— —
SEVENTH FRAMEWORK
PROGRAMME

DREEMS

Distributed Real-time Architecture for
Mixed Criticality Systems

XtratuM support of enhanced hypervisor layer
services: description and interfaces

D 2.3.1

Grant Agreement

FP7-1CT-2013.3.4-610640
Number

Project Acronym | DREAMS

Document Version | 1.0 Date 31.03.2015 Deliverable No. (2.3.1

Contact Person Javier O. Coronel Organisation FENTISS

Phone +34 963294704 E-Mail jcoronel@fentiss.com




Contributors

Name Partner
Javier Coronel FENTISS
Alfons Crespo UPVv

Miguel Masmano FENTISS
Vicent Brocal FENTISS




Table of Contents

CONTIIDULONS ...ttt ettt et e sttt e bt e e sttt e s hb e e sa b e e s abeeesabeesabbeesabeesabeeesabeesaseeesnteesneeesareenn 2
FY o1 - [ot AT TSP PPTOPPTROPRT 6
Terms, definitions and abbreviated TEIMNS ........e bbb abaaaaasasananes 7
N [ ) o oo [¥ o1 T o O TP UR PPN 9
11 Structure of the deliverable ... 9
1.2 Relationship to other DREAMS Deliverables.........oocuuiiiiiiieiiiiieieenieee et 9

2 Virtualization OVEIVIEW ......cccuiiiiiiiiieeiieeie ettt sttt ettt e st st st st e b e bt e smeesmeeeneeeneeen 10
2.1 VAo (UYL= 1A oY T = 1YL= PR 11
21.1 FUIT VIFEUATIZATION .ttt s s 12
2.1.2 Para-virtUalization ........c.ceoiieenie et s 13
2.1.3 HYBrid VirtUalization.........eee it e e 13

2.2 (V4O RV AT a T 1[74=] A To ] s PR 13
221 IOMMU VirtualiZation ...ccc.cooeerieeieeie ettt 13
2.2.2 Device and I/O VIrtUaliZation ......ccueeoveieeiieeiee ettt ettt 14

2.3 GUEST OPEIAtING SYSTEM ..eiiiiiiiiiiiiiteeee et e e e e s s sttt e e e e s s s s sababeeeeesseasssnneeeeeeas 14

3 XLratUM RYPErViSOr OVEIVIEW.....uviiiiiiieeeieiieeeceitee e esette e e eetee e e estteeessbeeeesssbteeessseeeessseneessssseeessnnes 16
3.1 BaSiC PrOP OIS e 17

4 XtratuM — SOftware deSiZN OVEIVIEW ........cccuviiiieciiiieceiiee ettt e et e eetee e e e sae e e e e eara e e e esasaeeeesnraeeeens 19
4.1 Software Static arChiteCTUIE .....oc.vii it 19
4.1.1 YA L= g e 1T ] (o1 V70 0 =Y o X RPN 19
4.1.2 V= g oo oY o g T=T o N 20
4.1.3 =T 0 0 3 - =N 23

4.2 Partition OVEIVIEW ......cooiiiiiiiiiiiiiiciictcr e 23
42.1 Partition OPEratioN ......uviiiii i e e e e e e s s s araee 24
4.2.2 TYPES Of PArtItiONS ....viiieiiiee e s e 24
4.2.3 Names and ideNTIfiErs .......coiiiiiiiieee ettt 24

4.3 Partition SCNEAUIING.......ccviiii et eeee e e e ebee e e e abae e e e e bee e e eenreeas 25
43.1 Multiple sScheduling Plans.......cc.uei e 25

4.4 Inter-Partition communications (IPC)....cccuveiiiiiiieiiiiiie ettt et e e 26
4.5 HEalth IMONTTOr (HIM) ..ottt e et e e e e eabee e e e eaba e e e eeabaea e eenneeas 27
4.6 Inter-Partition Virtual INterrupts (IPVI) .....ooe oottt ettt e 28
4.7 Interfaces context required by XtratuM .........cccooioiiiiiieiiiie e e 29
4.8 Interfaces context provided by XtratUM ........cccoiiiiiiiiiiciiii e 29
4.8.1 L V71T g or= Y| F PSP 29
4.8.2 BINAIY INTEITACES ..t et e et e e et e e e e bt e e e e bee e e e arae e e eenreeas 31
4.8.4 Partition control table (PCT) ....uuei ittt e e e e e 32

4.8.5 RV g U LI o =T o U o PP 33



4.8.6 Fault management MOodel ... e e 36
4.8.7 Partition iMage header..... .o e 37

I 2 To o A 1o ¥ < o] o 1ol <11 J TSP P P SUP PP URRPPPPP 39
5.1 [ VoY VA TYo Tl o Yo Yo ) PSSR 39
5.2 Partition DOOT ..ottt st 40

6 SYStEM CONTIGUIAtION....cii it e e st e e s sbe e e e s sbtaeessneeeeesanes 41
6.1 XtratuM subjects, objects and PrivilEGES ......vvivvciiiiiiiiie e 41
6.1.1 N U] o <Tord o F=T oLy i ToF 1 d To VU 41
6.1.2 Exported resource identification........ccccccuieiiiiiie e 42
6.1.3 Exported resource access MEChaNiSM ......uiiiiiiiieiiiiie et 43
6.1.4 Operations 0N eXPOIrtEd MESOUIMCES. .....cuutiiircrieeeeirreeeeetreeessrreeeesteeeesssaeeesssseeessssenesns 43
6.1.5 Partitions and the Partitioned Information Flow Policy (PIFP) .....ccccceceeevieecieecieeeee. 44
6.1.6 ACCESS MATFICES ittt e s e s s aree s 44
6.1.7 Subject temporal @lloCAtION ......cccuuiiiieiiee e 47
6.1.8 Subject memory areas alloCatioN ........cuuiiiiciiie i e 47
6.1.9 Subjects and virtualized eXported reSOUICES ......cvveieeciieeeiiiiee et saree e 47
6.1.10  IPC @XPOIted FESOUICES......uvviieierieeeeeiieeeeeitteeeeeitteeeeeitteeeeeestreeesastaeeeaasteeeseassseessaseseesanses 48
6.1.11  DeVices eXPOIteA MESOUICES ....cccveeeeeciieeeeeitreeeeeitteeeeeitteeeeeastreeesasseeeseasseseseassesesasseseesanses 48

6.2 Configuration file SPECIfiCAtioN ......ccccuiiii it 48
6.2.1 Element HWDESCIIPLION .. ..uiiiiiiiiie ettt e e e e s eree e e s abae e e e ereeas 51
6.2.2 ElemMeEnt XIMIHY PEIVISOT ... .uiiii ettt e e s e e s sbee e e seabae e e enreeas 57
6.2.3 Element RESIAENTSW ......eiiiiiiiiie ettt sttt sbe e s e e 59
6.2.4 Element PartitionTable......coo.eo it 61
6.2.5 ElemMent ChannelS.......cc.eoiiiiiiiieeieee et 64
6.2.6 2 T (ol 07/ o 1T PSPPSR PPPPPPRRRPN 65

7 Secure State and SECUIre OPEIratioNS.....ccicciieiiicieeeeciiee e e ecreeeeseree e e ssre e e e sebeeeeessbreeesssreeeesssseeeessanes 73
7.1 Y=o U =] = PP OPPPPTPPN 73
7.2 INSECUNE STATE ...eeiiiiie e e e s e s s e s 74
7.3 Trustability @NforcemMENt......c.uiii e e 74
7.4 TEST FOr SECUIE STATES «..eeeeiiiieie ettt saee e e 75
7.4.1 Abstract Maching tEST (AMT).....ci it et e e e e e e ae e e eeabee e e e areeas 75
7.4.2 2 F T [ol o] Y o] 0 IR (=T €SP USP 75
7.4.3 MaiNTENANCE tESTS .. .eiiiiiiiiiiiiii 76

8  DREAMS AbStraction Layer (DRAL).......cccveeiiiieeiiie ettt et e ctee ettt e et eetee s aeeebaeesbeesbeeesaaeesabaeennnas 77
8.1 DRAL ettt st st st h e sttt et e bt e b e s ae e san e bt e b e e b e e e reesaeeenreen 78
8.1.1 System ManageMENT SEIVICES.......uuuuuieieriiireieiiteiertreuererererarerererer———————————————————————————————— 78
8.1.2 Partition ManagemMeENTt SEIVICES ...ccoeeeeee e 78
8.1.3 ProcCess ManagemMeNT...cccceieie i e e e e e e e e e e e e e e e e e e e e e e e e e eeeas 79
8.1.4 TimMe ManagemMENT SEIVICES ...covvvieiiiiiiiieeee e e e e e e e e e 79



8.1.5 Inter-Partition CommuniCation SEIVICES .......eiiiieeiiiieee e e 79

8.1.6 Intra-Partition ComMmMUNICATION ..ccoiiuiiiiiiiiiiie e 80
8.1.7 SCREAUIING SEIVICES vttt e e st e e s sabae e e ssnbaeeessnsraeeean 80
8.1.8 Monitoring Services (Health MOoNItor) ........coocciieiiciei e 80
8.1.9 (000} {1 {U T 1A (oY A Y=Y Vi oL 80
S B = T o] [ oY= =T ] 1} V2 PP URPPPPRN 82

APPENDIX L ittt e e et e e et e e e s ranee 83



D2.3.1 Version 1.0 Confidentiality Level:PU

Abstract

This document describes the internal design of the XtratuM hypervisor. This presents an overview of
the main features, services and properties of the virtualization layer focused to the development of
mixed-criticality applications in distributed multicore platforms.

In this document the DREAMS Abstraction Layer specification is included, where the definition of the
main features and services of this software layer are presented. This layer is intended to deliver
DREAMS services to the application regardless of the software layer below.

31.03.2015 DREAMS Page 6 of 92



D2.3.1

Version 1.0 Confidentiality Level:PU

Terms, definitions and abbreviated Terms

Definition of terms.

Application

A set of cooperating tasks which together perform a coherent function, e.g. an avionics
function. The scope of an application, i.e. which software functions it is made of, is
defined by the system architectural design activity.

Computing platform

Environment in which applications execute; it provides Computing Resources to every
application. An application has no other interface than the one provided by the
computing platform.

Computing resource

Resources are the totality of all hardware, firmware and software and data that are
executed, utilized, created, protected or exported by the Computing Platform

Configuration file

The file that describes the system configuration in a user-friendly format (XML)

Configuration vector

The binary internal representation of the configuration file

An error is the part of the system state that may cause a subsequent failure: a failure

Error L .
occurs when an error reaches the service interface and alters the service.
Failure A failure is an event that occurs when the delivered service deviates from correct
service.
Fault A fault is the adjudged or hypothesized cause of an error.
Hvpercall The service (system call) provided by the hypervisor. The services provided are known
P as para-virtual services.
Hvbervisor The layer of software that, using the native hardware resources, provides one or more
yp virtual machines (partitions).
Partition Also known as “virtual machine" or “"domain". It refers to the environment created by

the hypervisor to execute user code.

Partition code

Also known as “‘guest". It is the code executed inside a partition. Usually, the code is
composed of an operating system and a set of processes or threads. Since application
code relies on the services provided by the OS, we will assume that the partition code
is an operating system (or a real-time operating system).

Resident software

The booting software that is executed directly in ROM memory right after a system
reboot, also referred as boot-loader or firmware. Among other tasks, it is in charge of
loading RAM memory and the initial partitions.

Slot

See temporal window.

System partition

A partition that has extra capabilities to manage and control the system, and other
partitions. Originally these partitions were named ““supervisor partitions" but to avoid
confusion with the processor modes it was renamed as ““system partitions".

Temporal window

Time interval in which a partition is scheduled. A temporal windows is specified with an
initial time point and an interval. Also known as slot.

A tile can be processor cluster with several processor cores, caches, local memories and

Tile I/0 resources. Alternatively, a tile can also be a single processor core or an IP core (e.g.,
memory controller that is accessible using the NoC and shared by several other tiles).
31.03.2015 DREAMS Page 7 of 92




D2.3.1

Version 1.0

Confidentiality Level:PU

Acronyms and Abbreviations

ABI Application Binary Interface

API Application Programming Interface
ARINC Aeronautical Radio, Incorporated
CPU Central Processing Unit

DRAL DREAMS Abstraction Layer
guestOS Guest Operating System

HM Health Monitor

IRQ Interrupt Request

libXM XtratuM library

(01 Operating System

PCT Partition Control Table

PIFP Partitioned Information Flow Policy
SKPP Separation Kernel Protection Profile
TSP Temporal and Space Partitioning
UART Universal Asynchronous Receiver-Transmitter
UML Unified Modeling Language

VLayer Virtualization Layer

VM Virtual Machine

XM_CF XtratuM Configuration File

XSD Xtratum Security Functions

VCPU Virtual CPU

VFPU Virtual Floating Point Units
31.03.2015 DREAMS Page 8 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

1 Introduction

This document presents an overview of the XtratuM hypervisor design to achieve the basic properties
of real-time applications based on multicore systems. The principles of the virtualization layer design
presented here are general enough to address application domains in order to build a solution that
allows the engineering of mixed-criticality applications over the envisioned distributed multicore
platforms.

This document sketches a summary of the architectural design of the virtualization layer to be
developed in the context of the DREAMS project. A detailed XtratuM design can be gathered in
internal reports and technical manuals of FENTISS, some of them released into the project. This
deliverable is mainly focused in the XtratuM design for the DREAMS harmonized platform using the
Zynqg-7000 board. However, the basic properties and principles of this design can be used as reference
for other platforms using XtratuM. Other development systems into the DREAMS project that will also
use XtratuM are the PPC T4240-QDS and the Industrial PC Automation PC910, which include
hardware-assisted virtualization. Specific features of XtratuM for those architectures will be presented
in subsequent DREAMS deliverables such as D2.3.4 Hypervisor adaptation and drivers for local
resource manager.

Additionally, in this document the DRAL (DREAMS Abstraction Layer) specification is also included. A
definition of the features and services provided by this software layer is presented. This layer is
intended to deliver DREAMS services to the application in a transparent way of the virtualization layer.

1.1 Structure of the deliverable

This document is organised as follows: section 2 offers an outline of the world of the virtualization.
Section 3 presents a XtratuM hypervisor overview where the hypervisor is introduced and the basic
properties to be achieved by XtratuM are pointed out. Section 4 outlines the software design overview
of the virtualization layer. It describes the software static architecture and the main features of the
hypervisor such as a partition overview, scheduling, health monitor and communication schemas, it
also details the interface to the hardware and partitions. Section 5 details the booting process of the
virtualization layer and partitions. Section 6 describes the scheme of the configuration file. Section 7
presents the approach to formalize a security model. Finally, section 8 outlines the DREAMS
Abstraction Layer.

This document is complemented with an Annex that provides specification of the DREAMS Abstraction
Layer. As this annex contains a high number of pages, we considered that it is more convenient to
provide it as separate document: D2.3.1 Annex - DREAMS Abstraction Layer (DRAL) Specification
(Annex 1).

1.2 Relationship to other DREAMS Deliverables

This document is an important input for the development of the demonstrators in WP6 and WP7.
Additionally, it serves as input for D1.5.1 Intermediate integration of DREAMS platform with virtual
platform prototype and D2.3.4 Hypervisor adaptation and drivers for local resource manager.
Furthermore, this deliverable is an input for the WP5, where the XtratuM design is used as modular
safety case of a hypervisor. DRAL specification uses as main input the deliverable D1.2.1 Architectural
Style of DREAMS.

31.03.2015 DREAMS Page 9 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

2 Virtualization Overview

A quick overview through the world of the virtualization is presented in this section. This section is
developed mainly from the experiences around the XtratuM hypervisor.

Although the virtualization technology has been used in mainframe systems since 60’s; the advances
in the processing power of the desktop processors in the middle of the 90’s opened its adoption it in
the PC market. The embedded market is now ready to take advantage of this promising technology.

Virtualization is a generic term that refers to the abstraction of the computer resources. The current
state of the virtualization technology is the result of a convergence of several technologies: operating
system design, compilers, interpreters, hardware support, etc. As a result, there are several
competing/complementing technologies that can be used to build a virtual execution environment (or
virtual machine, VM).

Three main alternative virtualization techniques can be highlighted:

e  Full-virtualization.
e Para-virtualization.
e Hybrid Virtualization.

The implementation of these techniques will depend mainly on the support of the hardware
architecture. The architectures can be:

e Non-Virtualizable
e Virtualizable
e Virtualizable using hardware virtualization extensions

Virtualizable architectures are those one that can be purely virtualized with trap-and-emulate model,
that is, every privilege operation generates a trap that can be handled by the hypervisor, emulating
its correct operation. However, non-virtualizable architectures can still be virtualized by using complex
software techniques such as binary translation (BT).

Additionally, hardware virtualization extensions have been introduced on some architectures in order
to include virtualization support or to improve the performance and simplify virtualization techniques.
The latter is commonly called hardware-assisted virtualization.

Full-virtualization simulates one or more instances of an underlying hardware environment. From the
point of view of “guests” OS, it is executed as on a native hardware.

Para-virtualization incorporates direct communications between the “guest” OS and the hypervisor.
This virtualization technique does not simulate hardware but involves modifying the “guest” OS to
replace non-virtualizable instructions with hypercalls that communicate directly with the virtualization
layer hypervisor.

Hybrid Virtualization combines both the full-virtualization and para-virtualization techniques in order
to take advantage of each technique.

In the development of partitioning systems three main groups should be taken into account: the user
application, the guest operating system, and the hypervisor/VMM. Depending on the virtualization
techniques used in the virtualization layer and the hardware virtualization extensions available on the
development platform, the groups listed above will have a different impact from the point of view of
performance and efficiency, compatibility and portability, complexity and maintainability. These
aspects will be discussed in the following subsections. Note that although some implementations
could include only a bare application and a hypervisor/VMM, this section addresses the most generic
partitioned systems structure.

31.03.2015 DREAMS Page 10 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

2.1 Virtualization layer

There are two main environments to run the virtualization layer: hosted or bare-metal architectures.
A hosted architecture installs and runs the virtualization layer on top of an O.S. and it is executed as
an additional application on the system. Bare-metal architecture, also known as hypervisor, installs
the virtualization layer directly on the hardware. A bare-metal architecture is more efficient than a
hosted architecture and delivers greater scalability, robustness and performance. This is because the
hypervisor has direct access to the hardware resources rather than going through an operating
system, where the efficiency could depend on the type of O.S. used as host.

This subsection describes the benefits and drawbacks of use the different alternative techniques of

virtualization in the development of the virtualization layer:

e  Full virtualization.
e Para-virtualization.
e Hybrid Virtualization.

Table 1 - Comparison in the development of virtualization layer

Full Virtualization Hybrid Virtualization Para-virtualization
Method Hw-assisted: Exit to
Root Mode on
privileged instruction. Hybrid: hypercalls Hypercalls: service requests to
Non-Hw assisted: combined with the hypervisor. The hypercalls is
Privileged Instructions, methods used on full | the equivalent to system calls in
and/or binary virtualization. 0.S.
translations.
Use virtual devices.
Complexity High: Developing of
firmware is required. Medium: Developing of
Medium: using firmware and Low: Developing of hypercalls
hardware assisted hypercalls
virtualization
Performance Poor with first )
generations of x86 Good. AIthoug: it
virtualization depepds on the
extensions. generatlon. ha.rdware
Good with the latest virtualization
ood wi e lates .
o o technology. Better in some cases
generation virtualization hi b |
extensions for X86. T |s.tec nique could
o increase the
Poor/gqod using binary determinism in the
translation or trap-and- execution
emulate technique.
ili . e High: this support both
Portabll'lt'y' and High: unmodified guest ° unmodifiF;F::i and Low: guest software has to be
compatibility software can be '8
adapted guest ported.
executed.
software.

Most of the recent advances on virtualization have been done in desktop systems. The application of
these advances to embedded systems is not a straightforward activity, due to restrictions related to
determinisms, fault tolerance, hard real-time constrains, and costs, among others constraints.
Therefore, in determined application domains those latest advances in hardware virtualization

31.03.2015 DREAMS Page 11 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

extensions could not be available and for such cases, it would require to have other virtualization
options such as para-virtualization.

In the context of the DREAMS project, XtratuM will be available for three architectures: X86, PowerPC
and ARM. The three approaches described above have been used in the developing of XtratuM for
such architectures.

In Table 1 a comparison of virtualization techniques from the point of view of the impact in the
developing of hypervisors is presented. The section 2.1.3 provides additional information about this
table.

2.1.1 Full virtualization

Full virtualization requires that every component and feature of the hardware architecture to be
reflected into each one of multiples instances of the virtual machines. This mimicry of hardware should
include the full instruction set, input/output operations, interrupts, memory access, and whatever
other elements are used by the software that runs on the bare machine.

With this technique, the virtualization layer will allow multiple unmodified guest operating system
instances to run concurrently within virtual machines on a single computer, dynamically partitioning
and sharing the available real physical resources. However, this technique requires the development
of some virtual devices that emulate real devices that can be recognized by the guest OS in the same
way as on native hardware. For example, the audio hardware manufacturer on host could be Realtek
and the audio virtual hardware manufacturer on guest could be Creative. It implies the development
of devices firmware emulation into or as additional modules of the virtualization layer. Additionally,
the hypervisor should include hardware drivers to handle real devices when virtual devices have to
change the state of real I/O devices. Some operations can be executed directly in the hardware and it
does not have to be emulated, such as processor, memory locations and arithmetic registers.

The feature described above increases the complexity of the development of the virtualization layer
and establishes an implicit dependence of the hypervisor with the real hardware, but instead increases
the portability and compatibility of “guest” software.

This virtualization technique can be achieved via classical trap-and-emulate model, using Binary
Translation (BT) or using directly hardware virtualization extensions. The first could be implemented
on several architectures such as SPARC. Early versions of VMWare Workstation are an example of the
second and the Wind River and RTS hypervisors are an implementation of the latter.

Binary Translation translates dynamically, during the software execution, portions of the guest kernel
code to replace non-virtualizable instructions with new sequences of instructions making the classic
trap-and-emulate model in software possible and the execution of privileged instructions can be
handled by the hypervisor, emulating its correct operation. To perform this translation the
virtualization layer is developed based on an interpreter, in this way the guest software is executed
on an interpreter instead of directly on a physical CPU. The interpreter separates virtual state (the
VCPU) from physical state (the CPU). However, it introduces an overhead associated to the processing,
execution and changing cost of instruction sets and it increases complexity in the development of the
virtualization layer.

Hardware-assisted virtualization introduces additional hardware extensions to simplify virtualization
techniques and provide architectural support that facilitates building the virtualization layer. The
virtualization layer can virtualize the instruction set by handling privileged instructions using a classic
trap-and-emulate model in hardware instead of software.

The hypervisor partitions management is simplified with more recent hardware virtualization
extensions. With these extensions the guest state can be automatically stored in Virtual Machine

31.03.2015 DREAMS Page 12 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

Control Structures or Virtual Machine Control Blocks, strongly reducing the code to handle context
switches between partitions. Examples of virtual hardware extensions are AMD-V, Intel VT-x, AMD-Vi
and Intel VT-d (Directed 1/0).

2.1.2 Para-virtualization

This technique is based on an interface of communication between the guest software and the
virtualization layer. The sensitive and privileged instructions are replaced by calls to the hypervisor
also called “hypercalls”. This technique simplifies the building virtualization layer and improves in most
cases the performance of guest software (Barham, 2003). This model is simpler to realize because only
a reduced number of services are required to be implemented. Comparing the para-virtualization
approach with platforms based a trap-and-emulate model, the para-virtualization can directly invoke
a handler for each privileged instruction avoiding the code disassembling. However, compared with
hardware based on the latest hardware virtualization extensions that advantage disappears. In the
case of para-virtualized platforms, not only the privileged instructions can be virtualized, also a set of
functionalities or instructions can be virtualized with a single hypercall.

On the other hand, the hardware used on embedded and hard real-time systems usually does not
have available hardware virtualization extensions. Therefore, in most cases the para-virtualization
could be the only option to implement systems based on TSP.

The main drawback of the paravirtualized system is the portability and compatibility of the “guest”
software.

2.1.3 Hybrid Virtualization

This model combines the full-virtualization and para-virtualization techniques. It takes advantage of
the benefits of each technique described above. This technique is mainly used to improve the
performance, increase the determinism and provide additional services of communication,
monitoring and supervision. Therefore, with this approach para-virtualized and unmodified guest
operating systems are supported.

A comparison of virtualization techniques from the point of view of the impact in the developing of
hypervisors is presented in Table 1. This table is based on the results obtained from several papers in
the literature such as (Barham, 2003), (Adams, 2006), (VMware, 2007), (Guy Ben-Haim, 2012). In
(Barham, 2003) a performance comparison between paravirtualized and full-virtualized hypervisors is
presented. In (Adams, 2006) a comparison of software and hardware techniques on the x86
architecture is presented. In this last paper the first-generation virtualization extensions of Intel was
used in the experiments. In (Guy Ben-Haim, 2012) the performance improvement using the last
generation of Intel virtualization extensions are presented.

2.2 1/0 Virtualization

2.2.1 IOMMU Virtualization

The Input/Output memory management unit (IOMMU) is a MMU at the bus level, i.e. the IOMMU
translates physical address into virtual ones. This component allows guest partitions to directly use
peripheral devices through DMA 1/0 bus and interrupt remapping.

Additionally, the IOMMU provides memory protection mechanisms from mischievous devices. In a
traditional system the devices use DMA to access physical memory directly, therefore misbehaving or

31.03.2015 DREAMS Page 13 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

malicious devices could read or write to any memory address. In a virtual environment the access
addresses for each device can be explicitly assigned.

