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Executive Summary

The DREAMS tool chain consists of a modelling tool, variability, design space exploration and scheduling
design tools, verification tools for timing and safety and last but not least, configuration file generation
tools (see D4.4.1[1]). The role of this deliverable is to show how the tool chain has been applied to the
demonstrators of the project or publically available use case.

1 Introduction

The goal of T4.4 is not only the creation of a tool chain based on the tools that implement algorithms
defined in T4.1, T4.2 and T4.3, but also to make it concretely applicable. For this reason T4.4 has first
described the functionalities offered by each tool with their means for interconnections and has
identified tool chain use cases. To furthermore ease the adoption by the demonstrators, support has
been provided in applying the tool chain, which is documented by this deliverable.

1.1 Relationship to other DREAMS Deliverables

Besides D4.4.1[1], which is the main input regarding the tool chain, all other WP4 deliverables that
describe tools and the implemented algorithms are also relevant. For the descriptions of the
demonstrators and the perimeter of the application of the tool chain the inputs are D7.1.1 and D8.3.1.

1.2 Positioning of the Deliverable in the Project

This deliverable is the second and last deliverable of the working task T4.4 “Tool integration and
Demonstrator Support”.

1.3 Structure of the Deliverable

Three tool chain use cases have been defined in D4.4.1[1]. Their main step are reminded in Section 2. In
Section 3 we describe how the tool chain has been applied to the wind power demonstrator (WP7)
according to the Use Case 3 “Variability and Design-Space Exploration”. Use Case 2 “Scheduling
Configuration with Resource Management” has been applied to a public avionics use case, see Section 4.
In Section 5 we describe how the tool chain has been used in the healthcare demonstrator to configure
the on-chip and off-chip.

31.07.2017 DREAMS Page 7 of 59
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2 Tool Chain Use Cases

In this section we briefly remind the three tool chain use cases defined in D4.4.1[1]. The tool chain
application sections are structured according to the (groups of) steps listed in the provided synthetic
tables.

The first use case covers the basic configuration of Schedules. Table 1 shows all steps from the definition
of the Logical Architecture until the generation of the platform configuration files.

N° | Description of Step Tool(s)

Applications and Resources

1 Modelling of the Logical Architecture AF3

2 Modelling the Timing Requirements AF3

3 Modelling the Platform Architecture AF3
Deployment

4 Modelling the System Software model AF3

5.A | Defining the Deployment (Manual) AF3

5.B | Defining the Deployment (DSE) AF3

Configuration of Schedulers

6 Timing Decomposition (optional) RTaW-Timing

7 Creation of an empty System Schedule AF3

8 Adding partition/task schedules Xoncrete

9 Adding on-chip transmission phases for time triggered virtual links RTaW-Timing

10 | Adding off-chip communication schedules TTE-Plan

11 | Timing Analysis RTaW-Timing
Platform building block configuration file generation

12 | Generation of XtratuM configuration files AF3-plug-in

13 | Generation of on-chip network communication configuration files AF3-plug-in

14 | Generation of TTEthernet configuration files TTE-Plan

Table 1 - Use Case 1: Basic Scheduling Configuration

31.07.2017 DREAMS Page 8 of 59
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The second use case is an extension of the first one, which includes the configuration of resource
managers, in particular for core failures. Table 2 shows all steps.

N° | Description of Step Tool(s)
Applications and Resources
1 | Modelling of the Logical Architecture AF3
2 | Modelling of Timing Requirements AF3
3 | Modelling of the Platform Architecture AF3
Deployment
4 | Modelling of the System Software AF3
5 | Defining the Deployment for the nominal mode AF3
Configuration of Schedulers
7A | Creation of a System Schedule with partition scheduling slots, with | Xoncrete
Xoncrete.
7B | Manual creation of a System Schedule with partition scheduling slots. AF3
8 | Adding Scheduling reconfigurations for failure modes GRec
9 | Adding transition modes MCOSF
10 | Adding off-chip communication schedules TTE-Plan
11 | Adding on-chip transmission phases for time triggered virtual links RTaW-Timing
12 | Timing Analysis RTaW-Timing
Platform Building Block Configuration File Generation
13 | Generation of the Resource Management configuration files AF3-plug-in
14 | Generation of on-chip network communication configuration files AF3-plug-in
15 | Generation of TTEthernet configuration files TTE-Plan
Table 2 - Use Case 2: Scheduling Configuration with Resource Management
31.07.2017 DREAMS Page 9 of 59
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The third use case covers the modeling and exploitation of product lines, see Table 3.

N° | Description of Step Tool
Construction of the Product-Line
1 | Collect all existing products, as DREAMS system models AF3
2 | Build the 150 % model AF3
3 | Model variation points BVR
4 | Define of the feature realisations BVR
Variability and Design Space Exploration
5 | Product-line sampling BVR
6 | Product Realisation BVR
7 | Goal definition AF3
8 | Exploration AF3
Table 3 - Use Case 3: Variability and Design-Space Exploration
31.07.2017 DREAMS Page 10 of 59
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3 Application to the Windpower Demonstrator (WP7)

The windpower demonstrator provided by work package WP7 serves as an evaluation platform for the
methods and technologies developed in the DREAMS project applied to the industrial domain. The
demonstration application is the control unit of an offshore wind turbine that consists of safety-critical
and non-critical subsystems and is connected to a remote SCADA unit via EtherCAT.

3.1 Introduction

The predecessor deliverable D4.4.1[1] defines three use cases to describe the application of the
toolchain: use case one and three (see also Section 2) are applied in this demonstrator since
reconfiguration is not used for this fail-safe application. From a workflow perspective, the steps included
in use case three are executed before the steps of use case one, thus use case three is described first.

Use case three describes the derivation of concrete product models from a product line model. It
consists of models that contain all possible features that may be present in the resulting products and
variability models that describe all possible features and their interactions. For the windpower
demonstrator, these models include a logical architecture, a library of logical components describing
different component designs, a safety model, a feature model, and system software and hardware
platform models. The workflow described in [2] serves as a base for this use case. A more detailed
description of this workflow can be found in the deliverables D4.3.1[3] summarizing the state-of-the art
in MCS product line engineering, and D4.3.2[3] and D4.3.3 [4] that describe the methods for each step of
the workflow used to produce the product models. Applied to the windpower demonstrator, the
resulting product models consist of a modified logical architecture, a system software and hardware
platform architecture, a modified safety model, and a generated deployment of the component
architecture to the platform architecture.

These product models are used as an input to the steps described by use case 1. In particular, only the
steps 6 to 14 (see Section 2) are exercised since due to the application of the workflow described above,
a full system deployment is already available. Section 3.4 covers the configuration of the Schedulers,
starting with the decomposition of end-to-end latency constraints into sub-constraints for the task and
on-chip communication, followed by the actual generation of time-triggered partition and task
schedules, as well as a schedule of the virtual links transferred via the NoC of the DREAMS harmonized
platform. Finally, the resulting system schedule is checked for the satisfaction of end-to-end latency.
Section 3.5 covers the generation of configuration files for scheduling related building block of the
target, which includes the NoC, the hypervisors, the gateways etc.

3.2 Application Architecture and Temporal Specification

In the following, the WP7 application will be briefly described using one concrete set of product models
that is derived from the set of product line models using the steps outlined above. The variability
resolution process found 8 potential product model sets using the configuration described in [2] out of
which 6 were identified to be able to satisfy the safety constraints by the DSE and the safety analysis.
We will focus on the product model set number 6 that contains all features from the product model and
thus is suitable to explain the application at a concrete instance.

31.07.2017 DREAMS Page 11 of 59
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3.2.1 Logical and Platform Architecture Models

Product 6 of the Windpower demonstrator is characterized by the redundancy of the safety protection
function. Therefore, the corresponding Components “SafetyProtection”, “Diagnostic” and “lOServer”
have been automatically duplicated during variability resolution, as can be seen in Figure 1. The physical
components of the Platform Architecture used in the Windpower demonstrator, are depicted inFigure 2.
It consists of 4 Processor Tiles (red boxes), connected by a NoC (blue box). The right hand side
represents the DHP that installed in the GALILEO box (see [5]).

ashinasdaAsss |
QutSafetyRelay
(& SafetyProtection - (1)_1
e (2 Supervision - (A) 11 etyProtection - “—‘-\“‘—‘
I S|
3 Supervision - (B) - OutWat(hdng
‘:| G Diagnostic - (1)_1
_ - ¥
< (& Supervision - (O I | InPCIExpress
@ 10Server 1 (® ComServer
I Y ._
® DataServer - (C] Supervision - (D)
InPClExpress
© 10Server
P (3 Supervision - (B)
QutWatchdeg
{3 Diagnostic - (1)
e -—
gt LT & Supervision - (F) |1 4
j . oo i
QutSafetyRelay —
’ * 3 SafetyProtection - (1) b ~
||| © Supervision - (G)
2 SCADA

- =

Figure 1 — WP7: Logical Architecture of Product6 of the Windpower Demonstrator (AF3).
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Figure 2 - WP7: Platform architecture modelling the hardware platform of the windpower demonstrator (AF3).

3.2.2 Timing Requirements
The definition of timing requirements corresponds to step 2 of the Tool Chain Use Cases 1 and 2, see [1].

All tasks of the Windpower demonstrator (see Figure 1) must be executed with a period of 10ms. These
timing requirements are expressed as Periodic Constraints and specified through the Timing Model
editor integrated into AF3, see Figure 3.
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DREAMS Timing
v 4 Timing Project
v <4 Timing Description
<+ Events Folder
<4 Timing Chains Folder
w 4 Timing Constraints Folder
<4 Periodic Constraint: task='ComServer' period=0.01s
<4+ Periodic Constraint: task='DataServer' period=0.01s
< Periodic Constraint: task='Diagnostic - (1)_1" pericd=0.01s
< Periodic Constraint: task='l05erver_1' period=0.01s
<4 Pericdic Constraint: task="SafetyProtection - (1)_1' pericd=0.01s
<4 Periodic Constraint: task="SCADA' period=0.01s
< Periodic Constraint: task="Supervision - (A)' period=0.01s
< Periodic Constraint: task="Supervision - (B)' pericd=0.01s
< Periodic Constraint: task="Supervision - (C)' period=0.01s
< Pericdic Constraint: task="Supervision - (D)’ pericd=0.01s
<4 Periodic Constraint: task="Supervision - (E}' period=0.01s
<4 Periodic Constraint: task="Supervision - (F)' period=0.01s
< Periodic Constraint: task="Supervision - (G)' period=0.01s
< Periodic Constraint: task='Diagnostic - (1)’ period=0.01s
<4 Pericdic Constraint: task="l05erver’ period=0.01s
< Periodic Constraint: task="SafetyProtection - (1)' peried=0.01s

Figure 3 — WP7: Periodicity constraint on task level components.

Three Timing Chains with latency constraints have been identified for the Windpower demonstrator (see
Section 4.2.2 on how to declare them). Because of the redundancy of the safety protection in “product
6”, some tasks and the corresponding Timing Chains have been automatically duplicated during
variability resolution, as can be seen in Figure 4.

DREAMS Timing
w 4 Timing Project
w <4 Timing Description
<+ Events Folder
w <= Timing Chains Folder
4 Event Chain 'Chainl: SafetyProtection’ with reaction constraint: delay <= 0.025s
4 Event Chain 'Chain2: SCADA' with reaction constraint: delay <= 0.045s
4 Event Chain 'Chain3: Diagnostic' with reaction constraint: delay <= 0.023s
4 Event Chain 'Chainl: SafetyProtection_1' with reaction constraint: delay <= 0,025z
4 Event Chain 'Chain3: Diagnostic_1" with reaction constraint: delay <= 0.023s
4 Timing Censtraints Folder
<4 Timing Decompositions Folder

Figure 4 - WP7: Timing Chains with Reaction Constraints.

The Timing Chain “Safety Protection” spans two tasks, namely “IOServer” and “SafetyProtection”: it
starts with the reading of the input at port “InPCIExpress” by the task “lIOServer” and ends with the
writing to the output “OutSafetyRelay”, see in Figure 5.

31.07.2017 DREAMS Page 14 of 59



D4.4.2 Version 1.0 Confidentiality Level:PU

L"‘ InPCIExpress
& 10Server
=¥ f:)
A
®
| J

OQutWatchdog

(© Diagnostic - (1)
O

*

® {
) QutSafetyRelay
(2 SafetyProtection - (1)

Figure 5 - WP7: Path of Timing Chain "Safety Protection"

Figure 6 shows the two sub-chains corresponding to the tasks “Safety Protection” and “IOServer”, with
their corresponding stimulus and response events.

