
 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Distributed Real-time Architecture for 
Mixed Criticality Systems 

 

Integration and Support Report 

D 3.4.1 
 

 

 

 

 

 

 

  

Project Acronym DREAMS 
Grant Agreement 
Number 

FP7-ICT-2013.3.4-610640 

Document Version 1.0 Date 30.06.2017 Deliverable No. 3.4.1 

Contact Person Andreas Eckel Organisation TTTech Computertechnik AG 

Phone +43 1 585 34 34 16 E-Mail andreas.eckel@tttech.com 



 

 

Contributors 

Name Partner 

Thomas Koller USIEGEN 

Obaid Ur-Rehman USIEGEN 

Andreas Eckel TTT 

Cristina Zubia, Félix Casado IKL 

Anton Trapman ALSTOM 

  

  

  



 

 

Table of Contents 

Contributors ............................................................................................................................................ 2 

Abstract ................................................................................................................................................... 4 

1 Introduction ..................................................................................................................................... 5 

1.1 Structure of the Deliverable .................................................................................................... 5 

1.2 Process for Preparation of the Deliverable ............................................................................. 5 

1.3 Relationship to other DREAMS Deliverables ........................................................................... 5 

1.4 Consideration of Requirements .............................................................................................. 5 

2 Cluster Communication Services ..................................................................................................... 6 

3 Global Resource Management Services .......................................................................................... 8 

3.1 Introduction ............................................................................................................................. 8 

3.2 Resource management in avionics demonstrator .................................................................. 9 

3.3 Resource management communication ............................................................................... 11 

3.4 Platform configuration file (PCF) ........................................................................................... 11 

3.5 Global reconfiguration graph ................................................................................................ 13 

4 Security and Safety Services .......................................................................................................... 15 

4.1 Cluster-level Security Services ............................................................................................... 15 

4.1.1 Security Services Based on MACsec Implementation ................................................... 17 

4.2 Application-Level Security Services ....................................................................................... 18 

4.3 Security Services in the Avionic Demonstrator ..................................................................... 19 

4.4 Security Services in the Healthcare Demonstrator ............................................................... 20 

5 Safety Communication Layer (SCL) ................................................................................................ 20 

5.1.1 Integration of the SCL in the wind power demonstrator .............................................. 21 

5.1.2 EtherCAT Datalogger module for SCL ............................................................................ 22 

6 Bibliography ................................................................................................................................... 40 

 

  



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 4 of 40 

Abstract 

This deliverable presents the activities related to the technical and operational assistance to the 
partners involved in the demonstrators regarding integration and maximized utility of the WP3 
developments. 
 
The scope of the document is to summarize the work of taskT3.4 which provides the means to support 
the use of the network services offered by the middleware and components in the aerospace and 
industrial control demonstrators in WP6 and WP7. It provides information on the technical and 
operational assistance to the partners involved in the demonstrator development regarding 
integration and maximized utility of the WP3 developments. 
 
The document introduces and describes the added/improved services as elaborated on in DREAMS. 
This includes the following services: 

 Cluster Communication Services 

 Global Resource Management Services 

 Security and Safety Services 
as well as the Safety Communication Layer. 

  



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 5 of 40 

1 Introduction 

This deliverable deals with the real-time architecture that was developed for the DREAMS platform 
which supports mixed criticality. The architectural approach is based on the service oriented 
architecture concepts that is already defined in GENESYS, INDEXYS, ACROSS and EMC2 projects. 
DREAMS now adds services dedicated to cluster communication, resource management and security 
& safety services in order to address the market demands in automotive-, off highway-, and industry 
4.0 industrial domains. 

1.1 Structure of the Deliverable 

This document is structured by describing the topics addressed by the following main paragraphs: 

1) Cluster Communication Services 
2) Global Resource Management Services 
3) Security & Safety Services 

1.2 Process for Preparation of the Deliverable 

This document was composed by proposing the initial structure to the team generating the subject 
inputs. Afterwards, it was filled chapter by chapter by individual partners. The input is strongly based 
on the information collected from potential customers in the above mentioned industrial domains. 
Thus it is guaranteed that the approach will be based on existing demand rather than on estimations 
that might lead to develop results that are not demanded by the markets. 

1.3 Relationship to other DREAMS Deliverables 

The document build on the results of the other tasks in WP 3, namely the Tasks T3.1, T3.2 and T3.3.  

The WP produced the following deliverables, where D3.4.1 is referencing to: 

Task 1:  

 D3.1.1 High-level Design of Mixed-Criticality Cluster Communication Services 

 D3.1.2 First Implementation of Mixed-Criticality Cluster Communication Services 

 D3.1.3 Final Implementation of Mixed-Criticality Cluster Communication Services 

Task 2 

 D3.2.1 High-level Design of Global Resource Management Services 

 D3.2.2 First Implementation of Global Resource Management Services 

 D3.2.3 Final Implementation of Global Resource Management Services 

Task 3 

 D3.3.1 High-level Design of Cluster-level Safety and Security services 

 D3.3.2 First Implementation of Cluster-level Safety and Security services 

 D3.3.3 Final Implementation of Cluster-level Safety and Security services 

The structure of the deliverables foresees three documents per Task, a general description of the 
subject service and two implementation documents, an early document (First Implementation) and a 
final version (Final Implementation). 

1.4 Consideration of Requirements 

Building on the dedicated documents of WP 3, the entire set of requirements as identified earlier in 
D1.1.1. These requirements are addressed and the solutions are implemented to an extent possible 
at this intermediate stage of the project. The implemented standards and protocols address all the 
identified requirements.  



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 6 of 40 

2 Cluster Communication Services 

The DHP stands for DREAMS Harmonized Platform, which is a Xilinx Zynq ZC706 board consisting of an 
ARM based hard-core CPU and a Xilinx FPGA (together referred to as SoC - System on Chip). The 
software running on the ARM CPU consists of XtratuM hypervisor (provided by Fentiss) and a demo 
application provided by TTTech. The demo application is periodically creating and sending Time-
Triggered (TT) data frames. The content (data payload) of the data frames consists of identical decimal 
digits that are being incremented by one for each frame (i.e. 1111111, 22222222, 3333333, then 
44444, up to 9999999 and then again 0000000, 1111111, ....). Not only the digits are being 
incremented, but the amount of these digits too. This means that the first frame contains only 1 digit, 
the second frame 2 digits, third frame 3 digits, and so on... up to the maximum allowed size of a frame, 
when the number of digits drops again to just 1 digit. In case of too short frames, the frame is 
automatically extended by the TTE driver so that the size of the frame is always not smaller than the 
minimum allowed size. 

The application is using the TTE driver for sending the created frames from the ARM CPU to the TTE 
IP core. The TTE IP core is connected to the ARM CPU by standard AMBA AXI interface via the Network-
on-Chip (NoC). In the NoC, a time-triggered extension layer (also known as LRS at on-chip NI in other 
deliverables) serves as an interface between the ARM CPU, STNoC and other tiles, that can be 
implemented in FPGA fabric the same way as the TTE IP core and the NoC. 

The TTE IP core is the Pegasus IP version 1.6. Since it is configured as clock synchronization master, it 
sends automatically PCF frames. Only after both synchronization masters are synchronized (i.e. the 
DHP and PCIe card), only then the TTE IP sends the TT frames further to the network (refer to Figure 
1). 

DHP (sync master) PC + TTTech PCIe card 
(sync master)

TTTech 24-port Pegasus 
switch (sync slave)

TT frames TT frames

 
Figure 1: Demonstration set-up 

The Zynq ZC706 board has 2 Ethernet ports - one normal port, which is not practically useful for our 
application because it is driven directly by the ARM CPU and cannot be used directly by FPGA (where 
the TTE IP core is located); the other port is the SFP port, which is connected to an SFP cage - copper 
or fiber (optical). Our demonstrator is using the optical fiber connection option. 