By using this component in the building of the hypervisor layer could also simplify the switching among
partitions in a full virtualization model, allowing the use of native drivers in guest applications. The
IOMMU can avoid the fail of devices that use DMA when all the memory addresses are remapped by
the virtualization layer using a full virtualization approach.

Some architectures such as Intel (VT-d), AMD (AMD-Vi), SPARC (in LEON4 processors) and PowerPC
(T4240 processors) have released its own version of IOMMU.

2.2.2 Device and I/0 Virtualization

Depending on the virtualization technique, several /O virtualization approaches can be used. If the
technique is para-virtualization, a direct pass-through to the hardware is commonly used for device
virtualization. In this case, an 1/O server could be provided as an additional service of the hypervisor
or as an I/O partition in order to share devices among partitions. Some devices could be reserved for
an exclusive management from dedicated partitions. However, in architectures where devices cannot
be allocated to a single partition in an isolated way, the implementation of an 1/O server is also
required. An I/O server is a dedicated partition which, on the one hand, manages several devices, and,
on the other one, offers those devices to other partitions as services.

Additionally, the use of an I/O server as partition could simplify the building of the hypervisor layer
and the user could improve the performance of the partition execution and, have higher control from
the point of view of scheduling. For example, the user could decide when the I/O partition should be
executed in order to avoid interferences with other critical partitions. The latter is especially important
in mixed-criticality system.

On the other hand, as the full-virtualization technique emulates real devices as virtual devices, the
devices virtualization in this technique involves managing the routing of I/O requests between virtual
devices and the shared real physical hardware. This management is commonly included in the
hypervisor which adds complexity to the implementation of the hypervisor although increasing the
portability of the “guest” software. It also could have an impact on performance.

There are several hardware extensions for the device virtualization such as PCI-SIG I/O Virtualization,
which allows to natively sharing PCl Express devices, Network Virtualization (Intel VT-c), which
improves networking and 1/0O throughput, and Single-root I/O Virtualization (SR-IOV) that provides
near native-performance by providing dedicated 1/0 to virtual machines. These hardware extensions
reduce the software management of devices into the hypervisor. Thus, on the one hand, improving
the performance of the system, as well as improving data isolation among virtual machines, and
therefore providing flexibility and mobility. This is because the hardware extensions bypass the
software virtual switch in the hypervisor. However, these hardware virtualization extensions are
currently available in a reduced number of systems.

2.3 Guest Operating System

From the point of view of the Guest Operating systems, several factors must be deeply analysed before
selecting the virtualization technique to be used:

e Source code availability. This a crucial factor, since para-virtualization depends on the
replacement of low-level functionalities by high-level ones.

e System performance and determinism. The application requirements of the application, such
as real-time constrains, best-effort performance, or safety, among others could determine the
most suitable approach. In general, in most cases the hybrid-virtualization will be the best
option.

31.03.2015 DREAMS Page 14 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

e Portability and compatibility. A full virtualized environment enables the direct execution of an
unmodified system, easing portability. Additionally, another advantage to use operating
systems on a full virtualized machine is that it can be used to provide a common, more generic
underlying virtual hardware, regardless of the real one.

31.03.2015 DREAMS Page 15 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

3 XtratuM hypervisor overview

XtratuM is a real-time hypervisor that it is intended for execution in a bare computer. XtratuM shares
out the resources (i.e. memory and computing time) between the Partitions. A partition is an
independent execution unit designed to execute under XtratuM'’s control.

XtratuM is a hypervisor that can include para-virtualization, full-virtualization or the combination of
both techniques to build a virtualization layer. The techniques used will depend on the hardware
support.

Basically, the hypervisor provides multiple isolated virtual machines, or partitions. Each partition can
execute a complete system (i.e. OS kernel and the application processes) or bare applications (i.e.
execution runtime and application). Communication between partitions is done commonly by means
of a virtual network or inter-partition communications mechanisms. From the application layer, a
hypervisor system is much more than a distributed system: a set of computers, where each computer
runs its own operating system and applications, and computers are inter-connected with a high speed
network. The most noticeable difference is the speed of the virtual computers, which is only a fraction
of the native computer.

Figure 1 shows the approach in monocore. The hypervisor virtualizes the CPU and offers a virtual CPU
to the partitions.

o]
:
%
D
E 6’?};}.
%
D
3
%

XtratuM

Monocore
CPU

processor

Figure 1: Monocore virtualization

In a multicore approach, the hypervisor can provide several virtual CPUs to the partitions. A partition
can be mono or multicore. Different partitions (from the point of view of the number of cores) can
coexist in the system. It allows to profit from a multicore platform even if the partitions are not
multicore. Figure 2 shows an example of this view. It shows a multicore platform virtualized by
XtratuM which offers the possibility to build multicore or monocore partitions. In the example, two
partitions use all the virtualized CPUs due to it uses a multicore OS. The third partition is monocore
and only uses a virtual CPU.

31.03.2015 DREAMS Page 16 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

Partitions

vcrun vz |

Multicore CPUO
processor cPUL

Figure 2: Multicore approach

XtratuM offers a complete hardware abstraction to allow to the partitions to execute its code as native
machine. However, in a para-virtualized approach, the partitions will require to use the services
provided by the hypervisor to use the virtualized resources via hypercalls.

In general, in multicore architectures, some sources of indeterminism can strongly impact in the WCET
determination of the partitions. These sources of indeterminism are:

Internal architecture aspects

Cache management (L2 and L3 caches mainly)

Shared memory accesses

Shared controller units

Bus arbitration

These issues can add unpredictability to the execution of the partitions. For instance, there is a
problem when several cores running at the same time access to the memory. It is a source of
indeterminism that is well known problem in multicore systems. In the case of a hypervisor, the
problem still exists and has to be solved at partition level by performing a more complex estimation
time required for the partition. From the hypervisor point of view, this temporal interference can only
be avoided if the hardware base provides mechanisms to handle it. Therefore, it is not the
responsibility of the hypervisor to provide a solution for that problem. In some cases, the virtualization
layer could mitigate the problem by constraining the use of the resources. For instance, when cache
management is available in the hardware, it could force a partitioning of the cache or other
techniques. DREAMS studies how these interferences could be better mastered on current
architectures in WP2 and WP4, by providing system services as the Local Resource Manager (LRM).
These services will work as Xtratum extensions.

3.1 Basic properties

The basic properties to be achieved by a hypervisor for multicore mixed-critically embedded
applications are:

- Spatial isolation: A partition is completely allocated in a unique address space (code, data, stack).
This address space is not accessible by other partitions. The hypervisor has to guarantee the spatial

31.03.2015 DREAMS Page 17 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

isolation of the partitions. The system architect can relax this property by defining specific shared
memory areas between partitions. This spatial isolation is achieved using support hardware.

- Temporal isolation: A partition is executed independently of the execution of other partitions. In
other words, the execution of a partition cannot be disturbed by the execution of other partitions.
It influences directly on the scheduling policies at hypervisor level. The hypervisor has to schedule
partitions under a scheduling policy that guarantees the partition execution. However, in
multicore systems, the temporal interferences in parallel executions only can be avoided if the
hardware base provides mechanisms to achieve it. Otherwise, the hypervisor side a time
separation of system partitions is achieved by an adequate scheduling plan. The scheduling must
provide an execution plan, such that no partition interferes with any other partition. The safest
scheduling policy provided is static cyclic scheduling, where partition execution times are
configured a priori and cannot be changed during an execution. The hypervisor can model the
hardware temporal interferences using different scheduling algorithms. Using this method the
effect of the interferences can be significantly reduced, but they cannot be disabled.

- Predictability: A partition with real-time constraints has to execute its code in a predictable way.
It can be influenced by the underlying layers of software (guest-OS and hypervisor) and by the
hardware. From the hypervisor point of view, the predictability applies to the provided services,
the operations involved in the partition execution and the interruption management of the
partitions.

- Security: All the information in a system (partitioned system) has to be protected against access
and modification from unauthorised partitions or unplanned actions. Security implies the
definition of a set of elements and mechanisms that permit to establish the system security
functions. This property is strongly related with the static resource allocation and a fault model
to identify and confine the vulnerabilities of the system.

e Staticresource allocation: The system architect is the responsible of the system definition and
resource allocation. This system definition is detailed in the configuration file of the system
specifying all system resources, namely, number of CPUs, memory layout, peripherals,
partitions, the execution plan of each CPU, etc. Each partition has to specify the memory
regions, communication ports, temporal requirements and other resources that are needed
to execute the partition code. Static resource allocation is the basis of predictability and safety
of the system. The hypervisor has to guarantee that a partition can access to the allocated
resources and deny the requests to other not allocated resources.

e Fault isolation and management: A fundamental issue in critical systems is the fault
management. Faults, when occur, have to be detected and handled properly in order to isolate
them and avoid the propagation. A fault model to deal with the different types of errors is to
be designed. The hypervisor has to implement the fault management model and allowing the
partitions to manage those errors that involve the partition execution.

- Partition support: The execution environments are required to be adapted to work on a virtual
platform. The hypervisor has to provide the support to execute partitions and inform about how
the system is working.

- Confidentiality: Partitions cannot access to the space of other partitions neither see how the
system is working. From their point of view, they only can see their own partition. This property

31.03.2015 DREAMS Page 18 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

can be relaxed to some specific partitions in order to see the status of other partitions or control
their execution.

4 XtratuM - Software design overview

This section is focused mainly on the XtratuM hypervisor using a para-virtualized approach for the
DREAMS harmonized platform. This platform consists of a Zyng-7000 Board using an processor ARM
Cortex A9, which does not incorporate hardware virtualization extensions. However, many services
described below will be used in a similar way on XtratuM using others virtualization approaches.
Additionally, the execution environment of the partition will be assumed as a bare partition using a
minimal runtime to allow the execution of applications. This runtime could be the minimal execution
runtime provided by XtratuM and called XAL, or it could be a minimal Bare-C Cross-compiler system
around GNU/GCC tools.

4.1 Software static architecture

4.1.1 System deployment

XtratuM is a bare metal hypervisor intended mainly for embedded real-time systems.Figure 3 shows
the expected deployed system: the XtratuM hypervisor runs on a specific board (e.g. Zyng-7000 Board,
ATOM-Intel Board, T4240-QDS PPC board), managing it and providing multiple virtual execution
environments (i.e. partitions). The application, XAL/DRAL and the LibXM (library provided by XtratuM)
are executed within one of these partitions.

deployment System :Ieplnqrment/

wdevices
Board
wexecutionEnviren... wexecutionEnviron... wexecutionEnviron...
Partiticn 0 Partition 1 Partition 2
Application {] Application {] Application g:]
HALDRAL {] HALDRAL %] HALDRAL g]
Htratuh:: {] Htratul:: {] Ktratuld:: {]
libx M libX M libx M

aexecutionEnvironments

Xtratubl::core g]

Figure 3: System deployment diagram

31.03.2015 DREAMS Page 19 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

4.1.2 System components

The system (Figure 4) is composed by (bottom to top, external components in gray) the Hardware
Layer, the XtratuM hypervisor, XAL/DRAL and the user application.

Zynq-7000 Board: Hardware platform [7] where the software components are executed. It
includes a dual-core 32-bit ARM Cortex-A9 processor, OCM, SDRAM and FLASH. Software
components interact with this component through the processor registers and the memory
ports. The Cortex-A9 processor has available TrustZone technology[8], which allows the
execution of software in two different worlds: a) Secure domain, it has access to all
instructions and resources on the system; b) Normal domain, it has the same capabilities as
secure domain from the point of view of execution and access to processor (including all
processor modes), but in this mode only the resources! previously allocated by the secure
domain are available.

emp System architecture ./
Application E:]
-
|
|
|
|
r—- - - - ==~ r |
| | |
| | |
v v v v
winterfaces winterfaces winterfaces winterfaces
DREAMS DREAMS DREAMS general main
Partition/System communication / Services
SErvices scheduling Services
L L M
| | | |
| | | |
e — --- - :
! |
XAL/DRAL =] | A
o0
| |
| |
r—--= - |_ __________ T T T T T T T T Bl
| | | | |
| | | | |
v v v v v
«interfacex «interfacex «interfaces «interfaces «interfacex
Reset M extended interrupt LibXM services M partition control ARM Cortex AS
handlers table services
N N Ly I A
| | | | |
| | | | |
| 8 _I
7 r :
| | |
KtratuM E] Zyng-T000 board E]
(== f=l=

Figure 4: System deployment diagram

XtratuM hypervisor: XtratuM hypervisor [8] manages the underlying hardware, providing
multiple virtual execution environments. For each of these virtual execution environments,
the hypervisor allocates a set of physical resources to be used directly by the partition and
implements a set of virtual devices, such as timer and clock, behaving similarly to their
hardware counterparts. Additionally, the hypervisor provides a subset of custom services and

1 Resources refer to physical memory, devices management, interrupts, coprocessors, etc.

31.03.2015 DREAMS Page 20 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

functionality related to management, monitoring and control at the partition and system
levels. Inter-partition, inter-tile and inter-node communication services are also provided by
the hypervisor via the DRAL layer. The interaction of the software with these services is
performed through a set of low-level services provided by the hypervisor in the LibXM. The
hypervisor is released jointly with the LibXM that may be linked jointly with the partition code
providing a C interface to the XtratuM services. The use of this library is not compulsory,
nonetheless, the partition may be in charge of implementing the hypervisor service invocation
convention. The virtual environments run in “Normal domain” such as defined by ARM
TrustZone technology [9]. While the hypervisor runs in “Secure domain” in order to manage
the access to the physical resources that can be performed from the partitions.

XAL/DRAL: XAL is a minimal run-time environment provided by XtratuM to execute simple
partition code. XAL provides a developing environment to create bare “C” applications. XAL is
provided jointly with the XtratuM sources as a library “LibXAL". This environment is linked by
default with the library LibXM and it can be used as tool to test the XtratuM services.

DRAL is the DREAMS Abstraction Layer. This layer includes specific DREAMS services involving
hypervisor, partition, scheduling and communication services. DRAL offers a homogenous
interface to the applications to access low level services in the DREAMS platform. This
software component will be addressed in section 0.

Application: Software payload executed within a virtual execution environment provided by
XtratuM. The application is linked with the DRAL library, LibXAL and LibXM. It uses the services
and abstractions provided by DRAL and XAL.

Note that the application could use a more complex operative system instead of a minimal run-time.
For such case, XAL would be replaced by the new 0O.S. but DRAL maintains the same application
interface, although it would be a DRAL adapted to such O.S.

4.1.2.1 Zynq-7000 board

In the specific case for the DREAMS harmonized platform, it uses a Zyng-7000 series board, which
incorporates the ARM Cortex-A9 Dual core as processing system (PS). The Cortex-A9 is a 32 bit
processor core that implements the ARMv7A architecture.

This processor implements the ARM TrustZone technology and XtratuM takes advantage of this
technology to perform virtualization of the system. The aim of ARM’s Trustzone technology was not
to make the ISA (Instruction Set Architectures) virtualizable, but to increase system security. However,
it still exhibits some useful properties that can help virtualization.

Trustzone introduces two new modes called worlds, secure domain and normal domain. Software
executing in the normal world cannot access resources belonging to the secure world. Secure world
software on the other hand can access non secure resources. All exception and processor modes are
available in both worlds. Interrupts and devices can be assigned to either world. If they are assigned
to the secure world it is possible to expose them to normal world software, but only via using defined
interfaces which invoke secure world software. For example all interrupts are handled by secure world
software and are only forwarded directly to the normal world when configured accordingly. Also
devices that are allocated to the secure world can only, if an interface is exposed to them, be accessed
indirectly by normal world software. However, the devices can also be allocated directly to normal
world if it is configured in that way. This indirection prevents normal world (the non-secure world)
software from interfering with the secure world.

As those examples show TrustZone allows aspects of the normal world to be managed by the secure
mode using predefined allocation of resources.

31.03.2015 DREAMS Page 21 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

4.1.2.2 XtratuM top-level architecture

Figure 5 shows the decomposition of XtratuM in its major sub-components as well as its interface with
DRAL. These sub-components are (from top to bottom):

cmp XtratuM ~

Libxnm {] «interfaces
—-{1= LibXM services
1
wdelegatew
«interfacex
Resat | {}
! KtratuM
] = - S:] zinterfacex
| - XM partition control table
|
-

«interfaces
M extended interrupt == — —
handlers

gets
configuration

XM_CF 5]

Figure 5: XtratuM top-level architecture

LibXM: Library released jointly with XtratuM source code. This library may be optionally linked
with the partition software providing a C interface to invoke XtratuM services. It is used by
XAL/DRAL to interface with XtratuM.

Application: Software payload executed within a virtual execution environment (partition)
provided by XtratuM. The application is linked with the DRAL library, LibXAL and LibXM. It uses
the services and abstractions provided by DRAL and XAL.

XtratuM core: The core manages the underlying hardware, providing the abstraction and
facilities required to run multiple virtual execution environments on the hardware. For each
of these virtual execution environments, the hypervisor provides a set of services that could
be classified as: system and partition management services, time and scheduling,
communications, health-monitoring and tracing services, virtual extended interrupt
management and multicore support. Additionally, the hypervisor can offer virtual devices
mimicking the ones present in underlying hardware when several execution environments
require the same physical device. These services and virtual devices are managed through a
set of low-level services implemented by the core. Each partition includes a partition control
table. The partition control table is a memory area shared between the partition and XtratuM,
used by this last one to provide relevant information. Partitions are scheduled according to a
cyclic scheduling policy. Although, the cyclic scheduling is the policy typically used to schedule
partitions in critical systems, there are other scheduling policies available to be used with
XtratuM.

XM_CF (XtratuM Configuration file): This component is a table defining the hypervisor
configuration, among other things, partitions, inter-partition communication, channels,
resource allocation: memory maps, interrupts, devices, etc. The XtratuM Configuration File
(XM_CF) is the translation of the XML file used to configure the hypervisor into a binary format
understandable by the hypervisor.

31.03.2015 DREAMS Page 22 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

4.1.3 System states

XtratuM is a software component that shares out the memory and computes time between a set of
partitions following a configuration plan. To be able to share the resources, XtratuM needs to initialize
a set of data, and load each partition in memory. This is done at first in the BOOT state, that includes
the period of time between starting from the entry point, to the execution of the first partition. In this
state the scheduler is not enabled and the partitions are not executed.

stm XM S5tates Diagram

NORMAL

Figure 6: System states diagram

At the end of the boot sequence the hypervisor is ready to start executing partition code. The system
is in NORMAL state and the scheduling plan is started. XtratuM only runs when a service is requested
by the current partition, or when an asynchronous event arrives.

The system can switch to HALT state by the health monitor system in response to a detected error or
by the system partition invoking the halt system hypercall. In the halt state the scheduler is disabled,
the hardware interrupts are disabled, and the processor enters in a power sleep mode or in an endless
loop (configuration dependent). The only way to exit from this state is via an external hardware reset.

4.2 Partition overview

A partition is an independent execution unit designed to execute under XtratuM’s control. Each
partition can execute a complete system (OS kernel and the application processes) or bare applications
(execution runtime and application). The latter is independent from the point of view of the
hypervisor.

XM_HM_AC_PARTITION_COLD_ RESET
or
XM_HM_AC_PARTITION_WARM_RESET
or
XM_reset_partition(

XM_resume_partition()

Normal
- ready

- running
- idle

XM_halt_partition()
or
XM_HM_AC_HALT

XM_suspend_partition()
or

XM_HM_AC_SUSPEND

Figure 7: Partition states and transitions

31.03.2015 DREAMS Page 23 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

4.2.1 Partition operation

Once XtratuM is in normal state, partitions are started. The partition’s states and transitions are shown
in Figure 7.

On start-up each partition is in boot state. XtratuM has to prepare the virtual machine to be able to
run the applications: it sets up a standard execution environment (that is, initializes a correct stack
and sets up the virtual processor control registers), creates the communication ports, requests the
hardware devices (I/O ports and interrupt lines), etc., that it will use. Once the partition has been
initialized, it changes to normal mode.

The partition receives information from XtratuM about the previous executions, if any.
From the hypervisor point of view, there is no difference between the boot state and the normal state.

In both states the partition is scheduled according to the fixed plan, and has the same capabilities.
Although not mandatory, it is recommended that the partition emits a partition’s state-change event
when changing from boot to normal state.

The normal state is subdivided in three sub-states:

e Ready. The partition is ready to execute code, but it is not scheduled because it is not in its
time slot.

e Running. The partition is being executed by the processor.

e I|dle. If the partition does not want to use the processor during its allocated time slot, it can
relinquish the processor and wait for an interrupt or for the next time slot (see XM_idle_self()).

A partition can halt itself or be halted by a system partition. In the halt state, the partition is not
selected by the scheduler and the time slot allocated to it is left idle (it is not allocated to other
partitions). All resources allocated to the partition are released. It is not possible to return to normal
state.

In suspended state, a partition will not be scheduled and interrupts are not delivered. Interrupts raised
while in suspended state are left pending. If the partition returns to normal state, then pending
interrupts are delivered to the partition. The partition can return to ready state if requested by a
system partition by calling XM_resume_partition() hypercall.

4.2.2 Types of partitions

XtratuM defines two types of partitions: normal and system. System partitions are allowed to manage
and monitor the state of the system and other partitions. Some hypercalls cannot be called by a
normal partition or have restricted functionality.

Note that system partition rights are related to the capability to manage the system, and not to the
capability to access directly to the native hardware or to break the isolation: a system partition is
scheduled as a normal partition; and it can only use the resources allocated to it in the configuration
file.

A partition has system capabilities if the /System Description/Partition Table/Partition/@flags
attribute contains the flag “system” in the XML configuration file. Several partitions can be defined as
system partition.

4.2.3 Names and identifiers

31.03.2015 DREAMS Page 24 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

Each partition is globally identified by a unique identifier id. Partition identifiers are assigned by the
integrator in the XM CF file. XtratuM uses this identifier to refer to partitions. System partitions use
partition identifiers to refer to the target partition. The “C” macro XM_PARTITION_SELF can be used
by a partition to refer to itself.

These ids are used internally as indexes to the corresponding data structures. The fist identifier (id) of
each object group shall start in zero and the next id’s shall be consecutive. It is mandatory to follow
this order in the XM_CF file.

The attribute name of a partition is a human readable string. This string shall contain only the following
set of characters: upper and lower case letters, numbers and the underscore symbol. It is advisable
not to use the same name on different partitions. A system partition can get the name of another
partition by consulting the status object of the target partition.

In order to avoid name collisions, all the hypercalls of XtratuM contain the prefix “XM”. Therefore, the
prefix “XM”, both in upper and lower case, is reserved.

4.3 Partition scheduling

XtratuM main schedules partitions in a fixed, cyclic basis (ARINC-653 scheduling policy). This policy
ensures that one partition cannot use the processor for longer than scheduled to the detriment of the
other partitions. The set of time slots allocated to each partition is defined in the XM_CF configuration
file during the design phase. Each partition is scheduled for a time slot defined as a start time and a
duration. Within a time slot, XtratuM allocates the processor to the partition.

If there are several concurrent activities in the partition, the partition shall implement its own
scheduling algorithm. This two-level scheduling scheme is known as hierarchical scheduling. XtratuM
is not aware of the scheduling policy used internally on each partition.

In general, a cyclic plan consists of a major time frame (MAF) which is periodically repeated. The MAF
is defined as the least common multiple of the periods of the partitions (or the periods of the threads
of each partition, if any).

Other scheduling schemas of partitions are available to be used on XtratuM. Some of these schemas
are based on fixed-priorities and cyclic with spare capabilities. Scheduling schemas as results of
DREAMS WP3 could be included as scheduling schemas of partitions in XtratuM.

4.3.1 Multiple scheduling plans

Using the cyclic scheduling schema to schedule partitions, in some cases, a single scheduling plan may
be too restrictive. For example:

e Depending on the guest operating system, the initialisation can require a certain amount of
time and can vary significantly. If there is a single plan, the initialisation of each partition can
require a different number of slots due to the fact that the slot duration has been designed
considering the operational mode. This implies that a partition can be executing operational
work whereas others are still initialising its data.

e The system can require to execute some maintenance operations. These operations can
require allocating other resources different from the ones required during the operational
mode.

In order to deal with these issues, XtratuM provides multiple scheduling plans that allow reallocating
the timing resources (i.e. the processor) in a controlled way. In the scheduling theory this process is
known as mode changes. Figure 8 shows how the modes have been considered in the XtratuM
scheduling.

31.03.2015 DREAMS Page 25 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

44"--> ----"--~~~

U

~
----

Initial
plan

Normal

Maintenance
plan

Figure 8: Scheduling modes

The scheduler (and so, the plans) is only active while the system is in normal mode. Plans are defined
in the XM_CF file and identified by a identifier. Some plans are reserved or have a special meaning:

Plan O: Initial plan. The system selects this plan after a system reset. The system will be in plan 0 until
a plan change is requested.

Plan 1: Maintenance plan. This plan can be activated in two ways:

e As a result of the health monitoring action XM_HM_AC_SWITCH_TO_MAINTENANCE. The
plan switch is done immediately.
e Requested by a system partition. The plan switch occurs at the end the current plan.

It is advisable to allocate the first slot of this plan to a system partition, in order to start the
maintenance activity as soon as possible after the plan switch. Once the maintenance activities
have been completed, it is responsibility of a system partition to switch to another plan (if
needed).

A system partition can also request a switch to this plan.

Plan x (x>1): Any plan greater than 1 is user defined. A system partition can switch to any of these
defined plans at any time.

4.4 Inter-Partition communications (IPC)

Inter-partition communications are communications between two or more partitions. XtratuM
implements a message passing model which highly resembles the one defined in the ARINC-653
standard. A message is a variable block of data. A message is sent from a source partition to one or
more destination partitions. The data of a message is transparent to the message passing system.