DREAMS Timing
~ 4 Timing Project
~ <4 Timing Description
» < Events Folder
VE"¢. .E.ve:w!. E;';:".E;‘;I;; :.;a.f.e;;P.r;;e.c;i:::\ ...................................................................................................................................
4 Stimulus DREAMS WP7 PL Demonstrator productf.Component Architecture - product6_DSE_prod_realisation.Component Architecture - products_DSE_prod_realisation.|0Server.InPClExpress
4 Response DREAMS WP7 PL Demonstrator product6.Component Architecture - productf_DSE_prod_realisation.Component Architecture - preductf_DSE_prod_realisation.SafetyProtection - (1).OutSafetyRelay
= v 4 Event Chain SubChain1.1: |OServer
H 4 Stimulus DREAMS WP7 PL Demonstrator producté.Component Architecture - product6_DSE_prod_realisation.Component Architecture - product6_DSE_prod_realisation.|QServer.InPCIExpress
4 Response DREAMS WP7 PL D product6.C Architecture - preductt_DSE_prod_realisation.Compenent Architecture - product6_DSE_prod_realisation.|0Server. OutSafetyProtection
i+ 4 Event Chain SubChain1.2: SafetyProtection
H 4 Stimulus DREAMS WPT PL Demonstrator producté.Component Architecture - productt_DSE_prod_realisation.Component Architecture - productG_DSE_prod_realisation.SafetyProtection - (1).InlOServer
4 Response DREAMS WP7PL D producté.Comp t Architecture - product6_DSE_prod_realisation.Component Architecture - product6_DSE_prod_realisation.SafetyProtection - (I).OutSafetyRelayE
< Reaction Constraint <= 25 ms

Figure 6 - WP7: Sub-chains of the Timing Chain "Safety Protection"
3.3 Deployment

3.3.1 System Software

As shown in Figure 7, hypervisors are defined for all Tiles, such that none of the tiles is used as a bare-
metal processor.

Hypervisor_H1 - (APC910 - Celeron) MemoryAreaH1

Hypervisor_H2 - (Zynq - ARM Cortex A9) MemoryAreaH2

T

Hypervisor_H3 - (Zyng - FPGA_MBO0) MemoryAreaH3 L =

T

Hypervisor_H4 - (Zynq - FFGA_MB1) MemoryAreaH4

Figure 7 - WP7: System software (AF3).
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3.3.2 Deployment

Figure 8 shows the Deployment “Producté_DSE_prod_realisation” of the component level tasks to the
Partitions of the hypervisors, as defined by the DSE for Product6. As can be seen, the two tasks of the
timing chain “SafetyProtection” are allocated to two different Tiles and thus the message sent from
“lOServer” to “SafetyProtecton” has to transit over the on-chip network.

<& producté_DSE_prod_realisation &2

Deployment Mappings
New... Remove

Component ECU
Partition_H2_xARMc1_P3 : Partition
Partition_H2_xARMc1_P1 (Safety) : Partition
Partition_H4_xMicroBlazeMB1_P3 : Partition
Partition H3 xMicroBlazeMBO P1 (Safety) : Partition
Partition_H2_xARMc1_P2 (Safety) : Partition I
Partition_H4_xMicroBlazeMB1_P3 : Partition
Partition_H1_x86c1_P2 : Partition
Partition_H4_xMicroBlazeMB1_P2 : Partition
Partition_H1_x86c2_P6 : Partition
Partition_H2_xARMc2_P5 : Partition
Partition_H2_xARMc2_P5 : Partition
Partition_H3_xMicroBlazeMBO0_P2 (Safety) : Partition
: n

(C] Supervision - (D) : Component
(C) Diagnostic - (1) : Component
© DataServer : Component
® Diagnostic - (1) 1: Component
| (C] SafetyProtection - (1) : Component

© Supervision - (A) : Component

® supenvision - (F) : Component

® Supenvision - (G) : Component

© SCADA : Component

(C) Supervision - (B) : Component

© ComServer: Component

(C] SafetyProtection - (1)_1: Component

® 10Server: Component Partition_H1_x86c2_P6 : Partition
Partition_H1_x86c2_P4 : Partition

Partition_H4_xMicroBlazeMB1_P1: Partition

C] I0Server_1: Component

B BB

(C) Supervision - (C) : Component

Figure 8 - Wp7: Deployment for Product6 of the Windpower demonstrator.

3.4 Configuration of Schedulers

At this point, the deployment of the applications to Tiles and Partitions is defined and thus end-to-end
latency constraints may be decomposed into sub-constraints (Section 3.4.1) which are the inputs for the
configurations of the schedules of the task scheduling (Section 3.4.2) and on-chip communication
scheduling domains (Section 3.4.3). Before generating the configuration file of the platform building
blocks, end-to-end delays resulting from the domain schedules are verified against the latency
constraints (Section 3.4.4).

3.4.1 Timing Decomposition

The decomposition of end-to-end latency constraints into sub-constraints for the different scheduling
domains (task scheduling an on-chip communication) corresponds to step 6 of the Tool Chain Use Case
1, see [1]. In order to execute the decomposition algorithm implemented in RTaW-Timing, the “Timing
Decomposition” entry of the context menu of the Deployment “Product6_DSE_prod_realisation” must
be selected (see Section 4.3.1.5 of [1]). As a result, the system description is automatically exported to
RTaW-Timing, which computes the decomposition and shows the result in its GUI, see Figure 9.
Furthermore, the results are automatically imported back into AF3 and visible in the Timing Model
Editor (see Figure 10).
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 RTaW-Timing v2.4.6/Pro - * 'Model not yet saved' - O X
File Samples Design Evaluation MNETAIRBench What-If Plot Trace Tools 7

Global Tree % | Timing Decomposition for deployment "preduct_DSE_prod_realisation’ P
Pl s 2 MName* | Timing Decomposition for deployment 'producté_DSE_prod_realisation’
~ . T
R TimingChain® | Chainl: SafetyProtection LatencyConstraint 23 ms
Chainl: SafetyProtection
. Cha!nl: S(_:ADA . TimeSubBudgets cqordination TimeBudget Resource ChainElements
iod Chain3: Diagnostic
MNodes of 'WindTt Chain1: SafetyProtection_1 3,358 ms  Celeron - x86 - Core2 105erver
ExecutablesSets Chain3: Diagnostic_1 7813 ms 0,005 ms  GALILEO-OnChipNetwork  105erver:OutSafetyProtectior
Tasks of 'Compor 10ms 3,822 ms  Corel SafetyProtection - (1)
DataComMeeds
Messagedet
PDUComMeeds
DreamsVLSet
hd £ >
£

Figure 9 - WP7: Details of a timing decomposition (RTaW-Timing).

In Section 3.3.2 we have seen that the two tasks of the Timing Chain “SafetyProtection” are deployed to
two different Tiles. Therefore, the decomposition of the end-to-end latency constraints consists of 3
sub-constraints or “budgets”, one for the processing on the “Celeron” Tile, a second for the
communication of the NoC and a third for the processing on the “ARM” Tile. Figure 9 shows the details
of the decomposition, where the so called “coordination delays” are listed separately. A coordination
delay is the time it may take, for example, between the latest possible time the output of a task is
available for the transmission over the network, until the packet that transports that output is queued
for transmission. The amount of this delay depends on how well the execution of the task and the
gueuing of the packet are coordinated. In the most favourable case, the frame is instantiated “just after”
the latest possible execution end of the task and then queued with the fresh outputs. But coordination
is only possible if periods are harmonic, i.e. one is a divider of the other or if they are simply equal. But
defining harmonic periods might be impossible, because of different granularities of time, even if the
clocks are synchronized as in the DREAMS architecture. The granularity of time is 1us for the XtratuM
hypervisor, but 2™ s for the NoC NI. In this use case, tasks have periods of 10 ms, but 10 ms are not a
negative power of 2. To allow that every task outputs is sent over the network and never overwritten, a
shorter compatible period must be chosen for the packet, which is 27 s = 7,813 ms. This implies non-
harmonic periods and makes coordination impossible. As a result, the coordination delay may reach the
period of the frame that transports the output of the task or equal to the period of the task that reads
the data transported by a frame. There a corresponding budget for the coordination is foreseen.

In this use case it means for example that a message produced by “IOServer” on the “Celeron” Tile may
have to wait up to 7,813 ms before being queued for sending over the NoC and when the message
arrives at the “ARM” Tile, it may have to wait up to 10ms before being read by the next execution of
“SafetProtection”. These are the values visible in the “Coordination” column in Figure 9.
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DREAMS Timing
v <4 Timing Project
v 4 Timing Description
< Events Folder
< Timing Chains Folder
4 Timing Constraints Folder
v < Timing Decompositions Folder
v <4 Timing Decomposition producté DSE prod realisation
v | 4 Event Chain Decomposition Chain1: SafetyProtection with reaction constraint: delay <= 25.0ms
<4 Event Chain 'APC910 - Celeron' with reaction constraint: delay <= 3.358ms
<4 Event Chain 'OnChipNetwork' with reaction constraint: delay <= 7.818ms
<4 Event Chain 'Zynq - ARM Cortex AS' with reaction constraint: delay <= 13.822ms
Event Chain Decomposition Chain2: SCADA with reaction constraint: delay <= 45.0ms
Event Chain Decomposition Chain3: Diagnostic with reaction constraint: delay <= 25.0ms
Event Chain Decomposition Chain1: SafetyProtection_1 with reaction constraint: delay <= 25.0ms
Event Chain Decomposition Chain3: Diagnostic_1 with reaction constraint: delay <= 25.0ms

+e 4+

Figure 10 - WP7: Timing Decomposition of the chain "Safety Protection"

3.4.2 Task and Partition Scheduling

The generation of schedules for partitions and tasks corresponds to step 8 of the Tool Chain Use Case 1,
see [1]. In order to perform this step with Xoncrete, the “Xoncrete Eprj file Export” entry of the context
menu of the Deployment must be selected, as show in Figure 11 (changed since the explanations given
in [1]).
[ *Model Mavigator &2 | % Resource Navigator] — O
LS X
v [ productEDREAMS WP7 PL Demonstrator *
® Component Architecture - productt_DSE_prod_rez
C] Component Pool
® Components - Wind Turbine
:: Design Space Exploration (DREAMS)
of% Platform Architecture - Wind Turbine
g Safety Case
of3 System Software - Wind Turbine
“I5 DeploymentParameters
75 DeploymentParametersPool
$ productt_D5E_prod_realisation

Copy
Cut

C’% |l'|||"

Paste
Delete

LN

Rename

Koncrete Eprj file Export
a1 iming Decompaosition
@ Set LRM,MON and GRM Periods and Offsets
{2 Run DeploymentGenerator

Figure 11- WP7: Invocation of the Xoncrete file exporter.

The result is the creation of 4 Xoncrete project files, one for each Tile/Hypervisor. They are located
besides the AF3 model file and can be visualized in the “Resource Navigator”, see Figure 12.
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9%

'@z *Model Navigator | - Resource Navigator &3 -
v AF3-Project-Directory
|=] .project

product6DREAMS WP7 PL Demonstrator.af3_23
4 product6DREAMS WP7 PL Demonstrator.dcfg
4 product6DREAMS WP7 PL Demonstrator.dreamstiming
product6éDREAMS WP7 PL Demonstrator.safetycompliance
5 productoDREAMS WP7 PL Demonstrator_Hypervisor_H1 - (APC910 - Celeron).eprj
| productbDREAMS WP7 PL Demonstrator_Hypervisor_H2 - (Zynq - ARM Cortex A9).eprj
product6DREAMS WP7 PL Demonstrator_Hypervisor_H3 - (Zynq - FPGA_MBO0).eprj
product6DREAMS WP7 PL Demonstrator_Hypervisor_H4 - (Zynq - FPGA_MB1).eprj
ProductolECH1508.1ec6 1508
product6_DSE_prod_realisation.dreamstiming
product6_DSE_prod_realisation.safetycompliance

Figure 12 - WP7: Xoncrete input files (AF3).

Notice that the exporter has calculated the least common multiple (LCM) of all task periods (=10ms) and
has exported this LCM as common MAF for all Tile/Hypervisors.

Next, Xoncrete needs to be applied separately to each file, since Xoncrete can generates the scheduling
of tasks for only one Tile/Hypervisor. For each file, the following steps need to be performed in
Xoncrete:

1. The file must be imported with the help of the “File->Load” menu entry.

The “Analysis->Temporal Analysis” menu entry must be selected.

The “Adj. Periods to given MAF” button must be clicked.

The “2.Schedule Generation” button must be clicked.

The “Run Analyzer” button must be clicked.