As of Figure 1, the TT frames are being sent from the DHP to the TTTech 24-port switch, which is 
configured as synchronization slave. It is resending those frames to the PC equipped with a TTTech 
PCIe card. Of course, since these frames are TT frames, they must arrive at the switch according to the 
communication schedule, thus at specific time in order to not become filtered (dropped) by the switch. 

The receiver (PC + PCIe card) is periodically checking whether a TT frame is received and it is printing 
out to the console the actual status. Thus whenever a TT frame is received, it is (including its data 
payload) printed to the console. If there is no frame received in any of the periods, the application 
prints out to the console that no frame was received. This way, it can be easily checked whether the 
TT frames are successfully transferred from the DHP (sender) to the PC (receiver).  

Tests proved that all TT frames are successfully transferred over the network within the specified time. 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 7 of 40 

The switch as well as the receiver consist of standard TTTech HW products, while the DHP is actually 
developed in the DREAMS project. The main idea (AFAIK) is that we are combining our TTEthernet 
(with PCF frames) + our security solution (MACsec) + XtratuM hypervisor from Fentiss + the TT 
extension at on-chip NI by University of Siegen into one complex solution. TTEthernet device for 
ARMv8 architecture 

For the purpose of the healthcare demonstrator, a TTEthernet PCI card has been connected to the 
integrated PCI bus of the ARM Juno development platform in order to use the TTEthernet network. 
Such an implementation enables a reliable communication between the DHP and the Juno platform 
by using time-triggered traffic to exchange critical information related to the electrocardiogram data. 
The TTEthernet card has been mapped to the software partition, which contains Linux/KVM, since 
TTEthernet drivers are already provided by TTTech for Linux kernel Intel/x86. However, the Juno 
platform is based on the latest ARMv8 architecture (AArch64), which requires adapting the source 
code of drivers. Indeed, the TTEthernet drivers for Linux are composed by a kernel module, named 'tt-
pci', as well as a set of user-space libraries, which are used to create an application for enabling the 
communication with the TTEthernet card through the PCI bus. The integration of this software in the 
Juno board has been achieved by porting the module and the libraries from the Intel/x86 to AArch64. 
In this context, the source code has been slightly adapted in order to cross-compile it for the ARMv8 
architecture (ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-). 

Finally, a “Packet Router” program has been developed by using the TTEthernet libraries in order to 
identify the network packet from the TTEthernet card. Since the critical and non-critical healthcare 
applications are running inside different virtual machines, it is necessary to route them to the correct 
operating environment. In this context, the “Packet Router” program is able to differentiate the 
network packets from the different traffic classes supported by the TTEthernet card, such as Time-
Triggered (TT), Rate-Constrained (RC) and Best-Effort (BE), and transfer it to the right virtual machine, 
as shown in Figure 2. 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 8 of 40 

 
Figure 2: Juno platform and TTEthernet configuration 

3 Global Resource Management Services 

This section presents the integration and support activities of the DREAMS global resource 
management services with the avionics demonstrator.  

3.1 Introduction 

Fulfilling or recognizing system-wide constraints is not possible by viewing a single resource in 
isolation, but by enforcing a system-wide view, which may require system-wide decisions to be made. 
The resource management services in the DREAMS platform are realized by a Global Resource 
Manager (GRM) in combination with local building blocks for resource management. GRM provides 
services to manage resources globally based on given global offline configuration table. When the 
conditions, on which the offline configuration is based, change significantly at runtime (for example - 
core failure), then this information is communicated via the local resource manager to the GRM. In 
turn, the latter may select a different offline configuration from those provided by WP4. 
Local resource management services consist of three major parts: Resource Monitors (MONs), Local 
Resource Schedulers (LRSs) and Local Resource Managers (LRMs). The MON monitors the resource 
availability and timing of components (e.g., detection of deadline violations). The LRS performs the 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 9 of 40 

runtime scheduling of resource requests (e.g., execution of tasks on processor, I/O requests) based on 
the configuration set by the LRM. The LRM either adopts the configuration from the GRM to particular 
resources (e.g., processor core, memory, I/O) or selects a new configuration from the ones available 
and reports state of the resource (from MON) to the GRM. 

The specification of the integrated resource management architecture, the high-level description of 
the resource management services and the design of the GRM are covered by deliverables of Task 3.2 
(i.e. D3.2.1, D3.2.2 and D3.2.3). The design and implementation of the local building blocks for 
resource management correspond to Task 2.2 and Task 2.3 of WP2, and are covered in deliverable 
D2.2.2: "Report on monitoring, local resource scheduling and reconfiguration services for mixed 
criticality and security with implementation (source code) of low- and high-level monitors, scheduling, 
security and reconfiguration services supporting mixed criticality and adaptation" in M24, and D2.3.4: 
"Hypervisor adaptation and drivers for local resource managers" in M33. The specification of a security 
concept and implementation of necessary security mechanisms to provide trustworthy 
communication between the building blocks for resource management are realized in Task 3.3: 
"Cluster-Level Safety and Security" of WP3 and is presented in D3.3.3: "Final implementation of Cluster 
level safety and security services" in M34. Resource management services are integrated in the 
Avionics demonstrator developed in WP6.  

3.2 Resource management in avionics demonstrator 

The avionics demonstrator combines critical applications with non-critical applications using 
heterogeneous multi-core platforms, connected using a wired network. Five different applications will 
be deployed in the demonstrator, three critical and two non-critical. All the applications, but the 
panels, sit on top of the DREAMS middleware and the XtratuM hypervisor, and they are deployed in 
two different hardware platforms: the Freescale T4240QDS and the DREAMS Harmonized Platform. 
Communications between the different hardware platforms are ensured by a TTEthernet network. 

The avionics demonstrator takes advantage of Resource Management (RM) services to improve the 
system reliability and the multi-cores performance usage: 

 Core failure management, to improve system reliability requirements. 

 Deadline overrun management, to satisfy time isolation requirements on multi-cores. 

 QoS management, to improve multi-core performance usage. 

Some design choices have been made for RM for use in avionics demonstrator as described below. 

1. Overall RM design choices: 

 We consider that DREAMS middleware relies on time and space partitioning which is 
implemented at the chip-level by the XtratuM hypervisor, a technology involved in the 
project. Therefore, applications will be executed within a set of partitions. A partition is 
defined by one or multiple slots, each with a start time and a length. Inside a slot, several 
tasks can be executed.  

 In an embedded system software stack the DREAMS RM services lay on top of the system 
hypervisor and below the applications. 

 The RM services are executed at system level because they require access to system level 
hypervisor calls, like suspending partitions (XM_suspend_partition(partitionId)) and 
changing the hypervisor scheduler plan (XM_switch_sched_plan(newPlan, *currentPlan)). 

 The services are developed to limit the impact on application development, thus their 
applications interface is limited. 

 Security mechanisms are used to protect the systems resource management services. 
 

2. GRM design choices: 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 10 of 40 

 The GRM runs on the DREAMS Harmonized Platform. 

 It is assumed that the core on which the GRM executes is fail-safe. (Justification: GRM only 
makes global reconfiguration decisions when necessary, but it is not required for the 
continuous operation of the system. Thus, in case of GRM failure, the overall system 
dependability is not compromised as the system will still keep on executing; just no new 
global reconfigurations will be possible. Thus, this failure is not considered) 

 The GRM runs in its own XtratuM partition (no other applications or tasks can be executed 
in this partition). 

 The GRM runs as a critical application. 

 The GRM must be informed via an update message of the node's current configuration, 
as this information is used by GRM to select new global configuration if required. 

 GRM stores the global reconfiguration graph. 

 Interactions with the GRM is done only through configuration options without any direct 
interaction with the applications.  
 