A communication channel is the logical path between one source and one or more destinations.
Partitions can access to channels through access points named ports. The hypervisor is responsible for
encapsulating and transporting messages that have to arrive to the destination(s) unchanged. At
partition level, messages are atomic entities: either the whole message is received or nothing is
received. Partition developers are responsible for agreeing on the format (data types, endianess,
padding, etc.).

XtratuM provides two basic transfer modes: sampling and queuing.

Channels, ports, maximum message sizes and maximum number of messages (queuing ports) are
entirely defined in the configuration files.

Sampling port: It provides support for broadcast, multicast and unicast messages. No queuing is
supported in this mode. A message remains in the source port until it is transmitted through the
channel or it is overwritten by a new occurrence of the message, whatever occurs first. Each new

31.03.2015 DREAMS Page 26 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

instance of a message overwrites the current message when it reaches a destination port, and
remains there until it is overwritten. This allows the destination partitions to access the latest
message.

The channel has an optional configuration attribute named @refreshPeriod. This attribute defines
the maximum time that the data written in the channel is considered “valid”. Messages older than
the valid period are marked as invalid. When a message is read, a bit is set accordingly to the valid
state of the message.

Queuing port: It provides support for buffered unicast communication between partitions. Each port
has a queue associated where messages are buffered until they are delivered to the destination
partition. Messages are delivered in FIFO order.

If the requested operation cannot be completed because the buffer is full (when trying to send a
message) or empty (when attempting to receive a message), then the operation returns
immediately with the corresponding error. The partition’s code is responsible for retrying the
operation later.

In order to optimise partition’s resources and reduce the performance loss caused by polling the state
of the port, XtratuM triggers an extended interrupt when a new message is written/sent to a port.
Since there is only one single interrupt line to notify for incoming messages, on the reception of the
interrupt, the partition code has to determine which port or ports are ready to perform the operation.
XtratuM maintains a bitmap in the Partition Control Table to inform about the state of each port. A
“1” in the corresponding entry indicates that the requested operation can be performed.

When a new message is available in the channel, XtratuM triggers an extended interrupt to the
destination(s).

4.5 Health Monitor (HM)

The health monitor is the part of XtratuM that detects and reacts to anomalous events or states. The
purpose of the HM is to discover errors at an early stage and try to solve or confine the faulting
subsystem in order to avoid a failure or reduce the possible consequences.

It is important to clearly understand the difference between 1) an incorrect operation (instruction,
function, application, peripheral, etc.) which is handled by the normal control flow of the software,
and 2) an incorrect behaviour which affects the normal flow of control in a way not considered by the
developer or which can not be handled in the current scope.

An example of the first kind of errors is: the malloc() function returns a null pointer because there is
not memory enough to attend the request. This error is typically handled by the program by checking
the return value. As for the second kind, an attempt to execute an undefined instruction (processor
instruction) may not be properly handled by a program that attempted to execute it.

The XtratuM health monitoring system will manage those faults that cannot, or should not, be
managed at the scope where the fault occurs.

The XtratuM HM system is composed of four logical blocks:

o HM event detection: to detect abnormal states, using logical probes in the XtratuM code.

e HM actions: a set of predefined actions to recover from the fault or confine an error.

e HM configuration: to bind the occurrence of each HM event with the appropriate HM action.
e HM notification: to report the occurrence of the HM events.

Note that only some events are detected directly by the hypervisor. Most hardware events are
received directly by the partitions that generate them. Partition events must be handled by the
partitions and those events are not detected by XtratuM. Therefore, the hypervisor provides to the
partition a mechanism for the notification of events, which will be processed based on actions

31.03.2015 DREAMS Page 27 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

configured in the configuration file. These services of notification should be used by the partitions in
order to maintain the scheme proposed by the hypervisor XtratuM to detect and react to anomalous
states.

Monitoring
Partition

XM_hm/open()
XM_hm_read()
XM_hm_seek()

XtratuM

HM
log message

HM
subsystem

HM
events

fault — error —— failure
v
fault — error — failure
v

fault ~— error — failure

XML
configuration

HM
actions

Figure 9: Health monitoring overview.

Once the defined HM action is carried out by XtratuM, a HM notification message is stored in the HM
log stream (if the HM event is marked to generate a log). A system partition can then read those log
messages and perform a more advanced error handling. In Figure 9 a health monitoring overview is
shown.

4.6 Inter-Partition Virtual Interrupts (IPVI)

An Inter-Partition Virtual Interrupt (IPVI) emulates the way a real Inter-Processor Interrupts (IPls)
works in real processors. That is, every time the correspondent hypercall is invoked, a virtual interrupt
is caused to a destination partition. An IPVI can be raised by any partition.

Each partition has a maximum of 8 IPVIs, implemented as the last eight extended virtual interrupts.
The system integrator, though the XML, indicates the entity who receives a IPVI after being raised.

<Channels>
<lpvi id="0" sourceld="5" destinationld="8" />
<lpvi id="0" sourceld="4" destinationld="1" />
<lpvi id="1" sourceld="4" destinationld="8, 1" />
</Channels>
The example above shows a configuration where the behaviour of three IPVIs is defined: the IPVI O,

caused by the partition 5 and received by the partition 8. The IPVI 0 and 1, caused both by the partition
4 and received, the first one by the partition 1 and the second by the partitions 8 and 1.

31.03.2015 DREAMS Page 28 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

4.7 Interfaces context required by XtratuM

Xtratum requires a set of hardware services that are strongly dependent on the processor. The
following type of interfaces are required for the ARM Cortex-A9 processor:

Interface Required

CPU Registers Partition context switch.

Timers Timer handler and external interface. Provide a system time.
TrustZone interface Control of execution worlds. Allocation of memory, interrupts,

devices, coprocessor access, among others.

MMU Memory management.

Interrupt device Interrupt handler and management. Virtualize hardware interrupts
when these are shared, otherwise the interrupts are allocated directly
to the partition and managed by the partition.

Cache control unit Cache management

10 Ports/devices Device management and external interface

4.8 Interfaces context provided by XtratuM

4.8.1 Hypercalls

The external interface is provided through the libXM that provides to the partition the XM-API. The
exact list of services provided by XtratuM is detailed in the [10] Manual. Next tables list a subset of
these services that should be taken as example.

4.8.1.1 System services

Interface Required

XM-System services Services related to the system management

XM_get_system_status | Get the current status of the system.

XM_halt_system | Stop the system.

XM_reset_system | Reset the system.

4.8.1.2 Partitioning services

Interface Required

XM-Partitioning services Services related to the partition management

XM_get_partition_status | Get the current status of a partition.

XM_halt_partition | Terminates a partition.

31.03.2015 DREAMS Page 29 of 92



D2.3.1

Version 1.0 Confidentiality Level:PU

XM_params_get PCT

Gets the address of the Partition Control Table

XM_reset_partition

Reset a partition.

XM_resume_partition

Resume a partition

XM_set_partition_opmode

Informs the internal status of the partition

XM_shutdown_partition

Send a shutdown interrupt to a partition.

XM_suspend_partition

Suspend the execution of a partition.

4.8.1.3 Time services

Interface

Required

XM-Time services

Services related to the time management

XM_get_time

Gets the global or local time

XM_set_timer

Arm a timer based on a global or local time

4.8.1.4 Plan schedule services

Interface

Required

XM-Plan services

Services related to the plan management

XM_get_plan_status

Return information about the scheduling plans.

XM_switch_sched_plan

Request a plan switch at the end of the current MAF.

4.8.1.5 Inter-partition communication services

Interface

Required

XM-IPC services

Services related to the inter-partition communication

XM_create_queuing_port

Create a queuing port.

XM_create_sampling_port

Create a sampling port

XM_get_queuing_port_info

Get the info of a queuing port.

XM_get_queuing_port_status

Get the status of a queuing port.

XM_get_sampling_port_info

Get the info of a sampling port.

XM_get_sampling_port_status

Get the status of a sampling port.

XM_read_sampling_message

Read a message from the specified sampling port

XM_receive_queuing message

Receive a message from the specified queuing port.

XM_send_queuing_message

Send a message in the specified queuing port.

31.03.2015

DREAMS Page 30 of 92



D2.3.1

Version 1.0

XM_write_sampling_message

4.8.1.6 Health monitor services

Interface

Required

XM-HM services

Services related to the HM management

XM_hm_get_app_error

Read a application health monitoring log entry.

XM_hm_raise_app_error

Raises an application error

XM_hm_read

Read a health monitoring log entry.

XM_hm_seek

XM_hm_status

Get the status of the health monitoring log stream.

4.8.1.7 Tracing services

Interface

Required

XM-Trace services

Services related to the Trace management

XM_trace_event

Records a trace entry.

XM_trace_open

Open a trace stream.

XM _trace_read

Read a trace event.

XM _trace_seek

Sets the read position in a trace stream.

XM _trace_status

Get the status of a trace stream.

4.8.1.8 Interrupt management services

Interface

Required

XM-IRQ services

Services related to the Virtual Interrupt management

XM_clear_irgmask

Unmask virtual interrupts.

XM_clear_irgpend

Clear pending virtual interrupts.

XM _route_irq

Link an virtual interrupt to a specific interrupt vector

XM _set_irgmask

Mask virtual interrupts.

XM_set_irgpend

Force some virtual interrupts as pending.

4.8.2 Binary interfaces

This section covers the data types and the format of the files and data structures used by XtratuM.

XtratuM conforms to the following conventions of basic data types:

31.03.2015

DREAMS

Confidentiality Level:PU

Writes a message in the specified sampling port.

Sets the read position in the health monitoring stream.

Page 31 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

Unsigned Signed Size (bytes) | Alignhment
xm_u8_t xm_s8_t 1 1
xm_ul6_t xm_s16_t 2 4
xm_u32_t xm_s32_t 4 4
xm_u64_t xm_s64_t 8 8

These data types have to be stored in the endianness format required according to the underlying
architecture,.

C" declaration which meet these definitions are presented in the list below:

// Basic types

typedef unsigned char xm_u8_t;
typedef char xm_s8 t;

typedef unsigned short xm_ul6_t;
typedef short xm_s16_t;

typedef unsigned int xm_u32_t;
typedef int xm_s32_t;

typedef unsigned long long xm_u64_t;
typedef long long xm_s64_t;

// Extended types

typedef long xmLong_t;

typedef xm_u32_t xmWord_t;

#define XM_LOG2_WORD SZ 5

typedef xm_s64_t xmTime_t;

#tdefine MAX_XMTIME Ox7fffffffffffffffLL
typedef xm_u32_t xmAddress_t;
typedef xmAddress_t xmIoAddress_t;
typedef xm_u32_t xmSize_t;

typedef xm_s32_t xmSSize_t;
typedef xm_u32_t xmId_t;

For future compatibility, most data structures contain version information. It is a xm_u32_t data type
with 3 fields: version, subversion and revision. The macros listed next can be used to manipulate those
fields:

#define XM_SET_VERSION( ver, _subver, rev) ((((_ver)&@xFF)<<16)]|(((
_subver)&oxFF)<<8) | ((_rev)&oxFF))

#tdefine XM_GET_VERSION(_v) (((_v)>>16)&@XFF)

#define XM_GET_SUBVERSION(_v) (((_v)>>8)&0xFF)

4.8.3 #define XM_GET_REVISION(_v) ((_v)&OXFF)

4.8.4 Partition control table (PCT)

31.03.2015 DREAMS Page 32 of 92



D2.3.1

Version 1.0 Confidentiality Level:PU

In order to minimize the overhead of the para-virtualized services, XtratuM defines a special data
structure that is shared between the hypervisor and the partition called Partition control table (PCT).
There is a PCT for each partition. XtratuM uses the PCT to send relevant operating information to the
partitions. The PCT is mapped as read-only, allowing a partition only to read it. Any write access causes
a system exception. Partitions can access this table using the address provided by the

XM_params_get_PCT macro.

typedef struct {

xm_u32_t magic;

xm_u32_t xmVersion; // XM version

xm_u32_t xmAbiVersion; // XM's abi version

xm_u32_t xmApiVersion; // XM's api version

xm_u32_t resetCounter; // Number of partition reset
xm_u32_t resetStatus; // Reset status

xm_u32_t cpuKhz; // CPU frequency

xmId_t id; // Partition identifier

// Copy of kthread->ctrl.flags

xm_u32_t flags;

xm_u32_t imgStart;

xm_u32_t hwIrgqs[CONFIG_NO_HWIRQS/32];// Hw interrupts belonging

to the partition

xm_s32_t noPhysicalMemAreas; //No of memory areas

xm_s32_t noCommPorts; // No of comm. ports

xm_u8_t name[CONFIG_ID STRING_LENGTH];

xm_u32_t iFlags;

xm_u32_t hwIrgqsPend[CONFIG_NO_HWIRQS/32]; // pending hw irgs
xm_u32_t hwIrqsMask[CONFIG_NO_HWIRQS/32]; // masked hw irgs

xm_u32_t extIrqsPend; // pending extended irqgs
xm_u32_t extIrqsMask; // masked extended irqgs

struct pctArch arch;
struct {
xm_u32_t noSlot:16, releasePoint:1, reserved:15;
xm_u32_t id;
xm_u32_t slotDuration;
} schedInfo;
xm_ul6é_t trap2Vector[NO_TRAPS];
xm_ulé_t hwIrg2Vector[CONFIG_NO_HWIRQS];
xm_ulé_t extIrg2Vector[XM_VT_EXT_MAX];

} partitionControlTable_t;

4.8.5 Virtual Interrupts

4.8.5.1 Interrupt model

31.03.2015

DREAMS Page 33 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU

Different manufacturers use terms like exceptions, faults, aborts, traps, and interrupts to describe the
processor mechanism to receive a signal indicating the need for attention. Also, different authors
adopt different terms to their own use. In order to define the interrupt model, we provide the generic
definition of the terms used in this work.

A trap is the mechanism provided by the processor to implement the asynchronous/synchronous
transfer of control. When a trap occurs, the processor switches to a privileged mode and
unconditionally jumps into a predefined handler.

A software trap is raised by a processor instruction and it is commonly used to implement the system
call mechanism in the operating systems.

An exception is an automatically generated interrupt that occurs in response to some exceptional
condition violation. It is raised by the processor to inform about a condition that prevents the
continuation of the normal execution sequence.

A hardware interrupt is a trap raised due to an external hardware event (external to the CPU). These
interrupts generally have nothing at all to do with the instructions currently executing and informs the
CPU that a device needs some attention.

In a partitioned system, the hypervisor can handle these interrupts (native interrupts) and generate
the appropriated virtual interrupts to the partitions. However, if the hardware features allow it, the
hypervisor can delegate the management of these navite interrupts directly to the partition. In such
case, the interrupts are caught directly by the partition and the hypervisor does not take part in the
handle, only in the allocation of such interrupt to the partition. In a general way, a partition has to
deal with the following virtual traps:

e Virtual exceptions are the exceptions propagated by the hypervisor to the partitions as
consequence of a native exception occurrence. Not all the native exceptions are propagated
to the partition. For instance, a memory access error that is generated as consequence of a
space isolation violation is handled by the hypervisor which can perform a halt partition action
or can generate another different virtual exception (like memory isolation fault).

o Native exceptions are the exceptions handled directly by the partition due to the assignment
done from the hypervisor.

e Virtual hardware interrupts are interrupts generated by the real hardware, handled by the
hypervisor and afterwards propagated by the hypervisor to the partitions as virtual interrupts.
The hardware interrupts correspond to the signals generated from external devices
(dedicated devices technique) or peripherals.

e Native hardware interrupts are the hardware interrupts directly allocated to the partition to
be handled directly by them. These interrupts are raised to the partition in the same way as
in a bare-metal machine.

o Virtual Extended interrupts or virtual partitioning interrupts correspond to the virtual
hardware provided by the virtualization layer. It includes different virtual devices associated
to the virtualization. Some of these virtual devices are:

o Virtual global and local clocks and timers

o New message arrival. The communication mechanism (channel) implemented by
XtratuM is seen as a hardware device generating an interrupt when the operation is
completed.

o Partition slot execution. In a partitioned system the partition is aware of the partition
scheduling, this interrupt informs to the partition that a new slot has been scheduled.

31.03.2015 DREAMS Page 34 of 92



D2.3.1 Version 1.0

Confidentiality Level:PU

4.8.5.2 Interrupt model implementation

XtratuM provides a virtual vector for interrupt management at partition level. This VirtualTrapTable is
a interrupt model that virtualizes the underlying interrupts available in the hardware and adds a set

of new interrupts related to the partitioned system.
Figure 10 shows the scheme of a generic interrupt model.

| Partition,

Partitioni

Interrupt_handler( ) {

VirtualTrapTable

VTraps

’ VPartlRQS ‘ Virgs | VExceptions
CLr 113

C 1T T T T 1| C 1T T T T 7

l To partition code

Irq Mngt

- '\

Hardware Interrupts Processor exceptions Software traps

Figure 10: Interrupt Model

The API provides a set of symbols for virtual interrupts.

hypercall service
HM_events HM_events
HM Mn - (TrapMngt

#define XM_VT_EXT_FIRST (0)
#define XM_VT_EXT_LAST (31)
#define XM_VT_EXT_MAX (32)

// Virtual Exceptions

// Virtual extended Partitioning IRQs

#define XM_HM_EV_ARM_UNDEF_INSTR (XM_HM_MAX_GENERIC_EVENTS+0)

#define XM_HM_EV_ARM_PREFETCH_ABORT (XM_HM_MAX_GENERIC_EVENTS+1)

#define XM_HM_EV_ARM_DATA_ABORT (XM_HM_MAX_GENERIC_EVENTS+2)

#define XM_HM_EV_ARM_DATA_ALIGNMENT FAULT (XM_HM_MAX_GENERIC_EVENTS+3)
#define XM_HM_EV_ARM_DATA_BACKGROUND_FAULT (XM_HM_MAX_GENERIC_EVENTS+4)
#define XM_HM_EV_ARM_DATA_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+5)
#define XM_HM_EV_ARM_INSTR_ALIGNMENT_FAULT (XM_HM_MAX_GENERIC_EVENTS+6)
#define XM_HM_EV_ARM_INSTR_BACKGROUND FAULT (XM_HM_MAX_GENERIC_EVENTS+7)
#define XM_HM_EV_ARM_INSTR_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+8)

#define XM_VT_EXT_HW_TIMER (0+XM_VT_EXT_FIRST)
#define XM_VT_EXT_EXEC_TIMER (1+XM_VT_EXT_FIRST)
#define XM_VT_EXT_WATCHDOG_TIMER  (2+XM_VT_EXT_FIRST)
#define XM_VT_EXT_SHUTDOWN (3+XM_VT_EXT_FIRST)
#define XM_VT_EXT_SAMPLING_PORT (4+XM_VT_EXT_FIRST)
#define XM_VT_EXT_QUEUING_PORT (5+XM_VT_EXT_FIRST)

#define XM_VT_EXT_CYCLIC_SLOT_START (8+XM_VT_EXT_FIRST)

31.03.2015 DREAMS

Page 35 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

4.8.6 Fault management model

The Health Monitor (HM) is the part of XtratuM that detects and reacts to anomalous events or states.
The purpose of the HM is to discover the errors at an early stage and try to solve or confine the faulting
subsystem in order to avoid or reduce the possible consequences.

HM is executed as result of a HM event occurrence. Next scenarios can raise a HM event:

e An exception has been raised by the CPU. The exception handler generates the associated
HM event.

e A native interrupt has been received and the temporal or spatial properties are not
validated.

e Atrap has been received and the temporal or spatial properties are not validated.

e A partition detects an abnormal internal situation and raises a HM event. For instance, the
operating system inside of a partition detects that the application is corrupted.

e When the partition request a hypervisor service (hypercall), the spatial or temporal
properties are verified as pre- and post-conditions. If these validations fail, a HM event is
generated.

Previous cases cover all entry points to the hypervisor. As result of enforcing the isolation of the
partitions, XtratuM performs a check of the temporal and spatial properties each time that it is
invoked.

The HM event occurrence is the manifestation of an error. XtratuM reacts to the error providing a
simple set of predefined actions to be done when it is detected.

XtratuM HM subsystem is composed by four logical components:

e HM configuration: to bind the occurrence of each HM event with the appropriate HM action.
This bind is specified in the configuration file.

e HM event detection: to detect abnormal states, using logical assertions in the XtratuM code.

e HM actions: a set of predefined actions to recover the fault or confine the error.

e HM notification: to report the occurrence of the HM events.

Once a HM event is raised, XtratuM performs an action that is specified in the configuration file. Some
of the HM events and HM actions are shown in the next table.

// HM EVENTS

#define XM_HM_EV_INTERNAL_ERROR ©

#define XM_HM_EV_UNEXPECTED_TRAP 1

#define XM_HM_EV_PARTITION_UNRECOVERABLE 2
#define XM_HM_EV_PARTITION_ERROR 3

#define XM_HM_EV_PARTITION_INTEGRITY 4
#define XM_HM_EV_MEM_PROTECTION 5

#define XM_HM_EV_OVERRUN 6

#define XM_HM_EV_SCHED ERROR 7

31.03.2015 DREAMS Page 36 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

#define XM_HM_EV_WATCHDOG_TIMER 8

#define XM_HM_EV_INCOMPATIBLE_INTERFACE 9

// HM ARCH EVENTS

#define XM_HM_EV_ARM_UNDEF_INSTR (XM_HM_MAX_GENERIC_EVENTS+®)

#define XM_HM_EV_ARM_PREFETCH_ABORT (XM_HM_MAX_GENERIC_EVENTS+1)

#define XM_HM_EV_ARM_DATA_ABORT (XM_HM_MAX_GENERIC_EVENTS+2)

#define XM_HM_EV_ARM_DATA_ALIGNMENT FAULT (XM_HM_MAX_GENERIC_EVENTS+3)
#define XM_HM_EV_ARM_DATA_BACKGROUND FAULT (XM_HM_MAX_GENERIC_EVENTS+4)
#define XM_HM_EV_ARM_DATA_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+5)
#define XM_HM_EV_ARM_INSTR_ALIGNMENT FAULT (XM_HM_MAX_GENERIC_EVENTS+6)
#define XM_HM_EV_ARM_INSTR_BACKGROUND_ FAULT (XM_HM_MAX_GENERIC_EVENTS+7)
#define XM_HM_EV_ARM_INSTR_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+8)

//HM Actions

#define XM_HM_AC_IGNORE ©

#define XM_HM_AC_SHUTDOWN 1

#define XM_HM_AC_PARTITION_COLD_RESET 2
#define XM_HM_AC_PARTITION_WARM_RESET 3
#define XM_HM_AC_HYPERVISOR_COLD_RESET 4
#define XM_HM_AC_HYPERVISOR_WARM_RESET 5
#define XM_HM_AC_SUSPEND 6

#define XM_HM_AC_HALT 7

#define XM_HM_AC_PROPAGATE 8

#define XM_HM_AC_SWITCH_TO_MAINTENANCE 9

4.8.7 Partition image header

The partition image header is a data structure with the following fields:

struct xmImageHdr {

#define XMEF_PARTITION_MAGIC 0x24584d69 // $XMi
xm_u32_t sSignature; // start signature
xm_u32_t compilationXmAbiVersion; // XM's abi version
xm_u32_t compilationXmApiVersion; // XM's api version

xm_u32_t noCustomFiles; // Number of custom files
struct xefCustomFile customFileTab[CONFIG_MAX NO_CUSTOMFILES];
xm_u32_t eSignature; // end signature

} _ PACKED;

where

e sSignature and eSignature: Holds the start and end signatures which identifies the structure
as a XtratuM partition image.

e compilationXmAbiVersion: XtratuM ABI version used to compile the partition. That is, the
ABI version of the libxm and other accompanying utilities used to build the XEF file.

e compilationXmApiVersion: XtratuM API version used to compile the partition. That is, the
APl version of the libxm and other accompanying utilities used to build the XEF file.

31.03.2015 DREAMS Page 37 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

e noCustomFiles: The number of extra files accompanying the image. If the image were Linux,
then one of the modules would be the initrd image. Up to CONFIG_MAX_NO_FILES can be
attached.

e customFileTab: Table information about the customisation files.

The xmImageHdr structure has to be placed in a section named “.xmImageHdr”. The remainder of the
image is free to the partition developer. There is not a predefined format or structure of where the
code and data sections shall be placed.

31.03.2015 DREAMS Page 38 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

5 Booting process

The booting process describes how the system (hypervisor) is initialized. In most of the processors the
boot process is initialized when the program counter register is initialized at a specific memory
address. A small program “resident software” is in charge of the initial steps of booting the computer.

This resident software will be in charge of loading into memory the hypervisor, its configuration file
(XM_CT) and the partitions. The information hold by the XM_CT file is used to load any partition image.

5.1 Hypervisor boot

When the control is transferred from the resident software to XtratuM, a setup() function starts the
boot operation. It is sketched in Figure 11.

CPUO CPU1 CPU2 CPU3

Initialisation
iif:fii:iifii:z:i)l,,,,,,,,,,,,,,,,,,,,,,,,,,)l

|

[ Local Local

‘ Initialisation Initialisati Local

: —~ I il Initialisation

vV - T T

Synchronisation .éii:—#’“'—)r_

Plan 0 Plan 0 Plan 0 Plan 0
Execution Execution Execution Execution
Processor 0 Processor 1 Processor 2 Processor 3

Figure 11: Booting a multicore architecture

After the hard reset, the CPUO is started and a XtratuM thread is executed. This CPUO thread performs
a global initialisation and starts the execution of other CPUs by providing the entry point and stack
area. Each started CPU executes a XtratuM thread performing a local initialisation of the internal local
data structures. All CPU threads are synchronised in a specific point in order to guarantee a coherent
initialisation before the scheduling plan execution.