When the schedule has been generated, the “File->Export to XMC file” menu entry must be
selected and the result file exported to the folder where the input files are located.

oukwnN

When all schedules are created, a SystemSchedule needs to be created in AF3 and the context menu
“XtratuM Xmc file Scheduling Import” must be used to import the Xoncrete result files, as shown in
Figure 13 (changed since the explanations given in [1]).
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(7 *Model Mavigator &% | % Resource Navigator

v = productbDREAMS WPT PL Demonstrator ™
@ Component Architecture - productf_DSE_prod_realisation
C] Compeonent Pool
(& Compenents - Wind Turbine
25 Design Space Expleration (DREAMS)
#[j3 Platform Architecture - Wind Turbine
m Safety Casze
#[7 System Software - Wind Turbine
<& DeploymentParameters
& DeploymentParametersPool
& productf_DSE_prod_realisation
Wi Systern Schedule

== Resource Schedule

Copy
Cut

Ug;- ﬁm"

Paste
Delete

Rename

B X

KtratulM Xmc file Export
KtratuM Xrmc file Scheduling [mport
@ n-chip TT Schedule Generation

Figure 13 - WP7: Import of Xoncrete output.

The result of the import is the creation of the corresponding partition and task scheduling model
elements in AF3, as shown in Figure 14.

v == System Schedule
, == Resource Schedule - APC910 - Celeron - Celeron - x86 - Corel - Plan0
== Resource Schedule - APC910 - Celeron - Celeron - x86 - Core2 - Plan0
== Resource Schedule - Zynq - ARM Cortex A9 - Core0 - Plan0
v == Resource Schedule - Zynq - ARM Cortex A9 - Corel - Plan0
=2 (0) Resource Allocation - Partition_H2_xARMc2_P5 - start=0us duration=1145us
=2 (1) Resource Allocation - Partition_H2_xARMc1_P4 - start=1145us duration=732us
v = (2) Resource Allocation - Partition_H2_xARMc1_P2 (Safety) - start=1877us duration=683us
v == Tasks @ Partition_H2_xARMc1_P2 (Safety) - start=1877us duration=683us
-0 Resource Allocation - SafetyProtection - (1)
=~ Resource Schedule - Zynq - FPGA_MBO - Core_MBO - Plan0
=~ Resource Schedule - Zynq - FPGA_MB1 - Core_MB1 - Plan0

Figure 14 - WP7: imported task and partition schedules.

Notice that the exporter has created ETEFs for the defined Timing Chains, with offset and deadline
constraints that correspond to their timing decomposition.

Let us take again the Timing Chain “Safety Protection” considered in Sections 3.2.2 and 3.4.1. The task
“SafetyProtection” is the last segment of the chain and executed on the “ARM” Tile. The offset
constraint for the corresponding ETEF is computed as follows:

1. Sum of the “budgets” of the preceding segments “processing on the Celeron Tile” and
“transmission over the off-chip network”, (see Figure 10): 3,358 ms + 7,818 ms = 11,176 ms.
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2. The offset needs to be normalized with respect to the period of the task, i.e. the modulo with
the task period needs to be computed: 11,176 ms mod 10 ms = 1,176 ms.

Since the budget for the processing on the “ARM” Tile is 13,822 ms (see Figure 10), the deadline
constraint for the ETEF is 1,176 ms + 13,822 ms = 14,998 ms.

As can be seen in Figure 14, the task “SafetyProtection” is executed in the slot starting at 1,877ms for a
duration of 683 us, which is between 1,176 ms and 14,998 ms requested by the offset and deadline
constraint.

3.4.3 On-chip Scheduling of TT Virtual Links

The generation of a time triggered scheduling configuration for TT Virtual Links over the on-chip
network corresponds to step 9 of the Tool Chain Use Case 1, see [1]. In order to execute the algorithm
implemented in RTaW-Timing, the “On-chip TT Schedule Generation” entry of the context menu of the
SystemSchedule must be selected, as explained in Section 4.3.3.5 of [1]. As a result, the description of
the on-chip communication requirements is exported to RTaW-Timing, which computes for every TT
Virtual Link:

e aperiod, compatible with the time granularity of the on-chip network (2" s )
e atransmission phase that avoid any collision with other TT Virtual Links

The computed parameters are shown in the GUI of RTaW-Timing (Figure 15) and automatically imported
into AF3, see Figure 16.

B RTaW-Timing v2.4.6/Pro - * 'Model not yet saved' — O .

File Samples Design Evaluation METAIRBench What-If Plot Trace Tools 7
Global Tree v | TeOffsets

* N *
Architectures & Mame* | TuOffsets TimelsGlobal

(d SRMap | SRMap (productt DSE_prod_realisatic w

Sender Frarme N Pericd  TxOffset 6
Zynq - ARM Cortex A9 VL_0 (Com5Server.CutDataServer) 7812 ms  0,366211 ms
Zyng - ARM Cortex AS VL_1 {ComServer.QutlUser) 7812 ms  0,335693 ms
Zynq - ARM Cortex A9 VL_10 (Diagnostic - (1).0utlOServer) 7812 ms  0,396729 ms
Zynq - FPGA_MEBD WL_11 (Diagnostic - (1)_1.0utlOServer) 7812 ms  0,030518 ms
APCS10 - Celeron VL_12 (10Server.OutSafetyProtection) 7812ms 0,152388 ms
:__;_ eComNesds APCH10 - Celeron WL_13 (10Server_1.0utSafetyProtection) 7812 ms  0,000000 ms
STNoc Packets APCH10 - Celeron VL_14 (SCADA.QutComServer) 7812 ms  0,091353 ms
Topologies APCH10 - Celeron WL_15 (SCADA.QutDataServer) 7812ms  0,122070 ms
GA|.-|LEO-OI'1C|"IipNEtWDr|- Zyng - ARM Cortex A9 WL_18 (SafetyProtection - (1).0utlOServer) 7812 ms 0122070 ms
Routings Zynq - FPGA_MED WVL_19 (SafetyProtection - (1)_1.0utComServer) 7,812ms 0,122070 ms
STNoC Routing (producte ¥ Zynq - FPGA_MB1 VL_2 (DataServer.OutComServer) 7812 ms  0,240141 ms

< > Zvna - FPGA MBOD WL 21 (SafetvProtection - (11 1.0utlO5erver) 78312ms 0183105 ms bt

Figure 15 - WP7: On-chip TT Scheduling computed by RTaW-Timing
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] System Schedule B Properties % a Annotations | == System Schedule &l Console | &
w == gn-chip com: APCO10 - Celeron.MI Celeron VN1
-2 VI 12 (OutSafetyProtection) = VL 12 (OutSafetyPrDtectiDn)
== VL 13 (OutSafetyProtection) -
- VL 14 (QutComServer) General Mame VL 12 (OutSafetyProtection)
«o VL 15 (QutDataServer) Internal | Comment
7
z :t 38 Egz:sz:l Schedulable Entity productt_DSE_prod_realisation.
== VL 39 (Output?) Duration [s] 0,00000005
== gn-chip com: Zyng - ARM Certex AS.NI ARM_AS VN1 Trigger Periodic

== gn-chip com: Zyng - FPGA_MBO.NI MBO VM1 .

v+ on-chip com: Zyng - FPGA_MB1.NI MB1 VN1 Periad [5] 0,0078125

== Resource Schedule - APC910 - Celeron - Celeron - x86 - Corel - Plan0 Phase [5] 0,000152587891
== Resource Schedule - APCS10 - Celeron - Celeron - xB6 - Corel - Plan0

== Resgurce Schedule - Zyng - ARM Cortex A% - Corel - Plan0

== Resource Schedule - Zyng - ARM Cortex A9 - Corel - Plan(

== Resource Schedule - Zyng - FPGA_MBO - Core_MBO0 - Plan0 Undefined

== Resource Schedule - Zyng - FPGA_MB1 - Core_MB1 - Plan0

Figure 16 - WP7: On-chip TT Scheduling parameters added to the SystemSchedule (AF3).

3.4.4 Timing Analysis

Performing worst case analysis of end-to-end delays, in order to verify that latency constraints on the
timing chains are satisfied, corresponds to step 11 of the Tool Chain Use Case 1, see [1]. In order to
execute the algorithm implemented in RTaW-Timing, the “Timing Evaluation” entry of the context menu
of the SystemSchedule must be selected, as explained in Section 4.3.2.5 of [1]. As a result, the complete
description of designed system is exported to RTaW-Timing, which executes the worst-case analysis and
displays the computed bounds in its GUI, as shown in Figure 17.

# aW-Timing v 4.0/Fro - odel not yet save —

B RTaW-Timing v2.4.6/P *'Model ¥ d' O ™

File Samples Design Evaluation MNETAIRBench What-If Plot Trace Tools 7

Global Tre= ¥ Tasks of 'Component Architecture - producté_DSE_pred_realisation' &2

Architectures « MName* | Tasks of 'Component Architecture - product6| Scheduling Config | System Schedule |
Applications " Deployment | productt_DSE_prod_realisation | ComScheduling | MixedCemConfig |
Typelibraries
ProcessorProfiles Analysis | [A] System Analysis W
MNodeSets

Modes of "Winc Simulations v Sample Time v

ExecutablesSets
“ Talsics Z'F '(E:Dmp End-To-End Delays | Local Delays

DataComMNeeds Name Min  Average 04 Q5 Q6 Max Bound  FirstThro...
MessageSet Chain1: SafetyProtection _ 25ms
PDUComMeeds Chain2: SCADA _ 45ms
Drear.'nsjv’LSet Chain3: Diagnostic _ 25ms
._:'I:Tr%fﬂ-_'f_les-_'-ef Chain1: SafetyProtection_1 _ 25ms
Flanp::i;:dn;::::;tg Chain3: Diagnostic_1 _ 25 ms
Topologies
EtherCAT w
< > Graphic | Properties | Delays

Figure 17 - WP7: Bounds on worst-case delays of timing chains (RTaW-Timing).

All bounds are displayed in green, because their values are smaller than the corresponding delay
constraint.
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End-To-End Delays | Local Delays

TimingChain | Chainl: SafetyProtection v | BudgetDistribution | Timing Decompaosition for deployment 'produ w
Segment ChainElements  Coord. Delay Bound  Coord. Delay Budget  Delay Bound  Delay Budget
GALILEQ/APCI10 - Cel... 105erver 0 ms 0,6 ms 3,338 ms
GALILEQ-OnChipMetw... 10%erverQutSafetyProtection 7813 ms 7813 ms 0,05 ms 0,005 ms
GALILEQ/Zyng - ARM ... SafetyProtection - (1) 10 ms 10 ms 0,683 ms 3,822 ms

Figure 18 - WP7: Bounds on worst-case delays of timing chain sub-segments (RTaW-Timing).

Figure 18 shows the bounds on the sub-segments of the timing chain “Safety Protection”, already
described in more details in previous sections. It can be noticed that for the on-chip communication, the
worst-case bound is equal to the budget. Since no coordination is possible between tasks and on-chip
communication, the coordination delay is equal to the message period in the worst case. The budget has
been chosen accordingly by the timing decomposition algorithm (Section 3.4.1). Furthermore, since the
on-chip schedule is based on phases that avoid any collision, the worst-case traversal time is actually the
time needed in case of an empty network. The time budget has been chosen accordingly and thus the
bound is equal to the budget. Notice that the comprehensive time (coordination + traversal) is
independent of the number of VLs. Therefore it was possible to allocate tight budgets (see also [6],
Section 4).

On the other hand, the delays induced by the task segments depend on the processor load. Therefore all
available slack with respect to the end-to-end latency constraint has been distributed over the task
segments and since there is indeed slack (end-to-end delay bound << end-to-end constraint), the
bounds on the worst case delays of the task segments are much lower than the budgets.

3.5 Platform Building Block Configuration File Generation

At this point, task and on-chip communication schedules have been defined and verified and thus the
building block configuration files may be generated.

3.5.1 XtratuM configuration files

The generation of the configuration files for the XtratuM hypervisors corresponds to step 12 of the Tool
Chain Use Case 1, see [1].

The generation is implemented as AF3 plugin and can be executed by selecting the “XtratuM Xmc file
Export” entry from the context menu of the SystemSchedule as shown in Figure 19 (changed since the
explanations given in [1]).
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:% producté_DSE_prod_realisation
v = Systern Schedule

== Resource Schedule

Copy

of  Cut

Paste
#  Delete
& Rename

Atratubd Xmc file Export

Figure 19 - WP7: XtratuM configuration file export.

The produced configuration files, one for each Tile, are located in the project folder and can be accessed
in the “Resource Navigator” as shown in Figure 20.

