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Abstract

This deliverable presents the specification of simulation framework, which was defined based on the
DREAMS architectural style.

The simulation framework includes cluster level, chip level and execution level. Each simulation level has
its simulation tool. Therefore, the integration of the different simulation tools is presented in this
deliverable. This integration of the different simulation tools requires the presence of communication
and coordination interfaces. Furthermore, the coordination of different simulation tools requires the
synchronization of the simulation steps since the simulation step on one simulation tool may depend on
the result of the other simulation tool.

Additionally, the simulation building blocks in different level may need for the configuration parameters.
Therefore, the tool for generation the configuration parameters is required. Moreover, a tool for
analyzing the simulation result is necessary.

Additionally the formal verification framework for DREAMS and the fault injection DREAMS emulation
platform is presented by this deliverable.
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1 Introduction

This deliverable describes the simulation architecture of the DREAMS virtual platform and the
dependencies between the simulation building blocks. The DREAMS virtual platform consists of different
simulation levels: cluster-level simulation, chip-level simulation and execution environment simulation.
The implementation of these different levels is based on different simulation tools. Therefore, integration
and communication mechanisms are needed to ensure the efficient transfer of data and control between
co-operating simulation tools.

The DREAMS virtual platform will be integrated into the DREAMS toolchain through the model-driven
configuration of the simulation blocks. Furthermore, simulation observations are automatically
synthesized into analysis results.

Beyond this, a formal verification framework, specifically for protocol verification via a process algebra
language for modelling and a model checking tool for verification of temporal logic properties of the
STNoC are introduced.

1.1 Relationship to other DREAMS Deliverables

The architectural style document D1.2.1 served as the primary input for the specification of the simulation
framework. The simulation building blocks were defined to comply with the architectural style. The
specification of the simulation building blocks is the foundation for the subsequent implementation of the
DREAMS virtual platform. The interface for the integration of the on-chip simulation building blocks into
the virtual platform has been agreed with WP2.

Based on the configuration needs of the simulation building blocks and the DREAMS meta-model (T1.4
and T1.6), T4.2 will develop tools for the model-driven configuration for the simulation building blocks.

1.2 Positioning of the Deliverable in the Project

The goal of task T5.2 - Simulation, verification and fault-injection framework - is to provide a framework
for simulating and verifying the behavior of a mixed-criticality system based on the DREAMS architecture.
To achieve this goal, the task T5.2 is divided into three deliverables: D5.2.1, D5.2.2 and D5.2.3.

e D5.2.1 Specification of simulation framework: This deliverable specifies the simulation and fault
injection framework for simulating and verifying the behavior of a mixed-criticality system based
on the DREAMS architecture. The deliverable identifies the selected simulation tools and provides
specifications of the simulation interfaces between the tools. The deliverable also contains
specifications of the simulation components for the architectural building blocks and
specifications of the simulation components for the evaluation of timing and reliability.

e D5.2.2 Prototype implementation of simulation framework for DREAMS architecture: The
deliverable consists of simulation models for the virtualization building blocks of the DREAMS
architecture for the cluster-level and the chip-level. Simulation models at the cluster-level will be
based on real-time Ethernet. At the chip-level, a formal verification framework based on process
algebra language will support protocol verification and the investigation of safety properties. The
simulation models are integrated in an overall simulation framework for the DREAMS
architecture. In addition, techniques for the transfer of test case results from the simulation to
tests performed on the target hardware are available.
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e D5.2.3 Fault injection framework: This deliverable is a fault injection framework extending the
simulation framework from D5.2.2. The deliverable includes fault injection components for the
injection of operational faults and design faults in the simulation components of the application
subsystems and the platform. In addition, simulation components for monitoring significant
properties (e.g., reliability) are provided. A trace inspection tool will support the checking of
behavioral assumptions made at model level.

The dissemination level of this deliverable is public (PU) i.e. once approved by the European Commission
(EC), it will be freely available for download through the DREAMS project website (http://dreams-
project.eu).

1.3 Structure of the Deliverable

The remainder of this deliverable is structured as follows. Section 2 gives an overview of the structure of
the simulation framework, where the following is defined:

e The simulation architecture for different communication levels

e The integration mechanism to link simulations at different integration levels
e The configuration tools, methodology and analysis of simulation traces.

e The formal verification of the STNoC framework

e Transfer of test results from simulation to physical systems.

Sections 3, 4 and 5 describe the simulation building blocks and the simulation tools that will be used as
well as the configuration interfaces of other simulation building blocks for the cluster level, chip level and
hypervisor level, respectively. To ensure the efficient transfer of data between co-operating simulation
tools, the integration and communication mechanisms are presented in section 6. Section 7 explains the
principles of the model-driven configuration of simulation blocks and describes how the corresponding
configuration file generators will be integrated into the DREAMS model editors provided by WP1. The
analysis of simulation traces is presented in section 8. In section 9 the specification of a formal verification
framework for DREAMS is provided. A new methodology to verify the robustness against SEUs of a
DREAMS Chip instance is described in section 10.
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2 Overall Structure of Simulation Framework

One of the main objectives of the DREAMS project is to develop a cross-domain architecture and design
tools for networked complex systems where application subsystems of different criticality, executing on
networked multi-core chips, are supported. With the increasing complexity of the platforms, testing has
become a challenging and costly process.

