

Distributed Real-time Architecture for
Mixed Criticality Systems

Implementation of real-time scheduling heuristics
and coordination for the KVM hypervisor

D 2.2.3

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date 2016-05-04 Deliverable No. [D 2.2.3]

Contact Person Alexander Spyridakis Organisation Virtual Open Systems

Phone +33 (0)6 52 52 22 58 E-Mail
a.spyridakis@

virtualopensystems.com

Contributors

Name Partner

Nicolas Dagieu VOSYS

Jeremy Fanguede VOSYS

Alexander Spyridakis VOSYS

Table of Contents

Contributors .. 2

1 Introduction ... 4

1.1 Position of the Deliverable in the Project ... 4

1.2 Contents of this Deliverable .. 4

2 Memory bandwidth policies extensions ... 5

2.1 Introduction ... 5

2.2 Memguard ... 5

2.3 Trends and virtualization ... 7

2.4 Memguard results on Juno .. 7

2.5 Memory bandwidth policies in embedded virtualization ... 10

2.6 Architecture and implementation ... 10

2.7 Experimental results .. 12

3 Coordinated scheduling enhancements .. 13

3.1 Paravirt ops interface for KVM on ARM .. 14

3.2 Paravirt-ops host side implementation ... 15

3.3 Paravirt-ops guest side implementation ... 15

3.4 Host sysfs user interface ... 16

3.5 Hypercall integration with the secure monitor firmware ... 17

4 Conclusion and future work .. 19

5 Bibliography ... 20

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 4 of 20

1 Introduction

This document is the deliverable D2.2.3 of the DREAMS project. It is the last deliverable of task T2.2
– Resource Management and Adaptation Services for Mixed Criticality of work package WP2 –
Multicore Virtualization Technology. This deliverable, D2.2.3 – Implementation of real-time
scheduling heuristics and coordination for the KVM hypervisor, presents the next set of scheduling
enhancements implemented for KVM and their improved integration with the DREAMS hardware
and software technological results.

D2.2.3 is the continuation of the first implementation in D2.2.1 - Optimized hierarchical real-time
scheduling heuristics. In this document the overall status of the scheduling extensions is covered,
such as the concept of guest – host scheduling coordination in KVM and how they are
complemented and improved with additional infrastructure from the previous deliverable.

1.1 Position of the Deliverable in the Project

The objective of WP2 is to develop the chip-level platform of the DREAMS architecture, which will
encompass a novel multi-layered HW/SW infrastructure with inherent temporal and spatial
partitioning, real-time support, built-in security mechanisms and energy-awareness. Another critical
technology, concerns resource sharing of key subsystems in the multicore SoC architecture,
leveraging advances from component-based design, distributed communication and computation
oriented monitoring facilities and hierarchical real-time scheduling to separate conflicting system,
personal and business-owned application requirements. Modularity in the composition of
hierarchical scheduling algorithms with high- and low-level schedulers will allow seamless support of
different local schedulers by simply running a different guest OS.

D2.2.3 is part of T2.2, which considers the necessary extensions for priority based preemptive
scheduling and context switching heuristics to bind task priority assignments (which are relative) to
real-time constraints (which are absolute). Hierarchical scheduling heuristics based on cluster-level
and core-level enable distributed decision making by independent, low-level local schedulers
implementing space- and time-sharing of resources with different criticality structures to enable
hard, soft and best-effort scheduling strategies, configured with a high degree of system modularity.

In regards to KVM, the T2.2 and D2.2.3 is focused on providing a set of mechanisms and additional
infrastructure to enhance the performance of guest scheduling (e.g. CPU, disk I/O, memory
bandwidth) for soft real-time scenarios in systems which their resources are over-committed. For
hard real-time support, as it will be documented in D2.3.2 - Firmware monitor layer implementation
for the concurrent execution of an RTOS and Linux/KVM (M34), hard real-time capabilities are off
loaded to an isolated RTOS which is executed securely on the same resources as Linux/KVM, by
utilizing the TrustZone security extensions. This combination of hard/soft real time workloads, in
different subsystems, requires further coordination, to ensure time criticality and overall system
responsiveness.

The confidentiality level of this deliverable is public (PU) and it will be published on the DREAMS
website, once approved by the European Commission.

1.2 Contents of this Deliverable

In chapter 2, we detail the problem of memory bandwidth in mixed-criticality scenarios and the
extension of policies for guest systems, while on chapter 3, improvements of the previous
coordinated scheduling approach (D2.2.1) are reported. Finally, in chapter 4 we conclude the status
of the current work and the next directions targeting the Healthcare demonstrator.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 5 of 20

2 Memory bandwidth policies extensions

In D2.2.1 - Optimized hierarchical real-time scheduling heuristics, the concept of coordinated
scheduling between Linux host/guests was explored, providing a proof of concept implementation
with some initial metrics on the performance improvement that such a design can offer. For this
deliverable we explore a similar concept, but instead of disk I/O or task scheduling, virtual machines
can communicate with the host to fine-grain their use of memory bandwidth. First we take a look at
Memguard, a memory bandwidth aware scheduler, this solution is modified and ported for the use
in the DREAMS ARMv8 platform, the Juno development board. The core functionality of Memguard
is assessed with a number of benchmarks run on Juno and subsequently guest systems are exposed
to the Memguard mechanism through a communication interface with the host.