3. LRM design choices: 

 LRMs run on all nodes. 

 All LRMs must execute on each core at end of every MaC1. All LRMs on a node are 
synchronous, and only one amongst them is a master (per node). Only the master LRM 
can communicate directly with the GRM. 

 All master LRMs must send one update message to the GRM every MaC. The GRM will 
consider the node of the corresponding LRM dead (i.e., all cores have failed) in case of 
failure to receive an update message in a MaC. 

 There must be a MON partition on each core executing in each MaC to monitor the core 
health status. 

 LRS is dispatched at the beginning of each user-application slot. For critical applications, 
the tasks are called in sequence in each slot and there is no preemption. 

 Local adaptations are due to internal deadline overrun of critical applications. More 
precisely, maximal deadlines of each task executing in a partition slot may be specified by 
the user. In that situation, MON is in charge of monitoring those internal deadlines and if 
there is an overrun, the LRM immediately stops the best-effort applications. 

 LRM takes a local reconfiguration decision at the end of the MaC by collecting all failed 
cores. This entails that several failures may happen during a MaC and decision could 
consider multiple failures. To avoid non deterministic decisions, we impose 
reconfiguration graphs to be symmetric 
 

4. Design choices  related to reconfiguration strategies: 

 Reconfiguration changes, whether they are local or global, are computed offline and only 
occur in case of permanent core failures. 

 The reconfiguration strategy follows two rules in case not all applications could be locally 
hosted after some failure(s) on a node: critical applications are locally reconfigured in 
priority and complete applications must be moved, i.e. an application cannot run on two 
nodes at the same time.  

 
Figure 3 shows the use of resource management in avionics demonstrator. Critical applications are 
shown in red color while non-critical applications are in green. 

                                                           
1 Major Cycle (also known as MAF) 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 11 of 40 

 
Figure 3. Resource management in avionics demonstrator 

3.3 Resource management communication 

As explained in the deliverables D2.2.2 and D3.2.3, we need two communication channels between 
GRM and each LRM: 

 Orders channel – From GRM to LRM(s) for sending re-configuration orders.  

 Updates channel – From LRM(s) to GRM for sending re-configuration requests and status 
updates. 

More information about the channels is presented in Table 1. 

 

Channel Name Source Destination Time-Triggered Type 

Orders GRM LRM(s) Yes Sampling 

Update LRM(s) GRM Yes Queuing 

Table 1. RM Communication Channels 

In the avionics demonstrator, 12 order channels and 12 update channels are present between the DHP 
and each T4240 (12 cores with one LRM each). At any point in time, information exchange occurs 
between master LRM(s) on each node and GRM. The channels between other (non-master) LRMs are 
not used. In case the master LRM fails, another LRM is assigned as master (in pre-decided order). The 
GRM will then use the communication channels that correspond to the new master LRM.  

To support RM communication, corresponding virtual links must be added to TTEthernet configuration 
files. 

3.4 Platform configuration file (PCF) 

During the course of the project, it was decided to use a new configuration file based on YAML to 
make configuration of the platforms manageable. More details and an example PCF can be found in 
deliverable D6.3.1. Resource management configuration define in the PCF is used to automatically 
generate the LRM/GRM/MON partitions and extend the configurations of the user partitions (as they 
are built using the LRS partitions). Since the initial definition, there have been changed to the PCF for 
declaration of RM services, especially GRM as mentioned below.  

 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 12 of 40 

 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 13 of 40 

 

3.5 Global reconfiguration graph 

The global reconfiguration graph has been defined in D3.2.3. Some changes have been made since 
then.  
When the last core in a node fails, the GRM receives no new update / reconfiguration request message 
from the last LRM of that node, and thus knows that the complete node has failed. However, without 
a message, the GRM cannot look up a new configuration for this case. To resolve this problem, we 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 14 of 40 

reserve some message values which correspond to such events. If ‘n’ nodes are present, then the 
messages 0,1,2,..,n-1 message values are reserved for the events “failure of the last core of node”. 

Example: Consider a case where there are three nodes. Except one core on the second node, all other 
cores have failed on this node. The LRM on the functional core of the second node sends periodic 
update messages to the GRM. If this core fails as well, the GRM will not receive the update message 
anymore. In such an event, the GRM will look for a new configuration with message value ‘1’, 
corresponding to the failure of second node. 

 

  



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 15 of 40 

4 Security and Safety Services 

This section describes the support for the integration of the security services and the safety services. 
The security services for cluster level communication are separated into three parts: the security 
services for off-chip communication, the secure time synchronization and the security services for 
application-level communication. The security services for off-chip communication and the secure 
time synchronization are provided on cluster-level to secure the off-chip communication. The security 
services for application-level communication secures the communication between the applications on 
end-to-end basis. 

The description of the different security services were described in [13] [14] [15]. In this deliverable, 
the actual implementation for the demonstrators is performed. 

 

4.1 Cluster-level Security Services 

The cluster-level security services are implemented in the TTEthernet gateways and in the TTEthernet 
switches (“off-chip routers”) as shown in Figure 4. 

To provide these services, TTEthernet is extended by MACsec [13] [14] [15]. MACsec provides 
confidentiality, integrity and authenticity of data origin and guarantees a connectionless data integrity 
and is robust against replay attacks as well as denial-of-service attacks up to some extent. It has to be 
implemented in every gateway and switch, as it is an OSI layer 2 service and secures only the link 
between the components (Figure 5). 

 

 
Figure 5: Layer 2 connection 

On/Off-Chip 
Gateway

Switch Switch
On/Off-Chip 

Gateway

Network (Layer 3)
Connection

Data Link (Layer 2) 
Connection

Data Link (Layer 2) 
Connection

Figure 4: Components of the cluster-level security services 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 16 of 40 

On every link, two Secure Channels (SC) are implemented for MACsec. The each SC is a unidirectional 
channel that is identified by a Secure Channel Identifier (SCI). This SCI is used to distinguish the 
different links, and to calculate and select the right keys. 

For each channel, there is a set of different keys. A Secure Connectivity Association Key (CAK) is pre-
shared between the two components being connected by the link. This CAK is used to authenticate 
each other by exchanging a message that is verifiable when possessing the CAK. Additionally, the CAK 
is used to derive sub keys, i.e., an Integrity Check Value Key (ICK) and a Key Encrypting Key (KEK). The 
ICK allows the generation of the authentication message to check the possession of the CAK. The KEK 
is used to encrypt the Secure Association Key (SAK) that is used as the session key for the actual 
MACsec frames. The used key hierarchy is shown in Figure 6. The calculation of the keys is performed 
on each gateway or switch for each link. 

 

 

CAK

ICK KEK

AES-CMAC AES-CMAC

Distributed 

SAK  
Figure 6: MACsec key hierarchy 

 

Figure 7 shows the usage of the different SAKs for sending and receiving frames in the gateway. The 
realization in the switches is similar. 

 

 
Figure 7: MACsec block diagram at the off-chip gateway 

Core IP

GCM Module 
(1)

GCM Module 
(2)

MACSec-LMI

APB + Config

GMII-raw,
port 0

GMII-raw,
port 0

SAK SAK Storage

TX SAK 
Mapper

SAK

RX SAK 
Mapper

SAK

GMII-sec

GMII-sec

PHY Interface / Wrapper

CFG/STATUS

CFG/STATUS

 AXI Host Interface



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 17 of 40 

 

The SAE AS6802 synchronization protocol [17] is used for the off-chip time synchronization. SAE 
AS6802 uses Protocol Control Frames (PCFs) to exchange synchronization information between the 
network participants. To secure these PCFs using MACsec, the jitter of the encryption/decryption 
process and the Integrity Check Vector (ICV) generation and check process has to be low. MACsec 
provides confidentiality, integrity and authenticity for the time synchronization service. As shown in 
Figure 7, the blocks that affects the jitter in a gateway (and in a switch) are the GCM-Modules. As the 
SAKs can be pre-calculated, their calculation is not relevant for the jitter. 