A simulation environment for the DREAMS platform allows to gain insights into design alternatives and
design faults at early development stages, thus decreasing development time and cost. Through the
automated execution of test cases in a simulation environment, tests become reusable (e.g., regression
tests in different versions of an application), it is possible to perform more tests in less time with fewer
resources and testing is more comprehensive and reliable. Figure 1 shows the “Overall Simulation Building
blocks”.

End-System

[
[¥N)
2 Interface
a.
(@)

|
!
S End-S | i
Cfa. :‘t' ’\f'“em The interface between The
nierace | OPNET and Gem5will establish

using the socket interface

. . W DREAMSChip .~ T T T T 1
| Configuration | | | ovpsiM }
'Interface I | |
| Tile | ” -

| | ‘ Partition Partition | . ‘
\ LRS LRs
On chip and | CRsCe ]
| off c’l)'lip | GW | NI [NICfe. NI [Nice | ‘ ‘ i i }
| | configuration \ ' | cie.| I | Virtualization [ Part.
| | Parameters ‘ ‘ layer | cfe. |||
| | | NOC |~ — — — -
|
\ | |
N | |
‘ Simulation | RS LRS |
‘ Result and | Memory | [NI_[Nice] [N [Nicm] |
observation \ Interleaving i
\ analysis \ |
‘ Tile Tile |
| |

—_— e e ——_——_—

Figure 1: Overview Simulation Building Blocks

2.1 Simulation of Cluster Level

The simulation environment for the cluster level is based on the time triggered Ethernet (TTEthernet). The
simulation allows different connection of End-Systems or/and DREAMS chips using one or more off-chip
routers in a given topology (e.g., star, ring). The main simulation building blocks at the cluster level are
generic building blocks of the infrastructure elements of a TTEthernet-system, which can be configured
and extended to create an application-specific simulation model:
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e Generic model of a TTEthernet switch. TTEthernet switches are central building blocks of a
TTEthernet-based system. A generic simulation model of a TTEthernet switch supporting periodic,
sporadic and aperiodic communication will be developed. In order to construct the overall
simulation model, the user can perform multiple instantiations of the generic switch, establish
connections to end systems, DREAMS chips and other switches and assign to each switch
instantiation a corresponding configuration. The switch configuration defines the message timing
including a time-triggered communication plan.

e Generic model of a TTEthernet end system. TTEthernet end systems are the communication end
points within the TTEthernet system. The user can perform instantiates of the generic TTEthernet
end system and connect each instantiation to TTEthernet switches. End systems can be configured
to produce messages according to application-specific parameters (e.g., interarrival time,
distributions of sporadic messages, periods of periodic messages). In addition, nodes can be
extended with the application behavior (e.g., C++ application code).

More details about the simulation building blocks are provided in section 3.

2.2 Simulation of Chip Level

The chip level simulation environment of DREAMS is composed of the Local Resource Scheduler (LRS) at
the on-chip network interface and the STNoC backbone.

The LRS consists of the Egress Bridging Unit (EBU), the Serialization Unit (SU) and the Ingress Bridging Unit
(IBU). The interface between the cores and the bridging units (i.e., EBU and IBU) is established by means
of Ports and the interface between the EBU and the SU is provided by the priority queues.

The STNoC is composed of instances of the following STNoC backbone components which can be
configured and extended for optimal support of real-time traffic.

e Network Interface (which is known as NoC interface in conjunction with the LRS): The NI is used
to interconnect all IP cores (Tiles, Memories, Gateway) to the NoC. Messages arriving at the NI
are segmented into packet and flits of a fixed (but configurable) size prior to entering the NoC.

e Router: The router dispatches the flits of a message based on a source-based routing information.
These routers retrieve the routing information from the header of the packet (header flit).

e Synchronous Link: The link is used to connect a router to a NI or to specify router-to-router
connections.

The gem5 simulator can execute in Full System (FS) mode, including an operating system (e.g. Linux and
Android) and hardware devices. System services, shell commands, compiler and debugging tools, are
available by connecting to a simulated console via telnet. However, currently there is limited,
uniprocessor-only support of Ruby memory system for ARM-based multicore systems, implying the use
of external co-simulation tools; only the less accurate and flexible Classic memory system (no instruction
pipeline), gem5 can model an ARM uni-or multi-processor running Linux or Android in FS mode. An
ongoing effort by TEl aims to connect the Ruby memory controller to the STNoC NI, disabling cache
coherent interfaces. This work will be presented along with STNoC and newly proposed access control
mechanisms (interleaving, FBA) in DREAMS Deliverable D2.1.3

2.3 Simulation of Execution Environment

The simulation of the execution environment will represent an application tile component within the
DREAMS architecture. This environment simulates the execution of DREAMS applications with mixed
criticality features. These applications will run on top of the XtratuM hypervisor inside partitions of virtual
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machines. The hypervisor and partitions access the services provided by the DREAMS platform and for
this, the execution environment must be able to connect to simulation of on-chip and simulation of cluster
level. Other simulation environments will simulate those additional DREAMS components such as on-chip
interconnect (STNoC), off-chip/on-chip gateways, off-chip interconnect (TTEthernet) and GRM.