The global initialisation consists on the following:

Initializes the internal console.

Initializes the interrupt controller.

Detects the processor frequency (information extracted from the XML configuration file).
Initializes memory manager (enabling XtratuM to keep track of the use of the physical
memory).

Initializes hardware and virtual timers.

6. Initializes the scheduler.

PwNPE

o

31.03.2015 DREAMS Page 39 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

7. Initializes the communication channels.

8. Wakes up other processors

9. Booting partitions are set in NORMAL state and non-booting ones are set in HALT state.
10. Opens the sync barrier

11. Finally, the setup function calls the scheduler and becomes into the idle task.

Other CPUs perform the local initialisation:

Sets up a valid virtual memory map

Initializes the timer

Waits in a sync barrier

Finally, calls the scheduler and becomes into the idle task.

PwNPE

This scheme implies an important design aspect with respect to the monocore version of XtratuM.
The internal code of XtratuM is not a non preemptive code block like it is in the monocore version.
The multicore design is fully preemptive. A set of low grain atomic sections have been defined in order
to avoid race conditions between the internal threads of XtratuM.

5.2 Partition boot

XtratuM provides virtual CPUs to the partitions. A monocore partition will use the virtual CPU identifed
as vCPUO. Its operation is exactly the same as the monocore version of XtratuM.

After a partition reset, the vCPUQO is initialized to the default values specified in the configuration file.
Although the monocore partition uses the vCPUQ, it can be allocated to any of the available

A multicore partition can use several virtual CPUs (vCPUO, vCPU1, vCPU2, ...) to implement the
partition. XtratuM follows the approach for virtual CPUs than the hardware provides. At partition
boot, XtratuM only starts vCPUO for the partition. It is responsibility of the partition code in the
initialized vCPUO thread to start the execution of the additional cores.

An important aspect to be considered is that the virtual CPUs are local to each partition. It means,
each partition handles its virtual CPUs which are completely hidden to other partitions. In order to
handle virtual CPUs, XtratuM provides some services (hypercalls) to partitions to handle its virtual
CPUs.

31.03.2015 DREAMS Page 40 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

6 System configuration

The system configuration is responsibility of the System Architect. He is in charge of the definition of
the partitions, the resources and the information flows between partitions. This is specified in the
configuration file (XM_CF in XtratuM notation) in XML format.

XtratuM enforces that each virtualized and exported resource can be accessed by a partition at a time.
To achieve this goal, the security functions (XSF) ensure that partitions are executed according a cyclic
plan specified in the configuration vector. This plan is analysed off-line to guarantee plan properties
(i.e. no overlapped intervals have been specified).

For resources such as memory, which does not require mutual exclusion to the whole, the XSF
provides full isolation by allocating physically distinct portions of the resource to different partitions.
XSF ensures the spatial isolation of its internal resources. Subjects, and resources made available to
subjects by the XSF, are identified as exported resources.

The Partitioned Information Flow Policy (PIFP) defines the rules for isolation granted by the
virtualization layer. It defines the authorisations for information flow between partitions and between
subjects and exported resources. It is generated from the XM_CF and allows to apply the internal
security functions during the execution.

An information flow is defined as a <partition/subject, partition/exported resource, mode> triplet.
Note that the exported resource may be another subject. All the information flows have to be
specified in the XM_CF. By default, no information flow between partitions or between subjects and
exported resources is allowed.

6.1 XtratuM subjects, objects and privileges

Based on the Common Criteria definitions [3,4,5],

e Subjects are active entities in the partitioned system that perform operations on objects.
The subjects can be categorized in two types: privileged and normal.

e Exported resources are passive entities that contain or receive information, and upon which
subjects perform operations.

e Operation mode (on a resource) is a specific type of action performed by a subject on an
exported resource.

6.1.1 Subject identification

XtratuM manages partitions as its main active entities. Processes inside of a partition are handled
internally and XtratuM does not know of their existence. Partitions are responsible of the internal
process management. Any operation performed by any of the internal active elements of a partition
is seen as a partition operation.

Based on this approach, the set S of subjects is formed by all the partitions defined in the XM_CF.
S= 50151152/---/Sn

31.03.2015 DREAMS Page 41 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

6.1.2 Exported resource identification

XtratuM gets the system information via the XM_CF. In this configuration vector, all the subjects,
exported resources and operations have to be defined beforehand.

XtratuM provides a para-virtualization of some exported resources whereas others are accessed
"directly" by the partition. This "directly" means that the information flow has been explicitly
authorised by the Virtualization Layer (VLayer).

Exported resources can be classified as:

e Processor and register: Exported resources that are exported as a whole during a temporal
window.

o VCPU: Virtual CPUS. It includes the internal registers (user and control registers).
The scheduling plan identifies which subject will use this resource and when.
(ERVEPY, ERURE, ERCRe),

o VFPU: Virtual Floating Point Units. It is exported jointly with the VCPU if the subject
has specified its use in the XM_CF. (ERVF?Y)

¢ Time management and IRQs: Clock, timers and interrupts are virtualized to the subjects.
No direct access from the subject is allowed. XtratuM provides a mechanism via hypercalls
to access indirectly to these resources. (ER™, ER'RQ),

e Memory areas: Memory is not exported as a whole. Memory areas are regions of memory
that are directly exported as resource to subjects. Each subject is allowed direct access to
specific memory areas defined in the XM_CF.(ERMA¥)

o Memory layout: defines the whole memory available in the system. All memory
areas exported have to be independent (no overlapped) subsets of the memory
layout. It is not directly defined as an exportable resource, it is exported as a
resource via memory area definitions.

o Memory area: defines a memory region as an exported resource. It includes the
memory needed by the subjects to be executed, the shared memory between
subjects and memory block devices.

o 10 memory area: defines a IO memory region as exported resource. These exported
resources are assigned exclusively to a subject (no shareable).

e Basic peripherals: These devices (UART, ....) are basic components of the system that are
exported as resources. They require an explicit definition and subjects using this resource
have to explicitly declare it. The access to these devices is done via hypercalls. (ERVART)

e |nter-partition communications: XtratuM provides an inter-partition communication
mechanism based on channels. It allows to subjects to send/receive messages to/from
channels using ports. (ER®NK),

o Channels: They have to be specified in the XM_CF. They are not directly exported
resources. Channels are seen by subjects through ports. Channels are specified in
the XMCF in order to link information flow sources (<subject, port, SOURCE>) with
information flow destination (<subject, port, DESTINATION>).

o Ports: are exported resources that have to be specified in the XMCF. They are
accessed via hypercalls.

31.03.2015 DREAMS Page 42 of 92



D2.3.1

Version 1.0

Confidentiality Level:PU

e Time allocation: specifies when the exported resources are available to subjects. It is
defined by means of temporal windows or slots in the scheduling plan and scheduling
modes. (ERP™NK, ERSLTX),

o Plan: is an exportable resource that defines an execution cyclic scheme for the
subjects.
o Slot: is an exportable resource that specifies the time interval allocated to a specific
subject.
e Traces: are exported resources that permit authorized subjects to register events

(traces/audit records) (ER™)

6.1.3 Exported resource access mechanism

The following table summarizes the mechanisms used by subjects to access to the exported resources
as well as where the control is done, the mechanism used by the PIFP.

ER Control Mechanism PIFP Comments
Place
VCPU time Hw/Core direct/hypercall | explicit Specified in the plan
VCP
Rggil:ters User Hw/Core direct/hypercall | implicit Specified in the plan
VCPU Ctrl Registers | Hw/Core hypercall implicit All
fl X h —
VFPU Hw/Core direct explicit ag.s‘ ‘m the  partition
definition
M finition i
Memory Areas Hw direct explicit emorY éreas definition in
the partition
MMU Hw direct implicit
Traps Hw hypercall parameterised | IRQ lines in the partition
Timers Core Hypercalls implicit
I/0 resources Core Hw/hypercall explicit 10 devices
For logical resources:
ER Control Place | Mechanism PIFP Comments
System modes Core hypercall Explicit plan definition
Partition states Core hypercall Implicit
Channel definition and
IP h Il Explici
C Core ypercalls xplicit port in partitions
HM ti i titi
HM Hardware/Core | hypercall Explicit (defazlct I\?arl]u;.:) partitions
. . T definiti i
Partition Traces Core hypercall Explicit rac.e. etinition n
partition

6.1.4 Operations on exported resources

The identified operations on exported resources are:

31.03.2015

DREAMS

Page 43 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU

e Read. A subject can read the exported resource.
e  Write. A subject can write on the exported resource.
e Run. A subject it is only allowed to use the exported resources during the run operation.

6.1.5 Partitions and the Partitioned Information Flow Policy (PIFP)

The virtualization layer provides partitions as abstraction implemented by the XSF. XtratuM manages
partitions. The guest OS personality is in charge of managing the internal subjects (threads or tasks or
processes) that are not visible from XtratuM.

From this point of view, it is assumed the Partition Abstraction policy: The subjects in a partition have
homogeneous requirements for access, on a per-partition basis, to exported resources.

It is responsibility of the guest OS to define another policy. For instance, a guest OS could define a
Least Privilege Abstraction which assumes that the subjects in a partition have heterogeneous
requirements for access to exported resources. In this case, the guest OS could restrict the operations
defined in the other policy to some internal subjects.

6.1.6 Access matrices

The access matrix specifies the privileges that each subject has over each object. To define the subjects
type: privilege and normal.

Table access matrix is generated from the configuration vector and, consequently, from the
configuration file XM-CF.

Next listing shows an example of XM_CF for LEON3 processor.

<SystemDescription xmIns="http://www.xtratum.org/xm-3.x"
version="1.0.0" name="hello_world">
<HwDescription>
<ProcessorTable>
<Processor id="0" frequency="50Mhz">
<CyclicPlanTable>
<Plan id = "0" majorFrame="25ms">
<Slot id="0" start="0ms" duration="10ms" partitionld="0"/>
<Slot id="1" start="15ms" duration="5ms" partitionld="1"/>
</Plan>
<Plan id = "1" majorFrame="10ms">
<Slot id="0" start="0ms" duration="5ms" partitionld="0"/>
<Slot id="1" start="bms" duration="5ms" partitionld="2"/>
</Plan>
</CyclicPlanTable>
</Processor>
</ProcessorTable>

<MemoryLayout>
<Region type="stram" start="0x40000000" size="4MB"/>
<Region type="sdram" start="0x60000000" size="16MB"/>

31.03.2015 DREAMS Page 44 of 92



D2.3.1 Version 1.0

Confidentiality Level:PU

</MemoryLayout>
</HwDescription>

<XMHypervisor console="Uart">
<PhysicalMemoryAreas>
<Area start="0x40000000" size="512KB" />
</PhysicalMemoryAreas>
</XMHypervisor>

<PartitionTable>
<Partition id="0" name="Partition1" flags="system" console="Uart">
<PhysicalMemoryAreas>
<Area start="0x40100000" size="256KB" />
<Area start="0x40300000" size="128KB" flags="shared" />
</PhysicalMemoryAreas>
<TemporalRequirements duration="25ms" period="10ms"/>
<PortTable>
<Port name="writerQ" type="queuing" direction="source" />
<Port name="writerS" type="sampling" direction="source" />
</PortTable>

<Trace device="Tracel"/>
<HealthMonitor>
<Event action="XM_HM_AC_HALT" log="yes"
name="XM_HM_EV_PARTITION_ERROR" />
</HealthMonitor>
<HwResources>
<Interrupts lines="4" />
</HwResources>
</Partition>

<Partition id="1" name="Partition2" flags="fpu" console="Uart">
<PhysicalMemoryAreas>
<Area start="0x40180000" size="256KB" />
<Area start="0x40300000" size="128KB" flags="shared" />
</PhysicalMemoryAreas>
<TemporalRequirements duration="25ms" period="5ms"/>
<PortTable>
<Port name="readerQ" type="queuing" direction="destination" />
<Port name="readerS" type="sampling" direction="destination" />
</PortTable>
<Trace device="Trace2"/>
<HwResources>
<loPorts>
<Range base="0x80000080" noPorts="4"/>
<Range base="0x80100110" noPorts="15"/>
<Restricted address="0x80100200" mask="0x60"/>
</loPorts>
<Interrupts lines="7"/>
</HwResources>
</Partition>

<Partition id="2" name="Partition3" console="Uart">

<PhysicalMemoryAreas>

<Area start="0x40200000" size="256KB" />
</PhysicalMemoryAreas>
<TemporalRequirements duration="25ms" period="5ms"/>
<PortTable>

<Port name="readerS" type="sampling" direction="destination" />
</PortTable>

31.03.2015 DREAMS

Page 45 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

</Partition>
</PartitionTable>

<Channels>
<QueuingChannel maxMessagelLength="512B" maxNoMessages="10">
<Source partitionld="0" portName="writerQ" />
<Destination partitionld="1" portName="readerQ" />
</QueuingChannel>
<SamplingChannel maxMessagelLength="512B">
<Source partitionld="0" portName="writerS" />
<Destination partitionld="2" portName="readerS" />
</SamplingChannel>
</Channels>

<Devices>
<MemoryBlock name="SystemTrace" start="0x40380000" size="128KB"/>
<MemoryBlock name="Tracel" start="0x403C0000" size="64KB"/>
<MemoryBlock name="Trace2" start="0x403E0000" size="64KB"/>
<Uart id="0" baudRate="115200" name="Uart" />
</Devices>
</SystemDescription>

The following elements are identified:

e Subjects

o P1: Partitionl (System)

o P2:Partition2

o P3: Partition3
e Exported resources:

o ER®Y:VCPU time
ERYRe: CPU U. reg.
ERRe; CPU Ctl. reg.
ERFPY: FPU
ERMMY: MMU
ER™P: Traps
ER™™: Timers
ERMAL; Memory layout region start="0x40000000" size="4MB"
ERMA2; Memory layout region start="0x60000000" size="16MB"
ERMA3; Memory area start="0x40100000" size="256KB"
ERMA%: Memory area start="0x40180000" size="256KB"
ERMA%: Memory area start="0x40200000" size="256KB"
ERMA%; Shared Memory area start="0x40300000" size="256KB"
ERMA7: Memory block area name="SystemTrace" start="0x40380000" size="128KB"
ERMA8; Memory block area name="Tracel" start="0x403C0000" size="64KB"/>
ERMAS: Memory block area name="Trace2" start="0x403E0000" size="64KB"/>
ERPYL: Plan id="0" majorFrame="25ms"
ERPY2; Plan id="1" majorFrame="10ms"
ER®!: Slot id="0" start="0ms" duration="10ms" partitionld="0" plan id="0"
ER®2: Slot id="1" start="15ms" duration="5ms" partitionld="1" plan id="0"
ERSY3: Slot id="0" start="0ms" duration="5ms" partitionld="0" plan id="1"
ER®'*: Slot id="1" start="5ms" duration="5ms" partitionld="1" plan id="1"
ER®NL: QueuingChannel maxMessagelength="512B" maxNoMessages="10" [<"0",
"writerQ">,<"1", "readerQ">]
o ERCM"™Z SamplingChannel maxMessagelength="512B" [<"0", "writerS">,<"2",

"readerS">]

O 0O 0O O OO O OO0OO0OO0OO0O OO O0oOOo0OO0o0OO0o0OO0OO0OO0 O0

31.03.2015 DREAMS Page 46 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

ERYART: Uart id="0" baudRate="115200" name="Uart"

ER'°M!: loPort base="0x80000080" noPorts="4"

ER'°M2: loPort base="0x80100110" noPorts="15"

ER'O™3: |oPort Restricted address="0x80100200" mask="0x60"
ER™®A: Interrupts lines="4"

ERR®: |nterrupts lines="7"

O O O O O O

6.1.7 Subject temporal allocation

For each virtual CPU the following table shows the partition allocation to temporal windows

Plans Slots S1 S2 S3
. ERSL1 run
ERPLn
ERSL2 run
oLra ERSLS run
ERPLn
ERSL#4 run

6.1.8 Subject memory areas allocation

The virtualization layer manages the memory layout and makes areas of it accessible to subjects
according to the configuration file. The following table shows the allocation of physical memory from
the configuration file example.

ER S1 S2 S3 Description
ERMAL start:"0x40000000" size:"4MB"
ERMA2 start:"0x60000000" size:"16MB"

ERMAS rw start:"0x40100000" size:"256KB"
ERMA4 rw rw start="0x40180000" size="256KB"
ERMAS rw rw start="0x40200000" size="256KB"
ERMAS rw rw start="0x40300000" size="256KB"
ERMA7 rw start="0x40380000" size="128KB"
ERMAS rw start="0x403C0000" size="64KB"
ERMA9 rw start="0x403E0000" size="64KB"
ER'OM1 rw base="0x80000080" noPorts="4"
ER'OM2 rw base="0x80100110" noPorts="15"
ER'OM3 rw address="0x80100200" mask="0x60"

6.1.9 Subjects and virtualized exported resources

ER S1 S2 S3 Description
ERVCPU rw rw rw VCPU time
ERUYRg rw rw rw VCPU User registers
ERCRg rw rw rw VCPU control registers

31.03.2015 DREAMS Page 47 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

ERVFPU rw VFPU
ERMMU rw rw rw MMU
ERtrp rw rw rw Traps
ERTm rw rw rw Timers

6.1.10 IPC exported resources

The IPC allocation to partitions is detailed in the next table.

ER S1 S2 S3 Description
ERCHNI w r QueuingChannel S1 => S2
ERCHN2 w r SamplingChannel S1 => S3

6.1.11 Devices exported resources

The Device allocation to partitions is detailed in the next table.

ER S1 S2 S3 Description
ERYART w w w UART
ER'RO! w lines="4"
ER/RQ? w lines="7"

6.2 Configuration file specification

All the components involved in the previous model are detailed in the configuration file. The
configuration file follows a XML syntax specified by an XMLSchema model. The complete XML Schema
configuration specification for ARM and X86 processors are included in the Appendix 1 of this
document.

The configuration model includes the main elements:

e Hardware description: describes the underlying hardware
e XMHypervisor: describes the allocation of XtratuM

e ResidentSw: details the allocation of the resident software
e PartitionTable: includes the partitions in the system

o Channels: describes the communication channels

Figure 12 shows a graphical view of the configuration file elements. Figure 13 shows the description
of the root element “SystemDescription” and the following subsections depict the main elements of
the configuration specification.

31.03.2015 DREAMS Page 48 of 92



D2.3.1

Version 1.0

This is the root element of
the configuaration of a
Systém running on XtratuM
hypervisor.

—@

attributes

® [ hwDescription_e

MemoryLayout
Type memorylLayout_e
ProcessorTable )&

It is a list of available physical processors or cores as well
as a description of its use by partitions.

Devices
Type devices_e

The hardware description of the system includes the available physical
resources in the platform. In this structure, ...

@

HwDescription o .
Type hwDescription_e

@ [ hypervisor_e
® attributes
XMHypervisor o
Type hypervisor_e

PhysicalMemoryArea
Type

HealthMonitor ®
Type healthMonitor_e
Trace

©
Type traceHyp_e

The hypervisor configuration contains: the description of
the physical memory where it resides, the health
menitoring...

hypMemoryArea_e

@ [ rswe

ResidentSw PhysicalMemoryAreas
o ®
Type rsw_e Type memoryArea_e
The resident software configuration is a list of physical
memory areas where rsw is located

attributes

PhysicalMemoryAreas
Type memoryAre;

TempaoralRequirements &
HealthMonitor o
Type haa\thMonilor,eI
HwResources

]
Type hwResources_e

@ [ partition_e
@
Partition
PartitionTable e . )
Type partition_e
PortTable
- @
Type partitionPorts_e
Trace
QG
Type trace_e

This type defines a partition in the system. It includes the
assigned memory, the health monitoring events
management,...

@ [] channels_e

This is the declaration of Interpartition Virtual
Interrupts in th system. The sourceld attribute
is the identifier of...

SamplingChannel

It is the declaration of a Sampling Channel ione source, many
destinationsh

QueuingChannel

It is the declaration of a Queuing Channel (one source, one
destinationsh

2 ®

Channels 0.0 @ 5 .
S

Type channels_e © .

®

It is a list of inter partition communication resources. this list can contain interpartition
wirtual interrupts,...

Figure 12: Graphical view of an example XM CF configuration file

31.03.2015

DREAMS

Confidentiality Level:PU

Page 49 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

(—@ attributes

® [ hwDescription_e
MemoryLayout
(rocesomi)o

It is a list of available physical processors or cores as well
as a description of its use by partitions.

@

HwDescription o .
Type hwDescription_e

The hardware description of the system includes the available physical
resources in the platform. In this structure, ...

@ [ hypervisor_e

@
This is the root element of AWHypervisor )
the configuaration of a Type hypervisor_e

attributes

PhysicalMemoryArea
Type

HealthMonitor ®
Type healthMonitor_e
Trace

©
Type traceHyp_e

The hypervisor configuration contains: the description of
the physical memory where it resides, the health
menitoring...

hypMemoryArea_e

Systém running on XtratuM
hypervisor.

@ [ rswe

ResidentSw PhysicalMemoryAreas
o ®
Type rsw_e Type memoryArea_e
The resident software configuration is a list of physical
memory areas where rsw is located

@ [ partition_e

® attributes
PhysicalMemoryAreas
Type memoryAre;
= 1.8 Partition
PartitionTable )& e SJPR nartitian e S TemporalRequirements @

HealthMonitor o
Type healthMonitor_e I
HwResources
]

Type hwResources_e
PortTable

- @
Type partitionPorts_e
Trace
Qe
Type trace_e

This type defines a partition in the system. It includes the

assigned memory, the health monitoring events
management,...

@ [] channels_e

This is the declaration of Interpartition Virtual
Interrupts in th system. The sourceld attribute
is the identifier of...

SamplingChannel

It is the declaration of a Sampling Channel ione source, many
destinationsh

QueuingChannel

It is the declaration of a Queuing Channel (one source, one
destinationsh

2 ®

Channels 0.0 @ 5 .
S

Type channels_e © .

®

It is a list of inter partition communication resources. this list can contain interpartition
wirtual interrupts,...

Figure 13: System Description Schema.

31.03.2015 DREAMS Page 50 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

6.2.1 Element HwDescription
It describes the underlying hardware.

Mamespace hitp:hwsew sdratum. ongom-3

Annotations (2 The hardware description of the system includes the available physical resources in the platform. In this structure, the physical
processor time is assigned to virual processors of parditions.

uagram = MemoryLayout

Type

ProcessorTable

It is a list af available physical prodessors or corés as well
as a descriprion of its use by paritions

Devices
Type devices_e

memoryLayoul_g

@

e

The hardware description of the
system includes the available
physical resources in the
platform. In this structure,...

Used by = Elamant SystemDescriptionfHwDescription
Modal MemoryLayout , ProcessorTable , Devices
Childran Devices, MemoryLayout, ProcessorTable
Source =
<xs:complexType "helescription_e">
<xzannotation "dochwlescription_e":

«x=sdocumentation: The hardware description of the system includes the awvailable physical
resources in the platform. In this structuwre, the physical processor time is assigned to wirtuwal
processors of partitions. «/xs:docomentation:

<fus annotation:
{HSISeqUence:

«x=:element "HMemoryLayout” “memoryLayont_e" s
x5 element "ProcessorTable”
<xsannotation "docProcessorTable”

¥z documentation:It is a list of available physical processors or cores as well as a
description of its u=e by partitioms. < xs:documentation:
<fxs annotation:
<=5 complexType:
{HE ! SeJUEnCE "t tESE
x5 element "Frocessor” Uprocessor_et S
<4 uS Sequence
/s complexTrpe:
<ifuselement
«x=:element "Dervices" “devices_e" i
AN SeqUEnce
< fuscomplexType:

Figure 14: Hardware description component.

6.2.1.1 Element HwDescription/MemoryLayout

Mamespace hitp /M. xtratum.ongam-3 %
Annotations [Z Describes the physical memory layout of the platform as a sequence of meamory regions that can be read-only or read-write.

LSRG = ] memorylayout_e @

Describes the physical memory layout It is a chunk of continous physical memony
of the platform as a sequence of

memory regions that can be read-only

or...

Used by = Element hwDescription_e/MemoryLayout
Model Region
Children Region
Source =
<xscomplexType “memoryLayout_e"
x5 anmotation "docmemoryLayout_e"

x5 documerntation:Describes the physical memory layout of the platform as a sequence of memory
regions that can be read-only or read-write. <sus:documentation:
<fusannotation:

{HS | SeqUETsE "t "unbounded
<xs:element "Begion' »
x5 annotation "docBegion” »

<x=documentation:It i=s a chunk of continovs physical memory: . xs:documentation:
< fxs anmotation:
<us complexType:

<x=5:attribute "typs" "memBegion_t" "required” S
x5 attribute "start" “"hex_t" "required” S
<x=attribute "sime" "simelnit_t" "regquired” s

< #us complexType
< fuselement
4 NS SeqUEnCE
<fuscomplexTypes

31.03.2015 DREAMS Page 51 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

Figure 15: Hardware memory layout.

Mamespace hittp:/foeere. xtratum. ong/some-3
Annotations (= It is a chunk of continous physical memaory

Dia
i = 1] attributes

type
Type memBegion_t

{3’—' start ®
Type hex_t

Itis a chunk of

continous
physical size
memary Type sizellnit_t
Properies (= cContent: complex
Aftributes  [E]  gMame Type Fixed Default Use Annotation
size sizelinit_t required
start hex_t required
type memRegion_t required
Source [=
<x=5:element "Begionr
xS anmotation "docBegion” »

<xsdocumentation:It is a chunk of continous physical memory:Sxs:documentation:
<fusannotation:

s complexType:

<xs:attribute "tyrpe" "memBegion_t" "regquired” S
«xs:attribute “start” “hex_t" "regquired” S
«xs:attribute "sime" "simellmit_t" "required” S

ofusicomplexTyrpe:
<fuselement -

Figure 16: Hardware memory layout region.