4.1.1 Security Services Based on MACsec Implementation 

The final solution of the implementation will be the same as described above, except for the fact that 
all frames (including PCF frames) will be protected by the MACsec. MACsec is the IEEE 802.1AE 
standard for authentication and encryption of Ethernet data packets transmitted between units 
capable of handling MACsec authenticated and encrypted data packets..  

In order to provide security properties for TTEthernet, TTEthernet (or more generally Deterministic 
Ethernet) had to be extended with a security solution. For this purpose, IEEE 802.1AE (MACsec) has 
been selected as the preferred means to provide these message authentication and message 
encryption services. The principle of MACsec operation is depicted in Figure 8. SecTag the EtherType 
is set to MACsec 0x88e5. The Ethernet’s frame user data including the optional VLAN tag are 
encrypted. The ICV (integrity check value) ensures the integrity of the MAC Destination Address, 
MAC Source Address, SecTAG, and User Data. MACsec allows to use different encryption techniques, 
but defines as default AES 128. Thus, our MACsec implements AES 1282 (Advanced Encryption 
Standard). The actual encryption process and process to generate the ICV is depicted in Figure 9. 

 
Figure 8: Principle of MACsec operation 

 

                                                           
2 See https://de.wikipedia.org/wiki/Advanced_Encryption_Standard 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 18 of 40 

Figure 9: Principle of the Encryption 

Thus the frames will be encrypted and tagged with ICV (Integrity Check Value) for authentication in 
the DHP End System, then these frames will be sent to the switch, the switch will decrypt the frames 
and check integrity (authenticity). The switch will then process the frames as usual (i.e. TT frames are 
evaluated and eventually filtered, PCF frames are used for clock sync). The frames are encrypted and 
sent to the receiver ES (the PC with PCIe card), which will decrypt the frames and check their 
authenticity. 

Consequently the test scenario is the same as without MACsec implementation – just encryption & 
authentication tag insertion is performed whenever any frame is sent from any device to wire + 
decryption & authentication (ICV check) is performed whenever any frame is received. 

The security approach based on MACsec is working “hop-by-hop”, not “end-to-end”. 

We can also perform a second test scenario, which is exactly the same as the first one, except for the 
fact that the frames would not be encrypted, rather only tagged with ICV and authenticated. Thus the 
data would be accessible to a potential attacker for reading but the attacker still could not modify the 
frame because if the attacker modifies content of the frame, ICV check will notice that the frame was 
modified. It is similar to CRC failure, however CRC is used for safety reasons, not for security because 
the attacker can change content of the frame, calculate the new and correct CRC and then the received 
frame looks OK, but attackers cannot do this with ICV tag because they are not able to recreate a new 
ICV tag with correct value, since for generation of ICV tag one must know and use the correct key 
value. In our code, we have a simple binary parameter that is either set to 1 (true) or 0 (false). We can 
easily turn ON and OFF the encryption/decryption feature, while the remaining parts of the MACsec 
protocol are still used (i.e. MACsec header and ICV tag). 

The status of the current work implementing the MACsec is that the MACsec is finished, tested and 
working in End Systems, which is probably more important since the main scope of the DREAMS 
project is the DHP platform, which is End System. 

The encryption is symmetric, which means that there is only one common key that is used for all 
encryptions/decryptions within the whole network. Since MACsec does not include any solution for 
key distribution, this feature is not implemented at all. Instead of that, the key is “hardcoded” in 
devices, which is sufficient for prototypes that are supposed to prove that the MACsec works with. 

 

4.2 Application-Level Security Services 

The security library described in [14] and [15] extends the end-to-end communication services of the 
hypervisor providing a secure communication. The security library is implemented as a sublayer 
between the applications and the hypervisor XtratuM. Figure 10 shows the integration of the security 
library. 

 

XtratuM

Application

Security 
Library

 
Figure 10: Security library 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 19 of 40 

 

Originally, it was designed for secure resource management communication. The extension of the 
security library to support applications of the avionics demonstrator required modifications in the data 
handling of the payload and the checksums. 

The different endianness of the ARM-based DREAMS Harmonized Platform and the PowerPC-based 
T4240 used in the avionics demonstrator requires a conversion of the protocol data. Converting only 
the endianness before transmitting the frame would result in an incorrect checksum as both header 
and payload are protected. Additionally, a correct decryption has to be ensured. Figure 11 shows the 
affected field in the header. 

 

 
Figure 11: Security level 3 frame 

 

4.3 Security Services in the Avionic Demonstrator 

The avionic demonstrator uses all of the cluster-level and application level security services. Figure 12 
shows the avionics setup. There are two Freescale T4240, the DREAMS Harmonized Platform and a 
regular PC, connected by two TTEthernet switches. 

 

 
Figure 12: Avionic use case 

 

The cluster-level security services, i.e., the secure communication service and the secure time 
synchronization service are used on the TTEthernet connections between the T4240s and the first 
TTEthernet switch, between the DREAMS Harmonized Platform and the second TTEthernet switch, 
and between the two switches. The connection between the second TTEthernent switch and the 
regular PC is a normal Ethernet link. Hence, on this connection, no security services are used. 

Fife different applications implemented in the demonstrator. The critical applications are a Flight 
Management System (FMS), a Display Management System (DMS) and a Sensors Data Provider (SDP). 
The non-critical applications are an In-Flight Entertainment system (IFE) and panels. There are two 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 20 of 40 

panels, one displays information from the IFE and the other one displays information from the DMS. 
In addition, there are some stressing benchmarks (SB) which are also non-critical applications. 

The application-level security services are used to secure the communication between these 
applications. The security library provides different security levels so that the required security 
services can be selected. The different security levels for the communication channels are defined in 
the following: 

 

 FMS -> DMS: Security Level 3. Integrity and authenticity is required. The communication might 
contain sensitive information. Hence, confidentiality also is required. 

 DMS -> FMS: Security Level 3. Integrity and authenticity is required. The communication might 
contain sensitive information. Hence, confidentiality also is required. 

 DMS -> SDP: Security Level 3. Integrity and authenticity is required. The communication might 
contain sensitive information. Hence, confidentiality also is required. 

 SDP -> FMS: Security Level 3. Integrity and authenticity is required. The communication might 
contain sensitive information. Hence, confidentiality also is required. 

 IMS: Security Level 2. Integrity and authenticity are required. Confidentiality is not required. 

 SB: Security Level 3. No security service is required for the stressing benchmarks, but to utilize 
the highest amount of computation time, the highest security level is used. 

 

4.4 Security Services in the Healthcare Demonstrator 

The heath-care demonstrator uses the cluster-level security services. TTEthernet is used between the 
DREAMS Harmonized Platform (DHP) and the Juno board as shown in Figure 13. So, MACsec secures 
the connection between these two components (red arrows). 

 

 
Figure 13: Communication in the health care demonstrator 

 

In addition to the cluster-level security services, a secure monitor firmware is used. The adaptions for 
the health care demonstrator are described in the demonstrator deliverable D8.2.1 [16]. 

5 Safety Communication Layer (SCL) 

The Safety Communication Layer (SCL) developed in T3.3 is used in the wind-power demonstrator to 
transport safety related input/output data between EtherCAT slaves and the safety protection system 
deployed in the DHP. The primary goal of the SCL integration is to enable safety communications. The 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 21 of 40 

integration of the SCL on an existing fieldbus protocol such as EtherCAT has been carried out, providing 
evaluation of safety features of the developed communication layer, which will be stressed in the 
evaluation plan by means of the real time fault injection framework developed in T5.2 and described 
in D5.2.3. 