The main simulation building blocks in the execution environment are generic building blocks of a DREAMS
application tile, which can be summarized as follows:

e Processor core and local memory: The DREAMS harmonized platform is used as the reference
platform for the simulation of the execution environment. Therefore, the simulation of the
application tile will be based on the Zyng-7000 series board embedded with an ARM Dual-Core
Cortex-A9 processor. From that board, the execution environment will only be focused on the
Cortex-A9 processor, memory and the majority of internal devices around the processor. This
ARM processor is based on the ARMv7-A architecture, which will be fully simulated. Additionally,
the ARM processor to be simulated can be setup up with one or more cores, although for the
execution environment only two cores will be simulated.

e DREAMS virtualization layer: The XtratuM hypervisor is used as a reference virtualization layer.
The behavior of the hypervisor is completely mimicked in the same way as a real execution on a
hardware platform. The configuration and tuning of the hypervisor version to be simulated can
be performed using the same toolsets provided by XtratuM in the software development. All
XtratuM services and features will be available to be used in the simulation and the DREAMS
Abstraction Layer and applications can access to them. . The virtualization layer can implement
DREAMS services such as MON (Resources Monitors) and LRS (Local Resource Schedulers) —
D3.2.1 High-Level Design of Global Resource Management Services. Although, it will depend
about the availability during the simulation tasks.

e DREAMS Partitions: partitions or application containers will run on top of the hypervisor. These
partitions will implement application functionalities to complete the DREAMS platform
simulation. Each partition is based on the Dreams Abstraction Layer (DRAL), and on top of DRAL,
DREAMS Application components are executed. These applications can implement DREAMS
services that need access to other DREAMS tiles through other simulation environments. DREAMS
partitions could contain:

O DRAL (DREAMS Abstraction Layer)
O MON (Local Resources Monitors)
O LRM (Local Resource Managers)
0 Application components

e OQVPSIM interface to DREAMS chip: These building blocks interfaces between the OVPSIM
simulation and the other simulation environment. This wrapper should be able to receive
information from other simulation and injects it in the OVPSIM simulation and also exports
information from OVPSIM simulation to the other simulation.

2.4 Linking of Simulations at Different Integration Levels

Multiple simulation tools (i.e., OPNET, GEM5 and OVPSim) are used in DREAMS to simulate the virtual
platform. Those simulators have different execution restrictions and capabilities, therefore a linking
framework is required to combine and synchronize these different simulation tools. There are two
simulation levels: Chip level, in which the non-cycle accurate OVPSim is used in combination with GEM5
to simulate system core execution services in a multicore network-on-chip setup. Secondly, the cluster
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level, which simulate the off-chip communication using OPNET and GEMS5. Both tools are discrete event
simulators.

Taking into account that discrete events occur at specific points in time, such events result in changes of
the simulation which are communicated to the simulation coordinator. A socket based coordination
control framework for simulation support of multiple tools is presented in section 6. The multi simulation
coordination framework consists of the global coordinator, it is responsible for the overall communicate
between simulators and control handling. In addition to that, the coordination system has one local
controller for each simulator that is responsible for guaranteeing the discrete event execution and
synchronization of the simulators.

Two different simulation approaches are used for chip level and cluster level simulations. The interleaving
approach presented in subsection 6.1.1 guarantees the synchronization of the OPNET and GEMS5
simulations at cluster level by alternating the execution sequence between the simulators. This is done
based on the upcoming execution time of the next events in the simulators calendars. Secondly, the tick-
based approach allows OVPSim and GEM5 to run in parallel until a pre-calculated time-tick. After reaching
this time-tick the two simulators synchronize their local simulation calendars using the buffered
events/instructions that were collected in the global controller from the previous execution tick. Later in
this section these two approaches are described in detail by describing the technical implementation of
the data and control flows.

Functional mock-up interface (FMI) defines a standardized interface that supports model exchange and
co-simulation between simulation tools. The FMI standard is widely used in co-simulations that are based
on e.g. Simulink, dSpace and AMESim [1]. On the other hand, not all simulation tools support FMI. For
instance, OPNET provides its own co-simulation interface. Additionally, Gem5 and OVPSim are yet not
used with FMI nor with the OPNET co-simulation interface. Therefore, the proposed multi simulation
architecture combines different discrete event simulation tools (e.g. OPNET, GEM5 and OVPSim ) that
does not have FMI support by presenting a socket-based communication that manages the co-simulation
timing model to provide an virtual platform.

2.5 Model-Driven Configuration of Simulation Environment

One objective of the DREAMS project is the model driven support of the design and validation activities
of the development process for mixed criticality systems. One motivation for this objective is the
possibility to automate the export/import of design data between different tools so as to avoid error
prone manual copying, reworking, and pasting of design data, when moving from one tool to another
during the design process.