(@ Model Navigator | - Resource Navigator 53 | 2 Bg Y=L
v AF3-Project-Directory
> (& on-chip
[] .project

|=] OnCHipScheduling.swth

TaskPartitionScheduling.swth
TimingDecomposition.swth
TimingEvaluation.swth
productéDREAMS WP7 PL Demonstrator.af3_23
product6DREAMS WP7 PL Demonstrator.dcfg
product6DREAMS WP7 PL Demonstrator.dreamstiming
productéDREAMS WP7 PL Demonstrator.safetycompliance
productéDREAMS WP7 PL Demonstrator_GALILEO_APC910 - Celeron_Hypervisor_H1 - (4
product6DREAMS WP7 PL Demonstrator_GALILEO_APC910 - Celeron_Hypervisor_H1 - (4
productoDREAMS WP7 PL Demonstrator_GALILEO_Zynq - ARM Cortex A9_Hypervisor_H
product6DREAMS WP7 PL Demonstrator_GALILEO_Zynq - ARM Cortex AS_Hypervisor_H
productéDREAMS WP7 PL Demonstrator_GALILEO_Zynq - FPGA_MBO_Hypervisor_H3 - (
product6DREAMS WP7 PL Demonstrator_GALILEO_Zynq - FPGA_MBO_Hypervisor_H3 - (
productéDREAMS WP7 PL Demonstrator_GALILEO_Zynq - FPGA_MB1_Hypervisor_H4 - (.
productéDREAMS WP7 PL Demonstrator_GALILEO_Zynq - FPGA_MB1_Hypervisor_H4 - (
productéDREAMS WP7 PL Demonstrator_Hypervisor_H1 - (APC310 - Celeron).xml
product6DREAMS WP7 PL Demonstrator_Hypervisor_H2 - (Zynq - ARM Cortex AS).xml
productéDREAMS WP7 PL Demonstrator_Hypervisor_H3 - (Zynq - FPGA_MBO0).xml
product6DREAMS WP7 PL Demonstrator_Hypervisor_H4 - (Zynq - FPGA_MB1).xml
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Figure 20 - WP7: Generated Xtratum configuration files.
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Figure 21 shows the configuration file for the “APC910” Tile in the EMF tree viewer. Notice that the
output of Xoncrete that contains the task and partition schedules (Section 3.4.2) is already produced in
the XML format of the XtratuM hypervisor, but with respect to these files, the finally generated
configuration files also contain communication related data, namely the partition ports and the
communication channels between the partition ports and also the ports for the on-chip communication.

i product6DREAMS WPT PL Demonstrator_Hypervisor_H1 - (APC310 - Celeron).
=l platform:/resource/ AF3-Project-Directony/productDREAMSH20WPT20PL%

w i< Document Root

w < System Description

w ¢ Hw Description E
<4+ Mermory Layout E
% Processor Table
< DevicesE
4 Hypervisor E
4 Rsw E
w < Partition Table
w < <partitiocn> Partition E Partition_H1_x86c2_P4
<= Memory Area E
4 Health Monitor E
w < Partition Ports E
<= <port> Port VL22056_VL_36_Component Architecture -
<= <port> Port VL21881_VL_11_Component Architecture -
4= <port> Port VL22028 VL 32 _Cormponent Architecture -
<4 <port> Port VL219531_VL_21_Cormponent Architecture -
<= <port> Port VL21895_VL_13_Component Architecture -
< «partition> Partition E Partition_H1_x86c2_P3
4 <partition> Partition E Partition_H1_x86c1_P1
& =partition= Partition E Partition_H1_x86c1_P2
< «<partition> Partition E Partition_H1_x86c2_P&
< «partition> Partition E Partition_H1_x86c2_P3
w < Channels B
w < =samplingChannel> Sampling Channel 4B
4 lpc DREAMS Port EVL218311_VL_1_Cempeonent Architecture
< «destination> |pc Port E Partition_H1_x86c2_P&
v < <samplingChannel> Sampling Channel 4B
<4 lpc DREAMS Port EVL21825_V0L_3_Component Architecture
< «<destination> |pc Port E Partition_H1_x86c2_P&
4 <samplingChannel> Sampling Channel 4B
4 <samplingChannel> Sampling Channel 4B

Figure 21 - WP7: Tree view of a XtratuM configuration file.

3.5.2 On-chip network communication configuration files

The generation of the configuration files for the on-chip communication, corresponds to step 13 of the
Tool Chain Use Case 1, see [1].
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The generation is implemented as a two-step process, as explained in Section 3.3.1.5 of [7]. First the
“Generate ‘Physical On-Chip Communication’ Configuration Model” entry from the context menu of the
SystemSchedule must be selected in order to generate the configuration model, which is visible in the
“Resoure Navigator” (.dcfg file). Figure 22 shows transmission phases for TT VL created in step 9 (Section
3.4.3) for the LRS of one of the Nis.

& productBDREAMS WP7 PL Demonstrator.dcfg £2

DREAMS Configuration

platform:/resource/AF3-Project-Directory/productéDREAMS%20WP7%20PL %20Demonstrator.af3_23
platform:/resource/AF3-Project-Directory/product6_DSE_prod_realisation.dreamstiming
platform:/resource/AF3-Project-Directory/productéDREAMS %20WP7%20PL %20Demonstrator.dreamstiming
platform:/resource/AF3-Project-Directory/producttDREAMS%20WP7%20PL %20Demonstrator.safetycompliance
platform:/resource/AF3-Project-Directory/product6lEC61508.iec61508
platform:/resource/AF3-Project-Directory/productéDREAMS%20WP79%20PL %20Demonstrator.dcfg
v 4 ConfigurationProject [cfg] <unnamed>
v < PhysicalPlatformConfiguration [PPC] Physical On-chip Configuration for System Schedule 'System Schedule’
v <4 OnChipNetworkConfiguration [onchip] <unnamed> <> |IP=SHUFFLING
v 4 |OnChipNiLrsConfiguration [Irs_1] kunnamed> Ni=productsDREAMS WP7 PL Demonstrator.Platform Architectu
< PortConfiguration [] <>
v 4 TimeTriggeredCommunicationSchedule [] <>

¢ TimeTriggeredCommunicationScheduleEntry 0 -> 1 period=0.0078125, phase=0E-9
¢ TimeTriggeredCommunicationScheduleEntry 1 -> 2 period=0.0078125, phase=0.000030517578125
4 TimeTriggeredCommunicationScheduleEntry 2 -> 3 period=0.0078125, phase=0.00006103515625
4> TimeTriggeredCommunicationScheduleEntry 3 -> 4 period=0.0078125, phase=0.000091552734375
4 TimeTriggeredCommunicationScheduleEntry 4 -> 5 period=0.0078125, phase=0.0001220703125
<4 TimeTriggeredCommunicationScheduleEntry 5 -> 6 period=0.0078125, phase=0.000152587890625
4 TimeTriggeredCommunicationScheduleEntry 6 -> 0 period=0.0078125, phase=0.000244140625
4 OnChipNiLrsConfiguration [Irs_2] <unnamed> Nl=product6éDREAMS WP7 PL Demonstrator.Platform Architectu
<4 OnChipNiLrsConfiguration [Irs_0] <unnamed> Nl=productéDREAMS WP7 PL Demonstrator.Platform Architectu

Figure 22 - WP7: Configuration model for the on-chip communication.

[
L
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The second step consists in transforming the configuration model into text files. For this purpose, the
“Run configuration generation framework” entry from the context menu of the model need to be
selected as shown in Figure 23 (not explained in [7]).

31.07.2017 DREAMS Page 26 of 59



Version 1.0

Confidentiality Level:PU

%

s X

[#} Model Navigater 2% | . Resource Navigator

v = product6DREAMS WPT PL Demonstrator
® Com @
® Com .3
® Com
23 Desic
o2 Platf:
Bl Safet #2
oo Syste $o
75 Depl
&

i

Component Architecture
Deployment

Data Dictionary
Requirements Analysis
Platform Architecture
Reconfiguration Graph

Safety Argumentation Package
Depl ...

prod =

Syste

Systern Schedule

Copy
Cut

Paste
x
&

o

Delete

Rename

Run configuration generation framework...
[

by

Figure 23 - WP7: Running the configuration generation framework.

O

¢35 Configuration generation wizard

Template selection

Select the corresponding templates to generate
configurations.

In dialog must be selected the “Onchip Network Configuration (Physical Platform)” entry, see Figure 24.

X

[] Test Configuration Generation
[] Virtual Platform Configurations
W Physical Platform Configurations
Onchip Metwork Configuration (Physical Platform)

< Back Mext = Finish Cancel

Figure 24 - WP7: Configuration generation framework Wizard.

The “Next” button moves to the selection of an output folder. We suggest creating a sub-folder in the
project folder. Clicking “Finish” starts the generation, which produces a structure of nested text files
with global and NI specific configuration files (see Figure 25), suitable for DRCSV2BIN (Section 3.3.1.2 in

31.07.2017
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[7]), which allows to translate the textual configuration files into binary files for the actual configuration
of the platform building block.

(#: Model Navigator | 7. Resource Navigator &2

W AF3-Project-Directory

v [ on-chip
v [= cfg
w [ PPC
w [= onchip
w = Irs 0
@ port.csv
i3] ttcommsched.csv
w [ Irs_1
@ port.csv
@ ttcommsched.csy
w [ |rs_2
i3] port.csv
i1 ttcommsched.csv
w = Irs_3
@ port.csv
@ ttcommsched.csy
w = Irs_4
i) port.csv
w = Irs_5
@ port.csv

@ hwi.csw

Figure 25 - WP7: Generated textual configuration files for the on-chip communication.
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4 Application to an avionics use case

4.1 Introduction

In this section we apply the tool chain use case 2 “Scheduling Configuration with Resource
Management” defined D4.4.1 [1] to an avionics use case, which is an extension of the ROSACE case
study [8]. Here we have set up a system with three applications on two multi-core platforms to illustrate
the inter-node communication between applications when reconfiguration is considered.

With respect to the wind power use case described in Section 3, the definition of applications and
resources (Section 4.2) considers only one product and the deployment is defined manually. But in this
use case we create several deployments and resource schedules, managed by the local (LRM) and global
(GRM) resource manager (see D2.2.2 [9]) so as to guarantee a certain degree of continuity of services for
(critical) application in case of core failures (Section 4.4.2). The generation of the corresponding
configuration files of the platform services is also illustrated (Section 4.5).

4.2 Applications and Resources

The construction of the DREAMS logical and platform architecture models in the AutoFOCUS3 (AF3)
DREAMS edition tools is achieved via the context menu of an AF3 model, which is described in more
detail in [1], [10], and [11]. Here, we will focus on a description of the ROSACE application models that
include the application’s logical architecture, a timing requirement specification, and a target platform
model.

4.2.1 Logical Architecture

The logical architecture of the ROSACE application consists of two parts: The application components
and the resource management components that provide the runtime resource and monitoring DREAMS
services (see Figure 26). The ROSACE application consists of a non-critical MPEG video decoder, an order
generator and a critical control sub-application (see Figure 27). The decoder is a single black box
component and represents a large resource consumer. The control application description has been
taken from [8] and is modelled by means of the DREAMS meta-model whereby the components are
considered black-boxes with annotated properties. The order generator component represents an
additional input to the engine control that communicates desired application operation modes to the
control application, e.g. change flight course.

IR R e AR CaRRC T
i

‘ (9 OrderGenerator ‘

Figure 26 - Top-level view on the logical components: ROSACE logical Architecture.
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© ToMPEG
L delta_g
@ vz_control @ elevator

] * @ va_control % @ engine } i
% © va filter } J. T

@ az fitter
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© vz filter } —r
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4|—‘ % @ h filter } *l % © altitude_hold }
—

@ aircraft_dynamics

delta_e

>

@ q filter

Figure 27 - ROSACE control application

The DREAMS platform services are modelled as components of the logical architectures such that they
can be represented in the system deployment and schedules. Due to the fact that we have two nodes
available in the platform architecture, the model contains two middleware components: a middleware
component for the DHP that hosts the MPEG decoder, and a middleware component hosting the
ROSACE control application (see Figure 26). The global resource manager (GRM) component is located in
the DHP’s middleware (see Figure 28) to which the local resource managers (LRMs) of the DHP and the
LRMs of the T4240 (see Figure 29) are connected.

‘ ® MONO.dhp ‘ ‘ ® MON1.dhp ‘

‘ & LRMO.dhp ‘ ‘ 3 LRM1.dhp ‘
* *

| |
L o ]

R IRE B EE

L B8 SN SN BN BE SN BN BN BN BN BR J O

Figure 28 - Middleware components of the DHP.
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@ Mmon @ Mont @ monz @ Moz
& Mons (& MoNs g MoNs @ monT
& Mons & Mons @ MoNiD @ Mot
O O O O
_"‘l[:' & LrMD +J"{:' & LrM1 +J_"{:' @ LrMm2 +J"{:' @ LrMa +J
O O O O
_"‘l[:' 3 LrM4 +J"{:' & LrMS +J_"{:' @ LrME +J"{:' @ Lrm7 +J
8] 8] O O
_”% & LrME +J*%’ (& LrM3 +J_’%' [ERTITRN +J'%' [ERTIT AT +J

Figure 29 - Middleware components of the T4240.

Each component in the model is decorated with an annotation that specifies the application type: It can
be either an application, the global resource manager, a local resource manager, or a monitor. Figure 30
lists the component types for the MPEG component (first two rows in Figure 30; Type: Application) and
the resource management component types of the two middleware components. The GRM located in
the middleware component of the DHP is marked as such (see row 4 in Figure 30).