6.2.1.2 Element HwDescription/ProcessorTable

Mamespace htp:/fwesea. xtratum._ongsom-3 . x
Annotations =

Itis a list of available physical processors or cores as well as 8 description of its use by partitions.
Diagram =

Proacessor

Type processor_g

It is a list of available
physical processors or
cores as well as a
description of its use by

partitions.
Properies (= Cantent: complex
Model Processor
Children Processor
Instance =
«ProcessorTable "hittp: fdfwwew . xtratom. orgfam-2 . x>
<Processor "none " b

"Urfl, 1}« /Processor:
< fProcessorTable:

Source =
«x=s:element "ProceszsorTable":
<x=: anmotation "docFrocessorTable”:
s documentation:Th is a list of awailable physical processors or cores as well as a description
of its wse by partitions. < /x=:documentation:
< /s annotation:
<xsconplexType:
LS SEQUEDSE "1t UEDE"
<xs:element "Processor” “processor_s"f
LSS SeqUeEnTE:
<dus i complexType s
< fuselement -

Figure 17: Processor table.

31.03.2015 DREAMS Page 52 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU
Mamespace hitp /oo xtratum.ongom-3.x
Annctations = 1is a description of the use of a physical processor or core. The scheduling of a processor can be cyclic or fixed prionty-based.
L) = =) attributes
id
. &
Type id_t
frequency
Type fregUnic_t |
features
Type  processorFeaturesLisi_t @
(3 processore Jo— | pefautt_none )
Itis a description of the -
use of a physical CyclicPlanTahle
processor or core. The Type cyclicPlan_e @
scheduling of a processor o —
can be cyclic or fixed... T
ixedPriority
) @
Type fixedPria_e
Used by = Element hwDescription_e/ProcessorTable/Processor
Model CyclicPlanTable | FixedPriority
Children CyclicPlanTable, FixedPriority
Aftributes  [E]  gMame Type Fixed Default Use Annotation
features processorFeatureslist_t none aptional
frequency freqlnit_t optional
id id_t required
Source [=
<x=5:complexType “processor_e'
gl-— txs:alls
<x=:element mame="CyclicFlanTable” type="cyclicPlan_e" s>
<fus:ally —-»
x5 anmotation "docprocessor_e"
x5 documentation:It is a description of the uvse of a physical processor or core. The scheduling
of a processor can be cyclic or fixed priority-based. < us:documentation:
< fusannotation:
xS chodce:r
xS element “CyclicFlanTable” "cyclicPFlan e fx
x5 element "FixedPriority" "fiwedPrio_="ix
¢ /uschoice:
xs:attribute "id" "id_t" "required” s>
xsattribute "frequency” “fregqlnit_t" "optional” S
xS attribute "features” "processorFeatureslist &7 "optional” “mone f
< fusconplexTypes
Figure 18: Processor.
Mamespace hitp fwewew xtra tum_ong some3 x
Annotations = This object represents a set of statically described cydlic plans. Each processor can support many execution modes. One execution
maode is identidied as a plan. Xtratul or system parditions (via hypecalls) can change in run-time the active mode.
Diagram = PPl
] cyclicPMan_e |2 Lt @ = an
Type plan_ge
This abject represents a set of
statically descoribed cyclic plans.
Each processor can support many
execution modes. One...
Used by E  Element processor_el/CyclicPlanTable
Model Plan
Children Plan
Source =
<x=5:complexType "ocyclicPlan e"»
<x¥=5:annotation "doccyclicPlan_ s>
x5 documentation:This object represents a set of statically described cyclic plans. Each
processor can support many execution modes. One execution mode is identidied as & plan. Xtrabulf or
system partitions (via hypecalls) can change in run-time the active mode. < fxs:documentation:
< fusanmotation:
{HS I SeTUETCE "t “unbounded” »
<x=5:elemsnt “"Plan” "plan ="/
< fUS SEeqUence -
< fuscomplexType:
Figure 19: Cyclic plan scheduling.
31.03.2015 DREAMS Page 53 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU
Mamespace hitp:/fwewew xtratum ong f2om-3 x
Annotations =] Each plan is a cyclic sequeance of time skts. One skt is assigned to one parition and to a particular virtual processor of this
partition.
Lo = = attributes
name
@
Type id5tring_t |
i
@
Type id_t
majorFrame
Default 05 )
Each plan |5 a cyclic
sequence of time
shots. One slot is
assigned to one
partition and to a
paricular virtual... .
partition and to a virtual processor of this
partition
Used by E  Element cyclicPlan_e/Plan
Modal Slot
Childran Slot
attibutes = oMame Type Ficed Default Use Annotation
id id_t requirad
miajorFrame timeUnit_t Os aptional
name idString_t optional
Saurce =
<xs: complexType “plan_e":»
x5 annotation "docplan ="z
x5 documentation:EBach plan i=s a cyclic sequence of time slots. One slot is assigned to one
partition and o a particuvlar wirtwal processor of this partition. « fxs:documentation:
< fusanmotation:
LS SEqUEDSE "o "unbovunded "
<x=s:element YElot
<x=anmotation "docilot”
x5 documentation:It is a continows time interral assigned to a partition and to a virtwal
processor of this partition. < fx=s:documentation:
< /s annotation:
<xscomplexType:
xsakbtribute tid" “id_t" “required” S
wxsattribute “start” "timelmit_t" "required” S
cxsiattribute "duration” “timelnit _t" "regquired” S
xsakbtribute “partitionId” “id_t" “regquired” S
x5 attribute tCpuld” "id_t" "optional” IR
< fuscomplexType:
< fusielement
L HS ) SequeEnTe
x=attribute "mame" "idString_ " "optional” S
cxsiattribute tid" “id_t" "required” s
x5 akbtribute “majorFrame” "timelndit_t" "optional® “0st A
< fuscomplexType:
Figure 20: Plan of a cyclic plan scheduling.
31.03.2015 DREAMS Page 54 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU

Mamespace hittp:/aewew. xtratum. org/2ome- 3.
Annotations & Itisa saquence of elements identifying each virtual processor of each parition with a fixed priorty value.

6 (@ e Jo—= @o— G

It is a sequence of &lements
identifying each virtual
processor of each partition with
a fined priority value.

Used by = Element processor_e/FixedPriority
Model Partition
Childran Partition
Source =
s complexType “fixedPrio_e":
<¥s annotation "docfixedPrio_e=":

x5 documentation:It iz a seguence of elemernts identifying each virtwal processor of sach
partition with a fixed priority wvalwe.:/ns:documentation:
< /xsannotation:

43S SEQUENCE "1 “"unbounded” -
¥ element "Partition”:
<y complexType:
<usattribute "id” “id_t* “regquired” S
<usattribute UyiZpuId” "id_t" "optional” 0T
<us attribute “pricority” “u=:positivelnteger” “regquired” £

< /a5 complexTyper
< fuselement
< fAS  SeqUenGE
o fusicomplexType:

Figure 21: Fixed priority scheduling.

31.03.2015 DREAMS Page 55 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

6.2.1.3 Element HwDescription/Devices

Mamespace hitp /oo xtratum.ongom-3.x
Annctations (= It is a list of real devices available in the platiorm.
Diagram = MemaryBlock |(®

It is a block af memary mapped by a device, This
memory area must overlap with a real physical memony
region declared..

Uart |z

[Emwasle =~ @o—®o
It is a serial device,

Itis a list of real devices
available in the platform. Vga @&

Itis a VGA device,

Mull |z
Itis a null device
Used by = Element hwhescription_e/Devices
Model [MemoryBlock{0,1} | Uart{0,1} | Vga{0,1} | Null{0,1})
Childran MemoryBlock, Null, Uart, Vga
Source =
<x=5:complexType "devices_e"»
xS anmotation "docdevices_e"

<xsdocumentation:It is a list of real devices awailable in the platform. </xs:docuomentation:
<fusannotation:

{HS | SeqUETsE "ot "unbounded
<xs:choice s
<x=s:element “Hemor yBlock” 0t
<= annotation “doctlemor yELlock” =

<xs documentation:It is a block of memory mapped by a dewvice. This memory area must orerlap
with a real physical memcory region declared in SystemlescriptionsHwlescription ilemoryLawout
section. < /x=:documentations
< fusiannotation:
<y conplexType:

<xsiattribuke "name" "idString t£¢ “regquired” S
<xsiattribuke "start” “"hex_t" "required” £
<x=s:attribute "sime" “simellnit_t" "regquired” S

< fuscomplexType s
< fuselement:
x5 element “"Tart” 0t
<K= :annotation "docTart”:
x5 documentation:Tt i=s a serial device. < us:documentation:
< fusannotation:
<xscomplexTyrpe:

<xsiattribuke "name" "idString t£¢ “regquired” S
x5 attribute "id" "idString_t" “regquired” s
x5 attribute "baudRate" "xs:positivelnteger” "regquired” S

< fusicomplexType:
< fuselement:
xS element “Tiga”
<K= :annotation "docTEL" -
x5 documentation:Tt is a TG4 device. < fx=s:documentation:
< fusannotation:
<xscomplexTyrpe:
<xsiattribuke "name" "id Strimg t¢ “regquired” S
< fusconplexType s
< fuselement»
<= element “Hull® 0t
<=5 annoktation "docHull”
x5 documentation:It is a nwll device. < fxs:documentation:
</usanmotation:
x5 conplexType:
<x=attribute "name " "idftring t" “optional” S
<duscomplexType
< fuselement:
< fuscholce:
/NS SeqUenCe
<fusicomplexType:

o B

Figure 22: Hardware devices.

31.03.2015 DREAMS Page 56 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

6.2.2 Element XMHypervisor

Mamespace http:fwww xtratum.org/xm-3.x

Annotations (=] The hypervisor configuration contains: the description of the physical memory where it resides, the health monitoring configuration
(including processor-specific events management), and the device used to dump events frace.

Diagram = [S] attributes

console
—— @
Type idString_t

healthMonitorDevice
Type idString_t J

[l hypervisor_e |©
PhysicalMemaoryArea ]

The hypervisor Type hypMemoryArea_e
configuration contains: the

description of tl_'le ph_ysical HealthMonitor
memory where it resides, ®
the health monitoring... Type healthMonitor_e
Trace
C]
Type traceHyp_e

Used by =] Element SystemDescription/XMHypervisor
Model ALL(PhysicalMemoryArea HealthMonitor{0,1} Trace{0,1})
Children HealthMonitor, PhysicalMemoryArea, Trace
Attributes = aName Type Fixed Default Use Annotation
console idString_t optional
healthMonitorDevice idString_t optional
Source =
<XS:complexType "hypervisor_e"=>
<xs:annotation "dochypervisor e">

<xs:documentation>The hypervisor configuration contains: the description of the physical memory where
it resides, the health monitoring configuration (including processor-specific events management), and the
device used to dump events trace.</xs:documentation>
</xs:annotation>

<xs:all=
<xs:element "PhysicalMemoryaArea" "hypMemoryArea e />
<¥s:element "HealthMonitor” "healthMonitor e” "ot
<xs:element "Trace" "traceHyp e" "t

</xs:all>

<xs:attribute "console” "idstring t” "optional” />

<xs:attribute "healthMonitorDevice" "idString t" "optional" />

</xs:complexType>

Figure 23: Hypervisor component.

31.03.2015 DREAMS Page 57 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

6.2.2.1 Element XMHypervisor/PhisicalMemoryArea

Namespace httpwww xtratum.orgfxm-3.x

Annotations (=] This structure describes the continous memory area that the hypervisor requires to be loaded. Size and access flags are defined but the

load memory address is not yet defined at this level. The load address is part of the source code configuration and therefore hardcoded.
The default value is 0x40000000.

Diagram = (&) attributes
size
| [] hypMemoryArea_e |© Type sizelnit_t
This structure describes the flags
continous memory area that the Type memAreaFlagsLlist_t

hypervisor requires to be loaded.
Size and access flags are...

Used by = Element hypervisor_e/PhysicalMemoryArea
Attributes. =] aName Type Fixed Default Use Annotation
flags memAreaFlagsList_t optional
size sizeUnit_t required
Source =
<XS:CcomplexType "hypMemoryhirea e">
<x¥s:annotation "dochypMemoryArea e">

<xsidocumentation>This structure describes the continous memory area that the hypervisor requires to be
loaded. sSize and access flags are defined but the load memory address is not yet defined at this level. The
load address is part of the source code configuration and therefore hardcoded. The default value is
0x40000000.</xs:documentation>
</xs:annotation>

<xs:attribute "size" "sizeUnit_t" "required” />
<xs:attribute "flags" "memAreaFlagsList_t” "optional” />
</Xs:complexType>

Figure 24: Hypervisor memory.

6.2.2.2 Element XMHypervisor/HealthMonitor

Mamespace hitp:fwww xtratum.org/xm-3 x
Annotations  [=]  This structure configures the health monitoring of the hypervisor. It is a list of events that must be managed by the health monitor at
hypervisor level. Events are architecture-specific. Automatic actions can be defined for each managed event as well as a boolean value
indicating if the event must be logged into the log device of the hypervisor.
a9 ) [ reaminior « Jo—={(@)o—(Emme
This structure configures the health Each Event element defines a relationship
manitering of the hypervisor. It is a beetwen a health monitoring event and the
list of events that must be managed actions that must be performed when...
by the...
Used by =l Elements hypervisor_e/HealthMonitor, partition_e/HealthMonitor
Model Event
Children Event
Source =]
<XS:ComplexType "healthMonitor e">
<xs:annotation "dochealthMonitor e">
<xs:documentation>This structure configures the health monitoring of the hypervisor. It is a list of
events that must be managed by the health monitor at hypervisor lewvel. Events are architecture-specific.
hutomatic actions can be defined for each managed event as well as a boolean value indicating if the ewvent
must be logged into the log device of the hypervisor.</xs:documentation>
</xs:annotation=
<5 i sequence "t "unbounded" >
<Xs:element "Event">
<xs:annotation "docEvent">
<xs:documentation=Each Event element defines a relationship beetwen a health monitoring event and
the actions that must be perfermed when it is raised.</xs:documentaticn=>
</xs:annotation>
<Xs:complexType>
<xs:iattribute "name " "hmstring t” "required" />
<¥s:attribute "action” "hmiction t” "required” />
<x¥s:attribute "log" "yntf t” "required” />
</xs:icomplexType>
</¥s:ielement>
</¥stsequence>
</xs:complexType>

Figure 25: Hypervisor health monitor.

31.03.2015 DREAMS Page 58 of 92




D2.3.1 Version 1.0

Confidentiality Level:PU

6.2.2.3 Element XMHypervisor/Trace

Use
required
required

Annotation

Namespace hittp:fharww Xtratum.orgiem-3.x
Annotations  [=] This structure specifies witch event types will be traced at hypervisor level.
Diagram = [S] attributes
device
[ traceHyp_e |© Type idString_t
This structure specifies bitmask
witch event types will be Type traceHypList_t
traced at hypervisor level.
Used by =l Element hypervisor_e/Trace
Attributes  [Z]  QMame Type Fixed Default
bitmask traceHypList_t
device idString_t
Source =l
<XS:complexType "traceHyp e">
<x¥s:annoctation "doctraceHyp e">
<¥s:documentation>This structure specifies witch event types will be traced at hypervisor
level.</xs:documentations>
</¥siannotation>
<x¥s:attribute "device" "idstring t” "required” />
<xs:attribute "bitmask" "traceHypList_t" "required" />
< /%8 complexType>

Figure 26: Hyperviosr trace.

6.2.3 Element ResidentSw

Namespace hitp:/Awww xtratum.orgixm-3.x
Annotations =] The resident software configuration is a list of physical memory areas where rsw is located.
Diagram = PhysicalMemeryAreas
Eolo—@o
Type memoryArea_e
The resident software
configuration is a list
of physical memory
areas where rsw is
located.
Used by =]  Element SystemDescription/ResidentSw
Maodel ALL(PhysicalMemoryAreas)
Children PhysicalMemoryAreas
Source =
<Xs:complexType "rsw_e'">
<xs:annotation "docrsw_e">
<xs:documentation>The resident software configuration is a list of physical memory areas where rsw is
located.</xs idocumentation=
</¥siannotation=
<xs:all=>
<xs:element "PhysicalMemoryareas" "memoryhrea_e" />
</¥s:iall>
</¥Xs:complexType>
Figure 27: Resident Software component.
31.03.2015 DREAMS Page 59 of 92




D2.3.1

Version 1.0

Confidentiality Level:PU

6.2.3.1 Element ResidentSw/PhisycalMemoryAreas

Namespace hitp:Awww xtratum.orgixm-3 x
Annotations = ttisa list of physical memaory areas that can be accessed from a partition. The area’s flags define the access properties and restrictions.
a0 &) [ memerarer e Jo—(@)o—(mm)e
It is a list of physical memory areas
that can be accessed from a
partition. The area's flags define the
ACCESS...
Used by =] Elements partition_e/PhysicalMemoryAreas, rsw_e/PhysicalMemoryAreas
Model Area
Children Area
Source =
<Xs:complexType "memoryArea_e">
<xs:annotation "docmemoryhrea_e">
<xs:documentation=It is a list of physical memory areas that can be accessed from a partition. The
area's flags define the access properties and restrictions.</xs:documentation=
</xs:annotation>
<HS:Seqguence "1t "unbounded">
<xs:element "Area">
<Xs:complexType>
<xs:attribute "name" "idstring t" "optional" />
<xs:attribute "start" "hex_t" "required" /=
<xs:attribute "size" "sizeUnit_t" "required” />
<xs:attribute "flags" "memArearlagsList t” "optional” "none" />
<xs:attribute "mappedat” "hex_ t" "optional" />
<l== default="" -=x
</Xs:complexType>
</xs:element>
</xs:sequence>
</¥s:complexType>
Figure 28: Resident Software memory.
31.03.2015 DREAMS Page 60 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU

6.2.4 Element PartitionTable

Mamespace hitp :ffwevew. xtratum.orgome-3 x

Annotations B mis type defines a parition in the system. It includes the assigned memaory, the health monitoring events management, the hardware resources
asigned to the partition and the visible communications ports. Everything related to the parition but the scheduling information is declared here.

Lo = = artributes

Type id_t |®

name
Type idString_t _,EI

console
7 | Type idString_t |

flags I
Type partitionFlagsList_t &
Default none

noVCpus
Type  xspositiveinteger |(®

Default 1 |
e |o - -/

PhysicalMemoryAreas
Type memaoryArea_e

This type defines a
partition in the system,
It includes the assigned
memary, the health
menitering events
mianagement,...

TemporalRequirements (%)

HealthMonitor @
Type healthMonitor_e |

HwResources
Type hwResources_g |

PartTahle @
Type partitionPorts_e |

Trace

Type trace_e |

Used by E  Ewment SystemDescription/PartitionTable/Partition

Maodel ALL{PhysicalMemoryAreas TemporalReguirements{0,1} HealthMonitor{0,1} HwResources{0,1} PortTable{0,1} Trace{0,1})
Children HealthMonitor, HwResources, PhysicalMemoryAreas, PortTable, TemporalRequirements, Trace

Aftributes. = aMame Type Fixad Default Use Annotation
consola idString_t optional
flags partitionFlagsList_t none optional
id id_t requirad
name idString_t optional
noVCpus xspositivelnteger 1 optional
Source =
<xscomplexType “"partition e":
<=z annotation "docpartition_e":
xs documentation: This type defines a partition in the system. It includes the assigmed memory, the health
moritoring events management, the hardware resowrces asigned to the partition and the wisible commundications ports.
Everything related to the partition but the schedvling information is declared here. < xs:documentation:
< fusrannotation:
<xsalls
x5 element "Fhysicaltlemoryireas" "memorydrea_e" Sy
x5 element "TemporalBequirements" "0t
xs complexType:
<xsattribute “pericd” "timelnit_t” “"regquired” s
<usrattribute “duration” “timelUnit_t" "required” S
< fxscomplexType:
< fuselements
x5 element "Healthtfonitor" "healthtfonitor_=" 0t
x5 element "HeBesouroces" "hwResources_e" LIRS
x5 element “"FortTable" “"partitionForts_s" "0t
<xus element “Trace" "trace_s" Ot
<fusralls
<xz:attribute "id" "id_t" "required” S
<xzattribute “ramme" "idftring t" "optiomal” s
<xsattribute "console" "idftring_t" "optional® s
<xzattribute "flags" "partitionFlagsList_t" "optional” "none" S
<xzattribute "noTopus" "nzpositivelnteger” "optional” "1t
<duscomplexType:

Figure 29: Partition component.

31.03.2015 DREAMS Page 61 of 92



D2.3.1

Version 1.0 Confidentiality Level:PU

6.2.4.1 Element Partition/PhisycalMemoryAreas

Mamespace
Annotations

Diagram

Used by

Maodel
Children
Source

http:fwww xtratum.org/xm-3.x
=l itisalist of physical memory areas that can be accessed from a partition. The area’s flags define the access properties and restrictions.

Itis a list of physical memary areas
that can be accessed froma
partition. The area's flags define the

0

ACTESS...
=] Elements partition_e/PhysicalMemoryAreas, rsw_e/PhysicalMemoryAreas
Area
Area
=
<Xs:complexType "memoryArea_e">
<xs:annotation "docmemoryArea e">
<xs:documentation>It is a list of physical memory areas that can be accessed from a partition. The
area's flags define the access properties and restrictions.</xs:documentation>
</xs:annotation>
<XS:sequence " "unbounded" >
<xs:element "mrea"®
<XSicomplexType>
<x¥s:attribute "name" "idstring t” "optional” />
<xs:attribute "start" "hex_t" "required" /=
<xs:attribute "gize" "sizeUnit t” "required” />
<x¥s:attribute "flags" "memirearlagsList t” "optional” "none" />
<xs:attribute "mappedat” "hex_t" "optional" /=
<l== default="" -->
</¥s:complexType>
</xs:ielement>
</¥stsequence>
</¥s5:complexType=

Figure 30: Partition Memory.

6.2.4.2 Element Partition/HwResources

Mamespace http:fwww xtratum.org/xm-3.x
Annotations =] This type contains the hardware ports visible from a partition as well as the interrupts that will be propagated to the partition.
Diagram = loPorts ®
Type ioPorts_e
[0 o Jo——(@)o e )
Interrupts |(®
This type contains the hardware
ports visible from a partition as
well as the interrupts that will
be propagated to the...
Used by =l Element partition_e/HwResources
Model ALL(loPorts{0,1} Interrupts{0,1}}
Children Interrupts, loPorts
Source =
<XS:icomplexType "hwResources_e">
<Xs:annotation "dochwResources_e">
<xs:documentation>This type contains the hardware ports visible from a partition as well as the
interrupts that will be propagated to the partition.</xs:documentation=
</xs:annotation>
<xs:all=
<¥s:element "IoPorts” "ioPorts_e" "t
<xs:element "Interrupts” "ot
<Xs:complexTypes
<xs:attribute "lines" "hwlrgldList t” "required” />
</Xs:complexType>
</xs:ielement>
</xsiall>
</Xs:complexType>
Figure 31: Partition hardware resources.
31.03.2015 DREAMS Page 62 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

Mamespace
Annotations =
Diagram =
Used by =
Madel

Children

Source =

hittp:/fwww xtratum.org/xm-3.x
Itis a listof hardware |0 ports. It can be specified as a number of ports from a base address or as a set of mask-restricted bits of an address.

(O onc]o 2= (@o—E)

Itis a list of hardware 10
ports. It can be specified as a
number of ports from a base
address or as a set of...

Restricted

Element hwResources_e/loPorts

(Range | Restricted)
Range, Restricted

<XS:complexType "ioForts_e">
<Xs:annotation "docioForts_e">
<xs:documentation=It is a list of hardware IO ports. It can be specified as a number of ports from a
base address or as a set of mask-restricted bits of an address.</xs:documentation=>
</xs:annotation>
<X5:Seguence "o "unbounded" >
<xs:choice>
<xs:element "Range">
<xs:complexType>
<¥s:attribute "base" "hex_t” "regquired” />
<xs:attribute "noPorts” "xs:positiveInteger” "required"” />
</xs:complexType>
</xs:element>
<xs:element "Restricted">
<XS5:complexTypes>
<¥s:attribute "address” "hex_t” "regquired” />
<xs:attribute "mask" "hex_t" "optional” "0x0" /=
</xs:complexType>
</xs:element>
</xs:choice>
</x®sisequence>
</Xs:complexType>

Figure 32: Partition /0 ports.

6.2.4.3 Element Partition/PortTable

Namespace
Annotations

Diagram

Used by

Model
Children
Saource

=
=

hittp :/fwww xtratum.orgfxm-3.x

Itis a list of communication ports that a partition can access. The name of a port in this list must match to a ipcPort_e name defined in
channels section.

[Eomemns]o = @o—@Do

It is a list of communication ports This is a port identified by its name. The port
that a partition can access. The name properties must match to a ipcPort_e name
of a port in this list must match to a... defined in channels section.
Element partition_e/PortTable
Port
Port
<XS:complexType "partitionForts_e">
<xs:annotation "docpartitionforts_e">

<xs:idocumentation=It is a list of communication ports that a partition can access. The name of a port
in this list must match to a ipcFort_e name defined in channels section.</xs:documentation>
</xs:annotation>

<XS:sequence "o "unbounded” >
<xs:element "Port">
<xs:annotation "docport”>

<xs:documentation>This is a port identified by its name. The port properties must match to a
ipcPort_e name defined in channels section.</xs:documentation=
</xstannotation>
<XS:CcomplexType>
<xs:iattribute "name" "idstring t” "required” />
<¥s:attribute "direction” "direction t" "required” />
<xs:attribute "type" "portType_t" "required" /=
</¥sicomplexType>
</xs:element>
</Xs:sequences>
</¥s:complexType>

Figure 33: Partition IPC ports.