In the context of the simulation framework these ideas translate into the “model-driven configuration” of
simulation blocks, i.e. the tool supported configuration of the simulation blocks out of the model of an
instance of the DREAMS architecture. Such a model conforms to the DREAMS meta-model and provides
the complete description of an instance of the DREAMS architecture.
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Configuration
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DREAMS model Configuration Files
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Figure 2: Inputs and outputs of a configuration file generator

Depending on the simulation building block, the Configuration File Generator might use additional inputs
in order to bound parameters that are not covered by the DREAMS meta-model.

Details on how the automated configuration is realized are provided in Section 6.

2.6 Analysis of Simulation Traces

The goal of the simulation framework is to help detecting non-conformances of the designed system with
respect to the requirements. For this purpose it should produce reports on the observed evolution of
properties that are defined by the requirements of the designed system. Typical examples of such
properties are (end-to-end) delays, which should conform to latency constraints or the number lost
frames in routers, due to insufficient memory.

In discrete event simulators, the evolution of the system model is driven by the occurrences of events that
induce state changes. Based on these elementary events (e.g. frame queuing, transmission starts, etc),
the high-level properties that need to be reported as a result of the simulation (e.g. end-to-end traversal
times) can be deduced, but only if cause and effect relations can be established. All information needed
to establish these relations could be put into the traces, but since traces quickly become large files, it is
preferable to put only the strict minimum of information into the traces and derive relations as much as
possible from the DREAMS system model.

The above described approach leads to the dataflow of the Simulation Trace Analysis Tool as depected in
Figure 3. Notice that besides generating the reports, the tool also allows to visualize the results on screen,
as tables or graphs.
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Simulation trace\
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Figure 3: Inputs and outputs of the Simulation Trace Analysis Tool

More details about the formats of the simulation traces and the synthesized properties are provided in
Section 8.

2.7 Formal Verification Specification of DREAMS Framework

The introductions of multi-cores architectures leads to an increasing trend to support several applications
with different levels of criticality. In addition, handling safely the hardware failures is another design
problem that will only increase as multicore will become more and more commonplace.

In this context, formalization is required not only for analysis of safety properties, but also for timing.
Formal models play an important role in the analysis of hardware faults and fault correction as well as to
know the behavior and timing of conflicts in multicores. In this deliverable, we present the formal
verification of the adaptive link of the STNoC which is one of the core elements of the clock
synchronization service of STNOC. The adaptive link is located between the STNoC routers: it collects
different clocks, and performs a secure crossing of clock regions as described in section 9.

2.8 Transfer test results from simulation to physical system

A specific sub-target of the simulation activities is focused on the simulation based on a very low-level
design abstraction in the registration-transfer level (RTL) to perform logic simulation. At this level,
typically, FPGA implementation is simulated to predict the behaviour of the logic circuits.

Where model-based test verification activities are focused at finding errors in the toolchain and SW
implementation, the low-level simulations models aim to find potential errors in the implementation of
protocols and standards in hardware. Particularly in HW/SW co-design, the verification activities of both
go hand-in-hand and a simulation of the communication platform, consisting of terminal points (e.g. off-
chip gateways) and connection points (e.g. switches) is necessary to provide an end-to-end simulation
environment that detects errors that cannot be found in simulation of only the components.

This topic is further addressed in the next stage of the deliverable.
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3 Specification of Cluster Level Simulation Environment

At the cluster-level the system is decomposed into DREAMS chips interconnected by a real-time
communication network (i.e. TTEthernet) in a corresponding network topology (e.g. mesh, star,
redundant star, ring). The connection between off-chip and on-chip networks is established through
gateways. A gateway is responsible for the redirection of messages between the NoC and the off-chip
communication network.

The specification of the off-chip network is presented in section 3.1.1, where TTEthernet and a time
triggered end system are explained. In section 3.1.2, the specification of the gateway is described. Section
3.2 presents the simulation tools that are used to emulate the simulation building block components. The
configuration interface for each simulation building block is described in section 3.3.

3.1 Simulation Building Blocks

3.1.1 Off-Chip Network
The simulation building blocks of the off-chip network are listed in the following subsections.
3.1.1.1 TTEthernet switch

As shown in Figure 4, the TTEthernet switch consists of multiple physical links and a bridge. Each physical
link contains a physical layer and a MAC layer. The physical layer is built according to IEEE 802.3 [2]. The
MAC layer is based on IEEE 802.3 with the following extensions.

The MAC layer checks the validity of the destination address for an incoming frame. This field is extracted
from the destination address using the bit mask Oxffffffff0000. If the field has the predefined value of the
critical traffic marker, this frame is either periodic or sporadic. Otherwise, the frame is regarded as
aperiodic.

The switch distinguishes between periodic and sporadic frames using the EtherType value. The IEEE
Standardization Authority has assigned the values 0x88d7 [3] and 0x0800 [4] for EtherType fields of
periodic and sporadic frames.