5.1.1 Integration of the SCL in the wind power demonstrator 

In order to guarantee data integrity in the data exchange between the EtherCAT node and the DHP, a 
layer which defines a safety communication protocol has been implemented over the EtherCAT-DHP 
channel. Figure 14 shows the wind-power demonstrator that has been set up in the scope of DREAMS 
project. 

 

 
Figure 14: DREAMS wind-power demonstrator. 

Beckhoff EtherCAT nodes are used in the demonstrator shown in Figure 14. When SCL is used, these 
EtherCAT nodes have to be replaced by a PC running Windows with an EtherCAT board attached.  

In the scope of wind-power demonstrator, the Galileo control system not only performs real time 
supervision and control tasks, but it is also a bridge for SCL messages between the EtherCAT ring and 
the DHP.  

The safety data enclosed in SCL messages are processed in the control partition. All EtherCAT variables 
described in the EtherCAT Network Information (ENI) file are processed by the control application. 
Each variable has a unique identifier and this way SCL messages can be filtered from the rest of 
variables exchanged in the EtherCAT ring. First, input variables are read and once a SCL message 
coming from the EtherCAT ring is identified, it is sent to the DHP by means of a specific driver 
developed for this purpose (DHP driver). Then, output variables are set. An SCL frame coming from 
the DHP and targeting the EtherCAT node would be sent as such a variable. To that end, DHP driver is 
checked in order to know whether any new SCL frame has been sent by the DHP. In case the result to 
that enquiry is positive, data is read from the DHP and output variable is set accordingly. This process 
is repeated in a loop every 12 ms, which is the base time for the EtherCAT ring.  



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 22 of 40 

In the FPGA design developed for DREAMS wind-power demonstrator, “AXI Memory Mapped to PCI 
Express” Xilinx IP has been integrated. This acts as the PCIe interface in the DHP and is mapped to the 
AXI bus. This bus has been later accessed by safety cores in order to exchange safety data by means 
of SCL frames.  

The application logic implemented in the safety cores handles data exchange with Galileo control 
system. In addition, safety cores are responsible of managing GPIOs connected to the safety relays.  
SCL logic makes sure the received frame is a valid frame. In case it is a legitimate frame, it is processed 
in order to check the safety data values sent by the EtherCAT node. If these values exceed the 
threshold that is required to open the safety line, GPIO output will be set accordingly. Thus, the safety 
line will be open. Safety line will be also opened when received SCL frame is not valid. In case, the 
values received in the SCL frame do not exceed the threshold that is required to open the safety line, 
GPIO output will be set such that the safety line will remain closed.  

After GPIO output is set, if there is any SCL frame that needs to be sent to the EtherCAT node, the 
given frame will be written in the corresponding port. 

More details can be found at deliverable D7.2.1. 

5.1.2 EtherCAT Datalogger module for SCL 

A data-acquisition system is crucial in order to analyse the safety frames interchanged among the 
EtherCAT slaves and the master. This system is the so called Datalogger module for SCL, and has been 
developed within T3.4 to support the integration of the SCL in the wind-power demonstrator. Figure 
15 shows a scheme of the wind-power demonstrator where all the different actors related to SCL, 
included the Datalogger, are depicted.  
 

 
 

Figure 15: SCL assessment in the wind-power demonstrator 

The EtherCAT Datalogger module logs the information of the EtherCAT I/O variables related to SCL. 
The acquisition system captures the EtherCAT frames from the bus, extracts the value of the variables 
related to SCL and stores the information in a binary file format. 

The input of the system is an ENI (EtherCAT Network Information) file. This file contains information 
about the network configuration and the variable distribution in the process memory of the EtherCAT 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 23 of 40 

master. The acquisition system captures the EtherCAT frames and extracts the value of the variables 
using the ENI file for further processing. 

 

The following sections detail the design, development and evaluation of the Datalogger module. In 
order to better understand the features of the SCL module of the Datalogger, some background 
information on the SCL API and the EtherCAT network is given first.  

 

5.1.2.1 Background information  

5.1.2.1.1 EtherCAT network 

A basic EtherCAT network is mainly formed by a master and one or more slaves that exchange 
information cyclically between them. Thus, master sends outputs and receives inputs from slaves. 
These outputs and inputs variables are allocated in datagrams, and these datagrams shape the frames 
that will travel around the EtherCAT network. Usually, EtherCAT networks are deployed where Real-
Time features are required, which mean demanding scenarios where the variables exchanged 
between master and slaves are of great relevance. Therefore, it would be of interest to have access 
to these network frames so users can be completely aware of what is happening. Thus, by monitoring 
the exchanged frames, users are able to track when and where takes place an unexpected behaviour. 
The Datalogger tool allows users to store network frames and extract the variables that travel within 
them. In this particular case, the Datalogger functionalities have been upgraded in order make the 
tool capable of monitoring EtherCAT networks. Therefore, by placing the Datalogger between the 
master and slaves of an EtherCAT network all the variables exchanged between them are extracted 
from the frames and stored. In Figure 16 a sketch of the explained scenario is shown. 

 
Figure 16: Sketch of the Datalogger deployment scenario 

 

5.1.2.1.2 SCL API (Application Programming Interface) 

In this section it is given a brief description of the SCL and the main features that have had impact in 
the design of the Datalogger. Detail information on SCL can be found in T3.3 deliverables’ series. 

SCL variables are provided by the SCL, which is located immediately below the Application layer. The 
main purpose of the SCL is to report the status of the communication to the application, that is, to 
make the application aware of whether the received data is reliable or not, so that the required actions 
can be taken. To that purpose, and based on the specifications of the international standard IEC 
61784-3-3 [1], the SCL receives the application data to be send and produces a Process Data Unit 
(PDU); so, the SCL in destination will unpack it in order to check the reliability of the data and to deliver 
it to the application. As the communication is Host (Master)-Device (Slave) based, the PDU will have a 
slightly different format depending on which of them operates the SCL. In Figure 17 sketch of a PDU 
is shown. 

According to the standard, the message PDU (Protocol Data Unit) has the following format: 

 

 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 24 of 40 

F-Input/Output Data Status/Control Byte CRC2 

Max. 123 bytes 1 byte 3 or 4 bytes 

Figure 17: Generic PDU format 

A SCL variable (or a PDU) is therefore formed by the application data (F-Input/Output Data), the 
information related to the state of the communication (Status/Control Byte) and the CRC (CRC2). 

The main difference between the PDU of a F-Host and a F-Device is found in the Status/Control Byte, 
which are detailed in Annex A. The Status/Control Byte is used by the F-Device/F-Host to provide 
information about the communication state to its counterpart. These two bytes are different between 
them; basically, the F-Host uses the Control Byte to send safety-related commands to the F-Device 
and the Status Byte is used by the F-Device to answer F-Host commands and to report any detected 
failure that may lead to a safety state. The format of both bytes is detailed below. 

Regarding the Datalogger, it might not be of interest to log all the information contained in the SCL 
variable; therefore, rather than logging the whole variable, just the relevant information is stored, 
which are as follows: 

- Input Variable: Data (optional, it will be indicated in the name of the variable), Status Byte 

(FV_activated, WD_timeout, CE_CRC and Device_Fault), and CRC2. 

- Output Variable: Data (optional, it will be indicated in the name of the variable), Control Byte 

(activate_FV), CRC2. 

5.1.2.1.2.1 SCL within the wind-power demonstrator 

The wind-power scenario consists of at least one EtherCAT slave that uses SCL to encapsulate the 
application data, forming a PDU. As stated previously, the PDU contains several variables; thus, the 
Datalogger receives a PDU of 9 bytes and has to be able of splitting it into the desired variables. To 
this purpose, especial nomenclature is used for SCL variables. Therefore, the name of this kind of 
variables always starts with “SCL_D…” or “SCL_WD…”, where D and WD stand for Data and Without 
Data, respectively; thus, SCL_D indicates that the ‘Data’ field of the PDU has to be logged while a 
SCL_WD indicates the contrary. This way, the Datalogger is able to identify SCL variables and perform 
the required actions. 

