halt. As result of this 
invokation, the partition is halted. 
- Perform a partition suspend. As result of this 
invokation, the partition is suspended. 
- Perform a partition resume. As result of this 
invokation, the partition is resumed. 

System 
/Normal 

DRAL_SET_SYSTEM_MODE Provides to a partition the ability to change the 
status of the virtualization layer. Actions to be 
invoked are:  
- Perform a cold reset on the system. As result of this 
invokation, the system is reset and boots. A counter 
informs about the number of consecutive warm 
resets have been produced. This counter is zeroed 
when the cold reset is invoked.  
- Perform a warm reset on the system. As result of 
this invokation, the system is reset and boots. The 
reset counter is increased.  
- Perform a system halt. As result of this invokation, 
the system is halted. A physical reset is required to 
restart the system.  

System  
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Group of Execution Security Services 
In the following, the security services for the end-to-end communication on application level are 
described. Hence, there is a secure communication from one application to another application. The 
secure communication from one application to another application includes all parts in the 
communication between the application like on-chip communication as well as off-chip 
communication. 

3.2 Security Services for End-to-End Communication 

3.2.1 Encryption Service 

The encryption service encrypts data with a given cryptographic key. It transforms a plaintext into a 
cipher text so that the un-intended recipients cannot understand the messages exchanged between 
two legitimate communication partners. The encryption service for end-to-end communication is 
used for a confidential communication between two applications. Even the system components 
between the two applications, e.g., gateways and routers, cannot interpret the content of the 
communication. 

 

3.2.2 Decryption Service 

The decryption service decrypts data with a given cryptographic key. It transforms a cipher text into 
plain text, if the key is correct and there was no transmission error. The decryption service for end-
to-end communication is used for a confidential communication between two applications. The 
adversaries and the unintended recipients, such as the gateways and the routers cannot interpret 
the exchanged messages because they do not possess the key to decrypt the exchanged messages. 
Only the legitimate communication partners, owning the cryptographic key, can decrypt the 
exchanged data. 

 

3.2.3 Integrity Service 

The integrity service generates a cryptographic hash (or secure checksum) for a message, which is 
transmitted together with the message. With this checksum, any modifications in the message are 
detectable. The integrity service for end-to-end communication ensures that all changes are 
noticeable and that not only the changes during the off-chip communication are detectable. For 
example, this service can be used by the monitoring and resource scheduling components (GRM, 
LRM, LRS and MON) to ensure the integrity of the communication. 

 

3.2.4 Integrity Check Service 

The integrity check service verifies the integrity of a message by re-calculating the cryptographic 
hash (or secure checksum) on the received message and comparing it with the received checksum. 
With this checksum, even a single bit modification is detectable. The integrity check service for end-
to-end communication ensures that all changes are noticeable and that not only the changes during 
the off-chip communication are detectable. For example, this service can be used by the monitoring 
and resource scheduling components (GRM, LRM, LRS and MON) to check the integrity of the 
communication. 

 

3.2.5 Authentication Code Generation Service 

The authentication code generation service generates a message authentication code (MAC) tag or 
digital signatures for ensuring the data origin respectively to verify the communication partner. This 
service generates the MAC tag or the digital signatures on the application layer. This implies that the 
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service can be used by the monitoring and resource scheduling components (GRM, LRM, LRS and 
MON) to ensure the authenticity of the communication. 

 

3.2.6 Authentication Code Verification Service 

The authentication code verification service verifies the data origin or the communication partner by 
verifying the message authentication code (MAC) tag or the digital signatures received with the 
message. This service verifies the authentication tag or the digital signatures on the application 
layer. This implies that this Service can be used by the monitoring and resource scheduling 
components (GRM, LRM, LRS and MON) to verify the authenticity of the communication. 

 

3.2.7 Access Control Service 

The access control service verifies if a system resource is allowed to access the requested object. For 
end-to-end communication it checks the permission on application layer for access to secure 
memory. Either the access control service or secure storage service (or both of them together) will 
ensure the concept of secure memory storage.  
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4 Core Platform Services - Resource Management  

This section provides information on the Resource Management category of the Core Platform 
Services in DREAMS. The next two unnumbered sections present, first, the classification of the 
resource management services and the building blocks that provide them, and second, the resource 
management architecture adopted in DREAMS. The following numbered sections correspond to the 
sub-categories of resource management services, and within them, the specific services are 
described. 

Groups of services and building blocks 

The integrated resource management architecture in DREAMS provides the Core Platform Resource 
Management Services. This category of Core Platform Services is divided into four groups of services: 
Global resource management services, Local resource management services, Monitoring services, 
Scheduling services and Configuration services.  

 

 
Figure 46: Groups of core platform resource management services 

There are four types of building blocks that interact with each other, and together they provide the 
aforementioned services in DREAMS. Those building blocks are: the Global Resource Manager 
(GRM), the Local Resource Managers (LRM), the Resource Monitors (MON) and the Local Resource 
Schedulers (LRS). Each of the building blocks provides different services depending on the type of 
resource to which they correspond: 
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 Resource Monitors (MON) provide monitoring services (e.g. monitor availability, energy, 
detect errors). 

 Local Resource Schedulers (LRS) provide scheduling services and configuration services. 
Examples of scheduling services are dispatching of time-triggered messages, schedule tasks 
according to offline tables or online scheduling parameters, etc. The configuration services 
refer to the ability of an LRS to accept requests for executing changes and updates on its 
own configuration. 

 Local Resource Managers (LRM) provide local resource management services, which 
comprise activities such as translating monitored information into abstract state levels (e.g. 
error counts may be associated to a certain reliability level), sending abstract state of 
resources to the GRM, receiving reconfiguration orders from GRM, adapting orders from 
GRM into specific scheduling parameters for LRS and initiating local reconfigurations on its 
own. 

 Global Resource Manager (GRM) provides global resource management services. It 
performs global decisions based on the information received from LRMs, it obtains new 
configurations by selecting them from an offline-computed set of configurations or by 
computing new ones online and it sends reconfiguration orders to the LRMs. It also manages 
an external input to manually trigger a system-wide reconfiguration. 
 