2.1 Introduction

Nowadays, computers and embedded systems are based on multi-component architectures, which
require at least a microprocessor, some RAM and other optional peripherals and storage devices.
Over the last decades the performance of CPUs has been increasing steadily but memory, on the
other hand, hasn’t followed this trend, as such, computer systems are facing the “Memory Wall”
problem. Even if new solutions like High Bandwidth Memory (HBM) or “stacked memory” are
attempts to solve this problem [1], most actual platforms are based on standard DRAM. In this
context it is difficult to provide a guaranteed bandwidth to an application, especially “real-time” (i.e.
soft or hard real-time) applications executed together with other tasks. In this context, bandwidth is
a major part of the system, especially on multi-core systems (which share memory).

The performance bottleneck of memory has been extensively studied and several solutions have
been implemented. Most of them are hardware solutions [2] [3], at the memory controller level.
Few solutions have been proposed at the software level [4], mostly for server distributed large scale
systems [5]. Instead in this chapter we will take a look on how memory bandwidth management can
be exposed to Virtual Machines, and how a coordination can be applied between the host and guest
systems.

Since the bottleneck of memory performance can be pronounced even more in mixed-criticality
environments. In consequence of this problem, tasks are starved during execution due to the lack of
available memory bandwidth at the right time, which can significantly reduce the performance of
the system. Experimental results show this bottleneck and highlight the importance of a scheduling
method to solve it. A solution based on Memguard is explored and implemented to solve this issue
on an ARMv8 SoC, which is representative of an actual high-end embedded computer system. The
extension to Memguard also relies on Completely Fair Scheduler (CFS) the standard task scheduler of
Linux, it involves a new scheduling mechanism to take care of the bandwidth and to manage tasks
depending on their memory bandwidth usage.

2.2 Memguard

Memguard [7] is a memory bandwidth aware scheduler, it distinguishes memory bandwidth in two
parts, guaranteed and best-effort. It provides guaranteed bandwidth for temporal isolation and best-
effort bandwidth to use as much as possible the spare bandwidth (after all cores are satisfied).
Memguard is designed to be used on actual systems using DRAM as main memory.

The common DRAM architecture consists of banks with different rows/columns. Maximum memory
bandwidth can be achieved in the case where data are located in different banks, in other cases the
memory bandwidth can be limited and to address this bottleneck a solution named Memguard is
used, which takes care of scheduling the memory bandwidth to provide the desired Quality of
Service.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 6 of 20

Memguard is implemented as a Linux kernel module, which is based on the use of the Performance
Monitor Unit (PMU). It captures the memory usage of each core by reading the Performance
Counter Monitor (reading memory requests if used with PCM version < 2.4 and memory reads and
writes with PCM version > 2.4).

The module architecture is based on two parts, the first being the Reclaim Manager which stores
and provides bandwidth allocation to all per-core B/W regulators, while the other part is the per-
core B/W regulator that monitors (thanks to the PCM) and regulates the memory bandwidth usage
of each core. Memguard is linked to physical cores, the regulation process works only at the core
level. Due to this architecture, regulating a process running on several cores at once is not easily
feasible.

Figure 1: Memguard architecture overview

We can describe the architecture as follows:

 The global budget manager also known as Reclaim manager: It handles the memory budget
on each core of the CPU. Every scheduler tick (1 ms) if the predicted budget of each core is
under the assigned (fixed) budget of overall system, a memory budget tank is set to give
more bandwidth during the future time slice if a task need to access to more B/W than
required (and some B/W is available in the reclaim manager).

 The per core B/W regulator: It handles the memory management for each core, updating
the actual used budget with the PCM value, configuring the PCM to generate an overflow
when all memory budget is used and reclaiming more bandwidth from the reclaim manager
if needed.

Beside the overall architecture, Memguard has different features. Its major functionality is
bandwidth management limiting, allowing a user to set a limit (in MB/s, “weight” or in percent).
Another feature is the per-task mode, it uses task priority as a core's memory weight. The last major
feature is the “reclaim bandwidth” functionality, distributed any leftover bandwidth that was not
consumed. This last feature enables to use as much as possible memory bandwidth. When not in
use, the available bandwidth is equal to the max-bandwidth setting set at start (or updated later).

Memguard can be used in different ways. The simplest use of Memguard is to balance workloads,
reducing the memory bandwidth of a task to preserve memory-bandwidth for others. Memguard
usage is linked to the physical cores of the CPU, consequently the application level use is

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 7 of 20

complicated and must be done manually. Memguard requires setting the bandwidth manually, as
such users must be careful on which core, applications are running on, and adjust meaningfully each
application's B/W needs.