Figure 4 shows the block diagram of the bridge model. The task of the bridge is to handle and forward
ingress frames to the egress ports depending on the traffic type. The bridge model contains five layers:

» Packet classification layer: it puts the ingress frames into one of the internal queues based on
the traffic type and virtual link identifier (VLID). In the case of a periodic message, each periodic
virtual link (VL) has one periodic VL buffer, which provides buffer space for exactly one message.
In case this buffer is full and another message arrives with the same VLID, the newer message
replaces the old one. A sporadic message has one queue for each sporadic VL. All aperiodic
messages are stored in one queue since aperiodic messages have no timing constraints on
successive message instances and no guarantees.
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Figure 4: Block Diagram of TTEthernet Switch

TT scheduling layer: It is responsible for relaying periodic frames from the virtual-link buffer to
the periodic frame queue at the correct egress port according to the communication schedule.
The communication schedule also determines the point in time when the time-triggered frame
will be relayed, thereby ensuring deterministic communication behavior.

Sporadic shaper layer: It realizes the traffic policing for the sporadic frame by implementing an
algorithm known as token bucket [4]. This layer checks the time interval between consecutive
frames on the same VL and moves rate-constrained frames from the virtual-link queue to one of
the sporadic egress queues. We distinguish between two priority classes of sporadic frames using
two corresponding sporadic egress queues.

Aperiodic Configuration layer: It is responsible for relaying the aperiodic message, where the
spanning tree protocol is used to establish a loop-free topology for communication of aperiodic
messages [2]. The supported aperiodic messages include Bridge Protocol Data Units (BPDU) and
aperiodic data messages. BPDU messages are exchanged between off-chip routers to determine
the network topology, e.g., after a topology change has been observed.

egress queue layer: It forwards the frames from the egress queues to the MAC layer according to
the priority. The highest priority is assigned to time-triggered frames, whereas aperiodic messages
have the lowest priority.

3.1.1.2 End system switch

Figure

layers:

5 shows the block diagram of a TTEthernet end system. The end system consists of the following
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Figure 5: Block Diagram of the TTEthernet End System

application layer: it generates the payload traffic with a timing depending on the application
specifications (i.e. periodic, sporadic and aperiodic). This payload frame includes meta data with
payload info such as the source ID, the sender ID and the receiver ID. The meta-data is used to
configure the lower layers.

Fork layer: it is the interface layer between the technology-independent generic source and the
technology-dependent lower layers. According to the configuration parameter in the fork layer,
it passes the incoming frame to one of the following layers: TT clock, sporadic shaper or aperiodic
Priority.

TT clock: it is responsible for the deterministic behaviour of the time-triggered frames. In the TT
clock layer, the incoming frame is buffered in a corresponding virtual-link buffer and then the
frame is sent to the TTE controller layer at the time specified in the static communication
schedule.

Sporadic shaper: it is responsible to guarantee the minimum time
consecutive instances of sporadic frames on the respective VL.
Aperiodic priority: it forwards the frames to the TTE controller layer according to the priority.
There are two priority levels of the aperiodic frames.

TTE controller layer: The TTE controller layer contains three queues, namely one for each traffic
type. It sends the frames to the lower layer according to their priority. Periodic frames have the
highest priority, whereas aperiodic frames are assigned the lowest priority.

MAC interface layer: it provides services for the outgoing frames from the upper-layer and the
incoming frames from the MAC layer. The frames that come from the MAC layer are directly sent
to the sink layer.

Sink layer: the received message ends at the sink. The sink is responsible for logging and gathering
statistical results.

MAC layer: it implemented based on IEEE 803.2.

interval between two
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3.1.2 Gateways

In this section, we will describe the gateway specification model based on the on/off-chip gateway service
that is described in the deliverable D1.2.1 [5].

The class diagram for the gateway is illustrated in Figure 7, where all information required for the
instantiation of the generic gateway service is available. The constituting classes of the gateway are the
bridge, serialization, ingress, egress and VL Queues.

The ingress class will be invoked by an incoming message from the on-chip network or an off-chip network
such as TTEthernet. In the ingress class, the incoming messages will be send to the bridge successively.
The bridge class classifies the incoming messages based on the message type (i.e. periodic, sporadic and
aperiodic). We explain the processing for each message type in the following subsection.

3.1.2.1 Processing of periodic messages

Qi

INIT \ 2
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l +Classification Message l

Aperiodic TT scheduling

Period

Sporadi + compute the next

M’ l Y l Msg. Tyioe e _| [transmission time
+ +message analysis ;
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+insert The Message ||, \pdate VL buffer the egress periodic queue
in VL buffer status
+ update VL buffer
l + update VL buffers status l

status [
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Figure 6: Periodic State Machine

Figure 6 depicts the flowchart for periodic message transmissions. In the classification state, a message
analysis function extracts from the periodic message the VLID. In case the incoming message does not
have a defined VLID in the configuration parameters, the message is considered as invalid. Invalid
messages are dropped in the classification state, while valid messages result in a transition to the VL buffer
state.
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Based on VLID, the check VL buffer status function retrieves the buffer identifier from the configuration
parameters. Then, it puts the message into the VL buffer, which provides buffer space for exactly one
message. In case this buffer is full and another message arrives with the same VLID, the newer message
replaces the old one. When the message is buffered, the “VL buffer status” for the corresponding VLID
and the “VL buffers status” are updated.