31.03.2015

DREAMS Page 63 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

6.2.5 Element Channels

Mamespace
Annotations
Diagram

Usad by

Maodel
Childran
Source

=
=

hitp v xtratum.orgfom-3 . x
It iz a list of inter partition communication resources. this list can contain interparition virual intermupts, sampling channels and queving channels.

—wijo

This I5 the declaration of Interpartition Virtual
Interrupts in th system. The sourceld attribute
is the identifier of ..

=== 0..00

Itis a list of inter partition
communication resources. this
list can contain interpartition
virtual intermupts,...

It is the declaration of a Sampling Channel {one source, many
destinations)

QueuingChannel &

It is the declaration of a Queuing Channel (one source, one
destinations)

Elemant SystemDescription/Channels
(lpvi | SamplingChannel | QueuingChannel)
Ipvi, QueuingChannel, SamplingChannel

<us:complexType “chanmels_e":
<x=zannotation "doschannels_e"s
¥z documentation: Tt i= a 1list of inter partition communication resowrces. this list can contain interpartition
rirtual interrupts, sampling chanmels and gueving channels. < fxs:documentation:
</xsannotation:

AT SEJUENCE "o "unbounded "
<xs choice:
xS element “Tpwits
<= :annotation “docipvits

wusdocumentation: Thi=s i= the declaration of Interpartition Tirtwal Interrupts in th system. The sowrceId
attribute i=s the identifier of the partition that can raise the rirtwal interruvpt. The destinationTd is a list of
identifierts of partitions that will recedive the wvirtval interrupt.</zs: documentation:
</x=z annotation:
<xscomplexType:

<xsrattribute "id" "id_t" “required” S
wxsrattribute "zourceld” “id_t" "reguired” S
wxsrattribute "destinationTd" "idLi=t_t" "required” S

< fuscomplexTyrpe:
</xselement
x5 element "SamplingChanmel" >
x5 anncotation “docSamplingThannel” -
<xsrdocumentation:It i=s the declaration of a Sampling Chanmel (one Soumrce, many
destinations)« fxs:documentation:
<dusrannotation:
x5 complexType:

{HES I SEIUenCE "1t
<xg:element " Source” "ipcPort_e" s>
<HE ! SEUEnCE "t "unbounded” -
<xsrelement "Destination” "ipcPort_e" s

< NS SeqUETGE
£ HS  SequUEnTE
xs:attribute "maxtlessagelength” "simelndit_t" "regquired” S
usiattribute "validPeriod” "timeTnit _t" "optiomal” U=
< fus conplexTypes
</xselement
cx=element "QueningChannsl”
:xs:annotation “"dociuevinglhanmel" s
cxsdocumentation: Tt is the declaration of a Queving Chanmel [(ons source, one
destinations)« fxs:documentation:
</us annotation:
<xscomplexType:

<xs:all it
<us:element " Source” "ipcPort_e" s
<xz:element "Destination” "ipoPort_e"JS
ciusialls
xs:attribute "maxtlessagelength” "simelndit_t" "regquired” S
usiattribute "maxlotlessages" "uz:positivelnteger” "reguired” S

< fus conplexTypes
</xselement
<fuschoice:
< fHS SEqUATCE
/s complexType:

Figure 34: Channel component.

31.03.2015

DREAMS Page 64 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

6.2.6 Basictypes

Mamespace hitp s xtratum.orgfom-3.x

Annotations E itisan integer value used to identify objects in the hypervisor.

Oegren

Itis an integer value Built=in derived type. The integer datatype is derived
used 1o identify from decimal by fixing the value of fracrionDigits to be 0.
objects in the This...

hypervisor.

Typa restriction of xs:integer

Facats B Mininclusive [

Usad by = attibutes channels_e/lpvil@id, channels_e/lpvil@sourceld, fixedPrio_s/Partition/@id, fixedPrio_s/Partition/@vCpuld,
ipcPort_e/@partitionld, partition_efi@id, plan_e/@id, plan_es/Sloti@id, plan_e/Slot@partitionid,
plan_e/Slot@vCpuld, processor_el@id

Source =

<5 simpleType "id_t"s
<xz anncbtation “docid_tU:
x5 documentation:It is an integer walwe wsed to identify objects in the hyperwvisor. </fuxs:docwmentaticon:
< fusrannotation:
<xz:restriction "wz:integers
x5 minTnclusive Ot
</fusirestriction:
<dx=:simpleType:

Mamespace http /iwesew. xtratum. ong fzom-3

Annotations B itis a st of hypervisor object identifiers.

g8 (s jo——(Z 1 )o

Itiis a list of hypervisor It is an integer value used to identify objects in the
object identifiers. hypse rvisor,

Type st of id_t

Used by Bl attibute channels_e/lpvii@destinationld

Source =

<= :simpleType "idList_t":
xs:anmotation "docidlist_t":
<xsidocumentation:Tt is a list of hyperwisor object identifiers. < xs:documentation:
<dusannotation:
xs:list "id_t" s
<fus sinpleType:

Namespace hitp:fiwww.xtratum.org/xm-3.x

Annotations & itis an hexadecimal value.

Pem 0

it is an hexadecimal Built-in primitive type. The string datatype represents
value, characrer strings in XML,

Type restriction of xs:string

Facets = pattem 0x[0-9a-fA-F}+

Used by 2 attdbutes devices_e/MemoryBlock/@start, icPorts_e/Range/@base, ioPorts_e/Restricted/@address,
ioPorts_ef/Restricted/@mask, memoryArea_s/Area@mappedAt, memoryArea_elAreal@start,
memaorylLayout_e/Region/@start, trace_eaf@bitmask

Source =

iz simpleType "hex_t":
«xsannotation "dochex_t":
<xsdocumentation:it is an hexadecimal wvalwe. <Sxs:documentation:
< fxsrannotation:
«xs restriction “"rzstring”s
<z pattern "Ox[0-Fa-fA-F1+" 42
< fusirestriction:
< fx=:simpleType:

Mamespace hitp :ffwevew. xtratum.orgom-3 .

Annaotations E 1t is a memary size value.

It is a memaory size value. Built=in primitive type. The string datatype represents
character strings in XML,

Typa restriction of xs:string

Facets E  pattem [0-9]+(. [0-0]+)7{[MK]?B)

Usad by = attibutes channels_e/QueuingChannel/@maxMessageLangth, channels_e/SamplingChannel/i@maxMessagelength,
devices_e/MemoryBlock/@size, hypMemoryArea_el@size, memoryArea_elArea/dsize,
memaoryLayout_e/Region/@size

Source =

<5 simpleType "simelndt_t":
<xz anncbtation "docsizelrdt_t":
x5 documentation:It is a memory size wvalue. < xs:documentaticon:
< fusrannotation:
<xz:restriction "wzistring's
<z pattern U014 [0-F ]+ T [LE] PR S
</fusirestriction:
<dx=:simpleType:

31.03.2015

DREAMS Page 65 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

Mamespaca hitp: /e xtratum.orgfem-3.x
Annotations E 1tis a time duration valus.
e B (7 tmeunitt Jo——([7 xsistring )
It is a time duration value. Built=in primitive type. The string datatype represents
character strings in XML
Typa restriction of xs:string
Facets 5 Pattem [0-91+(.[0-81#) 2([mu] ?[s ST)
Used by B atrbutes channels_e/SamplingChannel/@validPeriod, partition_e/TemporalRequirements/@duration,
partition_e/TemporalRe quirements/@period, plan_s/@majorFrame, plan_e/5lot@duration, plan_e/Sloti@start
Source =
x5 simpleType “timelrdt_t":
<= :annotation "doctimeUnit_t"s
cusidocomentation: Tt is a time doration walue. < /xs:docomentation:
fusannotation:
sxsirestriction “"xzistring”
xs:pattern CIO0-91+0. [0 1400 [mu] P [=5]00 A
<fusrestriction:
< fus simpleType:
Mamespace hitp v stratum.orgfom-3.x
Annotations E iisa frequency valua.
CEnmm B (7 frequnit |G)—(Tnnn)
Itis a frequency value. Built=in primitive type. The string datatype represents
character strimgs in XML
Typa restriction of xs:string
Facats E  pattem [0-9 (. [0-8 ) {[MKI[Hh]z)
Used by B attrbute processor_e/@frequency
Source =
<= simpleType "fregqlnit_t":
<z annotation "docfreqloit_t":
xs documentation:It iz a freguency wvalwe. </xs:documentation:
</xsannotation:
<xsirestriction tusrstring s
<xz:pattern U040 [0-2 ]+ P [ME ] [HR]=)" A
< fxsirestriction:
< s simpleType:
Namespace hitp s xtratum. ong fom-3 x
Annotations [E Itis a boalean value Iyes, no, trua, falsa).
ER
It is a boolean value Built=in primitive type. The string datatype represents
[yes, no, true, false), character strings in XML,
Type restriction of xs:string
Facets = Enumeration yes
Enumeration ne
Enumeration true
Enumeration false
Used by = Attibute healthMonitor_e/Event/@log
Source =
<us:simpleType “wyontf £
<z annotation "docyntf_t":
«xs documentation:Tt is a boolean walue (res, no, true, false). < xs:documentation:
</xsannotation:
<xs restriction "x=:string” s
<usrenmeration trestSy
x5 enmmerabion B =R
x5 enumerabion "true" Sy
x5 enumerabion "false" /s>
</xsirestriction:
<Jdr=:simpleType:

31.03.2015

DREAMS Page 66 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

Namespace hitp: /v, xtratum.org/xm-3.x
Annotations = 1t defines the type of a communication's port: sampling, queuing.
Diagram = ( 7 porl'r..-pg_[)@—| i ns.slring)
It defines the type of a Built=in primitive type. The string datatype represents
communication’s port: character strings in XML.
sampling, queuing
Typa restriction of xs:string
Facats = Enumeration queuing
Enumeration sampling
Usad by = Attibute partitionPorts_e/Port/ @ty pe
Source =
<3z =impleType "portType_t":
x5 anmotation "docportTrpe_t":
cusdocumentation: It defines the type of a commundcation's port: sampling, queving. < /xs:docwmentation:
</xz annotation:
<usirestriction “usrstring” s
xsenumeration "gquening” S
xS enumeration "sampling”
<fus restriction:
< /x5 simpleType:
Mamaspace hitp iweww stra tum.org fHom-3 x
Annotations [E 1t defines the direction of a communication port.
B = (: 2 dirtc:iun_l)@—(: A ".S.ilirinQ)
It defines the direction of a Built=in primitive type. The string datatype represents
communication port. character strings in XML,
Type restriction of xs:string
Facets Enumeration SOUrCE
Enumeration destination
Used by B attrbute partitionPorts _e/Port/@direction
Source =
<5 simpleType "direction_t":
<xs annotation "docdirection_t":
<usdocumentation: It defines the direction of a communication port. < sws:docwomentation:
< /xsrannotation:
<xs restriction "ws:string”s
x5 enumerabion "source" S
xS enmerabion "destination" />
< fusrrestriction:
<= sinpleType:
Mamespace hitp:/fwww. xtratum.orglom-3.x
Annotations = itisa flag that states a property of 2 memory chunk. It can be dedlared as unmapped, shared, read-only, unreachable or rom. User specific flags are
also supported.
sgen O
It is a flag that states a property Built=in primitive type. The string datatype represents
of a memaory chunk, It can be character strings (n XML,
declared as unmapped, sharad
read-only, unreachable...
Typa restriction of xs:string
Facats = Enumeration unmapped
Enumeration shared
Enumeration read-only
Enumeration uncacheable
Enumeration rom
Enumeration flagd
Enumeration flag1
Enumeration flag2
Enumeration flag3
Enumeration none
Source =
x5 simpleType “membdreaFlags _t'x
<= :annotation "docmendreaFlags _t"
xsdocumentation:It is a flag that states a property of a memory chunk. It can be declared as unmapped,
shared, read-only, wnreachable or rom. User specific flags are also supported. </xs:documentation:
</xz annotation:
<usirestriction “usrstring” s
xsenumeration "unmapped” £
xsenumeration “shared" /:
cHsenumeration “"read-only” S
<xsienumeration "uncacheable” /»
<xsienumeration trom” S
<¥senmeration “flagl” S
xsenumeration "flagl" S
xS enumeration "flagd" S
cHsenumeration “flagd' S
<xsienumeration “none" S
<fusrestriction:
< fus simpleType:

31.03.2015

DREAMS Page 67 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

Mamespace

hitp s xtratum.orgfom-3.x
Annotations [E This is a ist of flags that defines the access properties of a memory chunk.
Diagram = ( 7 memAreaFlagsList_t )G—{ [ memareaFlags_t )G)
This is a list of flags that defines the It is a flag that states a property of 2 memony chunk. It can be
access properties of a memory chunk. declared as unmapped, shared, read-only, unreachable...
Typa list of memAreaFlags_t
Used by = Attributes hypMemoryArea_e/@flags, memoryArea_el/Area/@flags
Sourca =
<5 simpleType "memdteaFlagsList_t"s
<xz anncbtation "docmemdreaFlagsList_t":
<xus documentation:Thi=s is a list of flags that defines the access properties of a memory
chunk. < fxsdocumentation:
< /xsrannotation:
<xs:1ist "memdteaFlags L' S
/s simpleType:
Mamespace hitp s xtratum.orgfom-3.x
Annotations = 1t declares the access type of the memory. It can be ram or rom.
Coen 0
It declares the access type of Built-in primitive type. The string datatype represents
the memony. It can be ram or character strings in XML
rom.
Typa restriction of xs:string
Facats E  Enumeration ram
Enumeration rom
Used by = Attribute memoryLayout_e/Regionf@ty pe
Sourca =
<z simpleType "memBegion_t":
<xs:annotation "docmemPegion_ L
<usdocumentation: It declares the access type of the memory. It can be ram or rom. < us:documentaticon:
< /xsrannotation:
<xs restriction "wsistring”
xS enumeration “ram" S
xS emmeration “rom" S
<fusrrestriction:
</us:sinpleType:

31.03.2015

DREAMS Page 68 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

Mamespace
Annotations
Diagram

Typa
Facaets

Usad by

Source

hitp v xtratum.orgfom-3 . x
E This type enumerates the health monitoring events suppored by the xBE processar.

= ( thn'Ing_:)G)—( x5 ﬂring)

This type enumerates the Built-in primitive type. The string datatype represents
health monitoring events character strings (n XML,

supparted by the <86

PrOCessor

restriction of xs:string

= Enumeration ¥M_HM_EV_INTERNAL_ERROR
Enumeration XM_HM_EV_SYSTEM_ERROR
Enumearation XM_HM_EV_PARTITION_ERROR
Enumeration XM_HM_EV_WATCHDOG_TIMER
Enumeration XM_HM_EV_FP_ERROR
Enumearation XM_HM_EV_MEM_PROTECTION
Enumeration XM_HM_EV_UNEXFPECTED_TRAP
Enumeration XM_HM_EV_X86_DIVIDE_ERROR
Enumeration XM_HM_EV_X8&_DEBUG
Enumeration XM_HM_EV_XBE_NMI_INTERRUPT
Enumeration XM_HM_EV_X86_BREAKPOINT
Enumeration XM_HM_EV_X86_OVERFLOW
Enumeration XM_HM_EV_X86_BOUND_RANGE_EXCEEDED
Enumearation XM_HM_EV_XBE_INVALID_OPCODE
Enumeration XM_HM_EV_X86_DEVICE_NOT_AVAILABLE
Enumeration XM_HM_EV_X86_DOUBLE_FAULT
Enumearation XM_HM_EV_X86_COPROCESSOR_SEGMENT_OVERRUN
Enumeration XM_HM_EV_X86_INVALID_TSS
Enumeration XM_HM_EV_X86_SEGMENT_NOT_PRESENT
Enumeration XM_HM_EV_X86_STACK_FAULT
Enumeration XM_HM_EV_X86_GENERAL_PROTECTION
Enumeration XM_HM_EV_X86_PAGE_FAULT
Enumeration XM_HM_EV_X86&_X&7_FPU_ERROR
Enumeration XM_HM_EV_X86_ALIGNMENT_CHECK
Enumearation XM_HM_EV_XBE_MACHINE_CHECK
Enumeration XM_HM_EV_X86_SIMD_FLOATING_POINT

2 attribute healthMonitor_e/Eventi@name

<xs:simpleType “hmString L'
<xsrannotation “dochmString b
<x= documentation: Thi=s type enumerates the health moritoring events supported by the =86
processor . <Sus documentation:
«/xsannotation:
<xzirestriction "azistring”
xS enumeration “XH_HI ET_TNTERNAL_ERROR" />
s enumeration “XM_Hr ET_SYSTELL ERROR”™ S
<¥senumeration “XM_Hi ET_PARTITION _ERROR"/:
xS enumeration “XH_H_ET_WATCHDOS _TIHER" /»
xS enumeration “XH_Hi_ET_FF_EEROER"/»
xS enumeration “XH_Hi ET_LIEM FROTECTION" /»
xS enumeration “XH_HI ET_UNEXPECTED_TRAP" />
s enumeration “XM_H ET_XE&_DIVIDE_ERROER" £»
<¥senumeration “XM_H ET_X&6 DEBUG" /»
xS enumeration “NH_H_ET_X&& WD _THTEERUET"/:
<¥s enumeration “XHM_Hri ET_X2&_ EREAEFOINT" /:
xS enumeration “XHM_HI ET_X=& OTEFFLOW f»
xS enumeration “XH_HI ET_XE& BOUND_RAWSE_EXCEEDED" /:
s enumeration “XM_HM ET_XE&_THNVALID OPCODE" £»
<¥senumeration “XM_H ET_¥8e DEVICE_WOT _ATATLARLE"/»
xS enumeration “XH_H_ET_¥&&_DOUBLE_FATULT" f:
1= enumeration “XHM_HI_ET_X2¢ _COPROCESSOFR_SEGIENT _OVEERUN"/:
xS enumeration “XHM_HI ET_X2e TIHTVALID _TEE"/:
xS enumeration “XH_H ET_XS&_ SEGHENT _WOT_FRESENT™ /:
s enumeration “XM_H ET_X8&_ STACE FAULT f»
<¥senumeration “XM_H ET_¥86 GEWERAL _FPROTECTION"/:
xS enumeration “XH_H ET_¥&6_ FALSE_FAULT" /:
xS enumeration “XHM_H ET_X=e XET_FFU_EEROR" /:
xS enumeration “XH_H ET_X2E ALIGHUENT CHECE"/:
xS enumeration “XH_H ET_XS& MACHINE CHECE" />
s enumeration “XM_H ET_X8&_ STHD_FLOATING _POINT™ £:
< fusirestriction:
/s simpleType:

31.03.2015

DREAMS Page 69 of 92




D2.3.1

Version 1.0 Confidenti

ality Level:PU

Mamespace hitp :ffwevew. xtratum.orgome-3 x
Annotations [Z This type enumerates the health monitoring actions supparted by the hypervisor.
I (Geaiccas)-
This type enumerates the Built-in primitive type. The string datatype represents
health monitering actions character strings in XML
supparted by the hypervisor.
Typa rastriction of xs:string
Facats E  Enumermation XM_HM_AC_IGNORE
Enumeration HXM_HM_AC_SHUTDOWN
Enumeration XM_HM_AC_PARTITION_COLD_RESET
Enumeration XM_HM_AC_PARTITION_WARM_RESET
Enumeration XM_HM_AC_HYPERVISOR_COLD_RESET
Enumeration XM_HM_AC_HYPERVISOR_WARM_RESET
Enumeration XM_HM_AC_SUSPEND
Enumeration XM_HM_AC_PARTITION_HALT
Enumeration XM_HM_AC_HYPERVISOR_HALT
Enumearation XM_HM_AC_PROPAGATE
Enumeration XM_HM_AC_SWITCH_TO_MAINTEMANCE
Usad by = Attibute healthMonitor_s/Eventi@action
Source =
<xs:simpleType “hmaction_t":
<xsrannotation “dochmbction b
<x= documentation: Thi=s type enumerates the health monitoring actions supported by the
hypervisor. « /us:documentation:
«/xsannotation:
<xzirestriction "azistring”
xS enumeration “XM_HM &C TEHORE" 7
s enumeration “XM_HM &C SHUTDOWH" f
<¥senumeration “XM_H & PARTITION COLD_RESET"/»
xS enumeration “YH_H & PARTITION WARM _FEZET"/»
xS enumeration “HH_H & _HYPERTISOR_COLD_RESET" /=
xS enumeration “XHM_H &C_HYPERTISOR_WARLT FESET" /:
xS enumeration “XM_HML &C STISPEND™ /3
s enumeration “XM_HM &C PARTITION _HALT™ /:
<¥senumeration “NM_H &C HYPERTISOR_HALT" /»
<¥senumeration “NM_H &2 PROPAGATE" f»
xS enumeration “HH_HM & SWITCH_TO_MATHTENAWCIE® f:
<fusirestriction:
<dx=:simpleType:
Mamespace http /iwesew. xtratum. ong fzom-3
Annotations (=T specifies one supported event typa.
D = ( [ u.].(eHw_l)O—| [ ns.sninq)
It specifies one supported Built=in primitive type. The string datatype represents
EVENL bype. character strings in XML,
Type restriction of xs:string
Facets B Enumeration HYP_IRQS
Enumeration HYP_HCALLS
Enumearation HYP_SCHED
Enumeration HYP_HM
Source =
<xs:simpleType “traceHrp_t":
<xs:anmotation "doctraceHyp_t":
<xs:documentation:Tt specifies one supported event type. < fus:documentation:
dus rannotation:
us:restriction "wsistring”
<Hsenmmeration "HYF_IROE" S
<xgenumeration “"HYP_HCALLES" f»
<usenumeration “"HYFP_SCHED™ f»
<usenumeration “HYFP_HIT" £
odusrestriction:
<fussimpleType:
Mamespace hitp:/ioesew. xtratum. ong fzem-3 .
Annotations = This is a list of the event types that will be traced.
Dagram o——(mcop)o
This is a list of the event types It specifies one supported event type.
that will be traced
Type list of traceHyp_t
Usad by B attabute traceHyp_e/@bitmask
Source =
<xs:simpleType “traceHrplist_t":»
<¥sranncotation “doctraceHyplist_t":
<35 documentation:Thi=s i= a list of the event types that mill be traced. :s/us:documentation:
dus rannotation:
Hs:list “traceHyp_t" />
< /x5 simpleType:

31.03.2015

DREAMS

Page 70 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

Mamespace

hitp:/fwww. xtratum.ongxom-3 .
Annotations B Thisisa flag enabling a parition’s role in the system with associated access rghts: system, fp, none.
Ouagam D o
This is a flag enabling a Built=in primitive type. The string datatype répresents
partition's role in the system character strings in XML,
with associated access rights:
system, fp, none.
Type restriction of xs:string
Facets E  Enumeration system
Enumeration fp
Enumeration nene
Source =
wxs:simpleType "partitionFlags_t":
<xsiannotation “docpartitionFlags_t"»
x5 documentation:This is a flag emabling a partition's role in the system with associated access rights:
system, £p, none. < usidocumentation:
<fxs annobation:
<ug:restriction "xs:string”:
<xs:enumeration “system” S
<us:enumeration tEptAe
<xs enmeration "miome" S
<fus restriction:
ofus simpleType:
Mamespace hitp :ffwevew. xtratum.orgome-3 x
Annotations [ List of partition flags which define the role of the partition in the system,
Diagram B 7 partitionFlagsList_t [ partitionFlags_t @
List of partition flags which define This is a flag enabling a partition's role in the system with
the role of the partition in the associated access rights: system, fp, none.
system.
Typa list of partitionFlags_t
Used by B attrbute partition_e/@flags
Source =
<15 simpleType "partitionFlagsList_t":
<xz annotation "docpartitionFlagsList_t":
<xs documentation:List of partition flags which define the role of the partition in the
system. < fxsdocumentation:
< fusrannotation:
<xz:1ist "partitionFlags_t" /s
<= sinpleType:
Mamespace hitp:/famww xtratum.org/om-3 x
Annotations E itisan integer value used to identify interupts.
cegen B (7 praa
It is an integer value used Built-in derived type. The integer datatype is derived
to identify interrupts. from decimal by fixing the value of fractionDigits to be 0.
This...
Type restriction of xs:integer
Facsts [ MaxExcusive 16
MinInclusive L]
Sourca =
xs  simpleType "hewlrqld_t":
xS annctation “docheirgid_t":
«xsdocumentation:Tt is an integer valwe used to identify interrupts. < sus:docwmentation:
«fusannotation:
sxsirestriction "asiinteger”s
xsiminlnclusive Ot
<xs:maxExclusive " 1& Ay
<ius restriction:
< fus simpleTrpe:
Mamespace hitp :ffwevew. xtratum.orgom-3 .
Annotations [ 1tis a list of intermupts.
Diagram B (7 nwirqidlist 1 )O 7 hwirgld_t )@
It is a list of interrupts. It is aninteger value used to identify interrupts.
Typa list of hwirgld_t
Used by = Attribute hwResources_e/lnterrupts/@lines
Source =
<5 simpleType "heTrqIdList_t":
<xz anncbtation "dochwlrgIdlist_t":
<xs documentation:It is a list of interrupts. ¢ /x=:documentation:
< fusrannotation:
<xz:1ist "heTrqId_t" s
</us:sinpleType:

31.03.2015

DREAMS Page 71 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

Mamespace

hitp:/fwesew xtratum.ongom-3.x
Annotations B This type enumerates the supported special processor features.
g o
This type enumerates the supported Built=in primitive type. The string datatype represents
special processor features, character strings in XML
Type restriction of xs:string
Facets B Enumertion XM_CPU_LEONZ_WA1
Enumeration none
Source =
<xs:simpleType "processorFeatures_tU:
<us:annotation "docprocessorFeatures_t":
<= documentation:Thi=s type enumerates the supported special processor featwres. ¢fus: documentations
s ranmotation:
us:restriction “"xzstring”:
x5 enumeration "X CPU_LEONZ Wal“ s
NI enumeration “nome” S
odusrestriction:
<= simpleTrpe:
Mamespace hitp:/ioesew. xtratum. ong fzem-3 .
Annotations B itisa kst of special features of a physical procassaor.
Loy = ( F pmc:smrFu:uresus:_l)@
Itiis a list of special features of a physical This type enumerates the supported special processor features,
processor
Type list of processorFeatures_t
Used by B Attibute processor_e/f@features
Source =
<xs:simpleType “processorFeaturesList_t":
<xs:anmotation "docprocessorFeatureslist_t"
<xs:documentation:Tt i=s a list of special featwres of a physical processor.«/us:documentation:
dus rannotation:
Hs:list "processorFeatures_t" £
cfussimpleType:

31.03.2015

DREAMS Page 72 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU

7 Secure State and Secure Operations

The Secure Kernel Partition Profile [6] defines the rationale for secure state as:

Definition: “secure state” is based on two separate properties:

(A) that the TSF is capable of enforcing the security policy (i.e., its own data and mechanisms
are intact); and

(B) that exported resources are correctly separated (e.g., application data, and related
descendants and copies, are associated with the correct data).