2.3 Trends and virtualization

In the past most actual embedded systems were designed to handle standalone actions within
simple applications. Nowadays, more and more complex tasks are used through embedded systems.
Multimedia applications and database analysis are now common. Embedded systems are actually
designed with several micro-controllers communicating with each other (and/or with a master),
increasing cost and decreasing the MTBF (mean time before failure).

New kind of needs appear, requiring powerful embedded systems with a large number of
connection interfaces. In the near future, most actual multi-chip embedded systems will be replaced
by a central unit performing all computation and networking tasks. This embedded systems
architecture direction raises the problem of mixed-criticality which is at the heart of the system. If a
single platform is used to run different criticality software, some requirements are needed.

Mixed-criticality means running some hard-real-time application with soft-real-time or standard
application at the same time on the same processing unit. Also this kind of system, needs to provide
security separation between tasks to ensure data/program isolation. Cooperation between hard and
soft real time processes pulls all the software interface to be more cooperative and resource/need
aware. Each program needs to exchange information in order to provide Quality of Service.

Virtualization is the last component of future unified embedded systems architecture. Virtual
Machines give the possibility to ensure the security and resource isolation between tasks. Each task,
for example a video processing task (capture video from a sensor and process the image to find
particular patterns) could be executed at the same time as video playback and/or a more critical
task. Each task can then be executed in a separated VM with all the software needs and the correct
amount of processing/memory bandwidth reserved.

In this context, the memory bandwidth management becomes the bottleneck of the system not only
because all cores use the same memory but also because all different VM are running
“simultaneously”. Each VM handles a certain software environment, with a specific priority and
memory bandwidth need. The priority of the guest can already be solved by a priority scheduling
mechanism which we explored in D2.2.1, while the memory bandwidth must be managed to reduce
memory bottlenecks.

2.4 Memguard results on Juno

For this work we utilize a specific benchmark suite, composed by a virtualized environment and
different benchmark software. The environment is Linux 4.3.0 kernel with an open-embedded file-
system, QEMU/KVM is the selected virtualization solution. The actual benchmark platform is Juno r0
an ARMv8 development board with 2*Cortex-A57 and 4*Cortex-A53 cores. For testing only A57
cores are used to run the needed number of guests, as the memory bandwidth difference between
A57 and A53 cores is too large to include both types of cores(from 2500MB/s to 1500MB/s). The
taskset utility is used to set guests on specific cores. Guests are running with a 4.3.0 Linux kernel and
a minimal filesystem, including the benchmark software suite.

The first benchmark used is a program used by the original author of memguard, this program is
used to get a point of comparison between our platform and the author's one. It consists in a simple
buffer copy-process program to use a large amount of memory bandwidth, it simply provides a
number of “processed” frames per second. The second program is the well-known Mplayer video
suite. Mplayer was chosen to represents some multi-media use-case in a mixed-criticality
environment. Mplayer is used with the benchmark option to see if a high-bitrate video decoding
(two videos are used, 5Mb/s and 1Mb/s) process is runnable in the benchmark environment. The

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 8 of 20

last benchmark is an FFT program, simulating a capture and process task in soft real-time
constraints. The FFT benchmark is called periodically and sets a buffer to process FFT computation
on it, the output result is a the number of processed buffers per second.

The first test (Figure 2) is the memory bandwidth limitation mechanism. For this purpose, four
different tasks are launched at the same time. A different memory bandwidth weight will be
associated to each core/task. Each task is running on a specific core (one core = one task).

Figure 2: Memory bandwidth limitation in different tasks (x axis in seconds, y axis in MB/s)

During the first 100 seconds, Memguard was not activated. Memguard is enabled after the 120th
second. After 220 seconds, the Memguard module is working with different weights to highlight the
memory bandwidth limitation on each task. Task 1 has the maximum weight while task 4 has the
lowest (tasks 2 and 3 have the same weight). The results are expected, it shows that the Memguard
module is regulating the memory bandwidth of each task.

Figure 3: Memory reclaim results (x axis in seconds, y axis in MB/s)

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 9 of 20

The second experiment (Figure 3) is about the reclaim feature, a simple task will be used to test if
Memguard can release more bandwidth than the chosen limitation. The task is running between 0 to
15 seconds with an under-estimated memory bandwidth limit. The limit was set to 240MB/s, when
the reclaim feature is enabled the memory bandwidth reaches 590MB/s. This experiment shows that
the reclaim feature can provide more than twice the original memory bandwidth limitation if more
bandwidth is available.

The CPU overhead of Memguard on the global performance was measured to understand how to
use Memguard in order to reduce as much as possible the overhead. The test uses Memguard with
the reclaim feature activated. The overhead test (Figure 4) shows that Memguard is performing well
under a large memory-bandwidth allocation per core. This drawback comes from the way
Memguard is working, if a core is under-estimated when memory-bandwidth is set, Memguard
produces a large overhead due to the reclaim feature.