If the “VL buffer status” denotes that the buffer is “not empty”, the next transmission time function in the
time-triggered scheduling state determines the point in time when the periodic message is relayed
according to communication schedule, thereby ensuring the deterministic communication behavior. At
the next transmission time, the pass information to redirection function sends the information (i.e., VLID,
buffer identifier and direction) to the redirection state. In the redirection state, the check VL buffer status
function checks whether the corresponding VL buffer contains a message. This message is then sent to
one of the egress objects according to the direction parameter, where the message is enqueued in a
periodic egress queue. When the message is removed, the “VL buffer status” for the corresponding VLID
and the “VL buffers status” are updated. These procedures are performed according to the
communication schedule until the “VL buffer status” indicates that the buffer is “empty”.

The serialization is responsible for forwarding the message from the egress queues to the on-chip or off-
chip network interface according to the priority. The highest priority is assigned to periodic messages,
whereas aperiodic messages have the lowest priority. Using these priorities, the serialization supports two
mechanisms to resolve collisions between the different types of messages:

o Timely block: According to the time-triggered schedule, the serialization knows in advance the
transmission times of the periodic messages. Timely block means that the gateway reserves so-
called guarding windows before every transmission time of a periodic message. The behavior of
the timely block mechanism is illustrated in Figure 8.

Timely block

+ timly block checher
+select message

Empty
- N +send
: gress queues Yes

+Check the egress Not Empty- l is guarding TT send

queue status windows active?
A

INIT
Status update

i +check the TT queue

4

+wait

+sned TT message

Figure 8: State Machine for Timely Block Mechanism

The egress queues have four egress queues with decreasing priorities: one queue for periodic
messages, two queues for sporadic messages (each one for a different priority class) and one
gueue for aperiodic messages. The egress-queue status is updated when a message is enqueued
in one of the egress queues. In case the status of the egress queue is “not empty”, the timely block
checker function in the timely block state verifies that no guarding windows is active.
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In case of guardian windows, the wait function imposes a delay until the next transmission time
of the periodic message. If there is any periodic message, this message is sent. Otherwise, the
process of the flowchart returns to the egress queue state.

In case there is no guarding windows, the select message function in the send state selects one
message out of the sporadic and aperiodic queues based on the priority and this message is sent.
If the status of the egress queues is still “not empty”, the procedure is repeated until the egress
gueues are “empty”.

e Shuffling: If a low priority message is being transmitted while a high priority message arrives, the
high priority message will wait until the low priority message is finished. Figure 9 shows the
flowchart for the shuffling mechanism within the serialization object.

b

Empty

( Egress queues W ( send W
+Check the egress Not Empty +select message
queue status +send

INIT

Status update

Figure 9: State Machine for Shuffling Mechanism

The egress queue status is updated when a message is enqueued in one of the egress queues. In
case the status of the egress queue is “not empty”, the select message function removes one
message from the egress queues based on the priority. The send function forwards the message
to the network interface of the on-chip or off-chip network interface. If the status of the egress
queue is still “not empty”, the procedure is repeated until the egress queues are “empty”.
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3.1.2.2 Processing of Sporadic messages
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Figure 10: Sporadic State Machine

Figure 10 depicts the flowchart for sporadic message transmissions. The message analysis function in the
classification state checks an incoming messages. The size of the message must be below the maximum
message size according to the configuration parameters of the VL. A valid message is enqueued into the
corresponding VL queue. When the message is enqueued, the “VL queue status” for the corresponding
VLID and the “VL queues status” are updated. In case the VL queue was empty, the update time function
updates the reception time of the last incoming VL message. This timestamp is essential for traffic shaping
and temporal partitioning.

In the sporadic shaper, the sporadic shaper controller function guarantees the minimum interarrival time
between two consecutive instances of a sporadic messages on the respective VL. The sporadic shaper
controller function computes the necessary waiting time for each message based on the time of the latest
incoming VL message. When the waiting time has expired, the redirection function passes the information
(i.e., VLID, buffer identifier and direction) to the redirection state. In the redirection state, the remove
message from VL queue function forwards the message from the VL queue to one of the sporadic egress
gueues according to the direction and priority parameters. In case, the VL queue has another message,
the time of the last incoming VL message is updated. This step allows the sporadic shaper controller
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function to send the next message after the minimum interarrival time. This procedure is repeated until
the “VL queues status” is “empty”.

Thereafter, the serialization is responsible to forward the message to the network interface of the off-
chip or on-chip network as explained in the previous subsection.