In order to guarantee that the resource management components have a correct view of the 
system, these services are not intended to be used at the application level, or by any component 
that is alien to the resource management architecture. This means that only resource management 
building blocks can communicate with each other. MONs will track changes in the resources, of 
receive status updates from them, but will only accept status requests from LRMs. Likewise, LRSs will 
schedule resources, and they can only receive orders from LRMs. 

 

In some cases, the local monitoring and scheduling services for a specific resource may actually be 
implemented within a single component, e.g. the LRS of the On-Chip Network Interface (Section1.1). 
However, from the resource management perspective, those services are provided by two different 
types of entities: Resource Monitors (MON) and Local Resource Schedulers (LRS). 

 

This chapter presents resource management services for resources that provide the DREAMS core 
services. It leaves out resource management services that may be implemented for specific 
application components (e.g. local schedulers of a Guest OS, local monitor of an application 
hardware accelerator). Furthermore, in this section, a set of generic monitoring and configuration 
services (provided by MON and LRS) is presented. The monitoring, scheduling and configuration 
services of specific type of resources are covered in the corresponding section inside the other core 
services to which they belong. For example, the reconfiguration and monitoring services of the Off-
Chip Communication Network Interface are presented in section 1.3, under the Communication Core 
Services. The local resource management services (LRM) at all levels and the global resource 
management services (GRM) are also covered in the following sub-sections. 

 

Resource management architecture 

The four types of resource management building blocks (GRM, LRM, MON, LRS) can be arranged 
across the DREAMS platform in many different configurations. We take a look at two main classes: a 
flat architecture, shown in Figure 47, and a hierarchical architecture, shown in Figure 48. 
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The flat architecture in Figure 47 consists of a GRM at the top of the hierarchy, which directly 
supervises and controls a set of LRMs and has a complete view of the system. All LRMs stand all at 
the same level. Each of them manages one resource, together with a pair of MON and LRS. The 
resources in Figure 47 are hardware resources and they can be processor cores or clusters, 
memories, I/O components, hardware accelerators, among others. In this scheme, each LRM directly 
communicates with the GRM, with disregard for where the resource is located in the system, i.e. 
inside which node (chip) or off-chip cluster.  

 

 
 

Figure 47: Flat resource management architecture 

An important disadvantage of this structure is that it cannot cope with granularity issues, especially 
from a timing perspective. Different resources realize their activities at considerable different 
speeds. When all LRMs are treated equally by the GRM, it is not possible to take that fact into 
account. Furthermore, there can be faults that require a reconfiguration of only a subset of 
resources, e.g. all resources inside a single node (chip). In a flat architecture, such faults and the 
subsequent reconfiguration can only be addressed by the GRM, the only component with a system-
wide view. 

 

Figure 48 presents a hierarchical resource management architecture. It consists of a GRM at the top 
of the hierarchy and a set of LRMs, some of them standing at different levels or domains 
(represented by the horizontal lines). The GRM directly communicates with the LRMs at the second 
to highest level, while those communicate with LRMs at a lower level and LRS+MON pairs. Each LRM 
communicating to another LRM introduces a new level in the architecture. This structure allows the 
LRMs to act as a granularity interface, which hides fine-grained activities of a sub-system from the 
GRM view, only to communicate relevant information when global reconfiguration may be 
necessary, e.g. when local reconfiguration is not enough to deal with the fault. From the temporal 
perspective, local reconfiguration of a sub-system can be initiated by an LRM much sooner without 
the need to wait for the communication with the GRM. Faults could be temporarily mitigated while 
waiting for instructions by the GRM to implement a more permanent solution. 
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Figure 48: Hierarchical resource management architecture 

On the one hand, a non-hierarchical architecture for resource management in DREAMS is possible 
and it is a simple solution.  It is inflexible and not scalable, as having the LRMs of each resource 
communication with the GRM will become infeasible soon, as the number of resources increases. On 
the other hand, a hierarchical architecture is more complex and provides a lot more flexibility. For 
some implementations of the platform, the conceptually hierarchical structure could be limited to 
certain specific levels, whenever required.  

 

In this deliverable, we aim at describing a generic hierarchical resource management architecture 
that is flexible enough to accommodate the heterogeneous resources of the DREAMS platform, 
while providing the basic services for adaptation and reconfiguration. 

 

In order to establish the hierarchy in the resource management architecture in the DREAMS 
platform, we introduce the concept of the resource management domains. We consider five 
different domains in a DREAMS platform, for the purposes of performing resource management: 
System Domain, Cluster Domain, Node Domain, Virtualization Layer Domain and Partition Domain. 
The domains represent the composition of the system from the resource management perspective. 

 

Conceptually, the GRM controls the resources in the System domain, and corresponds to the highest 
level of hierarchy of resource management components. For each of the other domains there shall 
be an LRM block in charge of supervising and controlling the resources of its corresponding 
domain. Such resources could be controlled indirectly, through communication with a lower-level 
LRM, or directly by communication with monitors and LRS of the individual resource itself. Figure 49 
presents the composition of the system in terms of domains. It also depicts the GRM and LRMs in 
the system and the scope of their actions. We can differentiate between four types of LRMs: LRM in 
the Cluster domain, LRM in the Node domain, LRM in the Virtualization Layer domain and LRM in the 
Partition domain. The services provided by each of them are detailed in the following subsections. It 
is important to note that Figure 49 does not intent to show where each GRM/LRM is physically 
implemented or where it executes. Instead, it presents an abstract view of the resource 
management hierarchy. 
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Figure 49: Resource management domains 

In general, all resource management building blocks can have hardware or software 
implementations, or a combination of both, depending on the domain and type of resource. The 
actual physical implementation of the local building blocks will be discussed in WP2 and presented in 
deliverable D2.2.2 (Report on monitoring, local resource scheduling and reconfiguration services for 
mixed-criticality and security with implementation of low- and high-level monitors, scheduling, 
security and reconfiguration services supporting mixed criticality and adaptation), while the actual 
physical implementation of the GRM is to be discussed in WP3 and covered progressively in D3.2.1, 
D3.2.2 and D3.2.3 (High-level design, first implementation and final implementation of Global 
resource management services, respectively). 