Figure 4: Memguard CPU overhead in relation to memory bandwidth limiting

Finally, in order to understand the way Memguard can be used in real-life scenarios, a test with
video playback has been done. This test highlights the memory-bandwidth reservation capability of
Memguard. Without any memory bandwidth limitation, 60s (approximately) are needed to decode
the video, whereas when Memguard is enabled, decoding lasts 58s. The interest of Memguard
resides in the memory-bandwidth temporal reservation. A core can be limited to let others cores use
as much as possible the available memory bandwidth.

Plain Linux with 2 cores executing the same video task (mplayer)
Core 0: 60.318s
Core 2: 60.320s

Memguard with under estimated bandwidth : 20 MB/s on all cores
Core 0: 313.313s
Core 2: 311.306s

Memguard with correct estimated b/w for core 0 (250 20 20 20)
Core 0: 58.836s
Core 2: 276.001s

Memguard with correct estimated b/w for core 0 and best-effort policy
Core 0: 59.881s
Core 2: 95.619s

Table 1: Different rendering times with different memory b/w settings

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 10 of 20

2.5 Memory bandwidth policies in embedded virtualization

Since with QEMU/KVM a virtual machine is seen as an additional task to schedule in the host, then
the memory-bandwidth bottleneck becomes a limiting factor. Every guest is using the same memory
bandwidth and no hierarchy is implemented (like in a CPU scheduler) between guests. This memory
bandwidth bottleneck can eventually affect the performance of guests in scenarios where memory is
aggressively utilized.

When Memguard is used to regulate guests, users must launch each guest on one specific core (or
several but, a core must be reserved to each guest), reducing the interest of using Linux with KVM,
with the load balancing between cores. The use of a virtualized environment introduces also another
use-case, VMs are highly dynamic processes for the host, as they have dynamic workloads and there
is a need to change their memory bandwidth limit whenever needed. This results in the need for
Memguard to be more flexible and be able to regulate on a process granularity instead of cores.

2.6 Architecture and implementation

The aforementioned problem in virtualized environments can be solved using a memory bandwidth
scheduler. The solution is based on a new architecture involving all layers of the computing chain
(from guest to kernel of the host). It can deliver messages and regulate the memory bandwidth
dynamically. The architecture of the solution is split in three main parts: the guest level API, the host
message exchange mechanism and parts of Memguard linked to CFS. The selected architecture helps
to keep a simple yet flexible mechanism. The first part is composed of a simple debugfs interface,
allowing user to write/read from a simple file to set the needed memory-bandwidth value. It allows
setting the memory bandwidth from another program (like a local resources manager).

Figure 5: Architecture overview of Memguard with virtualization extensions

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 11 of 20

Every call is made with:

 Request ID: Host is aware that this call is a guest request

 Request type: Host is notified if guest wants to update the bandwidth or be removed from
the guest reservation process

 Value: A 64-bit variable to exchange information (e.g. bandwidth need: 70%)

The second part is the hypercall module, which is processed by KVM in the host, every hypercall is
trapped, filtered and processed. The hypercall process will be described in detail in the next chapter.

After the guest issues a hypercall KVM traps the guest and the memory-bandwidth request is stored
in the host kernel. The kernel structure for the information needed is composed of:

 memguard_sched_guests: The number of guest executed with memguard reservation
enabled

 memguard_sched_PID: List of guests PIDs

 memguard_sched_BW: Bandwidth request of guest

 memguard_update_bandwidth: A pointer to the Memguard callback function

The third part is the mechanism which regulates the bandwidth applying the requested bandwidth
that was stored. This part is composed of two components, CFS, the Linux scheduler and Memguard,
the kernel module, regulating memory-bandwidth at core level. CFS was selected because it is the
default Linux scheduler and is fair between tasks.

The following pseudo code snippet is a method that calls Memguard when the guest vCPU process is
being scheduled:

 function memguard_guest_update(cpu_number)

 if next_task = a_guest_in_the_list

 callback_to_memguard()

When CFS has scheduled the next task, a callback to Memguard is executed which then enforces the
memory bandwidth regulation. It is also worth mentioning that Memguard had to be also modified
in order for it to handle the callback from CFS. This function in Memguard updates the memory
bandwidth of the core corresponding to the linked guest.

 update_budget_sched(int cpu_n, long bw_n)

 convert_bandwidth_to_cache_event()

 set_the_core_budget()

 initialize_the_memguard_statistics()

The actual implementation has several benefits. The first one is the limited overhead due to a
change in the memory bandwidth requested by the guest, as a hypercall is performed only when
needed, reducing the total time processing the bandwidth modification. The second benefit relates
to the use of the CFS scheduler. This significantly reduces the complexity of integrating the solution,
and the overhead is kept to a minimum. The last benefit comes from the Memguard callback, which
provides memory bandwidth reservation and limitation functionalities.