3.1.2.3 Processing of aperiodic messages
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/ classification \

|+Classification Message |

/ redirection
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aperiodic queue

]
Msg. arrive K /

\ 4

Figure 11: Aperiodic State Machine

Aperiodic messages have no timing constraints on successive message instances and no real-time
guarantees. Therefore, the incoming messages are inserted into the corresponding aperiodic egress
gueue (see Figure 11). When the message is enqueued, the “egress queue status” is updated. Thereafter,
the serialization is responsible to forward the message to the network interface of the off-chip or on-chip
network.

3.2 Simulation Tool

3.2.1 OPNET

OPNET is a tool suite for discrete event simulations of communication networks. Simulation models in
OPNET are organized hierarchically consisting of three main levels: the simulation network, node models
and process models. These three levels represent the structure of real-world distributed systems
consisting of clusters with networked nodes (e.g., end systems, switches) and different protocol layers.

The top level refers to the complete distributed system and is used to create a network model using
building blocks from the standard library and user-defined components. At this level, statistics about the
network are collected, the simulation is executed and results are viewed. The node models are at the
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second level in the hierarchy and have a modular structure. The node is defined by connecting various
modules with packet streams. The connections between modules allow packets and status information
to be exchanged between modules. The modules in the nodes are implemented by using process models,
the lowest level in the hierarchy. Process models are represented by finite state machines definitions of
model functions, and a process interface that defines the parameters for interfacing with other process
models and configuration attributes. Finite state machine models are described in embedded C or C++
code blocks. The hierarchical structure of the models, coupled with support for C and C++ code, allows for
easy development of communication or networking models.

3.2.2 GEM5

Gemb5 is a modular self-contained discrete-event simulation framework resulting from a combination of
previous M5 and GEMS simulators which share many years of effort [M5, Gems]. Alike other virtual
platforms, such as OVPsim [OVPSIM], Gem5 is free and its BSD License covers most components for
Academia and Industry use. The Gem5 infrastructure targets multiprocessor system-on-chip (MPSoC)
simulation and design space exploration, reducing the time or cost to apply different configurations in a
real system and collect important system performance data. Gem5 uses object-oriented design which
provides flexibility and easy refinement through parameterizable, interchangeable and interoperable
models. Although there is a steep learning curve due to intricacies of the installation and complexity of
the models, users can anticipate to quickly gain experience and design more with less effort.

In this context, Gem5 also provides a built-in, configurable mechanism for system monitoring and design
space exploration. Its discrete-event simulation kernel provides high performance and relatively good
accuracy using Instruction Set Simulation (ISS).

3.3 Configuration Interfaces

3.3.1 Configuration Parameters for TTEthernet Switch

The configuration of a time triggered Ethernet switch includes parameters for each periodic and sporadic
VL that traverse the switch:

» Parameters for a periodic VL: time window for periodic message (message will be dropped if it
arrives outside of the window), the identifier, the timing parameters (i.e., period, phase), the
sender port, receiver ports, message size and buffer identification.

» Parameters for a sporadic virtual link: the identifier, the minimum interval time, jitter, sender
port, receiver ports, message size and queue identification.
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3.3.2 Configuration Parameters for TTEthernet end system
The configuration of a TTEthernet end-system consists of the following parameters:

e VLID: The virtual link identifier is used in the periodic and sporadic messages.

e Destination_ID: The destination identifier is used in aperiodic messages.

e Type: periodic, sporadic or aperiodic.

e Periodic timing parameters: These parameters include period, phase, starting time of the
application and the end time of the application.

e Sporadic timing parameters: These parameters include interarrival time, the minimum and
maximum interarrival time, start time of the application and the end time of the application.

e Aperiodic timing parameters: These parameters include the start and end time of the application.

e Message size: The message size of periodic messages.

e Maximum message size: The maximum message size of the sporadic and aperiodic messages.

e Minimum message size: The minimum message size of the sporadic and aperiodic messages.

e TT clock queue ID: the periodic VL queue identifier

e Sporadic shaper queue ID: the sporadic VL queue identifier

3.3.3 Configuration Parameters for on-/off-chip Gateway

The configuration of an on-/off-chip gateway consist of the following parameters:

e VLID: used in case of periodic and sporadic messages

e DIR: the message direction (an input port provides data from the off-chip network, an output port
provides messages to the off-chip network)

e Type: periodic, sporadic or aperiodic

e Timing parameters: In case of periodic messages, the parameters include the period and phase.
For sporadic messages, the interarrival time and the jitter are specified. In case of aperiodic
message, no timing parameters are required.

e  Priority: the priority is used only for sporadic messages

e Message size: the maximum message size for the periodic and sporadic messages

e VL Queue ID: The periodic and sporadic messages need unique VL queue identifiers.
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4 Specification of Chip Level Simulation Environment

The chip level simulation environment of DREAMS is composed of the Local Resource Scheduler (LRS) at
the on-chip network interface and the STNoC backbone, both implemented using Gem5 simulator
system?. The STNoC backbone realizes the Network-on-chip (NoC) which doesn’t support the time-
triggered behavior. The LRS has been defined as an additional layer on top of the simulated STNoC
network interface in order to provide the support for the time-triggered transmission of the message as
well as different criticalities.
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Figure 12 DREAMS Chip level Simulation environment

This chapter is dedicated to chip level simulation environment and is composed of three sections. The
first section describes the simulation model of the LRS by introducing basic concepts of gem5, describing
the modifications applied to the native gem5 classes and the configuration parameters for the
simulation model. This section will end with the simulation result of a sample scenario. The second
section describes the STNoC backbone and the configuration interface of the model. The third section
shows how the LRS simulation model is integrated with the STNoC model technically.