 

Figure 50 presents an example of where the resource management building blocks can be physically 
implemented in the DREAMS platform, in the node and virtualization layer domains. 
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Figure 50: Example of resource management building blocks (in green) layout in 
the node and virtualization layer domain (resources in grey) 

The LRM in the Node domain can be implemented in hardware as an IP core, or in software in a 
dedicated processor core. This LRM is in charge of supervising and controlling the LRMs in the 
virtualization layer(s) in the node and all other non-virtualized resources. That includes the 
LRS+MON of the network interfaces, the LRS+MON of the memory gateways or on-chip memories, 
the LRS+MON of the I/O components and the LRS+MON of the off-chip/on-chip gateway. 

 

The LRM in the Virtualization Layer domain can be implemented in a system partition (see part II, 
section 3). This LRM would be in charge of supervising and controlling the LRSs and MONs in the 
virtualization layer domain. That includes the LRS+MON inside the hypervisor (Partition Scheduler 
and Health Monitor, see Part II, section 3), LRS+MON of the network interface and LRS+MON of 
application components (e.g. scheduler of guest OS, application monitors).  

 

Figure 51 presents an example of where the resource management building blocks can be physically 
implemented in the DREAMS platform, in the system and cluster domains. 
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Figure 51: Example of resource management building blocks (in green) layout in 
the system and cluster domain (resources in grey) 

The LRMs in the cluster domain can be implemented in a dedicated node or it can be positioned in a 
regular node. These LRMs are in charge of supervision and controlling the LRMs in the node domain, 
the LRS+MON of the off-chip gateways and the LRS+MON of the off-chip switches (not depicted in 
the figure). The GRM in the system domain can be implemented in a system node. The GRM is in 
charge of supervising and controlling the LRMs in the cluster domain and the LRMs in the node 
domain that do not have a cluster-level LRM on top in the hierarchy. 
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Group of Global Resource Management Services 
In the following, the group of global resource management services is described. 

4.1 Global Resource Management Services 

In this section, we present the services that will be provided by the Global Resource Manager (GRM). 

4.1.1 Gather status from LRMs 

The GRM collects all monitored information from the LRMs with whom it communicates. The main 
parameters to be transferred are the physical name of the resource, the name of the monitored 
variable and its value. 

4.1.2 Obtain configuration (fetch or compute new one) 

The GRM is in charge of the data base of all off-line precomputed configuration of resources. Such 
configurations can be stored in a distributed or in a centralized way. Alternatively, the GRM could 
also compute new configurations (i.e. determine new scheduling tables or scheduling parameters) at 
runtime.  

4.1.3 Global reconfiguration (make decision) 

The GRM will analyse the monitored information at the system level and take reconfiguration 
decisisons that allow the system to adapt to different modes or conditions. The GRM takes into 
account information from all types of resources to make a decision that considers system-wide 
constraints. 

4.1.4 Send orders to LRMs 

Once a reconfiguration decision has been taken, the GRM will communicate it to the LRMs involved 
in the reconfiguration, via network and middleware, taking into account all types of resources. For 
example, if a change in the scheduling plans of an application tile is required, the GRM will provide a 
new scheduling table for the virtualization layer (or processor cores), as well as for the network 
interfaces of the application tiles involved, because reconfiguration of the network is expected. 
Orders could be given in the form of a simple reference to the actual configuration, or the GRM 
could transmit the complete configuration via the network. 

4.1.5 Manage external input 

The GRM will manage an external input that can trigger a global reconfiguration. Such input could be 
given locally (I/O peripheral directly connected to the GRM node) or remotely (via off-system 
Ethernet). This input could be a new constraint to the system, and the GRM would obtain a new 
configuration that satisfies the constraint, or it could be an absolute reconfiguration decision which 
the GRM could simply communication to the LRMs. 

 

 

  



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 102 of 121 

Group of Local Resource Management Services 
In the following, the group of local resource management services is described. Inside this group, 
there are two main sub-categories: generics services (section 4.2) and specific services 
(sections 4.3, 4.4, 4.5 and 4.6 ). 

4.2 Generic LRM Services 

4.2.1 Receive/read monitoring information from monitors 

Two communication paradigms are possible:  interrupt and polling. In the first case, the MONs send 
information periodically to the LRM. In the second case, the LRM requests information from the 
MONs. A combination of the two approached is also possible. 

4.2.2 Calculate abstract state level (generic state) 

The LRMs are in charge of calculating an abstract level of the state variables of the resource, based 
on monitored information from the MONs. Abstract state variables can be energy, availability, 
reliability, behavior, among others. The level of abstraction depends on the specific resources and 
available monitors. This approach is based on providing a resource view on an abstract level, to 
reduce the overhead of disseminating the low-level monitor variables and only provide information 
requiring a system-wide reconfiguration. 

4.2.3 Send information to GRM/LRM 

Each LRM will transmit the abstract state of the resources in its domain, via the network and 
middleware, to the next LRM in the hierarchy, or to the GRM if it stands at the second to last level. 

4.2.4 Receive orders from GRM/LRM 

The LRMs can only receive orders from other LRMs or the GRM, never from application components 
or other system components.  

4.2.5 Translate orders to local policies of LRS 

This service is provided by the LRMs. After receiving an order from the GRM, the LRM maps it to the 
local scheduling policies of the LRS of the resource. In the case of LRSs that implement online 
scheduling of the resource, the LRM can provide the scheduling parameters to the corresponding 
LRMs. In the case of table-based scheduling policies, the LRM can provide the table itself, or a 
reference to it. This approach is based on the conceptual separation between implementation 
details of the scheduler of a resource, and the abstract view of the component that is keept by the 
GRM. 

4.2.6 Configure LRS 

The LRM configures the LRSs in its domain, and it gives orders to the LRMs at a lower level in the 
hierarchy. 