As discussed previously, the target is to define a virtualized mixed-criticality based solution to
regulate memory bandwidth. The guest user is able to set the needed bandwidth or let the system
take care of this transparently. This results in the possibility to dynamically adjust memory
bandwidth, which allows the regulation of tasks between them, reducing the memory bandwidth of
a task enabling other tasks more resources.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 12 of 20

2.7 Experimental results

Following are some tests and benchmarks which show how the Memguard extensions can be used
to get better performance. The first test (Figure 6) shows the problem of the memory bottleneck.
When two guests are running on the same core, both tasks are limited. As in the first set of tests, in
the virtualized environment the bottleneck remains the same.

Figure 6: Memory bandwidth sharing between two guests (x axis in seconds, y axis in MB/s)

Figure 7: Memory regulation between guests (x axis in seconds, y axis in MB/s)

The second test (Figure 7) highlights the gains of the Memguard extensions. Initially, both tasks are
bandwidth limited, the first guest at 70% of the guaranteed bandwidth while the second guest at
20%. When the Memguard module is disabled (between 13th and 20th second) the first guest can
reach the maximum bandwidth. After 20 seconds the first guest requests more bandwidth, which

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 13 of 20

results for less bandwidth for the second guest. The interesting point is that both guests are
executed with a different bandwidth percentage, which allows for a hierarchical differentiation
between them.

Figure 8: Memory separation

Figure 8 demonstrates the memory separation between guests. The first guest initially is running
without a limit, after 17 seconds, a limit is enforced, a second guest is launched after 33 seconds
with a limited bandwidth. The memory-bandwidth fall is due to the CPU time shared between both
guests (running on the same core). The extended version allows Memguard to regulate memory
bandwidth from a core level to the guest level.

Plain Linux 2 cores executing the same video task (mplayer)
Guest 1: 62.112s
Guest 2: 67.968s

Memguard with under estimated bandwidth: 20 MB/s on all cores
Guest 1: 386.893s
Guest 2: 384.655s

Memguard with correct estimated b/w for core 0 (250 20 20 20)
Guest 1: 57.947s
Guest 2: 312.014s

Memguard with correct estimated b/w for core 0 and best-effort policy
Guest 1: 60.911s
Guest 2: 97.665s

Table 2: Different rendering times in guests with different memory b/w settings

Finally, the Mplayer benchmark was done with a decoding process per Guest. The results are
following ones produced without the guest environment. The current implementation is giving at
least the same results as standard Memguard.

3 Coordinated scheduling enhancements

To complement the work being initiated in D2.2.1 - Optimized hierarchical real-time scheduling
heuristics, the initial proof of concept for disk I/O and task scheduling has been extended to provide
a more robust implementation. This includes the usage of a standard Linux interface for
paravirtualization which improves the overall infrastructure for the coordinated scheduling
mechanism. Additionally the Linux sysfs interface is being utilized both in the host and the guest
system in order for users to be able to interact and control the scheduling policies involved.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 14 of 20

3.1 Paravirt ops interface for KVM on ARM

Linux already provides a way to perform some paravirtual actions through an infrastructure named
paravirt-ops (pv-ops for short) [8]. This API is used to run para-virtualized virtual machines on
multiple hypervisors with the same kernel binary. That is to say the same kernel binary can run on
bare hardware, or on hypervisors such as VMWARE VNI or Xen, it can be para-virtualized or full
virtualized [9]. This infrastructure exists for multiple architectures and hypervisors, but not for KVM
on ARM, one of the virtualization solutions for DREAMS. Therefore, a basic paravirt operator was
developed in order to implement the coordinated scheduling extensions with a ready to use
infrastructure, providing better flexibility and maintainability for new features. The approach is
based on a previous work that enables paravirt-ops for Xen on ARM/ARM64 [10], thus in this chapter
we focus on the implementation for KVM on ARM.

Paravirtual functions require a hypercall implementation, in order to be able to send information to
the host system. Therefore, hypercall functions specific to KVM have been implemented into the
KVM code base of the Linux kernel. These functions use the HVC (hypervisor call) instruction of the
ARM architecture, with the immediate argument of the HVC instruction being a constant integer
used to recognize a paravirt call (from a Power State Coordination Interface call, for instance, which
can also use an HVC instruction [11]). The parameters of the hypercall are passed through the
scratch registers, r0 contains the identification number of the hypercall and registers r1 to r3
represent the potential arguments for this hypercall. Figure 9, details the implementation of the
kvm_hypercall1 which is the hypercall implementation with one parameter.

Figure 9: Code example for the hypercall ‘1’ implementation on KVM

Those hypercalls are called from the paravirt-ops implementation of each paravirtualized subsystem.
In our case it consists of pointers to functions, stored in a structure that represents the paravirt
subsystem. Those functions are called if the paravirt-ops infrastructure is enabled for the hypervisor
on which the virtual machine is running. For our needs a paravirt-ops interface named
pv_cosched_ops was added. Along with a new hypercall named KVM_HC_COSCHED. The
pv_cosched_ops paravirt interface in the guest contains four functions:

 Register VM: During boot the virtual machine will issue a register call to the hypervisor, if
the hypervisor doesn’t support the pv_cosched_ops interface, then all coordinated
functionality is disabled. The registration procedure, if successful, also enables a sysfs entry
in the Linux host, where the user can selectively enable/disable or even fine tune the priority
of a guest.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 15 of 20

 Deregister VM: At any point in time, the host might decide that coordination is no longer
desirable during runtime. If a hypercall attempt for the guest is denied the next action of the
guest is to request its deregistration from the host. Additionally the guest can also request
deregistration if the guest user decides to do so, through a Linux sysfs entry.