7.1 Secure State

Property (A) states that the "secure state" is related to the integrity and coherence of the internal
data and mechanisms. Internal data of Virtualization Layer (VLayer) can be considered:

e configuration vector as binary representation of the configuration file used to define the
system that has been validated, compiled and included in the final system container. In
execution, this configuration vector resides in the hypervisor (kernel) address space (not
accessible by subjects) in a memory area that is write protected. Additionally, a digest
(cryptographic hash function) is applied to the configuration vector which is added to it. At
any moment, the VLayer can perform the digest of the configuration vector and validate its
integrity.

e internal variables: state of the VLayer. VLayer status is formed by the tuple

<PARTcurrent, PLANcurrent, SLOTcurrent' CLOCKcurrent>

that refers to the current partition under execution, current plan, current slot and current
time. The coherence of these variables is fundamental in the virtualization layer operation.
The pair <PLAN®™" CLOCK®"> determines the slot and the partition in the configuration
vector that should correspond with the current partition and current slot. Once the state is
validated, through the configuration vector is possible to determine the exported resources
(Memory areas, FPU, IRQs, etc.) and operations that should be applied.

e the processor registers: MMU registers , interrupt vector (IV), mode processor status (MPS),
|0 protection and FPU control.

e channels: the consistency of the channel data structures can be determined with respect to
the maximum values (message length and number of messages) defined in the configuration
vector.

e stacks: The VLayer maintains one stack for the own VLayer operations and one stack per
partition which is used when the VLayer executes a hypercall for a specific partition. The limits
of these stacks can be validated. It is important to note that each partition maintains its own
stack in the user space when the partition is executing operations at user level.

As for the configuration vector, a digest of the VLayer core is applied at deployment phase which is
included in the deployment and can be validated. This validation will permit to affirm that the VLayer
code has not been corrupted.

An important aspect with respect to the secure state is the limited preemptability of XtratuM. It
implies that during any VLayer operation, it can be interrupted only at specific points that are very

31.03.2015 DREAMS Page 73 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

well identified. This limitation has a strong impact in the simplicity of the VLayer design (less complex)
and the security (more secure).

Property (B) is related to the isolation properties (spatial and temporal) of subjects. The VLayer has
been designed so that the individual effects of operations that violate the policy are privileged
operations (operations over virtualized resources) or by means of hypercalls with not allowed
parameters (i.e. reset the system by a subject not authorized). In the first case, the forbidden
operation generates a trap that is captured by the VLayer and generates a Health Monitor event which
involves an HM action with the goal of maintaining the VLayer in the "secure state" (i.e. the subject
can be halted (disabled) or restarted according the action defined in the configuration file (XM_CF).

In the second case, the hypercall with non-allowed parameters, the VLayer performs an exhaustive
validation of the parameters according the configuration vector and refuse the operation (returns a
code error in the hypercall to the subject invoking the hypercall).

7.2 Insecure state

When the conditions stated previously cannot be validated, the VLayer is in an "insecure state". The
following situations can determine that the VLayer is in an "insecure state":

e configuration vector pollution. The digest of the configuration vector does not match
with the correct value.

e Vlayer code pollution. The digest of the VLayer code does not match with the correct
value.

e Deviation of the internal state. The tupla <PART<U™"  PLANcuUTent g QTeurent,
CLOCK®™"t> js not coherent with <PARTM-CF pLANcU™ent | OT*M-CF CLOCK®urent>
obtained from the configuration vector.

e Access to non exported resources for a partition. A partition can perform an operation
to an exported resource that has not been defined in the configuration vector. Note that
if a partition requests an operation on a non exported resource the hypercall should
return a code error.

e Limits exceeds. Stacks and channels data structures exceeds the limit values established
in the configuration vector.

e Underlaying hardware: clock, timers, memory protection mechanisms, |10 protection
mechanisms, FPU protection mechanisms.

Any of these situations determine that the VLayer is not in a "secure state". In these cases, it is not
possible to change to a "secure state" and the system has to be reset.

7.3 Trustability enforcement
Some aspects should be revisited with respect to the VLayer:

e It is non pre-emptable. When any of the entry-points is invoked, it is executed with disabled
interrupts returning the control to a partition.
e It has three entry points and one return point to partition.

31.03.2015 DREAMS Page 74 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

e All exported resources are defined in the configuration vector.
e Only the hypervisor can access to the privileged registers and virtualized services.
e Internal code of partitions is not relevant from the hypervisor point of view

Additionally, it is assumed that the underlying hardware is trusted. It means that the internal processor
registers will work properly if they are used in the correct way.

Based on the trustiness of the hardware mechanisms, XtratuM permits to extend the trustability
including the hypervisor level.

7.4 Test for secure states

As result of the previous analysis the state of the VLayer could be evaluated at different levels. SKPP
(Separation Kernel Protection Profile) defines different types of tests to achieve a secure state at boot
time and during the execution of the partitions.

7.4.1 Abstract machine test (AMT)

In general the AMT refers to the proper operation of the hardware platform on which a VLayer is
running. These tests permit to consider that the underlaying hardware is trusted and extends it to the
Vlayer. It is executed at boot time in order to guarantee a secure boot. It includes:

e Timers test

e Protection mechanisms test: MMU, privileged operation, |0 protection, FPU control.

e Memory Read and Write: This test can read/write/read portions of

e memory to ensure the values written remain unchanged.

e Memory Separation and Protection: to ensure that user space programs cannot read and
write to areas of memory that is protected.

e Privileged Instructions: it ensures that the enforcement of the property that privileged
instructions should only be in supervisor mode is still in effect.

7.4.2 Basic platform tests

Basic tests rely on basic properties of the hypervisor and the trust enforcement from the trusted
hardware. They should be executed each time a partition is scheduled in order to guarantee a secure
partition operation. It includes:

e Validation of the internal variables related to the VLayer state

e Processor registers: MMU registers, interrupt vector (IV), mode processor status (MPS ), 10
protection and FPU control.

e Stack limits

e Monotonic clock

31.03.2015 DREAMS Page 75 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

These tests require low computation resources. They are executed each time the VLayer performs a
partition context switch.

7.4.3 Maintenance tests

Self tests are related with the self evaluation of the XtratuM security functins (XSF) with respect to
some expected correct operation. It includes:

e Stack limits: VLayer and partition's stacks.

e Configuration vector (perform a digest of the current configuration vector and compare it
with the deployed digest).

e Vlayer code (perform a digest of the XtratuM code and compare it with the deployed
digest).

e Channel limits evaluation

e Partition code pollution evaluation. This is an operation that should be performed by each
partition. XtratuM only saw at the deployment phase a binary file of the partition without
distinction of code and data. The partition knows the internal segments and could perform
some evaluation if the code has been polluted, limits of internal data structures, etc.

These tests should be executed during a maintenance phase of the system.

31.03.2015 DREAMS Page 76 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

8 DREAMS Abstraction Layer (DRAL)

This section describes the software architecture supported by DREAMS, which involves several
applications with different levels of criticality. It details the execution environment and the services
provided to support the application execution.

The software architecture is built on top of a DREAMS node that manages the entire tile including one
Or more processor cores.

App App App
App App App
os 0s 05

App

DRAL DRAL RTOS DRAL 05

Virtualization Layer

RTOS
05

DREAMS Virtualization Layer

Interrupt Virtualization Layer

DREAMS Hardware

‘ DREAMS Hardware ‘

Figure 1: Software architectures

In order to support mixed-criticality applications, the DREAMS software architecture is composed by:

e Virtualization layer: It is a software layer that provides hardware virtualization to the
applications. Two different approaches are considered in DREAMS depending on the
application constraints.

o Partitioning kernel: It provides virtualization of the hardware resources by defining a
set of services that are used by the partitions to access the virtualized resources. The
partitioning kernel provides spatial and temporal isolation to the partitions.

o Interrupt Virtualization layer: This layer virtualizes the Host OS interrupts and is only
introduced when KVM hypervisor is used. The main objective is to take hardware
interrupts control away from Host OS and handle them in a thin layer, so as to
preserve timing guarantees for the RTOS. Thus, an interrupt virtualization layer
(ADEOS or similar) is introduced below the Host OS and real-time partition to prioritize
the RTOS.

e Partitions: A partition is the execution unit in the DREAMS architecture. It provides the basic
infrastructure to execute an application. Different partitions are supported in the DREAMS
architecture.

o Basic single-thread application to be executed near a native hardware

o Multi-thread real-time applications to be executed on top of a real-time operating
system

o Multi process applications to be executed on top of a full featured operating system

o Multi-partition applications to be executed on top of a operating system that provides
the ability to build virtualized multiple process applications.

31.03.2015 DREAMS Page 77 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

8.1 DRAL

A complete DRAL specification is presented in a different document named D2.3.1 — Annex. DREAMS
Abstraction Layer (DRAL) Specification.

8.1.1 System Management Services

System Management Services refer to the services that a partition can invoke to get the status of the
virtualization layer or perform actions on it.

Services are:
Name Description Constraints

DRAL_GET_SYSTEM_STATUS | Returns the status of the virtualization layer. The result | System
is a data structure that provides some information
related to the current status.

In the case of interrupt virtualization, this service
will set the configuration details of such a layer, for
instance, interrupt masking, peripheral
binding/unbdinding, etc.

DRAL_SET_SYSTEM_MODE | Provides to a partition the ability to change the status of | System
the virtualization layer. Actions to be invoked are:

- Perform a cold reset on the system. As result of this
invocation, the system is reset and boots. A counter
informs about the number of consecutive warm resets
have been produced. This counter is zeroed when the
cold reset is invoked.

- Perform a warm reset on the system. As result of this
invocation, the system is reset and boots. The reset
counter is increased.

- Perform a system halt. As result of this invocation, the
system is halted. A physical reset is required to restart
the system.

8.1.2 Partition Management Services

Partition Management Services refer to the services that a partition can invoke to get its own status
or other partition status or perform actions on them.

Services are:

Name Description Constraints
DRAL_GET_PARTITION_ID Access to the partition identifier. Normal
DRAL_GET_PARTITION_ID_BY_NAME | Access to the partition identifier from the partition | System
name. /Normal
DRAL_GET_PARTITION_STATUS Returns the status of a partition. The result is a data | System

structure that provides some information related to | /Normal
the current partition status.

DRAL_SET_PARTITION_MODE It provides to a partition the ability to change its own | System
status or the status of other partition. Actions to be | /Normal
invoked are:

- Perform a cold reset on a partition. As result of this
invocation, the partition is reset and boots. A counter

31.03.2015 DREAMS Page 78 of 92



D2.3.1

Version 1.0 Confidentiality Level:PU

informs about the number of consecutive warm
resets have been produced. This counter is zeroed
when the cold reset is invoked.

- Perform a warm reset on a partition. As result of this
invocation, the partition is reset and boots. The reset
counter is increased.

- Perform a partition halt. As result of this invocation,
the partition is halted.

- Perform a partition suspend. As result of this
invocation, the partition is suspended.

- Perform a partition resume. As result of this
invocation, the partition is resumed.

In the case of interrupt virtualization, this service
will set the configuration details of such a layer,
for instance, interrupt masking, peripheral
binding/unbdinding, etc.

8.1.3 Process Management

These services are provided by the GuestOS.

8.1.4 Time Management Services
Time Management Services refer to the services that a partition can invoke to get time information or

set timers.

Time can be global or local. Global time is referred to a monotonic clock of the system. Local time is
referred to a partition clock that runs when the partition is executed. Timers can be set taking as

reference the global or the local time.

Services are:

Name Description Constraints
DRAL_GET_TIME Get the current time (global or local). Normal
DRAL_SET_TIMER Set a timer referred to the global or local clock. Normal

8.1.5 Inter-Partition Communication Services

A partition can send/receive messages to/from other partitions using sampling or queuing ports.

Services are:

Name Description Constraints
DRAL_CREATE_SAMPLING_PORT Creates a sampling port. Normal
DRAL_WRITE_SAMPLING_MESSAGE Writes a message in a sampling port. Normal
DRAL_READ_SAMPLING_MESSAGE Reads a message in a sampling port. Normal
DRAL_CREATE_QUEUING_PORT Creates a sampling port. Normal
DRAL_SEND_QUEUING_MESSAGE Sends a message in a queuing port. Normal
DRAL_RECEIVE_QUEUING_MESSAGE Receives a message in a queuing port. Normal
DRAL_GET_QUEUING_PORT_STATUS Gets the status of a queuing port. Normal
DRAL_CLEAR_QUEUING_PORT Removes all messages in a queuing port. Normal

31.03.2015

DREAMS Page 79 of 92




D2.3.1

Version 1.0 Confidentiality Level:PU

8.1.6 Intra-Partition Communication

These services are provided by the GuestOS.

8.1.7 Scheduling Services

A partition is scheduled under the virtualization layer policy. It is relevant for the partition to get the
information related to its own schedule. On the other hand, a partition can be interested in define
local schedules for other partitions in spare slots. How to deal with spare slots and dynamic allocation

of resources will be discussed in WP4.

GPOS sub-partitions created by KVM will also use these services to get scheduling policy details. In this
use case the RTOS system partition will be able to force a scheduling policy on partitions that offer
virtualization features (Linux/KVM partition).

Services are:

Name

Description

Constraints

DRAL_GET_PARTITION_SCHEDULE

Gets the information of the partition schedule in a | Normal

MAF.
DRAL_GET_PARTITION_SCHEDULE_STATUS | Gets the information related to the current execution | Normal
slot.
DRAL_SET_MODULE_SCHEDULE Requests for a schedule plan change. System
DRAL_GET_MODULE_SCHEDULE_STATUS | Gets the current schedule plan status. Normal

8.1.8 Monitoring Services (Health Monitor)

A partition can raise health monitor (HM) events to the virtualization layer. These HM events are
detected and generated by the application or the partition runtime. The events that the partition can

raise are:

e APPLICATION ERROR: An error in the application.

e DEADLINE MISSED: A deadline miss has been detected.

e NUMERIC ERROR: The application has detected a numeric error.

e STACK OVERFLOW: The partition detects a stack overflow.

o  MEMORY VIOLATION: The partition detects an illegal memory access.

Services are:

Name Description Constraints
DRAL_GET_ERROR_STATUS Permits to the partition to access to the reported | Normal
errors.
DRAL_RAISE_APPLICATION_ERROR The partition raises an HM event that will be handled | Normal
by the virtualization layer

8.1.9 Configuration services

The following table summarizes what constitutes configurations services, i.e. all services that allow for

reconfiguration of the system:

Name
DRAL_SET_MODULE_SCHEDULE

Description

Requests for a schedule plan change.

Constraints
System

31.03.2015

DREAMS

Page 80 of 92




D2.3.1 Version 1.0 Confidentiality Level:PU

DRAL_SET_PARTITION_MODE It provides to a partition the ability to change its own | System
status or the status of other partition. Actions to be | /Normal
invoked are:

- Perform a cold reset on a partition. As result of this
invocation, the partition is reset and boots. A counter
informs about the number of consecutive warm
resets have been produced. This counter is zeroed
when the cold reset is invoked.

- Perform a warm reset on a partition. As result of this
invocation, the partition is reset and boots. The reset
counter is increased.

- Perform a partition halt. As result of this invocation,
the partition is halted.

- Perform a partition suspend. As result of this
invocation, the partition is suspended.

- Perform a partition resume. As result of this
invocation, the partition is resumed.

DRAL_SET_SYSTEM_MODE Provides to a partition the ability to change the status | System
of the virtualization layer. Actions to be invoked are:
- Perform a cold reset on the system. As result of this
invocation, the system is reset and boots. A counter
informs about the number of consecutive warm
resets have been produced. This counter is zeroed
when the cold reset is invoked.
- Perform a warm reset on the system. As result of this
invocation, the system is reset and boots. The reset
counter is increased.
- Perform a system halt. As result of this invocation,
the system is halted. A physical reset is required to
restart the system.

31.03.2015 DREAMS Page 81 of 92



D2.3.1

Version 1.0 Confidentiality Level:PU

9 Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Barham, P. a. (2003). Xen and the art of virtualization. In P. o. principles (Ed.). (pp. 164-177).
New York: ACM

A. Addisu, L. George, V. Sciandra, and M. Agueh. Mixed criticality scheduling applied to jpeg2000
video streaming over wireless multimedia sensor networks. In Proc. WMC, RTSS, pages 55-60,
2013.

Common criteria for information technology security evaluation, July 2009. Version 3.1 Rev. 3.
CCMB- 2009-07-001.

Common criteria for information technology security evaluation, July 2009. Version 3.1 Rev. 3.
CCMB- 2009-07-002.

Common criteria for information technology security evaluation, July 2009. Version 3.1 Rev. 3.
CCMB- 2009-07-003.

Information Assurance Directorate. SKPP: Separation kernel protection profile, Version 1.03 29
June 2007.

Xilinx. Zyng-7000 All Programmable SoC — Technical Reference Manual. UG585 v1.8.1.
September 19, 2014.

Fent Innovative Software Solutions, “XtratuM Hypervisor for ARM CORTEX-A9 SMP — User
Manual.”, fnts-xm-um-arm-121b, March, 2014.

Gosain, Yashu and Palanichamy, Prushothaman. Xilinx. White Paper: TrustZone Technology
Support in Zyng-7000 All Programmable SoCs. May 20, 2014.

Fent Innovative Software Solutions, “XtratuM Hypervisor for ARM CORTEX-A9 SMP —
Reference Manual.”, fnts-xm-rm-arm-122a, March, 2014.

31.03.2015 DREAMS Page 82 of 92



D2.3.1 Version 1.0

Confidentiality Level:PU

APPENDIX 1

e  X86-XSD (XML Schema Definition):

<?xml version="1.0"?>
<x chema targetNamespace="http://www.xtratum.org/xm-3.x"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns="http://www.xtratum.org/xm-3.x"

elementFormDefault="qualified" attributeFormDefault="unqualified">
<!-- Basic types definition -->

name="id t">

restriction base="xs:integer">

minInclusive value="0"/>

riction>

mpleType name="idString t'">

estriction base="xs:string">

minLength value="1"/>

restriction>

mpleType>

s:simpleType name="hwIrqId t'">

estriction base="xs:integer">

minIncl ve value="0"/>

maxExclusive value=" 16
</xs:restriction>

</xs:simpleType>

mpleType name="hwIrqIdList t">

:list itemType="hwIrqgId t"/>

mpleType>

impleType name="idList t'">

ist itemType="id t"/>

</xs:simpleType>

<xs:simpleType name="hex t">

<xs:restriction base="xs:string">

rn value="0x[0-9a-fA-F]+"/>
restriction>

simpleType>

mpleType name="version t">

<xs:p ern value="[0-9]+.[0-9]+.[0-9]+"/>
</xs:restriction>
simpleType>
mpleType name="freqUnit t">
estriction base="xs:string">
rn value="[0-9]+(.[0-9]+)?([MK] [Hh]z)"/>

mpleType name="processorFeatures t'">
restriction base="xs:string">
enumeration value="XM CPU LEON2 WA1l"/>
enumeration value="none"/>
restriction>

mpleType name="processorFeaturesList t">
:list itemType="processorFeatures t"/>

name="partitionFlags t">
estriction base="xs:string">

ion value="system"/>
enumeration value="fp"/>

ion value="none"/>

> tion>

mpleType>

mpleType name="partitionFlagsList t'">
ist itemType="partitionFlags t"/>
simpleType> N
mpleType name="sizeUnit t'">

riction base="xs:string">

rn value="[0-9]+(.[0-9]+)?([MK]?B)"/>
iction>

mpleType name="timeUnit t'">
riction base="xs:string">
tern value="[0-9]+(.[0-9]+)?([mu]?[sS])"/>
iction>
impleType>
mpleType name="traceHyp t'">
estriction base="xs:string">
enumeration value="HYP IRQS "/>
enumeration value="HYP HCALLS"/>
enumeration value="HYP SCHED"/>
enumeration value= ”HYP:HM"/>
:restriction>
mpleType>
mpleType name="traceHypList t'">
list itemType="traceHyp t"/>
simpleType> N
<!--@ \void{<track id="xml-list-hm-events">} @-->
<xs:simpleType name="hmString t">
:restriction base="xs:st}ing">
enumeration value="XM HM EV_INTERNAL ERROR"/>
enumeration value="XM HM EV_SYSTEM ERROR"/>
enumeration value="XMiHmiEviPARTIT}ONiERROR"/>
enumeration value="XM HM EV_WATCHDOG TIMER"/>

"/

31.03.2015 DREAMS

Page 83 of 92



Version 1.0

Confidentiality Level:PU

renumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
:enumeration

enumeration
re
</xs:simpleType>

iction>

enumeration
renumeration
enumeration
enumeration
enumeration
s:enumeration
renumeration
enumeration
enumeration
enumeration
enumeration
:restriction>
mpleType>

mpleType name=
striction base="xs:string">

value="XM HM EV_FP_ERROR"/>

value="XM HM EV_MEM PROTECTION"/>
value="XM HM EV_UNEXPECTED TRAP"/>

value="XM HM EV_X86_ DIVIDE ERROR"/>

value="XM HM EV _X86 DEBUG"/>

value="XM HM EV _X86 NMI_INTERRUPT"/>

value="XM HM EV_X86_ BREAKPOINT"/>

value="XM HM EV_X86 OVERFLOW"/>

value="XM HM EV _X86 BOUND RANGE EXCEEDED"/>
value="XM HM EV_X86_ INVALID OPCODE"/>
value="XM HM EV_X86 DEVICE NOT AVAILABLE"/>
value="XM HM EV _X86 DOUBLE FAULT"/>

value="XM HM EV_X86_COPROCESSOR SEGMENT OVERRUN"/>
value="XM HM EV_X86 INVALID TSS"/>

value="XM HM EV X86 SEGMENT NOT PRESENT"/>
value="XM HM EV_X86 STACK FAULT"/>

value="XM HM EV_X86 GENERAL PROTECTION"/>
value="XM HM EV _X86 PAGE FAULT"/>

value="XM HM EV_X86 X87 FPU ERROR"/>

value="XM HM EV_X86_ ALIGNMENT CHECK"/>
value="XM HM EV X86 MACHINE CHECK"/>

value="XM HM EV _X86 SIMD FLOATING POINT"/>

"hmAction t'">

value="XM HM AC IGNORE"/>

value="XM HM AC SHUTDOWN"/>
value="XM HM AC PARTITION COLD RESET"/>
value="XM HM AC PARTITION WARM RESET"/>
value="XM HM AC HYPERVISOR COLD RESET"/>
value="XM HM AC HYPERVISOR WARM RESET"/>
value="XM HM AC SUSPEND"/>

value="XM HM AC PARTITION HALT"/>

value="XM HM AC HYPERVISOR HALT"/>
value="XM HM AC_PROPAGATE"/>

value="XM HM AC SWITCH TO_MAINTENANCE"/>

s:simpleType name="memAreaFlags t'">

enumeration
enumeration
s:enumeration
renumeration
enumeration
renumeration
enumeration
enumeration
enumeration
enumeration
enumeration
restriction>
</xs:simpleType>

mpleType>

mpleType name=

restriction base="xs:string">

value="unmapped"/>
value="shared"/>
value="read-only"/>
value="uncacheable"/>
value="rom"/>
value="flag0"/>
value="flagl"/>
value="flag2"/>
value="flag3"/>
value="iommu" />
value="none"/>

mpleType name="memAreaFlagsList t'">
itemType="memAreaFlags t"/>

"memRegion t'">

<xs:restriction base="xs:string">

<xs:enumeration

<xs:enumeration

</xs:restriction>
</xs:simpleType>

value="ram"/>
value="rom"/>

<xs:simpleType name="portType t'">
<xs:restriction base="xs:string">

<xs:enumeration

<xs:enumeration
</xs:restriction>
impleType>

<xs:simpleType name=
restriction base="xs:string">

<x

<xs:enumeration
<xs:enumeration
iction>

value="queuing"/>
value="sampling"/>
"direction t">

value="source"/>
value="destination"/>

<xs:simpleType name="yntf t'">

e

enumeration

enumeration
enumeration
</xs:restriction>

triction base="xs:string">

value="yes"/>
value="no"/>
value="true"/>
value="false"/>

</xs mpleType>
<!-- End Types -->
<!-- Elements -->
<!-- Hypervisor -->

<xs:complexType

attribute

<!-- Rsw -->
:complexType

name="hypervisor_e">

name="PhysicalMemoryArea" type="hypMemoryArea e"/>

name="HealthMonitor" type="healthMonitor e" minOccurs="0"/>

name="Trace" type="traceHyp e" minOccurs="0"/>

name="console" type="idString t" use="optional"/>

name="healthMonitorDevice" type="idString t" use="optional"/>
~omplexType>

—n

name="rsw_e'">

</xs:complexType>

<!-- Partition

-—>

31.03.2015

DREAMS

Page 84 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

<xs:complexType name="partition e">

<xs:all>
:element name="PhysicalMemoryAreas" type="memoryArea e"/>
lement name="TemporalRequirements" minOccurs="0">
<xs:complexType>