4.2.7 Trigger local reconfiguration 

Small changes in the state of a resource can be handled locally by the LRM in its domain. For 
example, suspension of a low-criticality partition that only communicates with other partitions in its 
own application tile, can be requested by the LRM of that application tile, as no reconfiguration of 
resources outside of the tile is necessary. In that case, the LRM will report the new state of the 
resource (the application tile) to the GRM to maintain coherence in the state of the system. 
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4.3 LRM Services in the Cluster Domain 

The LRM in the cluster domain serves as a granularity interface between the GRM and two different 
types of off-chip networks. It would typically not handle individual resources, but would only 
communicate to configure and monitor LRMs in the smaller domain, i.e. LRMs in the Node domain. 
An LRM in the cluster domain could be physically implemented in one of the existing nodes in the 
system. For reasons of practicality and reduction of communication and costs overhead, we could 
exclude the LRM in the Node domain for that specific node, given that there would already be a 
cluster level LRM in place. In that case, the LRM in the Cluster domain would indeed handle 
individual resources, e.g. memory gateways IOMMU, cores or LRMs in the Virtualization Layer 
domain. 

These are specific services provided by the LRM in the cluster domain. 

4.3.1 Monitor lower-level LRM 

This services refers to the capability of each LRM to receive or read monitoring information 
previously gathered by a lower-level LRM, i.e. by the LRM in a smaller domain. 

4.3.2 Configure lower-level LRM 

This services refers to the capability of each LRM to configure a lower-level LRM, i.e. an LRM in a 
smaller domain, given the directions and orders received from the GRM, or higher-level LRM. 

 

4.4 LRM Services in the Node Domain 

An LRM in the Node domain have to deal with LRMs in the immediately smaller domain, i.e. the 
virtualization Layer domain, as well as with individual resources, like for example, an IOMMU or a 
non-virtualized memory gateway. 

Typically, the LRM in the Virtualization Layer domain would have the following specific service: 

4.4.1 Monitor lower-level LRM 

This services refers to the capability of each LRM to receive or read monitoring information 
previously gathered by a lower-level LRM, i.e. by the LRM in a smaller domain. 

4.4.2 Configure lower-level LRM 

This services refers to the capability of each LRM to configure a lower-level LRM, i.e. an LRM in a 
smaller domain, given the directions and orders received from the GRM, or higher-level LRM. 

 

4.5 LRM Services in the Virtualization Layer Domain 

As explained before, the LRM in the Virtualization Layer Domain, could be implemented in a system 
partition, which would grant the permissions necessary to configure the system (perform a reset, 
halt another partition), and change the scheduling plan at runtime. We regard this scheduling plan to 
be managed by the LRS in the Virtualization Layer domain, i.e. the partitions scheduler. We 
distinguish this from the intra-partition schedulers, i.e. schedulers of a guest OS inside a partition, 
which we regard as the LRS in the Partition domain.  

Typically, the LRM in the Virtualization Layer domain would have the following specific service: 

4.5.1 Monitor lower-level LRM 

This services refers to the capability of each LRM to receive or read monitoring information 
previously gathered by a lower-level LRM, i.e. by the LRM in a smaller domain. 
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4.5.2 Configure lower-level LRM 

This service refers to the capability of each LRM to configure a lower-level LRM, i.e. an LRM in a 
smaller domain, given the directions and orders received from the GRM, or higher-level LRM. 

 

4.6 LRM Services in the Partition Domain 

The LRMs in the Partition domain are to be provided by the partition developer. An example of this 
type of LRM is a management component inside a partition with a guest OS. The guest OS would 
typically have an inside scheduler, which would require parameters to be configured, i.e. a DREAMS 
LRS. It would also have monitoring capabilities that would allow the LRM in the partition to gather 
the health state of the guest OS and its tasks. 

 

Group of Resource Monitoring Services 
Each resource that should be managed by the integrated DREAMS resource management 
architecture is paired with a set of LRS and MON. Each MON monitors the status variables that are 
pertinent for that type of resource. In the following, the group of resource monitoring services is 
described. Inside this group, we present one sub-category: generics services (section 4.7). Specific 
services for resource monitoring are presented in section 1 for communication resources (network 
interfaces, routers, gateways, memories) and section 4 for execution resources (partitions). 

 

4.7 Generic Resource Monitoring Services 

4.7.1 Monitor availability 

These services are provided by MONs. Several distinct state variables of a resource can be associated 
with resource availability. Some examples are: processor core or memory utilization, operational 
status of the resource (correct/faulty). 

4.7.2 Monitor behavior 

These services are provided by MONs. Several distinct state variables of a resource can be used to 
monitor behavior. Some examples are: status of the resource (e.g. number of waiting messages in a 
queue, number of aperiodic tasks in the ready queue) and application-level monitoring (e.g. QoS of 
applications, stability of control). 

4.7.3 Monitor reliability 

These services are provided by MONs. Several distinct state variables of a resource can be used to 
monitor reliably. In particular, errors are closely linked with the reliability of the operation of a 
resource. We can distinguish between temporal errors (e.g. violations of period and arrival time of 
messages, deadline miss of a task) and errors in value (e.g. errors in the body of a message, errors in 
results of computation at the application-level, corrupt memory space). 

4.7.4 Monitor energy 

All resources in the system in all resource management domains are subject be monitored with 
respect to energy. If the energy consumption of a resource can be measured at runtime, or the 
resource is characterized by power (i.e. power models are available) offline for different modes of 
operation, the MON can use this information to let the LRM know about the energy status of the 
resource. This service depends on the availability of such power models. 
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4.8 Specific Resource Monitoring Services 

See section 1 for monitoring services offered by communication resources and section 4 for 
monitoring services offered by the virtualization layer in DREAMS. 