Model Elerment Comment Component [D Component Type
MiddlewareDHP 1 LREM

GRM.dhp 4 GRM

LEMOD.dhp 2 LR

LRM1.dhp 3 LRM

MOMO.dhp 1 MOM

MOMN1.dhp 0 MOM
MiddlewareT4240 4 LRM

LRMD 12 LR

LRM1 13 LRM

LREM1D 16 LRM

LRM11 23 LREM

LRM2 17 LRM

LRM3 18 LEM

Figure 30 - Logical component types.
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4.2.2 Timing Requirements
The definition of timing requirements corresponds to step 2 of the Tool Chain Use Cases 1 and 2, see [1].

All application tasks of the ROSACE demonstrator shall be executed periodically (5ms, 10ms, 20m:s,
100ms, 1s). These timing requirements are expressed as Periodic Constraints and specified through the
Timing Model editor integrated into AF3, see Figure 31

& Rosace.dreamstiming &3

DREAMS Timing

w < Timing Project
w < Timing Description $Id: Rosace.dreamstiming 4163 2017-04-07 14:24:277 diewald $

b < Events Folder

b < Timing Chains Folder

w < Timing Constraints Folder
4 Periodic Constraint: task="aircraft_dynamics' period=0.005s
4 Periodic Constraint: task="altitude_hold' period=0.02s
4 Periodic Constraint: task="elevator' period=0.005s
4 Periodic Constraint: task="engine' period=0.005s
4 Periodic Constraint: task="az_filter' period=0.01s
4 Periedic Constraint: task="h_filter' pericd=0.01s
< Periodic Constraint: task="g_filter' period=0.01s
< Periodic Constraint: task="va_filter' period=0.01s
< Periodic Constraint: task="vz_filter' period=0.01s
< Periodic Constraint: task="va_control' period=0.02s
4 Periodic Constraint: task="'vz_control' period=0.02s

< Periodic Constraint: task='"Mpeg2Server' period=0.1s

Figure 31 - ROSACE: Periodicity constraints on application task.

Two Timing Chains related to applications have been considered, see Figure 32. The first one only spans
tasks of the ROSACE application as illustrated in Figure 33, whereas the second covers the executions of
a task of the application “OrderGenerator” and a task of the application “ROSACE” with the
communication of some data from the former to the later.

¥ *Rosace.dreamstiming 23

DREAMS Timing
¥ <4 Timing Project
¥ < Timing Description
» < Events Folder

¥ <4 Timing Chains Folder

» | ¢ Event Chain 'delta_e (az_filter)'

» | ¢ Event Chain 'OrderGenerator -> Rosace'

» < Event Chain 'T4240.LRMO -> GRM -> DHP.LRM'

Figure 32 - ROSACE: Timing Chains.
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O az filter T E G vz_control G elevator +
© va filter } T
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{ G q”i"er ] e i

@ aircraft_dynamics

Figure 33 - ROSACE: Timing chains spanning several task of one application

Timing Chains may be declared with the help of the entry “Declare a Timing Chain” from the context
menu of the component architecture, see Figure 34 (not shown in [1]).

I3} Model Mavigator 57 | & Resource Navigator

w [= Rozace
(& ROSACE-MPEG
G Component

i Test Suite Specification
k] Test Suite

=| Copy Ctrl+C
of  Cut Ctrl+X
Paste Ctrl+V

¥ Delete Delete
& Rename F2

Declare a Timing Chain

All Functienal VLs RC

Figure 34 — Context menu for declaring a Timing Chain.

In the creation dialog (shown in Figure 35), a name must be provided and the list of involved tasks, in
the order in which information flows from the start to the end of chain. An optional reaction constraint
can be provided in seconds.

31.07.2017 DREAMS Page 33 of 59



D4.4.2 Version 1.0 Confidentiality Level:PU

Timing Chain Declaration

MName* delta_e (az_filter)

Reaction Constraint

Timing Chain Segments™ Tasks

ROSACE-MPEG/ROSACE/aircraft_dynamics ROSACE-MPEG/MiddlewareT4240/MONO ~
ROSACE-MPEG/ROSACE/az filter ROSACE-MPEG/MiddlewareT4240/MON1
ROSACE-MPEG/ROSACE/vz_control ROSACE-MPEG/MiddlewareT4240/MON10

ROSACE-MPEG/MiddlewareT4240/MON11
ROSACE-MPEG/MiddlewareT4240/MON2
ROSACE-MPEG/MiddlewareT4240/MOMN3
ROSACE-MPEG/MiddlewareT4240/MON4
ROSACE-MPEG/MiddlewareT4240/MON3
ROSACE-MPEG/MiddlewareT4240/MONE

ROSACE-MPEG/MiddlewareT4240/MONT
ROSACE-MPEG/MiddlewareT4240/MONE

»» | ROSACE-MPEG/MiddlewareT4240/MONS

ROSACE-MPEG/OrderGenerator/VacGenerator
ROSACE-MPEG/ROSACE/ ToMPEG
ROSACE-MPEG/ROSACE/ altitude_hold
ROSACE-MPEG/ROSACE/engine
ROSACE-MPEG/ROSACE/h_filter
ROSACE-MPEG/ROSACE/ q_filter
ROSACE-MPEG/ROSACE/va_control
ROSACE-MPEG/ROSACE/va_filter w

Yes Cancel

Figure 35 - Declaration of a timing chain.

Resource management tasks (LRM, MON and GRM) shall all be executed with the same periodicity. The
corresponding periodicity constraints can be generated through a context menu of the nominal
Deployment, as shown in Figure 36. The produced constraints are added to the Timing Model.

=
» 2 Systemn Schedule (Xi (=) Copy Ctri+C
of Cut Ctrl+X
¥ Delete Delete
& Rename 2

Xoncrete Eprj file Export

@ Timing Decomposition

N
b

= All Functional VLs RC

Figure 36 - Context menu entry for specifying period of resource management tasks.

For the ROSACE Use Case a resource management period of 1s has been chosen, which is equal to the
smallest common multiple of the functional task periods (MAF).

Since furthermore, LRM tasks must be executed at the end of the MAF, the timing constraint generator
also adds an offset constraint that induces an execution start at t = MAF - WCET when the task schedules
are generated (Section 4.4.1).

When a core fails, the master LRM of the concerned Tile detects the event, applies a local
reconfiguration (if possible) and informs the GRM (possibly running on another Tile) about the change.
As a response, the GRM might order local reconfigurations on other Tiles, by sending an appropriate
message to them. In this context it is interesting to consider the timing chain that spans the execution of
an LRM, followed by the sending of a message to the GRM, the execution of the GRM, followed by the
sending of an order message to some LRM and finally the execution of that LRM, which may trigger a
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scheduling plan change. We have considered such a chain: from LRMO of the T4240 node until the LRMO
of the DHP node. It is the last Timing Chain “T4240.LRMO -> GRM -> DHP.LRMO0" at the bottom of Figure
32.

4.2.3 Platform Architecture

The DREAMS platform meta-model consists of a hardware platform meta-model and a system software
meta-model, i.e., the middleware [10]. The hardware model of the ROSACE example application is a
single cluster that consists of a model of a DHP and a T4240 (see Figure 37) that are connected by a
TTEthernet network model. For the DHP, only the ARM A9 Tile is modelled since the optional Microblaze
processors are not used in the example. The T4240 node consists primarily of the T4240 Tile that has 12
Cores.

v Platform Architecture
e — DHP Node
~ [l DOHP
~ [ ARM AS ‘ ‘
W Bus
W Corel
W Corel oo _ .
[ MNi ARM_AS VN1 OnChipNetwork
[ Mi ARM_A9 VM2
B OnChipNetwork
[ OnChipOffChipGateway O
v B T840
B OnChipNetwork
[ OnChipOffChipGateway — I
~ [ Tile
M Bus
| Co
[~
| o
| i a® —
=
=]
(e
|
| C6
|~ mC8
[~}
=]
[ Metworkinterface
B TTEthemet

O Port MB1_VN1

L) Port_ME2_ VN2

T4240 Tile

C—e .

Figure 37: ROSACE HW platform model: DHP node and T4240 Tile.

4.2.4 System Software

The system software model of the ROSACE example consists of two Hypervisors: one assigned to the
ARM A9 Tile of the DHP (see Figure 38), and to the T4240 Tile (see Figure 39). Each Hypervisor hosts a
partition for each of the resource manager components, and partitions for the MPEG and the ROSACE
application components. These partitions define the set of instantiable partitions that manifest in the
configuration files for the Hypervisor. Here, a LRM and a monitor is defined for each of the cores present
in the system. As discussed in [10], Hypervisors and Tiles (and Partitions to Cores) are assigned to each
other by so-called Resource Link annotations.
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|
‘ ®
®

™ PROSACEdhp
®
= PMpeg2Server.dhp @ o @ InterPartitionOnChipMetworkExport

Figure 38: Partitions and virtualized memory and communication elements of the ARM A9's Hypervisor.

= MONO.dhp ' InterPartitionCom
.

| | | %g
i By MLLE
| | | B SamanEaaas

*
= LRMT = LRM8 = LRM9 = LRM10 = LRM11

InterPartitionCom

o, o, o,

[ ]
= PROSACE = PMPEG2Server = @ InterPartitionOnChipNetwarkExport

Figure 39: Partitions and virtualized memory and communication elements of the T4240's Hypervisor.
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4.3 Deployment

The DREAMS deployment meta-model defines component-to-execution unit allocations, an application’s
Virtual Links, and the mapping of logical in- and output ports to the in- and outputs of the target
platform (see [10],[11]). In contrast to the Deployments that are generated by the DSE for the wind
power demonstrator application (see Section 3.3.2), the initial Deployment for the ROSACE example is
defined mainly manually: the component-to-execution unit mapping is done using drag and drop in the
deployment editor, while the Virtual Links are generated.

As noted in the previous section, each resource management component is assigned to a separate
partition (see Figure 40). The actual applications of the ROSACE example, the MPEG component and the
components, constituting the ROSACE control application, are assigned to partitions hosted on the
Hypervisor of the T4240 Tile (PROSACE and PMPEG2Server; see the missing “.dhp” suffix in the table
shown in Figure 40). Hence, the counter part of these partitions present in the Hypervisor model
assigned to the DHP Tile are fall-back partitions that may be used by the reconfiguration methods. The
failure mode calculation uses these partitions to derive alternative deployment schedules that may use
these partitions if it is required by some failure scenario.

Component ECU Port Transceiver

C] MON1.dhp : Component MON1.dhp : Partition @ to-T4240 : OutputPort
C] MOND.dhp : Component MOND.dhp : Partition O Input : InputPort
C] LRMO.dhp : Component LRMO.dhp : Partition 2 Input : InputPort
C] LRM1.dhp : Component LRM1.dhp : Partition O Input : InputPort
@ elevator: Component PROSACE : Partition O Input : InputPart
PROSACE : Partition 2 Input : InputPort
PROSACE : Partition 2 Input : InputPort
PROSACE : Partition O Input : InputPort
PROSACE : Partition O Input : InputPart
PMPEG25erver : Partition O Input : InputPort
MORND : Partition 2 Input : InputPort
MON1 : Partition O Input : InputPort
MONZ : Partition O Input : InputPart

InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...
InterPartitionComPort : InterP...

C] q_filter: Component
e\rz_ﬁlter: Component

C] vz_control : Component
C] engine: Component

C] Mpeg2Server : Component
C] MOND: Component

@ MoNT: Component

C] MONZ : Component

® mMonz: Component MON3 : Partition @ Output : QutputPort InterPartitionComPort : InterP...
& mMond: Component MON4 : Partition 2 Input : InputPort InterPartiticnComPort : InterP...
& MOoNs: Component MIONS : Partition @ Output : QutputPort InterPartiticnComPort : InterP...
© MoNs: Component MONG : Partition O Input1 : InputPort InterPartiticnComPort : InterP...
® mMonT: Component MONT : Partition @ Output : QutputPort InterPartitionComPort : InterP...
@ mone: Component MOMNE : Partition O In_T4240_LRMO : InputPort InterPartitionComPort @ InterP...
® MoNg: Component MONS : Partition @ Output : QutputPort InterPartiticnComPort : InterP...
& MOoN10: Component MON10 : Partition O In_T4240_LRM1 : InputPort InterPartiticnComPort : InterP...
& MON1T: Component MOMN11 : Partition @ Output : QutputPort InterPartitionComPort : InterP...
® LRMO: Component LRMO : Partition O In_T4240_LRM10 : InputPort InterPartiticnComPort : InterP...
© LRMT: Component LRM7 : Partition @ Output : QutputPort InterPartiticnComPort : InterP...
© LRMSE: Component LRME : Partition O In_T4240_LRM11 : InputPort InterPartiticnComPort : InterP...
& LRM1: Component LRM1 : Partition @ Output : QutputPort InterPartitionComPort : InterP...
& LRM10: Component LRM10 : Partition O In_T4240_LRM2 : InputPort InterPartiticnComPort : InterP...