 

5.1.2.2 Datalogger development 

Essentially, the Datalogger receives EtherCAT frames, through direct traffic (winpcap library) or from 
a wireshark capture, and, according to a previous configuration, stores the datagrams and extracts the 
variables. In Figure 18, a diagram with the inputs and outputs of the system (Datalogger) it is shown. 

 
Figure 18: Diagram of the inputs/outputs of the system (Datalogger) 

 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 25 of 40 

5.1.2.2.1 Datalogger configuration 

Before any other action, the configuration file has to be created. This is done using an additional 
application that generates an xml file (will be detailed later) that the Datalogger uses to configure 
some parameters before starting with any logging related action. In Figure 19, the Graphical User 
Interface (GUI) of this application is shown. The fields that users have to fill are detailed below. 

 

 
Figure 19: Graphic User Interface (GUI) of the application used to generate the configuration file 

 

- Select EtherCAT XML configuration file: the EtherCAT Network Information (ENI) file has to be 

selected. This file gathers all the information regarding the EtherCAT network that the 

Datalogger requires to set up the objects that manage the logging actions. 

- Enter Output File Name: users must introduce the name of the output files generated by the 

Datalogger. 

- Select frame source: users are allowed to choose between two sources of frames. On one hand 

(on “Ethernet” option), it is possible to operate capturing frames through a real bus using 

winpcap library; and, on the other hand, it is also possible to use, as a source, frames captured 

by Wireshark. 

- Select Logging Frequency: the sampling rate is defined. For instance, though the cycle time of 

the EtherCAT cyclic frames is 2 ms, users may prefer to extract variables with a period of 10 

ms.  

- Select number of ports: if “Ethernet” is chosen as frame source, here users have to indicate 

the number of network ports. EtherCAT networks are capable of using redundancy; so, by 

indicating the number of ports, it is determined whether both main and redundancy frames 

can be processed or only the main frames. 

- Select Wireshark source file: if “Wireshark File” is chosen as frame source, here users have to 

select the Wireshark file with the captured frames. 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 26 of 40 

- Choose database size according to: users are allowed to choose whether they prefer to limit 

the output generated files by time or by size. 

- Enter maximum size of file in Mbytes: here users must indicate the maximum size of the files. 

If the database size has been chosen according to time, the value introduced here is seconds, 

otherwise is Mbytes. 

In Figure 20, it is shown an example of a configuration file. The meaning of its main fields is explained 
afterwards.  



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 27 of 40 

 
Figure 20: Example of a configuration file 

 

- ConfigFile:  

o FileName: Current configuration file name. 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 28 of 40 

o Description: Brief description related to the configuration file. 

- Autostart:  

o Value: This field indicates whether the Datalogger must start automatically, once the 

configuration is done, or wait till the user commands it through the start button. 

- EthercatENIFile:  

o FileName: Path where the ENI file is allocated. 

- OutputFile:  

o FileName: Name used for the output files. 

- FrameSource:  

o Type: indicate whether the frame source is Winpcap or Wireshark 

o WiresharkFile: Wireshark file name. 

o NumInterfaces: number of network interfaces to be used (used when winpcap is the 

frame source, otherwise the number is 0). 

o Ports: Ethernet interface id of the ports used (used when winpcap is the frame source, 

otherwise this field is omitted). 

- DefaultLoggingFreq: frequency at which each variable is logged.  

- DatabaseSize:  

o LimitType: determine which criteria must be followed to create a new output file. Two 

options are possible: limited by time or size. 

o TimeLimitValue: in case the limit type is time, here it is specified the amount of time. 

o SizeLimitValue: in case the limit type is size, here it is specified the limit size. 

Once the configuration file (named “EtherCATDataloggerConf.xml”) has been generated, it is copied 
to the directory where the system executable file is allocated, so the configuration file can be used by 
the Datalogger. 

 

5.1.2.2.2 Datalogger GUI (Graphical User Interface) 

The Datalogger provides users with an intuitive GUI, so it can be easily commanded. In Figure 21, a 
capture of this GUI is shown.  

 

 
Figure 21: Graphical User Interface to command the Datalogger 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 29 of 40 

As shown in Figure 21, there are two fields that provide information to the user: the EtherCAT Analyser 
State gives information about the current state of the Datalogger, and the Message Window, in 
addition to the tool state, gives any informative message, warning or error in the configuration or 
performance. Besides, there are three buttons that (i) allow users to generate a new configuration 
file, (ii) to start logging and (iii) stop if the Datalogger is logging. 

 

5.1.2.2.3 Datalogger engine 

The Datalogger engine consists basically of three subsystems: the Cataliser Manager, the Extraction 
and the Storage subsystems. In Figure 22, a sketch of the Datalogger subsystems is shown. 

 
Figure 22: Datalogger subsystems 

 

5.1.2.2.3.1 Cataliser Manager Subsystem 

The main task of the Cataliser Manager is to perform the actions related to the commands coming 
from the GUI (see Figure 21).  

When it is commanded to Configure, the Datalogger takes the ENI file’s name, the output file’s name, 
the frame source and the logging frequency from the “EtherCATDataloggerConf.xml” configuration 
file. Regarding the frame source, the name of Wireshark file and the ports’ number are also taken. 
Afterwards, the Datalogger configures the structures where the variables and the cyclic commands 
are stored. These two last tasks are designed specifically for an EtherCAT network and will be 
explained in detail later.  

When it is commanded to Start, the Cataliser Manager commands the Storage Subsystem to create 
the Measurement Data Format (MDF) files configuration, where the extracted variables are written. 
Next, all the buffers used for storing purposes are reset. Eventually, the Cataliser Manager triggers the 
storing frames, extracting and storing variables processes by calling to the Extraction and Storage 
Subsystems.  

In case that the button pushed is Stop, the Datalogger puts an end to all the logging related actions.  

Figure 22 shows the Cataliser Manager Subsystem state machine, where the previous description is 
put in a schematic and more intuitive way. As it can be observed, the first step, before beginning with 
any logging related action, is to configure the Datalogger. Afterwards, the tool is ready to start logging. 
Once the logging activity is finished, either by reaching the end of the file (in case of using Wireshark 
source) or by users action (pushing the Stop button), the Datalogger keeps an idle state waiting for 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 30 of 40 

the next command. Additionally, and providing that there is no logging activity, the tool can be 
reconfigured by pushing again the Configure button. 

 
Figure 23: Cataliser Manager Subsystem state machine 

 

5.1.2.2.3.2 Extraction Subsystem 

The Extraction subsystem is in charge of obtaining the Ethernet frames and extracts the variables of 
interest from them. As it has been explained before, depending on the configuration, the frames may 
come through a network interface or from a Wireshark file, where the frames have been previously 
captured. In order to meet the particular requirements of EtherCAT, this subsystem is in charge of: 

- Storing the datagrams of EtherCAT frames in a circular array. 

- Detecting when, by any failure in the network, these datagrams are not complete. 

- Finding the complementary datagrams from the redundant frames sent by the EtherCAT 

Master and combining them with the main datagrams in order to complete them. 

- Extracting the variables from the resulting datagrams. As this task is specific for EtherCAT 

networks, it will be explained in detail later. 