 
Group of Resource Scheduling Services 
 

4.9 Specific Resource Scheduling Services 

Each resource that should be managed by the integrated DREAMS resource management 
architecture is paired with a set of LRS and MON. Each LRS schedules the use of the resource. The 
services that it provides and its own implementation are very specific and particular to each 
resource, and are presented in Section 1 for communication resources (network interfaces, routers, 
gateways, memories) and Section 3 for execution resources (partitions). 

In general, LRSs perform the runtime scheduling of resource requests, for example, execution of 
partitions on top of the virtualization layer, execution of tasks inside a partition, processing of 
queued memory and I/O requests, dispatching of time-triggered and aperiodic messages at the 
network interfaces. In general, the LRSs in DREAMS support different scheduling policies, which can 
be classified at a high level as offline scheduling and online scheduling. 

 

Group of Resource Configuration Services 
In the following, the group of resource configuration services is described. Inside this group, we 
present one sub-category: generics services. Specific services for resource configuration are 
presented in Section 1 for communication resources (network interfaces, routers, gateways, 
memories) and Section 3 for execution resources (partitions). 

4.10 Generic Resource Configuration Services 

4.10.1 Update entire resource configuration 

This service is provided by the LRS of the resource. It refers to the capability of the LRS to change its 
own configuration, whenever required by an LRM. Depending on the type of resource, this could 
mean to load a new off-line precomputed schedule, or accept changes to the online scheduling 
parameters. 

In the case of execution resources, like virtualized processor cores, the scheduler of the virtualization 
layer can make a change in the scheduling plan of the partitions, as explained in section 3.1.8. 
Conceptually, such change can only be requested by an LRM, and practically, this change can be 
requested from a system partition, inside which the roll of an LRM would be implemented. 

 

4.10.2 Modify individual parameters 

Similarly to service 4.10.1, this service is provided by the LRS of the resource. It refers to the 
capability of the LRS to change specific parameter of its own configuration, whenever required by an 
LRM. 

 

4.11 Specific Resource Configuration Services 

See Section 1 for configuration services offered by communication resources and Section 3 for 
configuration services offered by the virtualization layer in DREAMS. 
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Group of Resource Management Security Services 
 

4.12 Security Services  

As described in the threat model for resource management services, there are two main attack 
targets on the resource management services. On the one hand there are attacks on the resource 
management components itself, and on the other hand there are attacks against the communication 
process of the resource management services. 

The attacks against the GRM, LRM, LRS and MON components can be prevented by using access 
control and authentication. Only authorized users or the other authorized resource management 
components are allowed to change scheduling tables, configurations, etc.  

The attacks focusing on the communication process of the resource management services can be 
prevented by using secure communication services. Depending on the type of the communication, it 
could use either the services on the network level or the services on the application level. On the 
network level, the secure communication services from the DREAMS communication services will be 
used and on the application level, the secure communication services from the DREAMS execution 
services will be used.  

 

In addition mechanisms to provide trustworthy communication between the GRM, LRMs and MONs, 
the resource management services serves the key management in the DREAMS architecture. This 
includes key generation, destruction and exchange. To store confidential data securely, a secure 
storage service is provided. 

 

4.12.1 Key Generation and Destruction Service 

The key generation and destruction service generates cryptographic keys needed for secure 
communication and destructs (securely removes) the keys that are note longer needed. The service 
can generate both symmetric keys and asymmetric key pairs. Symmetric keys are used for encrypted 
communication. Asymmetric keys are used for the sharing of the symmetric keys or with some 
additional effort, they can be used to authenticate a communication partner or the origin of the 
data. If a cryptographic key is no longer needed by the application for which it was created, the 
service destructs the key which is usually stored in the secure storage. 

 

4.12.2 Key Exchange Service 

The key exchange service exchanges cryptographic keys between the communication partners. 
Considering the threat assumptions, this service is mainly used for the off-chip communications. The 
key exchange is performed in a secure way so that an adversary cannot get hold of the keys 
transferred through the network. 

 

4.12.3 Secure Storage Service 

The secure storage service saves important data, such as cryptographic keys, in a secured part of the 
memory. Applications can save confidential data in the storage and no other application can 
interpret the confidential data. The access to the storage is controlled by an access control list. The 
secure storage service can be used by the key generation and destruction service for managing the 
cryptographic keys of an application. 

 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 107 of 121 

  



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 108 of 121 

5 Optional Services 

As pointed out in the definition of the DREAMS architectural style (see Part I of the document), core 
services are required for all domains and applications. Optional services are built on top of these 
core services and provide higher-level capabilities for certain domains. 

 Since they can be integrated only when needed, they allow for a more efficient system design. 
Optional services can be implemented in hardware (IP core) or software. 

While the focus of this deliverable is to define the core services constituting the DREAMS 
architectural style, in this section, the definition of an exemplary optional service will be provided. In 
the following, it will be briefly motivated why a software-based voting service has been selected as 
example: 

 One reason to prefer a software-based design over a dedicated hardware IP core is certainly 
to reduce the required effort. Additionally, the proposed design can be used to validate the 
interaction of a number of DREAMS core services located at different levels of the service 
stack (i.e., core services implemented in hardware and software). This is because the voting 
service depends on the execution services (see Section 3) which in turn depend on a number 
of further DREAMS core services (e.g., communication). 

 The voting service demonstrates how the guarantees provided by the DREAMS core services 
can be employed to enhance the robustness of a system, i.e. its capability to withstand 
certain perturbations. The core services already provide assurances to prevent or contain 
the effects of malicious perturbations (e.g., caused by malign actions such as denial-of-
service attacks, manipulation of data integrity, or side-effects of intrusion attempts) and 
accidental perturbations (e.g., caused by internal or external physical faults, or design faults) 
covered by the DREAMS fault hypothesis (see Section 2). Here, the voting services 
demonstrates how based on the containment property for accidental faults a building block 
for fault-tolerant systems (i.e., systems that to continue to operate while faults have 
occurred) can be designed. 

 

5.1.1 Voting Service 

Software-fault tolerance mechanisms typically require the application of adjudicators, i.e., decision 
mechanisms that employ redundancy to determine if the result computed by an application 
component is correct. 