Figure 40: Excerpt of the Component-Execution Unit & Port allocations.

Virtual Links are part of the Deployment meta-model [11]. Their generation is triggered from the context
menu of the Virtual Link editor that is provided as a tab in the Deployment editor (see Figure 41). The
Virtual Link generation is automated since it requires solving a number of complex tasks, including the
multi-hop routing through the modelled platform.
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(3% *Model Navigator 2 | %5 Resource Navigator = 0 || # "RosaceDeployment 2 = O
\Z‘ ¢='(> x > Routing Allocation
v [ Rosace ™ [} Generate Virtual Links
© ROSACE-MPEG Remove Virtual Links

[z Platform Architecture
o} System software

2 RosaceDeployment
3% System Schedule (Xoncrete) Collapse

Update Transceiver Port names

Expand

Component-ECU Map... | New Deployment Ed... | SensorfActuater-P... | Transceiver-Port ... | Raw Mappings | Virtual Links | Deployment-Specif...

Figure 41: Virtual Link editor.

For the ROSACE example, the majority of Virtual Links (here: 15) are used for the communication
between the resource management components that are located on different partitions, e.g., the Virtual
Link in the green box in Figure 42). Since Virtual Links are not required if communicating logical
components reside on the same partition and the components constituting the ROSACE component are
located within one partition, only one Virtual Link is generated for the actual application (yellow box in
Figure 42). It provides a Quality of Service feedback for the MPEG component.

« Routing Allocation
Virtual Link <VL 0 Component Architecture ROSACE-MPEG.MiddlewareDHP.GRM.dhp.to-T4240-> Component Architecture ROSACE-MPEG.MiddlewareDHP.GRM.dhp.to-T4240 [af3ld=18065]> (ID: U

v Virtual Link <VL_1_Component Architecture.ROSACE-MPEG.MiddlewareDHP.LRMO.dhp.Output-> Component Architecture ROSACE-MPEG. MiddlewareDHP.LRMO.dhp.Qutput [af3ld=18128]> (ID: 1)
w [Resource] System software.Cluster, DHP. Hypervisor.dhp.LRMO.dhp [af3ld=1988]
w [Output]
~ [Transceiver] System software. Cluster. DHP.Hypervisor.dhp.LRMO.dhp.InterPartitionComPort [af3ld=4268]
[PartitionPort] VL_1_Component Architecture.ROSACE-MPEG MiddlewareDHP.LRMO.dhp.Output-> Component Architecture ROSACE-MPEG.MiddlewareDHP.LRMO.dhp.Output [af3ld=18128]
~ [Resource] System software.Cluster. DHP. Hypervisor.dhp.GRM.dhp [af3ld=13456]
~ [Input]
v [Transceiver] System software.Cluster. DHP. Hypervisor.dhp.GRM.dhp.InterPartitionComPort [af31d=13759]
[PartitionPort] VL_1_Component Architecture. ROSACE-MPEG.MiddlewareDHP.GRM. dhp.Input-> Component Architecture. ROSACE-MPEG.MiddlewareDHP.GRM.dhp.Input [af3ld=18131]
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Virtual Link <VL_3_Component Architecture.ROSACE-MPEG.MiddlewareT4240.LRMO.Output- > Component Architecture ROSACE-MPEG. MiddlewareT4240.LRMO.Qutput [af3ld=18140]> (ID: 3)
Virtual Link <VL_4_Component Architecture. ROSACE-MPEG.MiddlewareT4240.LRM1.0utput-> Compenent Architecture ROSACE-MPEG.MiddlewareT4240.LRM1.Output [af31d=18170]> (ID: 4)
Virtual Link <VL_5_Component Architecture. ROSACE-MPEG.MiddlewareT4240.LRM10.0utput- > Component Architecture ROSACE-MPEG.MiddlewareT4240.LRM10.Output [af3ld=18200]> (ID: 5)
Virtual Link <VL_& Component Architecture. ROSACE-MPEG.MiddlewareT4240.LRM11.0utput-» Compenent Architecture. ROSACE-MPEG.Middleware T4240.LRM11.0utput [af3ld=18230]> (ID: §)
Virtual Link <VL_7_Component Architecture.ROSACE-MPEG.MiddlewareT4240.LRM2.Output- > Component Architecture ROSACE-MPEG. MiddlewareT4240.L RM2.Qutput [af31d=18260]> (ID: 7)
Virtual Link <VL_& Component Architecture. ROSACE-MPEG.MiddlewareT4240.LRM3.0utput-> Compenent Architecture ROSACE-MPEG.MiddlewareT4240.LRM3.Output [af31d=18290]> (ID: &)
Virtual Link <VL_3_Component Architecture.ROSACE-MPEG.MiddlewareT4240.LRM4.Output- > Component Architecture ROSACE-MPEG. MiddlewareT4240.LRM4.Qutput [af31d=18320]> (ID: 9)
Virtual Link <VL_10_Component Architecture. ROSACE-MPEG MiddlewareT4240.LRM3.0utput- > Compenent Architecture. ROSACE-MPEG.Middleware T4240.LRM3.Output [af31d=18330]> (ID: 10)
Virtual Link <VL_11_Component Architecture. ROSACE-MPEG MiddlewareT4240.LRM6.Output- » Component Architecture ROSACE-MPEG.MiddlewareT4240.LRMB.Output [af3ld=18380]> (ID: 11)
Virtual Link <VL_12_Component Architecture ROSACE-MPEG MiddlewareT4240.LRM7.Output- » Compenent Architecture. ROSACE-MPEG.Middleware T4240.LRMT7.Output [af3ld=18410]> (ID: 12)
Virtual Link <VL_13_Component Architecture. ROSACE-MPEG MiddlewareT4240.LRM8.Output- > Component Architecture. ROSACE-MPEG.MiddlewareT4240.LRME.Output [af3ld=18440]> (ID: 13)
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w [Resource] System software,Cluster T4240.Hypervisor PROSACE [af3ld=5382]
w [Output]
~ [Transceiver] System software. Cluster. T4240.Hypervisor PROSACE.InterPartitionComPort [af3ld=12322]
[PartitionPort] VL_15_Cemponent Architecture. ROSACE-MPEG.ROSACE. aircraft_dynamics.CoS-> Component Architecture. ROSACE-MPEG.ROSACE. aircraft_dynamics.Qo5 [af3ld=18500]
~ [Resource] System software,Cluster. TA240.Hypervisor.PMPEG2Server [af3ld=5393]
~ [Input]
v [Transceiver] System software.Cluster. TA240.Hypervisor,PMPEG2Server.InterPartitienComPort [af3ld=12335]
[PartitionPort] VL_15_Compaonent Architecture.ROSACE-MPEG.MPEG.Mpeg2Server.Qo5-» Component Architecture. ROSACE-MPEG.MPEG.Mpeg2Server.QoS [af3ld=18503]

P

Component-ECU Mapping | New Deployment Editor | Sensor/Actuator-Port Mapping | Transceiver-Port Mapping | Raw Mappin‘ Virtual Links }ployment-Spe(\ﬁ( Parameters

Figure 42: Virtual Links of the ROSACE initial Deployment.

4.4 Configuration of Schedulers

4.4.1 Nominal Task and Partition scheduling

The generation of schedules for partitions and tasks for the nominal mode, corresponds to step 7A of
the Tool Chain Use Case 2, see [1]. The goal is to provide a basis from which GRec (Section 4.4.2)

31.07.2017 DREAMS Page 38 of 59



D4.4.2 Version 1.0 Confidentiality Level:PU

generates new scheduling plans to mitigate core failures. As we have seen before, the periods of the
resource management tasks are chosen to be equal to the MAF (= smallest common multiple) of
application task periods. In this use-case, the MAF is 1s, which is a rather long time interval and leads to
complexity problems when using GRec to find new scheduling plans for different core failure scenarios.

To work around this problem, we temporarily change the resource task period to 100ms, before letting
Xoncrete generate the nominal scheduling plans. In order to perform this generation with Xoncrete, one
needs to follow the steps already described in Section 3.4.2.

An examination of the resulting System Schedule reveals that the first location of the execution of every
task is located within the first 100ms, as illustrated with “POrderGenerator” in Figure 43. The period of
“OrderGenerator” is 1s. This allows exporting only the first 100ms of the nominal scheduling plan to
GRec, reducing this way the complexity of the problem to be solved by GRec. When importing the result
of GRec into AF3, the original resource management period of 1s will be restored, see Section 4.4.2.

- ua System Schedule (Xoncrete)
b == Resource Schedule - ARM A9 - Corel - Plan0
w == Resource Schedule - ARM A9 - Core1 - Plan0
= (00) Resource Allocation - POrderGenerator.dhp - start=0us duration=100us
& (01) Resource Allocation - MON1.dhp - start=1000us duration=1000us

& (D2) Resource Allocation - LRM1.dhp - start=99000us duration=1000us

14
[ 3
[ 3
» =2 (03) Resource Allocation - MON1.dhp - start=101000us duration=1000us
b == (04) Resource Allocation - LRM1.dhp - start=199000us duration=1000us
b == (05) Resource Allocation - MON1.dhp - start=201000us duration=1000us
14

“= (06) Resource Allocation - LRM1.dhp - start=299000us duraticn=1000us

Figure 43 — ROSACE First execution of "OrderGenerator" within 100ms.

4.4.2 Failure modes

Two failure modes are considered in the building blocks, namely permanent core failure and deadline
overrun but only the first one is modelled in the DREAMS tool chain. When a core of a node fails, the
local LRM can apply a local reconfiguration and the GRM can apply a global reconfiguration (see
D2.2.2[9]). All these local and global reconfiguration graphs are computed by GRec and stored in the
meta-model (D4.4.1 [1]).

The generation of a reconfiguration graph for tasks scheduling plans to allow ensuring the continuity of
service for critical tasks in case of core failures, corresponds to step 8 of the Tool Chain Use Case 2, see
(1].

In order to generate the input file for GRec, the “Generate GRec input” entry from the context menu of
the System Schedule created with Xoncrete needs to be executed.

In order to further reduce the size of the solution space to be explored by GRec, a configuration dialog
asks for the granularity of time to use (Figure 44). Since in the current use case, all periods and WCETs
are multiples of 100us, we chose a granularity of 100us.
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GRec input generation

Time granularity ||IIZIIZIus v

Generate IDs (Platform)

Yes Cancel

Figure 44 - GRec input generation option.

Remember from Section 4.4.1 that we have reduced the period of the resource management tasks to
100ms. But GRec considers that the period of these tasks should be the MAF. Before importing the
output of GRec, we need to set their periods back to 1s, by using the dedicated context menu (see
Figure 36, Section 4.2.2).

To import into AF3 the output of GRec, the “Import GRec ouput” entry from the context menu of the
System Schedule created with Xoncrete needs to be executed. The following entities are created:

e For each plan defined for the “ARM A9” Tile on the DHP node and 12 core Tile of T4240 node, a
separate system schedule is created, see Figure 45.

e A Reconfiguration Graph is created that specifies local (LRM) and global (GRM) scheduling plan
changes. Figure 46 shows the transitions of the global reconfiguration graph.

e A set of additional Deployments that correspond to the combinations of the scheduling plans
(one for each Tile) which may occur when the LRMs and GRM follow the local and global
reconfigurations defined the Reconfiguration Graph.
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2 ByPassWindows
75 Deployment2
75 Deployment3

2 DHP.ARM AS : PlanD
*Z DHP.ARM AS: Plani
2 DHP.ARM AS: Plan2
2 DHP.ARM AS: Plan3
= DHP.ARM A9 : Pland
= DHP.ARM A9: Plan5
2 DHP.ARM AS: Plané
LZ DHP.ARM AS : Plan?

== DHP.ARM AS: Plang
89 Reconfiguration Graph
7 RosaceDeployment

e Systern Schedule (Xoncrete)
=% T4240.Tile: PlanD

=% T4240.Tile: Plani

=2 T4240.Tile: Plan10

== T4240.Tile: Plan11

L TAAN Tile s Mlan11

Figure 45 - ROSACE: Deployments, System Schedules and Reconfiguration Graph created by the GRec output importer.
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Figure 46 - ROSAE: transitions of the global reconfiguration graph
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4.4.3 On-line flexibility

The estimation of online flexibility coefficient corresponds to step 9 of the Tool Chain Use Case 2, see
D4.4.1 [1]. The flexibility parameter for a job defines the maximum delay which can be tolerated by the
job without missing any deadline in the system. This information can be utilized by the partition LRS to
admit aperiodic tasks online with the least response-time. The flexibility parameter for each job in the
plan is calculated as defined in [12]. In order to generate flexibility parameter from the model, the input
file for MCOSF needs to be generated using “Generate MCOSF input” entry from the context menu of
the ‘Reconfiguration Graph’ created with GRec output import. The tool MCOSF is executed with the
generated MCOSF input file as mentioned in Section 4.6.5 of D4.4.1 [1]. Once the MCOSF exits without
any error, the MCOSF output file can be imported back in AF3 model by invoking “Import MCOSF
output’ entry from the context menu of the ‘Reconfiguration Graph’ created with GRec output import.
The MCOSF output import modifies the task triggers of each plan from Periodic to Flexible and defines
the flexibility parameter as shown in Figure 47 below.

v 3 T4240Tile: Plani E Properties %2 | & Annotations | X Schedule View| & Console =5 Progress
v - C0
B «o 0000 Oms: mon_cf =
¥ == 0001 1ms: ROSACE General Name 0000 aircraft_dynamics
v == Tasks I comment

=
== 0001 engine Schedulable Entity Component Architecture.ROSACE-MPEG.ROSACE.aircraft_dynamics
= 0002 elevator Duration [s]
= soun iter oot Fexble
“= 0005 az_filter
= 0006 vz_filter Phase [s] 0.001
== 0007 va_filter Flexibility 0.0018

Figure 47 — ROSACE: Flexibility parameter generated using MCOSF.