 New task, new_task(): Called each time a new process is created. We use this function to
implement a heuristic mechanism to detect which are the tasks that need to be prioritized.
This function is called from wake_up_new_task() in the Linux kernel code
(kernel/sched/core.c) [12].

 Activate task, activate_task(): Called each time a task becomes runnable. That is to say, each
time a task which was waiting voluntary or due to an I/O wait becomes runnable again. We
also use this function for the detection mechanism of the task to prioritize. This function is
called from the function activate_task() in the Linux kernel (kernel/sched/core.c).

 Schedule, schedule(): Called each time a new task is scheduled. It is in this paravirt function
that the hypercall KVM_HC_COSCHED is performed; to request a higher or lower priority.
This function is called from __schedule() in the Linux kernel code (ker nel/sched/core.c).

On the host side, HVC instructions executed by the guest are trapped by KVM (in function
handle_hvc() in arch/arm/kvm/handle_exit.c), and thus, can be handled correctly, the immediate
argument of the HVC instruction is also checked to be sure that it is a hypercall and not something
else (e.g. a PSCI call, or an invalid call). Then, KVM can perform the corresponding action to this
hypercall according to the value retrieved from r0. For the hypercall we added, KVM_HC_COSCHED,
it takes only one argument, which is an integer, set to 1 if the guest needs to be prioritized and 0 if it
doesn’t need this anymore.

3.2 Paravirt-ops host side implementation

The modifications done in the host side are located in the KVM and the scheduler code base of
Linux. We had to implement the “backend” of the KVM_HC_COSCHED hypercall, which retrieves the
argument of the hypercall and performs the corresponding actions. Thus, according to the
argument, which could be 0 or 1 the hypercall handler will finally invoke the functions
coshed_boost_task() or coshed_deboost_task() on task current. The task current is always a vCPU
thread in that case.

The added function cosched_boost_task() lives in the scheduler code base of Linux
(kernel/sched/core.c), it takes a struct task_struct as an argument, which is the task to prioritize
(although in our case this function is always called with current as an argument). It boosts the
priority of all threads associated to this task, i.e. the potential other vCPU threads and the I/O
threads. We choose to prioritize those processes with a SHED_RR policy of priority 1. For this
purpose it invokes the function sched_setscheduler_nocheck() to change the scheduling policy of
these tasks.

The function cosched_deboost_task() does the reverse operation, that is to say it lower the priority
of all the threads related the virtual machine to the default one, so that the policy of the processes is
reset to SCHED_NORMAL.

3.3 Paravirt-ops guest side implementation

On the guest side the modifications consist in calling the hypercall to request a higher or lower
priority at the right time. Therefore, the schedule() paravirt function of pv_coshed_ops is called from
the core __schedule() function (in kernel/sched/core.c) [x] equipped with the next task to schedule
as a parameter. A test on this future process to run is performed to determine if this process needs
to be prioritized or not, according to this information the hypercall is executed with the correct
argument (raise or lower priority).

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 16 of 20

Figure 10: Pseudo-code of the paravirtual “schedule” function

Importantly enough, the time needed to perform a hypercall is not negligible, especially because of
the HVC instruction, trapped by KVM. We estimate this guest to host plus host to guest context
switch at around 1500 clock cycles for a Cortex-A53 core on ARM’s Juno development platform.
Thus, if the number of hypercalls is too frequent the performance will be worse than without the co-
scheduling mechanism due to this overhead. So in order to solve this problem, the guest will request
higher priority for a process, for at least a minimal period of time, i.e. the guest guarantees that it
will not require a prioritization period inferior of the minimal raising time. The pseudo-code of this
paravirtual schedule() function is detailed in Figure 10.

Function need_to_be_boosted() determines whether a task deserves to be prioritized or not. All
tasks managed by a real time policy (i.e. SCHED_FIFO, SCHED_RR and SCHED_DEADLINE) are
qualified for being prioritized, it corresponds to all the tasks that have the prio field of the struct
task_struct strictly inferior to 100. For tasks managed by the fair policies (i.e. SCHED_NORMAL and
SCHED_BATCH), a linked list of all tasks to prioritize is maintained, this is where the two other
paravirt functions are useful: New task and Activate task.

Each time a new task is created the paravirt function new_task() adds this task to the prioritized list
of tasks and each task has a counter associated and initialized to a positive value. This paravirt
function is called form wake_up_new_task() in Linux (kernel/sched/- core.c). Each time a task of this
list is scheduled, its counter is decremented (in the schedule() paravirt function), and when it
reaches 0 the task is removed from the list. The counter is incremented each time a task is woke-up
from a voluntary sleep, that is to say, a sleep caused by the task itself, e.g. a wait for a I/O job or a
timer, this is done in paravirt activate_task() which is called from activate_task() in Linux
(kernel/sched/core.c).