 A voter is an adjudicator that compares the input of two or more replicas (possibly variants) of an 
application component and decides the correct result, if it exists. As such, the concept of voting can 
be applied at different levels of the system, and therefore can be implemented in hardware and/or 
software. 

 Figure 52 provides a general overview how a number of (non-fault-tolerant) replicas of an 
application component and a voter can be combined into a fault-tolerant unit (FTU). 



D1.2.1 Version 1.0 Confidentiality Level: PU 

13.05.2015 DREAMS Page 109 of 121 

...Inputs

Status

Correct result 

(if it exists)

Generic voter

 - Receive input

 - Apply voting algorithm

 - Set correct result (if it exists)

 - Return result and status

Application 

component 

(replica 1)

Application 

component 

(replica n)

...

Communication service

(provides temporal firewall,

in separate fault-containment region)

Fault-containment region

 

Figure 52: Fault-tolerant unit (FTU): replicas, communication service (with temporal firewall), and voter 

In the following, assumptions and dependencies of the voting service will be discussed. In order to 
prevent a single fault to compromise an arbitrary number of replicas (and possibly the voter itself), 
each replica and the voter must reside in different fault-containment regions (FCRs). 

FTUs exclusively based on voters can only be used to handle errors in the value domain of the 
expected service of the underlying application component. Since for real-time systems also temporal 
correctness of the FTUs output (i.e., its observable behaviour) must be guaranteed, the application 
of temporal firewalls that enforce this behaviour is mandatory. Likewise, voters in real-time systems 
do not only have to cope with input that is erroneous in the value domain, but also with input that 
violates its “timing contract”. In this case, the temporal firewall mechanism prevents the delivery of 
belated / early input, which makes them from the voter’s point-of-view appear as missing input. 
Missing input might also occur because of a fault (e.g., design fault, or lockup due to a physical fault), 
or a deliberate decision at originating components (e.g., failed admittance test on inputs, failed 
acceptance test on computed results). Hence, the DREAMS voting service implements the dynamic 
versions of the particular voting strategies (which are also defined on partial input). 

Comparison function 

The comparison of two inputs is the basic building block of any implementation of the voting service. 
Here, two general approaches can be distinguished: 

Exact voting refers to voting strategies that are based on the procedure of performing a bit-by-bit 
comparison of the inputs. The advantages of this approach are that it is an efficient, scalable, 
strikingly simple and generic method. It maintains a strict separation of concerns between the voter 
and the application components that enables the universal usability of the comparison function. 
Since the bit-wise comparison induces a number of equivalence classes on the input data, it is 
typically used in the majority or the consensus voting strategies. Exact voting is based on the 
assumption of replica determinism where – in the absence of faults – all replicated components are 
guaranteed to produce exactly the same output messages with a bounded temporal deviation. Exact 
voting is not compatible with FTUs where multiple correct results (MCR) of the different replica are 
possible. Some causes for MCR such as non-deterministic algorithms may not be prevalent in the 
domain of safety-critical systems. However, typical design patterns such as replicated sensors can 
provoke the same problem. In order to ensure the required replica determinism, it necessary to 
reduce the redundant sensor input to one harmonized value using an agreement protocol (e.g., data 
fusion). As a consequence, extra care must be taken in case the replicated components use floating-
point arithmetic (FPA), e.g., because of inconsistent implementations on heterogeneous 
architectures. 
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Inexact voting relies on the application and/or data-type specific comparison functions. Since this 
approach can be used to implement comparison functions that define orderings on the input 
domain, it can be used to compute the “most appropriate” voting result from varying input sets 
(e.g., input from replicated sensors). Inexact voters do in general not guarantee that their output is a 
member of the original input set (depending on the selected voting strategy). Because of the use of 
comparison tolerances, inexact voting is generally better suited to handle FPA. However, it might 
also cause additional problems. E.g., the result computed by an average voter on a set of identical 
floating-point values might exhibit a slight deviation from the original value. 

Voting strategy 

Since the DREAMS architecture ensures replica determinism for safety-critical subsystems, the 
DREAMS voting service implements the dynamic exact majority voting (DEMV) strategy. DEMV 
masks a fault if and only if a majority exists among the non-faulty inputs with respect to the size of 
the entire input vector. If the voter detects an agreement of all inputs, it returns the correct result 
and indicates a successful return status. Otherwise, i.e. if a (correct) majority exists but there is at 
least one deviating input source, the voter returns the correct result, and determines which of the 
originating application component replicas are erroneous. If no majority exists, DEMV has detected 
faults in the application component replicas whose detailed origin cannot be determined. Here, it 
will not produce a return value and assume that a potential error in all of the originating application 
component replicas exists. In particular, this case also occurs when less than the half of the input 
vector has been received on time. DEMV is defeated if a “tainted” majority exists, in which case it 
will deliver an incorrect result. The dimensioning of the system, i.e. the degree of redundancy and 
the deployment of the individual components of the FTU to separate FCRs, must ensure that this 
case can only occur due to a rare fault that is not covered by the systems fault hypothesis. 

The modular architecture of the voting service enables the integration of further voting strategies, 
such as dynamic consensus voter (relaxation of majority voter that does not require an absolute 
majority), and inexact voters such as the dynamic average or the dynamic median voter). 

Fault Assumptions and Behavior in Presence of Faults 

In the presence of faults in application component replica(s), the situations described below can 
arise: 

 If the FTU contains “enough redundancy” to tolerate all current simultaneous faults, it is 
able to mask the fault(s) in the value domain, and therefore exhibits fail-operational 
behaviour. Additionally, it is possible to identify the erroneous replica(s) and to possibly 
initiate appropriate counter-measures (normal fault). 

 The FTU is able to detect the presence of value errors in the application component replicas, 
but it is not able to decide the correct result (and therefore also not to identify erroneous 
replicas). In this case, the FTU will not output any result at all in order to contain (value) 
errors. In combination with aforementioned temporal firewalls, voters can be used to 
guarantee fail-silent behaviour in this case. 