Other than the flexibility parameter, MCOSF also generates blackout intervals and transition modes as
defined in Section 10 of D4.1.3 [6]. The blackout intervals are calculated for each source of the mode
transition defined by the local reconfiguration graphs of each node. The blackout intervals can be
utilized by the hypervisor to see if an immediate mode switch at current time will lead to a deadline
miss, i.e. not to switch immediately if the plan at current time specifies a blackout interval. An example
of the blackout interval for the ROSACE case study is shown in Figure 48 (Note that the trigger for a
blackout interval is not applicable/don’t-care as it does not trigger anything. Instead, it merely stops
from triggering a mode change).

¥ 2= T4240.Tile: Plans2 = Properties 2 | £ Annotations | 3= Schedule View | E

b =~ CO
b s C1 =
¥ -~ Mode Change Blackout |"coporal Name Blackoutintervalo
=
= Blackoutinterval1 _ comment
= Blackoutinterval2 Schedulable Entity
= Blackoutinterval3 Duration [s] 0.01
“= Blackoutintervala Trigger =
= Blackoutintervals
= Blackoutintervalé
= Blackoutinterval7 Phase [s] 0

Figure 48 - ROSACE: Blackout intervals generated using MCOSF.
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4.4.4 On-chip Scheduling of TT Virtual Links

After the creation of additional Deployments through the import of the Reconfiguration Graph
generated by GRec (Section 4.4.2), all different communication scenarios implied by the
reconfigurations can be derived. Thus the scheduling of the on-chip communication can be configured,
which corresponds to step 11 of Tool Chain Use Case 2, see Section 2.

As can be seen in the upper part of Figure 37, only the processor Tile “ARM9” of the DHP is used in this
use case. Thus, all communication from and to that Tile goes actually over the off-chip network. The
communication between the processor Tile and the on-chip/off-chip gateway is allowed within so-called
bypass windows which are opened and closed by the NI LRS according to a static schedule (see D2.1.3
[13]). The sending and receiving through the bypass window is managed by the DRAL and not by the NI
LRS. It implies that the generation of transmission offset with RTaW-Timing cannot be used here.

But a bypass window needs to be defined and translated into the configuration files for the on-chip
communication (Section 4.5.2), since the NI LRS is responsible for opening (and closing) the bypass
window. Otherwise the DRAL would not be able to communicate with the on-chip/off-chip gateway.

The following virtual links are (potentially) sent or received over the off-chip network:

e GRM order message sent every 100ms

e 12 T4240 LRM status message sent every 100ms

e 1 message sent every 1s by OrderGenerator to ROSACE

e 1 message sent every 1s by ROSACE to MPEG2server
The required bandwidth is low with respect to the throughput of the NoC at 100 Mhz, but the time
between two consecutive bypass window instances must be limited, in order to limit waiting times at
the entry of the NoC. Remember that periods, length and offset must be (negative) power of 1s (see
D2.1.3 [13]).
We propose to use one bypass window with the following characteristics:

e opentime=0s

e length =27"s=0,00048828125 s ~ 488,28s

e period =2%5=0,0009765625 s ~ 976,565
If the bandwidth is sufficient, then the resulting NoC traversal time will be lower than 1ms. In Section
4.4.6 we will verify this choice by computing a rough upper bound on the NoC traversal.
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w == Resource Schedule
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«2 ByPassWindow: ARMA.MI Trigger
= Periodi ~
7= Deployment2 erodic
2 Deployment3 Period [s] 0,0009765625
=2 DHP.ARM AS : Plan0 Phase [3] 0

L DHP.ARM A9 : PlanT
“ DHP.ARM A9 : Plan2
% DHP.ARM A9 Plan3
3 DHP.ARM AD : Pland Window Type

== DHP.ARM A3 : Plan3

Bypass Window ~
Figure 49 - ROSACE: Bypass Window

The bypass window must be defined in a dedicated System Schedule based on the nominal Deployment
“Rosace Deployment” (Figure 49) and specified in the configuration dialog of the “On-chip TT Schedule
Generation” menu entry which must be executed from the context menu of the Reconfiguration Graph.
The configuration dialog asks for the System Schedule with the bypass window and creates for each
Deployment referenced by the Reconfiguration Graph a System Schedule with the specified bypass
window (see Figure 50).

“= On-Chip Tx Sched: Deployment2
“Z On-Chip Tx Sched: Deployment3
w == On-Chip Tx Sched: RosaceDeployment
s == On-Chip Tx Sched: ARM AS.Ni ARM_AS VM1
== ByPassWindow: ARMI.NI

== On-Chip Tx S5ched: DHP.OnChipOffChipGateway

Figure 50 — ROSACE: System Schedules for the on-chip communication

4.4.5 Off-chip Scheduling of TT Virtual Links

After the creation of additional Deployments through the import of the Reconfiguration Graph
generated by GRec (Section 4.4.2), all different possible communication scenarios implied by the
reconfigurations are known and thus the scheduling of the off-chip communication can be defined,
which corresponds to step 10 of Tool Chain Use Case 2, see Section 2.

To be able to use the dedicated tool TTE-Plan, the “Generate TTEthernet Network Description” entry
from the context menu of the “Reconfiguration Graph” needs to be executed. This produces a
“.network_description” file, which is the input for TTE-Plan. Notice that also TTE-Build needs to be
executed in order to generate the C header files that contain the port ids, which are needed in the
platform configuration file (PCF), see Section 4.5.1. In order to import the defined schedules and port
ids, the “Import TTEthernet Scheduling” entry from the context menu of the Reconfiguration Graph”
needs to be executed.

The result of the import is the creation of dedicated System Schedules, one for each of the possible
Deployments implied by the reconfiguration (Figure 51).
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v == Off-chip network schedule: Deployment2
v == DHP OnChipOffChipGateway
= VL 16 (ToMPEG.QoS)
== OffChipNetworkRouter
== T4240 OnChipOffChipGateway
== Off-chip network schedule: Deployment3

v == Off-chip network schedule: RosaceDeployment
v == DHP OnChipOffChipGateway
== VL 0 (GRM.dhp.to-LRMs)
== VL 15 (VacGenerator.Output)
== OffChipNetworkRouter

== T4240 OnChipOffChipGateway

Figure 51 - ROSACE: System Schedules for the off-chip communication.

Since the deployment of resource management tasks does never change, the scheduling of their virtual
links is only defined in the nominal System Schedule. The Deployment specific schedules of the virtual
links between applications are defined in the corresponding System Schedule. As can be seen, there is
no off-chip communication between applications in “Deployment3”. This is because all applications are
executed on the same Tile. This is, for instance, the case with the scheduling plan 8 of the DHP: ROSACE,
Mpeg2Server and OrderGenerator are executed on the two cores of the DHP (see Figure 52).
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Figure 52 - ROSACE: Scheduling plan 8 of the DHP, execution all three applications.

4.4.6 Timing Analysis

Performing worst case analysis of end-to-end delays, in order to verify that latency constraints on the
timing chains are satisfied, corresponds to step 12 of the Tool Chain Use Case 2, see [1]. In order to
execute the algorithm implemented in RTaW-Timing, the “Timing Evaluation” entry of the context menu
of the “Reconfiguration Graph” must be selected, since it contains the references to all possible
SystemScheules. As a result, the complete description of designed system is exported to RTaW-Timing,
which runs the worst-case analysis and displays the results in its GUI, as shown in Figure 53.
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File Sarmples Design Evaluation What-If Plot Tools 7
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Figure 53 - ROSACE: WP7: Bounds on worst-case delays of timing chains (RTaW-Timing).

The first line “delta_e(az_filter)” corresponds to the first timing chain described in Section 4.2.2. The
computed upper bound on the worst-case delay is 46.1 ms. Remember that in case of reconfiguration
(Section 4.4.2) several scheduling plans are defined for each Tile. By clicking on the line and selecting the
"Show local delays bound of maximal end-to-end bound" entry from the context menu, the tool shows
more details in the “Local Delays” tab, see Figure 54.

Tasks of 'Component Architecture’ E2 | T4240.Tile : Plan&1 (RosaceDeployment)

MName* | Tasks of '‘Compeonent Architecture' | Scheduling Config | [1,61] |

Deployrment | RosaceDeployment | ComScheduling | MixedComCeonfig (RosaceDeployment) |
Analysis | [AlSystemConfig: [1, 61]] SystemAnalysis w
Simulations W Sample Time W

End-To-End Delays | Local Delays

TimingChain | delta_e (az_filter) v | BudgetDistribution | Timing Decomposition for deployment 'Rosac v
Segment ChainElements Ceoord. Delay Bou...  Coord. Delay Budget Delay Bound  Delay Budget Start End
T4240/Tile  aircraft_dynamic... 0'ms 46,1 ms 50ms 96,1 ms

Graphic | Properties | Delays
Figure 54 - ROSACE: details about the bound on the timing chain “delta_e(az_filter)”.

As shown by the “Segment” column in Figure 54, tasks of the chain are all executed on the T4240. The
name of the “Analysis” has been changed by the tool indicated to that of a scenario where the worst
case delay can be observed: the scenario is based on planl for the DHP and plan 61 for the T4240.

Furthermore, the execution of the first task of the chain starts at 50ms (“Start” column) and the
execution of the last task ends at 96.1 ms (“End” column). Figure 55 shows the corresponding Gantt
chart. It can be seen that the delay is due in part to different periods and non-optimal execution orders
of the involved task: the output of “aircraft_dynamics” may have to wait 10ms before being read by the
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next instance of “vz_filter”. On the other side, the distance between two executions of the task
“vz_control” may be larger than its nominal period of 20ms in the scheduling table of plan 61.

altitude_hold
ToMPEG
va_control

h_filter ‘

| i
o |
] | 1 - 1

az filter 1 | ol i| i |
aircraft_dynamics .”i_’;)] ] 1 { a | 1 |

vZ control
engine il
elevator 1
|
|

vz_filter

50ms

60ms

70ms 80ms 90ms 100ms

Figure 55 - ROSACE: Gantt chart of worst delay of the timing chain “delta_e(az_filter)” on the T4240.

Figure 56 shows the details of the worst case delay of the timing chain “T4240.LRMO -> GRM ->
DHP.LRM”. Recall that the delay spans from the execution start of LRMO on T4240, which potentially
detects a core failure, until the next execution end of LRMO on the DHP that would receive a
corresponding reconfiguration command from the GRM.

Have a look at the last line of the table, which corresponds to the task execution segment on the DHP.
Figure 57 shows the corresponding scheduling table, which has a period of 1s: the GRM is executed
almost at the beginning and the LRM at the end. Recall furthermore that the schedule tables of the

nodes are based on the same global

time (DREAMS platform service). Thus, when the message arrives at

t=1072,461 ms, i.e. at 72,461 ms after the start of the schedule table, the GRM has already finished to
execute. Therefore, a “coordination delay” of 928,539 ms occurs until the execution of the next instance
of the GRM. Since furthermore the LRM is executed at the end of the table, the result is a delay of 999
ms from the start of the GRM until the end of the LRM.
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Figure 56 - ROSACE: Details about the bound on the timing chain “T4240.LRMO -> GRM -> DHP.LRM”

ChainElements

LRMO

LRMO:Output

LRMO:Output

GRM.dhp, GRM.dhp:to-LRMs LRMOD.d...

Coord. Dela...
0'ms

71,88 ms
0,000 ms
928,539 ms

Delay Bound
1ms

0,091 ms
0,489402 ms
%39 ms

Start

%99 ms
1071,88 ms
1071,971 ms
2001 ms

End

1000 ms
1071,971 ms
1072,461 ms
3000 ms

31.07.2017

DREAMS

Page 49 of 59



D4.4.2 Version 1.0 Confidentiality Level:PU

LRMO.dhp |
YVacGeneratar |

GRM.dhp .

Ous 200ms A00ms B00ms 300ms
Figure 57 - ROSACE: Scheduling table of core 0 of the DHP node in plan 2.