3.4 Host sysfs user interface

Up to now the coordination mechanism was transparently initiated between the host and guest
kernel, without any user interaction. This can end up in scenarios were multiple guests are
competing with each other for resources (essentially having the same priority between them), or
cases where a non-trusted guest can exploit coordination starving other tasks in the system. In order
for the user to have more control over the host system, a set of Linux sysfs entries are created when
a guest is using the coordinated scheduling extensions.

By default, the Linux host/guest provide a sysfs interface to the user in which coordination can be
enabled or disabled for each type of scheduler. For example in the case of disk I/O scheduling the
following entry is created when the each system boots:

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 17 of 20

/sys/block/sda/queue/vbfq/enable

The user can then issue a simple command to completely enable or disable the coordination
enhancements of the scheduler:

echo 1 > /sys/block/sda/queue/vbfq/enable

echo 0 > /sys/block/sda/queue/vbfq/enable

When a guest is booted, the first step of the respective scheduler is to issue a registration hypercall
to the host system. If registration is successful, then the guest is in a position to continue with
normal coordination hypercalls. If registration is denied, or if any coordination attempts fail to be
completed, then the guest scheduler is no longer issuing any hypercalls, avoiding unnecessary
context switches for handling the hypercall between the host/guest.

From the host side, once a guest is successfully registered another set of sysfs entries are populated,
where the user can have a more fine-grained control for each registered guest. Each registered VM
has its own entry in sysfs with a listing of all VM processes that are involved, along with an entry to
selectively enable or disable coordination for a particular VM. Additionally a priority entry is
provided where the user of the host system can select if a guest should be further prioritized among
other different guests that use coordination (by default they share the same priority). In the
following sysfs example 10301 is the PID of the registered guest:

/sys/block/sda/queue/vbfq/10301/enable

/sys/block/sda/queue/vbfq/10301/priority

3.5 Hypercall integration with the secure monitor firmware

D2.3.2 - Firmware monitor layer implementation for the concurrent execution of an RTOS and
Linux/KVM (M34), in order to be able to execute mixed-criticality workloads and properly guarantee
hard and soft real-time latency, a secure monitor firmware layer has been implemented specifically
for the needs of the Healthcare demonstrator and the DREAMS project. This firmware essentially
allows the concurrent execution of two different operating systems, ensuring their temporal and
spatial isolation by means of hardware and software support.

The secure monitor firmware implementation is based on the TrustZone security extensions, which
is supported by most modern ARMv7 and ARMv8 processors. TrustZone implements in hardware the
concept of different execution modes, called the Secure and Non-secure world. Additionally,
properly supported resources can be partitioned to Secure and Non-secure, as for example,
memory, peripherals, interrupts and even timers. Secure world protection is ensured by monitoring
physical access to memory or peripherals, therefore, a trusted OS, running in Secure world, is totally
isolated from applications executing in the Normal world.

Combined with the paravirt-ops interface of this deliverable, the secure monitor firmware can
enable Virtual Machines to access secure services (such as encryption, DRM, etc), either as part of
the secure monitor, or even from another operating system executed in the Secure world. Usually in
this kind of system the host operating system can access secure services by issuing the Secure
Monitor Call instruction (SMC). From the guest side calling an SMC instruction will immediately trap
to the KVM hypervisor and abort guest execution. In our case by utilizing the same principle as
hypercalls we can implement a paravirt operator for secure services. When called, KVM will first trap
the guest, and subsequently make a real SMC call which will end up in the Secure Firmware service
routine or the Trusted OS implementing the requested service.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 18 of 20

Figure 11: Execution mode overview on ARMv8 and how they relate between them

At this point no real service has been implemented yet, although simple exchange of information is
possible. In order to measure the communication latency between a guest and a trusted OS we are
utilizing the PMU cycle counter of ARM cores. Figure 12 shows the interactions and the traversal of
SMC calls between the Linux guest, KVM and FreeRTOS (as the trusted OS).

Figure 12: Right side, World switch (Linux – Monitor – FreeRTOS) – Left side, VM context switch (guest – Linux/KVM)

We measure two different paths, first the world switch latency response. This includes going from
Linux to the Secure Monitor, then to the Trusted OS (FreeRTOS) and back. For this scenario the
latency is in the range of 2300 clock cycles, with a frequency of 700 MHz on a Cortex-A53, this
translates roughly to 3,2μs of latency.

The second measurement is the VM context switch latency needed between the guest to Linux/KVM
and back. For the same processor and clock frequency as before the average clock cycles needed to
do the full path context switch is in the range of 1500 clock cycles or roughly 2,15μs of latency. With
this in mind we can estimate that the total time needed for a guest to interface with a trusted OS is
in the range of 5,4μs.