 If the voter is not able to detect/correct the presence of faults in one more replicas, it is 
“defeated” and will forward an erroneous result. The design and dimensioning of the system 
must guarantee the probability of this case is sufficiently low (rare fault). 

 In the case of a fault in the voter itself, the voter might either be defeated due to a 
computation error in the voter logic or it might not return any value at all (e.g., lockup 
because of a corruption of the program counter). In the latter case, the voter is also likely to 
fail to provide information about its status. 

Dependency on other services 
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Depending on how the voter is integrated into the system (see Appendix for suggested design-
patterns), the voting service is either implemented a pure software library, or as a system 
component in a partition (based on the voting library). 

The software library is almost completely self-contained and only depends on a reporting facility in 
case faults have been detected (e.g., DRAL_RAISE_APPLICATION_ERROR). 

In case the second option is seleted, the voting service is embedded into a dedicated (real-time) 
partition provided by the DRAL and relies on the communication service in order to send and receive 
periodic (multi-cast) messages (e.g., DRAL_CREATE_SAMPLING_PORT, 

DRAL_WRITE_SAMPLING_MESSAGE, DRAL_READ_SAMPLING_MESSAGE). 
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6 Certification Strategy  

 

6.1 Introduction 

The certification strategy builds on top of previous successful milestones (FP7 MULTIPARTES), such 
as the positive assessment of a safety concept for a wind power mixed-criticality embedded system 
([26], [27], [28], [29]) based on a multicore partitioning solution that met IEC-61508 and ISO-13849 
industrial standards. Different lessons were learnt and have been used to define current certification 
strategy: 

- It is technically feasible to develop and certify IEC-61508 based mixed-criticality systems 
based on multicore and partitioning, but the effort is high 

- In order to enable cost efficient certification, rules and strategies are required, e.g. diagnosis 
strategy. 

- If modularity and variability of product families is not considered from the beginning, minor 
variations of the system require a complete revision and update of the safety-concept 

- The usage of non-compliant items dramatically increases the safety-concept definition 
effort, e.g. COTS multicore processors designed for average performance 

 

The certification strategy aims to pave the way towards the competitive development and 
certification of mixed-criticality solutions. Competitive development and certification emphasizes 
the need for solutions to manage previously described learnt lessons. For this purpose, modular 
safety-cases, patterns and product families are considered. IEC-61508 is considered to be the 
reference safety standard. 

 

6.2 Modular Certification 

The generic concept of “modular certification” is explicitly defined in different standards using 
different names and scopes: ‘compliant item’ (IEC-61508), ‘Safety Element out of Context’ (ISO-
26262), ‘Generic application’ (EN-5012X), etc. In all cases, the final objective is to enable the cost 
competitive development of products and reduce the probability of systematic faults by means of 
reusability. 

 

In DREAMS architecture we find both HW and SW components (building blocks), from which only a 
subset of them provides safety critical properties. Modular certification aims to reuse in an 
structured manner, evidences-arguments--claims of building blocks already certified, qualified or 
developed in compliance with safety-standards (even if they are not certified). This reuse of modular 
safety cases of building blocks, should reduce the effort and complexity management in the 
development of the mixed-criticality system, reusing. 
 
Modular safety cases use arguments and evidences to support a given claim (e.g. the compliant item 
is safe for its purpose) using a graphical representation that can be documented in detail. Some 
arguments and evidences might need to be provided by a third party, e.g. system integrator. For this 
purpose the concept “export” is defined. For example, the assurance that temporal interferences 
that could be dangerous are either controlled or that there is diagnosis measures to go to a safe 
state, which shall be provided by the system integrator. An export is an assumption in the safety 
concept that must be provided by the system integrator. So, a sub-claim can be denominated as 
export item and therefore, must be provided by the system integrator. 
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- A claim is defined as a statement asserted within the argument that can be assessed to be 
true or false (e.g., X System is adequately safe). Each claim is supported by a number of sub-
claims and may contain additional contextual material (i.e., explanation of used terms). 

- An argument is a description of the argument approach presented in the support of a claim 
(e.g., deterministic, probabilistic or qualitative arguments). An argument links the evidences 
to the claims. 

- An evidence is a reference to the evidence being presented in support of the claim or 
argument. This can be either facts (e.g., based on a research), assumptions, or sub-claims, 
derived from lower-level sub-arguments. 

Arguments

 

  

Evidence

Claim

Subclaim

< Export >

Supports

Is a subclaim of Is a subclaim of

Is evidence for

Subclaim

 

Figure 53: Claims, Arguments and Evidence (CAE) notation. 

 
Modular Safety Cases cover the following aspects: 

 Analysis of the system regarding safety needs. 

 Strategies adopted to achieve the desirable SIL (Safety Integrity Level). 

 Techniques and Measures to control random faults. 

 Demonstration that selected techniques are sufficient to fulfil safety needs. 

The sources of information to identify techniques available are: 

 IEC 61508-2 Annex A. 

 Other modular Safety Cases. 
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The architecture of the system must be well defined and preferably divided into subsystems (some 
of the subsystems can form Modular Safety Cases). Some of the subsystems can be: 

 Input/Output Modules 

 Memory Units 

 On/Off chip communications 

 Safety/Non-Safety interactions 

 Etc. 
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Figure 54 Relationship and scope for IEC 61508-2 / IEC 61508-3 and Modular Safety Cases 

1 PE: Programmable Electronic. 
2 NP: No Programmable. 
3 NPE: No Programmable Electronic. 

 

6.2.1 Examples of Modular Certification 

For example, a modular certification of the hypervisor means that the hypervisor itself must be 
compliant item and the safety partitions generated by the hypervisor can be considered by IEC 
61508 compliant items (Annex D IEC 61508-3). In case of partitions that are not related to safety 
functions, they do not need to be a compliant item. The hypervisor shall provide the non-
interference between partitions following IEC 61508-3 Annex F for assure interference freeness of 
partitions. 