4.5 Platform Building Block Configuration File Generation

4.5.1 DREAMS Resource Management Configuration files
The platform configuration file (PCF) is generated by invoking the “Generate DRMS Configuration files”

entry form the context menu of the “Reconfiguration Graph”. It generates for each Tile a configuration
file in YAML format as defined in [7] which contains

e the declaration of applications and their partitions

e the channels for the inter partition communication

the declaration of off-chip communication ports with their parameters (see Figure 58)

a set of partition and task scheduling plans (see Figure 58)

the local reconfiguration table

the global reconfiguration table (see Figure 59)

e the remapping of DRAL ports to partition of on-chip/off-chip communication ports depending on
the scheduling plan

hw desc:
num_cores: 2
devices:
uart:
- {name: Uart, id: 1, baud rate: 115200}
tte:
- name: TTEthernet 1
ports:
- {name: OrderGenerator VacGenerator Output RosaceDeployment,
type: TT, portDirection: source, tte port id: 9, tte port ap: 3}
- {name: ROSACE ToMPEG QoS Deployment2, type: TT,
portDirection: source, tte port id: 8, tte port ap: 1}
processor_ table:

- id: 0
freg: 400000000
plan:
- id: O
major frame: 1000
slots:
- {id: 0, start: 0, duration: 100, part: OrderGenerator}
- {id: 1, start: 100, duration: 100, dlrm: lrm}
- {id: 2, start: 100, duration: 100, dlrm: grm}
- {id: 3, start: 100, duration: 100, dlrm: mon cf}
- id: 1
major frame: 1000
slots:
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- {id: 0, start: O, duration: 1, dlrm: mon cf}
- {id: 1, start: 1, duration: 50, dlrm: grm}
- {id: 2, start: 51, duration: 1, part: OrderGenerator}
- {id: 3, start: 999, duration: 1, dlrm: lrm}

Figure 58 — ROSACE: Snippet1 of the platform configuration file.

global reconfiguration table:

{ msg:
{ msg:

[213141516171819]1 new: [_ll_l]l

current configuration:

[-1,-1] }

(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,3
8,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,

67,68,

69,70,71,72,73,74,75], new: [-1,-1], current configuration:
{ msg: [76], new: [2,67], current configuration: [1,56] }
{ msg: [77], new: [3,68], current configuration: [1,56] }
{ msg: [76], new: [2,67], current configuration: [1,57] }
{ msg: [78], new: [4,69], current configuration: [1,57] }
{ msg: [76], new: [2,67], current configuration: [1,58] }
{ msg: [79], new: [5,70], current configuration: [1,58] }
{ msg: [76], new: [2,67], current configuration: [1,59] }
{ msg: [80], new: [6,71], current configuration: [1,59] }
{ msg: [76], new: [2,67], current configuration: [1,60] }
{ msg: [81], new: [7,72], current configuration: [1,60] }
{ msg: [76], new: [2,67], current configuration: [1,61] }
{ msg: [82], new: [8,73], current configuration: [1,61] }
{ msg: [82], new: [8,73], current configuration: [1,62] }
{ msg: [82], new: [8,73], current configuration: [1,63] }
{ msg: [82], new: [8,73], current configuration: [1,64] }
{ msg: [82], new: [8,73], current configuration: [1,65] }
{ msg: [82], new: [8,73], current configuration: [1,66] }
{ msg: [1], new: [-1,-1], current configuration: [-1,-1] }

(-1,-11 }

4.5.2

Figure 59 — ROSACE: Snippet2 of the platform configuration file.

On-chip network communication configuration files

As described in [1], the generation of the configuration files of the on-chip communication is a two step
process, where first a configuration model is generated, by invoking the "Generate 'Physical On-Chip
Communication' Configuration Model" entry from the context menu of the Reconfiguration Graph.
Figure 60 shows the resulting configuration model. Second, the actual textual configuration files (Figure
61) are generated with the help of the “Run configuration generation framework...” from the context
menu of the ROSACE model.
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[&! Rosace.dcfg 52

DREAMS Configuration

» =l platform:resource/AF3-Project-Directory/Rosace.af3_23
~ & platform:/resource/AF3-Project-Directory/Rosace.dcfg
w < ConfigurationProject [cfg] <unnamed=
w <4 PhysicalPlatformConfiguration [PPC] Physical On-chip Configuration for System Schedule 'Reconfiguration Graph'
w <4 OnChipNetworkConfiguration [enchip] <unnameds= <> IP=SHUFFLING
¥ <+ OnChipNiLrsConfiguration [Irs_0] <unnamed= NI=Rosace.Platform Architecture.Cluster DHP.ARM AS.Ni ARM_AZ VN1
<+ PortConfiguration ] <>

w < EventTriggeredCommunicationSchedule [ <>

- EventTriggeredCommunicationScheduleEntry 0 -> 1 mint=?, jitter=?, priority?

<4 EventTriggeredCommunicationScheduleEntry 1 -> 0 mint=?, jitter=?, priority?
¥ <+ OnChipNiLrsConfiguration [Irs_5] <unnamed=> NI=Rosace.Platform Architecture.Cluster. DHP.ARM A9.Ni ARM_A9 VN2
<+ PortConfiguration ] <>
< On Chip Sched Params 21

E Properties &2 ‘ &8 Annotations | £ Schedule View| B Console | 5 Progress
Property Value
MNext 4 EventTriggeredCommunicationScheduleEntry: EventTriggeredCommunicationScheduleEntry 1 - 0 mint=?, jitter=2, priority?
Operation Id S BP_OPEN
Resource Allocation <4 ResourceAllocation: Rosace.On-Chip Tx Sched: RosaceDeployment.On-Chip Tx Sched: ARM A9.Ni ARM_AS VN1.ByPassWindow: ARMSY.NI

Figure 60 - ROSACE: Configuration model of the on-chip scheduling (AF3 Resource Navigator).

Recall that in this use case, there are only two network interfaces on the NoC and thus only two LRS
configurations are generated. Furthermore, all virtual links go through the bypass window and thus no
PortConfigurations are needed, only the scheduling of the bypass window, which is defined by the
“EventTriggeredCommunicationSchedule” entity and stored in the “etcommsched.csv” configuration

file.

¥ (= onchip
- = Irs D
3§ etcommsched.csv
3 port.csv
- (= Irs 5
3 port.csv
5 hw.csv

Figure 61 - ROSACE: Generated configuration files of the on-chip scheduling

4.5.3 Off-chip network communication configuration files

The parameters of the time triggered scheduling for the off-chip communication have been imported
into AF3 from the off-chip network configuration files generated with TTE-Plan and TTE-Build in step 10
(Section 4.4.5). Since these configuration files cannot be generated from a System Schedule defined in
AF3, we (have to) use the files created in step 10.
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5 Application to the Healthcare Demonstrator

The final design of the healthcare demonstrator is described in D8.3.1 [14]. In the following sections we
describe the minimal system model needed in order to allow the configuration of the off-chip
communication through the tool chain.

5.1 Applications and Resources

5.1.1 Logical Architecture

First, the application tasks and their data exchange must be modelled. There are two couples of tasks,
one related to the ECG data (critical) and one related to video streaming (non critical), see Figure 62.

C] video_server Yideq C] video_ (=}
- p

channel

—_——

C] ecg_bridge . C] ecg_diagnosis

ecg_command

Figure 62 - WP8: application level tasks with exchange of data.

5.1.2 Timing Requirements

Since we only consider off-chip communication, we associate timing constraints directly with the
sending ports, see Figure 63.

For the critical ECG communication, the “Time Triggered” traffic class shall be used The criticalwith a
period of 10ms. This is specified by attaching an appropriate PeriodicConstraints to each of the
concerned sender ports. . For the non critical communication between video server and player, the
“Best Effort” traffic class shall be used. This is specified by attaching anAperiodicConstraint to each of
the concerned sender ports..
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&) WP2.dreamstiming &2

DREAMS Timing
w 4 Timing Project
w <= Timing Description
<+ Events Folder
w 4 Timing Constraints Folder

< Pericdic Constraint: cutput="ecg_data’ peried=0.01s
< Aperiodic Constraint: output="video'
< Pericdic Constraint: cutput="ecg_command' pericd=0.01s
< Aperiodic Constraint: output="channel’

Figure 63 - WP8: timing constraint for the off-chip communication

5.1.3 Platform Architecture

To be able to configure the off-chip communication, the topology of the off-chip network with the
connected nodes needs to be described, see Figure 64.

® ™ Hospital Media Gateway
OffChipNetwork

= Video Player

Figure 64 - WP8: off-chip network topology.

The model of a Node connected to the off-chip network must contain at least one processor Tile,
containing at least one core to which partition may be mapped, see Section 5.2.1. Figure 65 shows the
minimal model used for “Hospital Media Gateway”

w s Platform Architecture
+ [l WP2
B DHP
v [ Hospital Media Gateway
w [l Cortex ATZ2
B Bus
B Cored
B Corel
[ Metworkinterface
E OnChipMetwork
[ OnChipOffChipGateway
B OffChipMetwork
B Video Player

Figure 65 - WP8: Platform Architecture model.
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5.2 Deployment

5.2.1 System Software

The deployment of the task components to Tiles determines which communications are crossing the off-
chip network. To be able to deploy task components, a minimal System Software entity needs to be
defined, consisting of a Hypervisor for each Tile and Partitions to which the tasks can be deployed.
Figure 66 shows the details for the “Hospital Media Gateway”, with the hypervisor on the Cortex A72
Tile, and two partitions, one for the critical application and one for the non-critical one.
w o2 System software
v [ Wwpa
& DHP
w [ Hospital Media Gateway
~ [l Hypervisor (Juno/Cortex A72)
B InterPartiticnCom
B Jluno ECG Partition
B Juno Video Partition
O OnChipMetworkDriver
E Video Player

Figure 66 - WP8: System Software.

5.2.2 Deployment
After having defined the System Software, the Deployment can be defined, which allocates each task to
a Partition on some processor Tile, see Figure 67.

Next, virtual links need to be generated in the “Virtual Links” tab of the Deployment. The result consists
of two TT virtual links, for the ECG related communication (see Figure 68). No virtual links are created
for the best effort communication, since the corresponding frames are not scheduled and their routing
path is determined dynamically at run-time.

75 Deployment 22

Deployment Mappings

Component ECU

C] ecg_diagnesis : Component B Juno ECG Partition : Partition
@ video_server: Component B Juno Video Partition : Partition
C] ecg_bridge: Component B DHP ECG Partition : Partition
C] video_player: Compenent B Video Player Partition : Partition

Figure 67 - WP8: Deployment of tasks to partitions.

7& Deployment &3

~ Routing Allocation
Virtual Link <VL_0_Companent Architecture.Lagical Architecture.ecg_bridge.ecq_data-»Component Architecture.Logical Architecture.ecq_bridge.ecg_data [af3ld=20220])> (ID: 0)
Virtual Link <VL_1_Component Architecture.Logical Architecture.ecg_diagnosis.ecg_command-» Component Architecture Logical Architecture.ecg_diagnesis.ecg_command [af3ld=20250]= (ID: 1)

Figure 68 - WP8: TT VLs.
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5.3 Configuration of Schedulers

5.3.1 Off-chip Scheduling of TT Virtual Links

At this point, sufficient information is available for generating the off-chip network communication.

With the help of the “Generate TTEthernet Network Description” entry from the context menu of the
“System Schedule” the “.network_description” file can be produced, which is the input for TTE-Plan. In
order to import the defined schedules, the “Import TTEthernet Scheduling” entry from the context
menu of the “System Schedule” must be executed.

The result of the import is the adding of scheduling entries for the time triggered communication of the
TT VLs, as shown in Figure 69 and Figure 70.

-

w u= System Schedule
w == Body Gateway Juno OnChipOffChipGateway
== VL 1 (ecg_diagnosis.ecg_command)
w == OHP OnChipOffChipGateway
«= YL 0 (ecg_bridge.ecg_data)
we == Sitch
«= YL 0 (ecg_bridge.ecg_data)
== VL 1 (ecg_diagnosis.ecg_command)

Figure 69 - WP8: off-chip scheduling parameter set.

= VL 1 (ecg_diagnosis.ecg_command)

General MName VL 1 (ecg_diagnosis.ecg_cemmand)
Internal | Comment
Schedulable Entity Deployment.ecg_command->Component Architecture.Logical Architecture.ecg_diagnosis.ecg_command
Duration [s] 0,000030288
Trigger Periodic
Period [5] 0,01
Phaze [z] 0,00744
Undefined

Figure 70 - WP8: off-chip scheduling parameters for VL 1 in the Juno board.

5.4 Platform Building Block Configuration File Generation

5.4.1 Off-chip network communication configuration files

The generation of the textual configuration files for the off-chip network has already been performed in
the previous step, at the same time as the generation of the scheduling parameters for the import into

AF3, see Section 5.3.1.
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