In Figure 24, Extraction Subsystem state machine is shown. When the Datalogger receives a new 
frame, it is stored in the circular array. After a given time (and just once), it is checked whether all the 
expected cyclic commands have arrived in order to confirm that the used ENI file is the proper one. In 
addition, it is verified that the frame has not been already processed (when a frame coming from the 
main port is complete, its redundant frame is discarded). Next, while there are new frames to process, 
the Datalogger continues storing the datagrams and extracting the variables of interest. When the 
logging activity has finished, the variable buffer is reset. 

 stm Cataliser Manager Subsyst...

EntryPoint

Stoppe d

Configure d

Starte d

[Stop()]

[Start()]

[configure_cataliser()]

[Start()]

[Configure_cataliser()]

[Configure_catalasier()]



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 31 of 40 

 
Figure 24: Extraction Subsystem state machine. 

 

5.1.2.2.3.3 Storage Subsystem 

The Storage Subsystem is in charge of allocating the extracted variables into a user readable file. To 
that purpose, this subsystem creates an MDF configuration and writes this configuration and the data 
extracted from the EtherCAT frames into an MDF file.  

MDF is a binary file format that can be used for recording, exchanging and post-measurement analysis 
of measurement data. The MDF file is composed of a series of blocks. Each block consists of a number 
of contiguous Bytes and can be seen as a record or as a structure of data fields. There are different 
types of blocks. Blocks can include pointers to other blocks that are stored in a data field of type LINK. 
A link is an absolute Byte position within the file, starting at the beginning of the file. Thus, a normally 
tree-like hierarchy of blocks is formed. So, the specific configuration for the Datalogger is fashioned 
as follows: one Data Group3 formed by several Channel Groups4; and, each Channel Group shaped by 
different Channels5. There are three main types of Channels, one regarding the time, a second 
referring the reliability of the data (that is, indicating whether the recorded data is fully reliable or 
not), and others regarding the data of all the variables that go within the same datagram. 

Additionally, this subsystem manages the limit of the MDF files (depending on the configuration this 
limit is reached by time or by size). Therefore, when the limit is reached, a new MDF file with the 
nomenclature “OutputFile_xxxx.mdf” (where “xxxx” is the number of the file: 0000, 0001, 0002, etc.) 
is created. In Figure 25, the Storage Subsystem state machine is shown. As it can be observed, before 
starting to record data, the MDF configuration is done. Afterwards, while there are variables to log 
and the Datalogger is not commanded to stop, the Storage Subsystem continues writing the data into 
the MDF file. 

                                                           
3 Data Group: description of data block that may refer to one or several channel groups. 
4 Channel Group: a set of signals which are always measured jointly. 
5 Channel: plain data regarding a certain variable (time, reliability, logged variables). 

 stm Variable v alue extraction subsystem

New frame storaged

New frame processed

Restarte d

Variable buffer  reset

EntryPoint

Cyclic frames check ed

[restart ]

[restart ]

[new_frame_received | read_frame]

[process a new frame &

there are frames ready

to be processed]

[new_frame_received | read frame]

[reset_variable_values]

[process a new frame & there are frames ready to be processed]

[time_to_check_cyclic_cmds]



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 32 of 40 

 
Figure 25: Storage Subsystem state machine. 

 

5.1.2.2.4 Datalogger particular specifications for EtherCAT networks 

At this point the basic structure of the Datalogger has been explained. In the subsystems description, 
two tasks have been highlighted as the most significant ones among all the tasks performed by the 
Datalogger, which are the configuration process and the variable extraction. Therefore, in the 
following subsections they are explained in detail. 

 

5.1.2.2.4.1 Configuration Process 

As it has been explained in subsection 5.1.2.2.3.1, when the Datalogger is commanded to Configure 
(through the GUI), it takes several parameters from the “EtherCATDataloggerConf.xml” configuration 
file and, in addition, it shapes the structures that allocate the variables and configures the information 
related to the cyclic commands. The relation between the variables and the cyclic commands is also 
determined, that is, the Datalogger tool is aware of in which datagram and position travels each 
variable. 

EtherCAT technology uses a dual-port memory so the application delivers the data to one side of the 
memory, while the data received from the medium is allocated at the other side (see Figure 26). The 
cyclic commands, which are mainly a piece of this dual-port memory, contain a certain number of 
variables, each with its offset and length. Thus, once the offset and the length of the piece of the 
memory that forms the datagram are identified, the relation with the variables can be obtained.  

 

 stm Data Storage Subsystem

New record written in 

mdf file

New mdf configuration 

done

Semaphore opene d

Semaphore close d

Restarte dEntryPoint

Storage_ stopped

[nut_sem_post ]

[delete_memory]

[time_to_sample]

[nut_sem_try &

semaphore_free]

[time_to_sample]

[nut_sem_try & semaphore_free]

[time_to_sample]

[create_my_mdf_conf]

[restart ]

[restart ]

[nut_sem_post ]



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 33 of 40 

 
 

Figure 26: Sketch of the EtherCAT dual-port memory 

 

The ENI file provides the required information to accomplish the task of linking the cyclic commands 
with the variables. On one hand, the relevant information regarding the cyclic commands is:  

- Addr: logical address. 

- Cmd: identifies the command type, which may be 10 for logical memory read (LRD) and 11 for 

logical memory write (LWR) and the logical address. As in this case the system is prepared to 

work with redundancy, the command type 12 (logical read write, LRW) is not used. 

- DataLength: defines the length of the cyclic command data length. 

- InputOffs: indicate the position where the input variables are allocated. 

- OutputOffs: indicate the position where the output variables are allocated. 

On the other hand, the significant information of variables is: 

- BitSize: indicates the size of the variable. 

- BitOffs: determine the position where the variable starts. 

- Input/output: defines the variable as an input or an output. 

The Datalogger tool is used in a scenario where, at least, one EtherCAT slave encapsulates the 
application data through a Safety Communication Layer (SCL) (refer to subsection 5.1.2.1 for further 
information). Hence, there are slaves with variables of 9 bytes which are managed as PDUs by the 
slave lower layers. Therefore, in the ENI file, appears a variable of 9 bytes which is recognized as an 
SCL variable by its nomenclature (“SCL_...”). May it be the case that not all the information from the 
PDU is of relevance; hence, the variable nomenclature indicates the Datalogger how many variables 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 34 of 40 

have to generate to store the significant information from the PDU. Specifically, for input variables 
names beginning with “SCL_D…” the Datalogger generates six variables, while for names beginning 
with “SCL_WD…” five variables are generated. Similarly, for output variables, three and two variables 
are generated for names beginning with “SCL_D…” and “SCL_WD…”, respectively. In order to log all 
these variables, the Datalogger has to be aware of their offset and size. As the structure of the PDU is 
constant and well known, the offset and size of each variable is easily determined. 

 

5.1.2.2.4.2 Variable extraction 

The process of extracting the variables consists of different stages. In first place, the Datalogger starts 
receiving frames from winpcap or wireshark file, depending on the configuration. Previous to do any 
processing, the received frames are filtered so just EtherCAT response frames are taken into account. 
Afterwards, for each datagram within the frame, the command identifier and the logical address are 
checked against the values obtained from the configuration file. If these steps are successfully passed, 
the frame is then stored in a circular array. The size of this circular array is big enough to allow 
datagram processing and variable extraction before frames are overwritten (see Figure 27). Once 
there is a new entry on the circular array, the variable extraction task is enabled. After a certain period 
of time, it is checked whether all the expected datagrams have been received; this process is done just 
once in order to verify that the used ENI file corresponds with the received frames. Additionally, in 
order to discard redundant frames, it is verified whether the frame has been already processed. Then, 
in case that two network interfaces are available, it is checked if it is necessary to look for the 
redundant frame. By taking a look to the data within the datagrams, the Datalogger is able to 
determine whether all the slaves have given a response or not. Therefore, in case that the redundant 
frame is required, it is searched in the circular array. Once it is found, the datagrams are combined.  