The hypervisor as a modular certified unit must ensure the independence of execution between the 
software elements hosted in the DREAMS chip. DREAMS can host elements of different systematic 
capability, or software contributing to safety and non-safety functions, etc.  Those software 
elements will not adversely interfere with each other´s behaviour such that a dangerous failure can 
occur. The hypervisor should demonstrate the independence of execution in both the temporal and 
spatial domains.  
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Figure 55: Relationship among hypervisor, partitions and IEC 61508. 

In case that one safety partition, which is considered as compliant item, is intended to be reused in 
one or more instantiations of the DREAMS chip, it will need to follow IEC 61508-2 Annex D and IEC 
61508-3 Annex D. These annexes define that each safety partition shall provide a Safety Manual that 
contains all the information relating to compliant item, which is required to enable the integration of 
the compliant item into a safety-related system, or a subsystem or element, in compliance with the 
requirements of IEC 61508. The safety manual should describe attributes, functions, constraints, etc. 
to be taken into account by the integrator and on top of all the evidence for the future assessment 
of the instantiation.  

For the case of mixed criticality networks, DREAMS architecture system involves the transfer of 
information between different locations. The transmission system forms an integral part of the 
safety related system, which must be protected to guarantee the end-to-end communication 
integrity.  The integrity of end-to-end channel can be ensured by checking correctness of messages 
between applications, so the end-to-end communication can be considered as safe.     
 
According to IEC 61508-2, there exist two transmission systems: 

 White Channel: The entire channel is designed, implemented and validated according to IEC 
61508 and IEC 61784-3 or IEC 62280 series. 

 Black Channel: The channel is not designed, implemented or validated according to IEC 
61508, and measures shall be implemented in the E/E/PE safety-related subsystems or 
elements that interface with the communication channel in accordance with IEC 61784-3 or 
IEC 62280. Measures are typically a safety related protocol which is put on top of the 
existing non-safety related communications and which includes measures against fault such 
as describes in IEC 61784-3 and IEC 62280.  

Entire communication channel (including protocol, services and network components 

comply with IEC 61508 and (IEC 61784-3 or IEC 62280)

Subsystem/

Element complies 

with IEC 61508

Subsystem/

Element complies 

with IEC 61508

 

Figure 56: White Channel Architecture for Mixed-Criticality Data Communication. 
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Protocol comply with IEC 61784-3 or IEC 62280 

Parts of the communication channel between the interfaces are not designed or 

validated to IEC 61508

Subsystem/

Element complies 

with IEC 61508

Subsystem/

Element complies 

with IEC 61508

 

Figure 57: Black Channel Architecture for Mixed Criticality Data Communication. 

 

The modularity approach makes potentially possible that a modular safety case for mixed criticality 
networks can contain a Safety Communication Layer that can be reused as a compliant item for 
other developments.  

The instantiations of Safety Communication Layer can vary depending on the selection of 
transmission system type (open or close). In consequence, as Figure 36 shows, it is potentially 
possible to achieve a modular SCL which can be used as independent and compliant for easier and 
more flexible development of new systems. 

 

 
Figure 58: Relationship between Network Modular Safety Cases and the Compliant Items 

 

6.3 Mixed-Criticality Patterns & Product Families 

A Mixed criticality system is a system that contains applications of different criticality levels that 
interacts and coexists on the same computational level. 

Design patterns provide solutions to well known and repetitive problems, e.g. how to share a 
memory region that commands digital outputs (safety and non-safety related) among a set of 
partitions of mixed-criticality. The reusability of design patterns also enables the cost competitive 
development of products and reduces the probability of systematic faults by means of reusability. 
Design patterns can also reuse previously defined modular safety cases. 

A software design pattern can be defined as a description of communicating objects and classes that 
are customized to solve a general design problem in a particular context. Like in software 
development, design patterns have been also adapted for hardware design to provide 
implementation-independent and abstract views for recurring hardware design solutions. In general, 
a design pattern can be defined as an abstract representation of a general design problem that 
occurs in many applications.  
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Dependability is defined as the ability of a system to avoid frequent failures. Therefore, 
dependability as a system property is related to the safety-critical applications. The notion of 
dependability covers the following attributes:  

 Availability: readiness for correct service, 
 Reliability: Continuity of correct service,  
 Safety: Absence of catastrophic failures, 
 Integrity: Absence of improper system alterations,  
 Maintainability: Ability to undergo modifications and repairs. 

Dependable patterns describe what the safety engineer should consider and how it could be done. 
These patterns usually provides definitions of: 

 Functionality to be provided to the system integrator. 

 Information to be provided (arguments) from the system integrator. 

 Proof of a certain realization (evidences) similar like information on the certification of a 
compliant item. 
 

 
Figure 59: Design Patterns Re-usability 

Product families / Product lines take into consideration the variability of products (e.g. low end and 
high end version) and the continuous trend towards the integration of more functionality and 
components in products. Product families could be efficiently constructed using design patterns that 
already consider variability and modular safety cases. 

Product family certification indeed can take advantage of mentioned above approaches (cross-
domain patterns and modular safety case).  The use of modularity and cross-domain pattern based 
approach provides a way to reduce the development time and cost of new developments and pre-
existing product actualization in a product line. In the development process of a product-line, there 
are two possible development scenarios. A scenario where a product-line pre-exist and a second 
one, where there is no product line at all. In each case, the development process will follow the IEC 
61508 standard.  Likewise, approaches of cross-domain patterns and modularity will be applied at 
different manner. 

In the first case, when there is a pre-existent product line and certain modularity then cross-domain 
patterns will be based on the components and sub-components which are obtained from the 
functional decomposition of selected product-line. This way, a generic core of a product-family is 
obtained. After certification process of the core, in case of modifications or new developments, the 
same certified generic core can be re-used and the only re-certification needed will be the one of the 
modified part of product. 
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In the second approach, there is not a product line to decompose, so, in this case, the development 
process of a product and therefore the development process of a product line must be started from 
the beginning: from specifying requirements until first product development, across component and 
sub-component design/development/certification, to achieve one generic certified core of a 
product-line. This generic certified core will be the central element from where the development of 
new products will be started. 
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