As a next step in this direction, the VM context switch latency can be reduced by issuing an SMC call
in Hyp_EL2 instead Host_EL1, this will allow for avoiding 2 additional world switches dropping
significantly the latency between a guest and a secure service.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 19 of 20

4 Conclusion and future work

In this deliverable we report the latest scheduling enhancements that have been implemented for
task and I/O scheduling, work that was first initiated during deliverable D2.2.1. Additionally, memory
bandwidth policies have been considered and utilized on the DREAMS platform (Juno development
board), where the concept of coordination has been adapted for and guests can ask for more or less
memory bandwidth depending on their scheduled tasks. Further effort has also been dedicated
towards a range of features which give the user better system control of the scheduling policies.

Another aspect for the activity in this deliverable, is the convergence of the hypercall infrastructure
for guests with the secure firmware monitor (main part of D2.3.2), where a guest can eventually
request access to secure services, which are exposed to either the Linux host or guests through the
most privileged execution mode in TrustZone.

The continuation of this work includes the tight integration with all other technological results on
the DREAMS Healthcare demonstrator and extensive testing with the userspace software involved in
the healthcare use case. Additionally, more detailed metrics and performance comparisons are
expected to be part of the final assessment report in D8.3.2 - Assessment report for mixed-criticality
healthcare and entertainment use cases, where the coordinated scheduling aspect is going to be
highlighted in cases where resource over-commitment can hinder the performance of the system.

D2.2.3 Version 1.0 Confidentiality Level: PU

10.05.2016 DREAMS Page 20 of 20

5 Bibliography

[1] Seth H Pugsley, Jeffrey jestes, Huihui Zhang on NDC: Analyzing the Impact of 3D-Stacked
Memory+Logic Devices on MapReduce Workloads
http://www.cs.utah.edu/~rajeev/pubs/ispass14.pdf

[2] Optimizing Memory Bandwidth in Systems-on-Chip Krishnan Srinivasan
http://sonicsinc.com/wp-content/uploads/2012/09/Presentation_Multicore_final.pdf

[3] Self-Optimizing Memory Controllers: A Reinforcement Learning Approach Engin Ipek
http://www.csl.cornell.edu/~martinez/doc/isca08.pdf

[4] Dynamic Round-Robin Task Scheduling to Reduce Cache Misses for Embedded System, Ken W.
Batcher, Robert A. Walker http://www.date-
conference.com/proceedings/PAPERS/2008/DATE08/PDFFILES/IP1_04.PDF

[5] ATLAS: A Scalable and High-Performance Scheduling Algorithm for Multiple Memory
Controllers, Yoongu Kim, Dongsu Han, Onur Mutlu, Mor Harchol-Balter
https://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf

[6] Parallel Application Memory Scheduling, Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, José A. Joao, Onur Mutlu, Yale N. Patt
http://hps.ece.utexas.edu/people/joao/pub/ebrahimi_micro11.pdf

[7] MemGuard: Memory bandwidth reservation system for efficient performance isolation in
multi-core platforms, Heechul Yun
https://pdfs.semanticscholar.org/cb5e/817da1eac5b5b6fe840b6e0c30c89ea751c1.pdf

[8] Linux kernel paravirt ops documentation, http://lxr.free-
electrons.com/source/Documentation/virtual/paravirt ops.txt

[9] Xen Paravirt ops, http://wiki.xen.org/wiki/XenParavirtOps

[10] Xen ARM/ARM64 CONFIG PARAVIRT patch series, S. Stabellini,
http://lists.xen.org/archives/html/xen-devel/2014-01/msg00851.html

[11] PSCI Linux documentation, http://lxr.free-
electrons.com/source/Documentation/devicetree/bindings/arm/psci.txt

[12] Linux process scheduler core code file, http://lxr.free-
electrons.com/source/kernel/sched/core.c

http://www.cs.utah.edu/~rajeev/pubs/ispass14.pdf
http://sonicsinc.com/wp-content/uploads/2012/09/Presentation_Multicore_final.pdf
http://www.csl.cornell.edu/~martinez/doc/isca08.pdf
http://www.date-conference.com/proceedings/PAPERS/2008/DATE08/PDFFILES/IP1_04.PDF
http://www.date-conference.com/proceedings/PAPERS/2008/DATE08/PDFFILES/IP1_04.PDF
https://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://hps.ece.utexas.edu/people/joao/pub/ebrahimi_micro11.pdf
http://hps.ece.utexas.edu/people/joao/pub/ebrahimi_micro11.pdf
https://pdfs.semanticscholar.org/cb5e/817da1eac5b5b6fe840b6e0c30c89ea751c1.pdf
http://lxr.free-electrons.com/source/Documentation/virtual/paravirt%20ops.txt
http://lxr.free-electrons.com/source/Documentation/virtual/paravirt%20ops.txt
http://wiki.xen.org/wiki/XenParavirtOps
http://lists.xen.org/archives/html/xen-devel/2014-01/msg00851.html
http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/psci.txt
http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/psci.txt
http://lxr.free-electrons.com/source/kernel/sched/core.c
http://lxr.free-electrons.com/source/kernel/sched/core.c