<xs:attribute name="period" type="timeUnit t" use="required"/>
attribute name="duration" type="timeUnit t" use="required"/>
complexType>
lement>
lement name="HealthMonitor" type="healthMonitor e" minOccurs="0"/>
:element name="HwResources" type="hwResources e" minOccurs="0"/>
name="PortTable" type="partitionPorts e" minOccurs="0"/>
name="Trace" type="trace e" minOccurs="0"/>

name="id" type="id t" use="required"/>
name="name" type="idString t" use="optional"/>
name="console" type="idString t" use="optional"/>
name="flags" type="partitionFlagsList t" use="optional" default="none"/>
name="noVCpus" type="xs:positivelInteger" use="optional"” default="1"/>
</xs:complexType>
<!-- Trace -->
<xs:complexType name="trace e'">
s:attribute name="device"” type="idString t" use="required"/>
ibute name="bitmask" type="hex t" use="required"/>
</xs:complexType>
<xs:complexType name="traceHyp e'">
<xs tribute name="device" type="idString t" use="required"/>
<x tribute name="bitmask" type="traceHypList t" use="required"/>
</xs:complexType>
<!-- Communication Ports -->
<xs:complexType name="partitionPorts e'">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<x lement name="Port'">
<xs:complexType>
<xs:attribute name="name" type="idString t" use="required"/>
<xs:attribute name="direction" type="direction t" use="required"/>
<xs:attribute name="type" type="portType t" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Channels -->
<xs:complexType name="channels e'">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element name="Ipvi">
<xs:complexType>
<xs:attribute name="id" type="id t" use="required"/>
<xs:attribute name="sourceId" type="id t" use="required"/>
<xs:attribute name="destinationId" type="idList t" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="SamplingChannel'">
<xs:complexType>
<xs:sequence minOccurs="1">
<xs:element name="Source" type="ipcPort e"/>
sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Destination" type="ipcPort e"/>
sequence>
</xs:sequence>
<xs:attribute name="maxMessageLength" type="sizeUnit t" use="required"/>
<xs:attribute name="validPeriod" type="timeUnit t" use="optional"” default="0s"/>
</xs:complexType>
</xs:element>
<xs:element name="QueuingChannel">
<xs:complexType>
<xs:all minOccurs="1">
<xs:element name="Source" type="ipcPort e"/>
<xs:element name="Destination" type="ipcPort e"/>
</xs:all>
<xs:attribute name="maxMessageLength" type="sizeUnit t" use="required"/>
<xs:attribute name="maxNoMessages" type='"xs:positiveInteger" use="required"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:complexType>
<!-- Devices -->
<xs:complexType name="devices e">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element name="MemoryBlock" minOccurs="0">
<xs:complexType>
<xs:attribute name="name" type="idString t" use="required"/>
<xs:attribute name="start" type="hex t" use="required"/>
<xs:attribute name="size" type="sizeUnit t" use="required"/>
</xs:complexType>
element>
s:element name="Uart" minOccurs="0">
<xs:complexType>
ttribute name="name" type="idString t" use="required"/>
rattribute name="id" type="idString t" use="required"/>
<xs:attribute name="baudRate" type="xs:positivelnteger" use="required"/>
complexType>
element>
<xs:element name="Vga" minOccurs="0" maxOccurs="1">
complexType>
rattribute name="name" type="idString t" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Null" minOccurs="0">
<xs:complexType>

31.03.2015 DREAMS Page 85 of 92



D2.3.1 Version 1.0

Confidentiality Level:PU

<xs: ibute name="name" type="idString t" use="optional"/>
</xs:complexType>
</xs:element>
</ hoice>

</xs:sequence>
</xs:complexType>
<!-- IPC Port -->
<xs:complexType name="ipcPort e">

<xs tribute name="partitionId" type="id t" use="required"/>
tribute name="partitionName" type="idString t" use="optional"/>
attribute name="portName" type="idString t" use="required"/>
</xs:complexType>
<!-- Hw Description -->
<xs:complexType name="hwDescription e">
equence>
lement name="MemoryLayout" type="memoryLayout e"/>
:element name="ProcessorTable'">
<xs:complexType>
equence minOccurs="1" maxOccurs="256">
:element name="Processor" type="processor e"/>
sequence>
:complexType>
element>
lement name="Devices" type="devices e"/>

</xs:sequence>
</xs:complexType>

<!-- Processor -->
<xs:complexType name="processor e'">
<!-- <xs:all>

<xs:element name="CyclicPlanTable" type="cyclicPlan e"/>
</xs:all> -->
<xs:choice>
:element name="CyclicPlanTable" type="cyclicPlan e"/>
lement name="FixedPriority" type="fixedPrio e"/>
</xs:choice>
<xs
<xs

—n;

ibute name="id" type="id t" use="required"/>
ibute name="frequency" type="freqUnit t" use="optional"/>

<xs:attribute name="features" type="processorFeaturesList t" use="optional" default="none"/>
</xs:complexType>
<!-- HwResource -->
<xs:complexType name="hwResources e'">
<xs:all>
<x lement name="IoPorts" type="ioPorts e" minOccurs="0"/>

<xs:element name="Interrupts" minOccurs="0">
<xs:complexType>
tribute name="lines" type="hwIrqIdList t" use="required"/>
complexType>
s:element>
</xs:all>
</xs:complexType>
<!-- Io Ports -->
<xs:complexType name="ioPorts e'">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element name="Range'>
<xs:complexType>
<xs ibute name="base" type="hex t" use="required"/>
<xs tribute name="noPorts" type="xs:positivelnteger" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Restricted">
<xs:complexType>
<xs tribute name="address" type="hex t" use="required"/>
<xs:attribute name="mask" type="hex t" use="optional"” default="0x0"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:complexType>
<!-- Fixed priority -->
<xs:complexType name="fixedPrio e'">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Partition">
<xs:complexType>
<xs:attribute name="id" type="id t" use="required"/>
<xs:attribute name="vCpuId" type="id t" use="optional" default="0"/>
<xs:attribute name="priority" type="xs:positivelnteger" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- CyclicPlan -->
<xs:complexType name="cyclicPlan e'">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Plan" type="plan e"/>
</xs:sequence>
</xs:complexType>
<!-- Plan -->
<xs:complexType name="plan e'">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Slot'">
complexType>
ribute name="id" type="id t" use="required"/>
name="start" type="timeUnit t" use="required"/>
name="duration" type="timeUnit t" use="required"/>
name="partitionId" type="id t" use="required"/>
name="vCpulId" type="id t" use="optional" default="0"/>

complexType>
</xs:element>
</xs:sequence>
<xs: ribute name="name" type="idString t" use="optional"/>
<xs: ibute name="id" type="id t" use="required"/>

31.03.2015 DREAMS

Page 86 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

<xs:attribute name="majorFrame" type="timeUnit t" use="optional" default="0s"/>
</xs:complexType>
<!-- Health Monitor -->
<xs:complexType name="healthMonitor e">
equence minOccurs="1" maxOccurs="unbounded">
element name="Event'">
:complexType>
ribute name="name" type="hmString t" use="required"/>
tribute name="action" type="hmAction t" use="required"/>
tribute name="log" type="yntf t" use="required"/>

equence>

:complexType>
<!-- Memory Layout -->
<xs:complexType name="memoryLayout e'">

quence minOccurs="1" maxOccurs="unbounded">
element name="Region">
:complexType>

ribute name="type" type="memRegion t" use="required"/>
ttribute name="start" type="hex t" use="required"/>
tribute name="size" type="sizeUnit t" use="required"/>
~omplexType>

s:element>

sequence>
</xs:complexType>
<!-- Hypervisor Memory Area -->

s:complexType name="hypMemoryArea e'>
ribute name="size" type="sizeUnit t" use="required"/>
tribute name="flags" type="memAreaFlagsList t" use="optional"/>
s:complexType>
Memory Area -->
<xs:complexType name="memoryArea e'">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Area">

name="name" type="idString t" use="optional"/>
name="start" type="hex t" use="required"/>
name="size" type="sizeUnit t" use="required"/>
name="flags" type="memAreaFlagsList t" use="optional" default="none"/>
t name="mappedAt" type="hex t" use="optional"/>
default="" -->
omplexType>
</xs:element>

</xs:sequence>

</xs:complexType>

<!-- Root Element -->
<xs:element name="SystemDescription">
<x omplexType>

<xs:all>
<xs:element name="HwDescription" type="hwDescription e"/>
<xs:element name="XMHypervisor" type="hypervisor e"/>
<xs:element name="ResidentSw" type="rsw_e" minOccurs="0"/>
<xs:element name="PartitionTable">
<xs:complexType>
equence maxOccurs="unbounded">
:element name="Partition" type="partition e"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Channels" type="channels e" minOccurs="0"/>
</x 11>

ibute name="version" type="version t" use="required"/>

tribute name="name" type="idString t" use="required"/>
</xs:complexType>

</xs:element>

<!-- End Root Element -->

<!-- Elements -->

</xs:schema>

e  ARM-XSD (XML Schema Definition):

"1.0me>
espace="http://www.xtratum.org/xm-3.x"
s:x http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.xtratum.org/xm-3.x"

<?xml versio
<xs:schema

elementFormDefault="qualified"

attributeFormDefault="unqualified">
<!-- Basic types definition -->
<xs:simpleType name="id t">

<x

:restriction base="xs:integer">
<xs:minInclusive value="0"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="idString_t">
e="xs:string">
/>

<xs:restriction ba
<xs:minLength value=
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="hwIrqId_ t">
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxExclusive value="96"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="hwIrqgIdList_ t">
<xs:list itemType="hwIrgId_t"/>

31.03.2015 DREAMS Page 87 of 92


http://www.xtratum.org/xm-3.x
http://www.w3.org/2001/XMLSchema
http://www.xtratum.org/xm-3.x

D2.3.1 Version 1.0 Confidentiality Level:PU

</xs:simpleType>
<xs:simpleType name="idList_ t">
<xs:list itemType="id t"/>
</xs:simpleType>
<xs:simpleType name="hex t">
<xs:restriction base="xs:string">
<xs:pattern value="0x[0-9a-fA-F]+"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="version_t">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]+.[0-9]+.[0-9]+"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="freqUnit_ t">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]+(.[0-9]+)? ([MK] [Hh]z)"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="processorFeatures_ t">
<xs:restriction base="xs:string">
<xs:enumeration value="XM CPU_LEON2_WAl"/>
<xs:enumeration value="none"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="discipline t">
<xs:restriction base="xs:string">
<xs:enumeration value="FIFO"/>
<xs:enumeration value="PRIORITY"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="processorFeaturesList_ t">
<xs:list itemType="processorFeatures_ t"/>
</xs:simpleType>
<xs:simpleType name="partitionFlags_ t">
<xs:restriction base="xs:string">
<xs:enumeration value="system"/>
<xs:enumeration value="fp"/>
<xs:enumeration value="boot"/>
<xs:enumeration value="icache disabled"/>
<xs:enumeration value="dcache_disabled"/>
<xs:enumeration value="none"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="partitionFlagsList t">
<xs:list itemType="partitionFlags_t"/>
</xs:simpleType>
<xs:simpleType name="sizeUnit_ t">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]+(.[0-9]+)? ([MK]?B)"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="timeUnit_ t">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]+(.[0-9]+)? ([mu]?[sS])"/>
</xs:restriction>
</xs:simpleType>
<!--@ \void{<track id="xml-list-hm-events">} @-->
<xs:simpleType name="hmString t">
<xs:restriction base="xs:string">
<xs:enumeration value="XM HM EV_INTERNAL_ERROR"/>
<xs:enumeration value="XM HM EV_UNEXPECTED_TRAP"/>
<xs:enumeration value="XM HM EV_PARTITION_ERROR"/>
<xs:enumeration value="XM HM EV_PARTITION INTEGRITY"/>
<xs:enumeration value="XM HM EV_MEM PROTECTION"/>
<xs:enumeration value="XM HM EV_OVERRUN"/>
<xs:enumeration value="XM HM EV_SCHED_ ERROR"/>
<xs:enumeration value="XM HM EV_WATCHDOG_TIMER"/>
<xs:enumeration value="XM HM EV_INCOMPATIBLE_INTERFACE"/>
<xs:enumeration value="XM HM EV_ARM UNDEF_INSTR"/>
<xs:enumeration value="XM HM EV_ARM PREFETCH_ABORT"/>
<xs:enumeration value="XM HM EV_ARM DATA ABORT"/>
<xs:enumeration value="XM HM EV_ARM DATA ALIGNMENT_ FAULT"/>
<xs:enumeration value="XM HM EV_ARM DATA BACKGROUND_ FAULT"/>
<xs:enumeration value="XM HM EV_ARM DATA PERMISSION_ FAULT"/>
<xs:enumeration value="XM HM EV_ARM INSTR_ALIGNMENT_ FAULT"/>
<xs:enumeration value="XM HM EV_ARM INSTR_BACKGROUND FAULT"/>
<xs:enumeration value="XM HM EV_ARM INSTR_ PERMISSION_FAULT"/>
</xs:restriction> B
</xs:simpleType>
<!--@ \void{</track id="xml-list-hm-events">} @-->
<!--@ \void{<track id="xml-list-hm-actions">} @-->
<xs:simpleType name="hmAction_t">
<xs:restriction base="xs:string">
<xs:enumeration value="XM HM AC_IGNORE"/>
<xs:enumeration value="XM_HM AC_SHUTDOWN"/>
<xs:enumeration value="XM HM AC_PARTITION_ COLD RESET"/>
<xs:enumeration value="XM HM AC_PARTITION WARM RESET"/>
<xs:enumeration value="XM HM AC_HYPERVISOR COLD RESET"/>
<xs:enumeration value="XM HM AC_HYPERVISOR_WARM RESET"/>
<xs:enumeration value="XM HM AC_SUSPEND"/>
<xs:enumeration value="XM_HM AC_HALT"/>
<xs:enumeration value="XM HM AC_PROPAGATE"/>
<xs:enumeration value="XM HM AC_SWITCH TO MAINTENANCE" />
</xs:restriction>
</xs:simpleType>
<!--@ \void{</track id="xml-list-hm-actions">} @-->
<xs:simpleType name="memAreaFlags_t">
<xs:restriction base="xs:string">
<xs:enumeration value="unmapped"/>
<xs:enumeration value="read-only"/>
<xs:enumeration value="uncacheable"/>

31.03.2015 DREAMS Page 88 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

<xs:enumeration value="rom"/>
<xs:enumeration value="flag0"/>
<xs:enumeration value="flagl"/>
<xs:enumeration value="flag2"/>
<xs:enumeration value="flag3"/>
<xs:enumeration value="none"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="memAreaFlagsList t">
<xs:list itemType="memAreaFlags t"/>
</xs:simpleType>
<xs:simpleType name="slotFlags_t">
<xs:restriction base="xs:string">
<xs:enumeration value="periodStart"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="slotFlagsList_ t">
<xs:list itemType="slotFlags_t"/>
</xs:simpleType>
<xs:simpleType name="memRegion_ t">
<xs:restriction base="xs:string">
<xs:enumeration value="sdram"/>
<xs:enumeration value="stram"/>
<xs:enumeration value="rom"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="portType t">
<xs:restriction base="xs:string">
<xs:enumeration value="queuing"/>
<xs:enumeration value="sampling"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="direction_t">
<xs:restriction base="xs:string">
<xs:enumeration value="source"/>
<xs:enumeration value="destination"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="yntf t">
<xs:restriction base="xs:string">

_n

<xs:enumeration value="yes"/>

<xs:enumeration
<xs:enumeration
<xs:enumeration

value="no"/>
value="true"/>
value="false"/>

</xs:restriction>
</xs:simpleType>
<!-- End Types -->
<!-- Elements -->
<!-- Hypervisor -->
<xs:complexType name="hypervisor_e">
<xs:all>
<xs:element name="PhysicalMemoryArea" type="hypMemoryArea e"/>
<xs:element name="HealthMonitor" type="healthMonitor_ e" minOccurs
</xs:all>
<xs:attribute name="console" type="idString t" use="optional" />
</xs:complexType>
<!-- Rsw -->
<xs:complexType name="rsw_e">
<xs:all>
<xs:element name="PhysicalMemoryAreas" type="memoryArea e"/>
</xs:all>
</xs:complexType>

<!-- Partition -->
<xs:complexType name="partition_ e">
<xs:all>

<xs:element name="PhysicalMemoryAreas" type="memoryArea e"/>
<xs:element name="TemporalRequirements" minOccurs="0">
<xs:complexType>
<xs:attribute name="period" type="timeUnit_ t" use="required"/>
<xs:attribute name="duration" type="timeUnit_ t" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="HealthMonitor" type="healthMonitor_ e" minOccurs="0" />
<xs:element name="HwResources" type="hwResources_e" minOccurs="0 />
<xs:element name="PortTable" type="partitionPorts_e" minOccurs="0" />
</xs:all>
<x ttribute name="id" type="id t" use="required"/>
<xs:attribute name="name" type="idString t" use="optional" />
<xs:attribute name="console" idString_t" use="optional" />
<xs:attribute name="flags" partitionFlagsList_t" use="optional" default="none" />
</xs:complexType>
<!-- Communication Ports -->
<xs:complexType name="partitionPorts_e">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Port">
<xs:complexType>
<xs:attribute name="name" type="idString t" use="required"/>
rattribute name="direction" type="direction_t" use="required"/>
ttribute name="type" type="portType t" use="required"/>
<xs:attribute name="discipline" type="discipline_ t" use="optional" />
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Channels -->
<xs:complexType name="channels_e">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element name="Ipvi">
<xs:complexType>
<xs:attribute name="id" type="id t" use="required"/>
<xs:attribute name="sourceId" type="id t" use="required"/>

31.03.2015 DREAMS Page 89 of 92



D2.3.1 Version 1.0 Confidentiality Level:PU

<xs:attribute name="destinationId" type="idList t" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="SamplingChannel">
<xs:complexType>
<xs:sequence minOccurs="1">
<xs:choice>
<xs:element name="Source" type="ipcPort_e" />
</xs:choice>
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:choice>
<xs:element name="Destination" type="
</xs:choice>
</xs:sequence>
</xs:sequence>
<xs:attribute name="maxMessageLength" type="sizeUnit_ t" use="required"/>
<xs:attribute name="refreshPeriod" type="timeUnit_t" use="optional" default="0s"/>
</xs:complexType>
</xs:element>
<xs:element name="QueuingChannel">
<xs:complexType>
<xs:sequence minOccurs="1">
<xs:choice>
<xs:element name="Source" type="
</xs:choice>
<xs:choice>
<xs:element name="Destination" type="ipcPort_e" />
</xs:choice>
</xs:sequence>
<xs:attribute name="maxMessageLength" type="sizeUnit_ t" use="required"/>
<xs:attribute name="maxNoMessages" type="xs:positivelnteger" use="required"/>
<xs:attribute name="maxTimeExpiration" type="timeUnit_ t" use="optional" default="0s"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:complexType>
<!-- Devices -->
<xs:complexType name="devices_e">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element name="MemoryBlock" minOccurs="0">
<xs:complexType>
<xs:attribute name="name" type="idString t" use="required"/>
<xs:attribute name="start" type="hex t" use="required"/>
<xs:attribute name="size" type="sizeUnit_ t" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Uart" minOccurs="0">
<xs:complexType>
<xs:attribute name="name" type="idString t" use="required"/>
<xs:attribute name="id" type="idString t" use="required"/>
<xs:attribute name="baudRate" type="xs:positivelnteger" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Null" minOccurs="0">
<xs:complexType>
<xs:attribute name="name" type="idString t" use="optional" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:complexType>
<!-- IPC Port —-->
<xs:complexType name="ipcPort_e">
<xs:attribute name="partitionId" type="id t" use="required"/>
<xs:attribute name="partitionName" type="idString t" use="optional" />
<xs:attribute name="portName" type="idString t" use="required"/>
</xs:complexType>
<!-- Hw Description -->
<xs:complexType name="hwDescription_e">
<Xs:sequence>
<xs:element name="MemoryLayout" type="memoryLayout_e"/>
<xs:element name="ProcessorTable">
<xs:complexType>
<xs:sequence minOccurs="1" maxOccurs="256">
<xs:element name="Processor" type="processor_e" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Devices" type="devices_e"/>
</xs:sequence>
</xs:complexType>

ipcPort_e"/>

ipcPort_e" />

<!-- Processor -->
<xs:complexType name="processor e">
<xs:all> N
<xs:element name="CyclicPlanTable" type="cyclicPlan e"/>
</xs:all> B

name="1id" type="id_t" use="required"/>
name="frequency" type="freqUnit t" use="optional" />
name="features" type="processorFeaturesList_t" use="optional" default="none"/>

<xs:attribute name="console" type="idString t" use="optional" />
</xs:complexType>
<!-- HwResource -->
<xs:complexType name="hwResources_e">

<xs:all>

<xs:element name="IoPorts" type="ioPorts_e" minOccurs="0" />
<xs:element name="Interrupts" minOccurs="0">
<xs:complexType>
<xs:attribute name="lines" type="hwIrqIdList_ t" use="required"/>
</xs:complexType>
</xs:element>

31.03.2015 DREAMS Page 90 of 92



D2.3.1 Version 1.0

Confidentiality Level:PU

<xs:element name="APBDev" type="APBDeviceType" minOccurs="0"/>
</xs:all>
</xs:complexType>
<!-- TIo Ports -->
<xs:complexType name="ioPorts_e">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element name="Range">
<xs:complexType>
<xs:attribute name="base" type="hex t" use="required"/>

<xs:attribute name="noPorts" type="xs:positiveInteger" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Restricted">
<xs:complexType>

<xs:attribute name="address" type="hex t" use="required"/>
<xs:attribute name="mask" type="hex t" use="optional" default="0x0"/>

</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:complexType>
<!-- APBId -->
<xs:simpleType name="APBDevice e">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:complexType name="APBDeviceType">
<xs:attribute name="device" type="APBDevice e"/>
</xs:complexType>
<!-- CyclicPlan -->
<xs:complexType name="cyclicPlan_e">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Plan" type="plan_e" />
</xs:sequence>
</xs:complexType>
<!-- Plan -->
<xs:complexType name="plan_e">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Slot">
<xs:complexType>
<xs:attribute name="id" type="id t" use="required"/>
<xs:attribute name="start" type=

</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="idString t" use="optional"/>
<xs:attribute name="id" type="id t" use="required"/>

<xs:attribute name="majorFrame" type="timeUnit t" use="required"/>

</xs:complexType>
<!-- Health Monitor -->
<xs:complexType name="healthMonitor_e">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Event">
<xs:complexType>

<xs:attribute name="name" type="hmString t" use="required"/>
<xs:attribute name="action" type="hmAction_ t" use="required"/>

<xs:attribute name="log" type="yntf t" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Memory Layout -->
<xs:complexType name="memoryLayout_ e">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Region">
<xs:complexType>

<xs:attribute name="type" type="memRegion_t" use="required"/>

<xs:attribute name="start" type required"/>

"hex_t" use

<xs:attribute name="size" type="sizeUnit_ t" use="required"/>

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Hypervisor Memory Area -->
<xs:complexType name="hypMemoryArea e">
<xs:attribute name="size" type="sizeUnit_ t" use="required"/>

<xs:attribute name="flags" type="memAreaFlagsList_t" use="optional"/>

</xs:complexType>

<!-- Memory Area -->

<xs:complexType name="memoryArea_ e">

<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Area">
<xs:complexType>
<xs:attribute name="name" type="idString_ t" use="optional"
: name="start" type="hex t" use="required"/>

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Root Element -->
<xs:element name="SystemDescription">
<xs:complexType>
<xs:all>
<xs:element name="HwDescription" type="hwDescription_e" />
<xs:element name="XMHypervisor" type="hypervisor_ e"/>

'timeUnit_t" use="required"/>
<xs:attribute name="duration" type="timeUnit_ t" use="required"/>
<xs:attribute name="partitionId" type="id t" use="required"/>
<xs:attribute name="vCpuld" type="id t" use="optional" default="0"/>
<xs:attribute name="flags" type="slotFlagsList_ t" use="optional"/>

name="size" type="sizeUnit_ t" use="required"/>
name="flags" type="memAreaFlagsList_t" use="optional" defaul
<xs:attribute name="mappedAt" type="hex t" use="optional"/> <!-- default="

31.03.2015 DREAMS

Page 91 of 92



D2.3.1 Version 1.0

Confidentiality Level:PU

<xs:element name />

"ResidentSw" e="rsw_e" minOcc
'"PartitionTable">

omplexType>
juence max

<xs:element na

“u unbounded">
="Partition" type="partition_e" />

element name
equence>
s:complexType>
element>

element name="Channels" type="channels e" min

o" />

tribute name="version" /pe="version_t"

"idString t" u

=="required"/>
required"/>

ribute name="name" ty
</xs:complexType>

lement>

<!-- End Root Element -->

<!-- Elements -->

</xs:schema>

31.03.2015 DREAMS

Page 92 of 92