Eventually, the variables are extracted from the datagram. At this point, as it has been previously 
explained, it is well known in which datagram is allocated each variable. Thus, given that the offset to 
the position of the variable within the datagram has been previously determined, the value in the 
offset position is stored in the structure of the corresponding variable. Then, when the Storage 
Subsytem is commanded to record the data, the variable values are extracted from the variable 
structure and they are written in the MDF file. 

 
Figure 27: Circular Array operation principle. 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 35 of 40 

 

5.1.2.3 Validation 

As detailed in the two previous sections, the Datalogger takes network frames as inputs and extract 
the variables generating an MDF file, which is the system output. Therefore, to validate the design, 
the Datalogger has to be provided with network frames and, afterwards, it has to be checked whether 
the variables recorded into the MDF file match the expected ones. 

The first step is to generate an ENI file. To that purpose, an EtherCAT network is simulated using the 
TwinCAT tool. In Figure 28, it is shown a screenshot where it can be observed that the network has 
one slave (an FC1100 evaluation board) and it has, in addition to other variables, one input and one 
output with SCL nomenclature, which are SCL_Var_WD and SCL_Var_D (see 5.1.2.1.2.1), respectively. 
Now that the EtherCAT network has been properly configured, the ENI file can be exported. 

 

 
Figure 28: EtherCAT network configured using TwinCAT tool 

 

Next, the file with the network frames has to be created. At this point, Wireshark software tool is used 
in order to record a communication between the TwinCAT (which acts as a master) and the FC1100 
evaluation board. In Figure 29, a piece of the Wireshark capture is shown. 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 36 of 40 

 
Figure 29: Wireshark capture of the frames exchanged by the EtherCAT master and the FC1100 

The Datalogger is fed with this Wireshark file and it is triggered to log, which results in an output MDF 
file with the variables shown in Figure 28. As can be observed in Figure 30, the Datalogger has created 
an MDF file with two Channel Groups that contain the two standard input variables (32Bit Input and 
Result) and, in addition, eight extra variables (five in Channel Group 1 and three in Channel Group 2) 
have been created. These extra variables correspond to the SCL variables shown in Figure 28. 
According to subsection 5.1.2.1, a SCL input variable WD (without data) has to be split into five 
variables which are: FV_activated (1 bit), WD_timeout (1 bit), CE_CRC (1 bit), Device_Fault (1 bit) and 
CRC2 (4 bytes). Regarding to a SCL output variable D (with data), three extra variables have to be 
created, which are: Data (4 bytes), activate_FV (1 bit) and CRC2 (4 bytes). Furthermore, as can be 
observed in Figure 30, the Datalogger has successfully created the MDF file. 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 37 of 40 

 
Figure 30: View of the MDF file generated by the Datalogger 

In order to check that the variables have been successfully logged, Figure 31 and Figure 32 show the 
value of two logged variables: Data and CRC2 of the SCL output variable (CANalyzer software form 
Vector has been used as data plotter). It can be observed that the logged value (in decimal notation) 
for Data and CRC2 is 2101486 and 5.8621101e8, respectively. This values, in hexadecimal notation, 
equal to 2010EE (EE0102 changing the endianness) and 22F0DEC2 (2CDEF022 changing the 
endianness) what matches the values shown in Figure 29, except for the first byte of the CRC2, which 
has been rounded by the plotter and shows a 2C instead of a BC. 

 
Figure 31: Logged value of Data variable (SCL output) 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 38 of 40 

 

 
Figure 32: Logged value of CRC2 variable (SCL output) 

 

ANNEX A: SCL PDU’S STATUS/CONTROL BYTE 

 

Status Byte: 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

Res cons_nr_R Toggle_d FV_activated WD_timeout CE_CRC Device_Fault iPar_OK 
Figure 33. Status Byte 

- Bit 7: reserved. 

- Bit 6 (cons_nr_R): set when F-Device has reset its consecutive number. 

- Bit 5 (Toggle_d): Toggle bit indicating a trigger to increment the virtual consecutive number 

within the F-Host. 

- Bit 4 (FV_activated): set during start-up and in cases of any communication error. Triggers 

safety state. 

- Bit 3 (WD_timeout): set when the F-Device recognizes a communication error due to watch 

dog time. 

- Bit 2 (CE_CRC): set when the F-Device recognizes a communication failure due to a CRC2 error. 

- Bit 1 (Device_Fault): set by the specific device technology firmware if there is a malfunctioning 

in the F-Device. 

- Bit 0 (iPar_OK): set when the F-Device has new parameters values assigned. 

 



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 39 of 40 

Control Byte:  

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

Res Res Toggle_h activate_FV res R_cons_nr OA_Req iPar_EN 
Figure 34: Control Byte 

- Bit 7: reserved. 

- Bit 6: reserved. 

- Bit 5 (Toggle_h): Toggle bit indicating a trigger to increment the virtual consecutive number 

within the F-Device. 

- Bit 4 (activate_FV): can be set to force the outputs of an F-Device to configured or built-in fail-

safe values. 

- Bit 3: reserved. 

- Bit 2 (R_cons_nr): set when the F-Host detects a communication error, either by the Status 

Byte or by itself. It commands the F-Device to reset the consecutive number. 

- Bit 1 (OA_Req): not safety related. Should be used by the F-Device to indicate locally the 

request for an operator acknowledgement. 

- Bit 0 (iPar_EN): set by the F application within an F-Host in case of a parameterization request. 

For further information regarding the Status/Contol byte, refer to the IEC 61784-3-3 document [1]. 

  



D3.4.1 Version 1.0 Confidentiality Level: PU 

11.07.2017  DREAMS  Page 40 of 40 

6 Bibliography 

[1] IEC, "IEC 61784-3-3," in Industrial Communication Networks, ed, 2007, p. 122. 

[2] L. Rubio, "Functional Specification,"  vol. 1, ed, 2014, p. 15. 

[3] L. Rubio, "Safety Requirement Specification,"  vol. 1, ed, 2014, p. 22. 

[4] L. Rubio, "Safety Concept," ed, 2014, p. 33. 

[5] M. C. Zubia, "DREAMS SCL," in SCL's Design vol. 1, ed: Ikerlan, 2015, p. 37. 

[6] DREAMS Consortium. Distributed Real-time Architecture for Mixed Criticality Systems, 2014. 
Deliverable D1.2.1 

[7] DREAMS Consortium. High-level Design of Mixed-Criticality Cluster Communication Services, 
2014. Deliverable D3.1.1 

[8] DREAMS Consortium. First Implementation of Mixed-Criticality Cluster Communication 
Services, 2015. Deliverable D3.1.2 

[9] DREAMS Consortium. Final Implementation of Mixed-Criticality Cluster Communication 
Services, 2016. Deliverable D3.1.3 

[10] DREAMS Consortium. High-level Design of Global Resource Management Services, 2014. 
Deliverable D3.2.1 

[11] DREAMS Consortium. First Implementation of Global Resource Management Services, 2015. 
Deliverable D3.2.2 

[12] DREAMS Consortium. Final Implementation of Global Resource Management Services, 2016. 
Deliverable D3.2.3 

[13] DREAMS Consortium. High-Level Design of Cluster-level Safety and Security Services, 2014. 
Deliverable D3.3.1 

[14] DREAMS Consortium. First Implementation of Cluster-level Safety and Security Services, 2015. 
Deliverable D3.3.2 

[15] DREAMS Consortium. Final Implementation of Cluster-Level Safety and Security Services, 
2016. Deliverable D3.3.3 

[16] DREAMS Consortium. System Demonstrator running mixed-criticality healthcare and 
entertainment use case, 2017. Deliverable 8.2.1 

[17] SAE International. SAE AS 6802: Time-Triggered Ethernet, 2011. 
http://standards.sae.org/as6802/ 

http://standards.sae.org/as6802/