4.1 The LRS at the on-chip NI

This section describes the simulation model of the LRS at the on-chip NI. It provides early insight for a
designer before going to the physical platform, thus acts as the basis for RTL implementation in WP2.
Moreover, it aids in analyzing and evaluating the generated offline schedules as well as verifying the
effect of modifications in the hardware and the schedule by Local Resource Managers. The integrated
simulation of the LRS and garnet exhibits the network on-chip and acts as a building block in WP5.

! http://gem5.org
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Figure 13 The simulation building blocks of the LRS at the on-chip NI

As described in D1.2.1 the LRS performs the runtime scheduling of resource requests such as allocating
bandwidth or processing of queued messages. The LRS acts as an additional layer on top of the plain
network interface (for example garnet NetworkInterface_d or shell and kernel of the STNoC) to bridge
the gap for supporting mixed-criticality and different communication paradigms, i.e., time-triggered,
rate-constrained and best-effort. Figure 13 illustrates different building blocks of the LRS and the
interconnection of them. More detailed information about the architecture and specification of the LRS
can be found in D1.2.1 Part Il, sec 1 and D2.1.2, section 2.

4.1.1 Basic concepts of the LRS simulation model

The proposed simulation model has been embedded into the open-source interconnection network as a
part of Ruby?. The Ruby Network Tester provides a rich framework for simulating the interconnection
network with controlled inputs. In order to make the provided system capable of time-triggered actions,
some modification have been applied to some abstract classes. Moreover, several classes have been
developed and added to the garnet network. These modifications are described below.

4.1.1.1 Time basis in Gem5

In order to realize the time-triggered communication, a mechanism for timely execution of the actions
based on the schedule is needed. An implementation based on the real-time system, however, is not
possible because the simulation time does not necessarily run consistently with the system time.

In Gemb5 the global time base, or the global logical time is based on ticks. A tick has no fixed relation to
the real time. Constant defined in src/sim/core. hh relate ticks to real time.

Based on the initial configuration of Gem5, the relationship of 1 x 10*? ticks per second is defined. This
means 1 tick = 1 ps (picosecond). However, this fixed relationship can be lost by a high load on the host
system. 3

In addition to the ticks, Gem5 defines Cycles, which in turn are a configurable number of ticks, i.e., 1 Cylce
=n * Tick. All events and activities in Gem5 are executed on the basis of ticks or Cycles.

4.1.1.2 Events

An event is represented by the Event class (shown in Figure 14), which is an abstract class. This means,
the event class can be only inherited by other classes in order to provide the needed methods and
attributes needed for any event.

2 http://www.m5sim.org/Ruby_Network_Test
3 This relationship can be justified by respective python file (/src/python/m5/ticks.py)
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Figure 14 Event class diagram

4.1.1.3 Event management

Scheduling of the events is one of the most common and important issues in an event driven simulator.
This is vital in our application, since there are plenty of time-triggered events which need to be
scheduled. This has been solved using particular abstract classes. For TT activities, which need scheduled
wakeup, the consumer class has been altered and employed. This class introduces a virtual
ttwakeup () method which can be scheduled in the constructor and will be called at the defined
schedule. EventWrapper would be the best approach for those of TT events, which don’t need a
recursive wakeup, but rather a single occurrence. These two approaches have been introduced below.

4.1.1.3.1 Consumer

Each event in the simulation is followed by a new decision and possibly a change to a system’s state.
This has been implemented in Gem5 using wakeup () method of the Consumer class. The consumer
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class (cf. Figure 17) is an abstract class and multiple classes inherit from this class. Moreover, the
wakeup () method is a pure virtual method, meaning, the respective derived class needs to define the
wakeup () class locally.

Output port

Input port

Jawnsuo)
Producer

—Wake Up

Producer

Producer

Jawnsuo)

Figure 15 Consumer and events in Gem5

As shown in Figure 15 each consumer class is connected to at least one input (as consumer) and one
output port (as producer). Once a new message is enqueued into the input port, the producer will call
the wakeup () method of the consumer class. When the wakeup () is called, the derived class can
determine the event type based on the current state of the system and message and decide the next
system state. For example, in the case shown above, the consumer on the left hand side can be the EBU
which wakes up by the incoming message from the core. After the EBU examined the portStatus,
based on the port type it can enqueue the message into the respective priority queue.

4.1.1.3.2 Modified Consumer class

Based on the requirements of DREAMS minor modifications (i.e., a time-triggered wakeup
(ttwakeup)) have been applied to this class. For this purpose a new ConsumerTTEvent has been
defined in order realize a TT event in consumer class. This class duplicates the normal event, but in
contrast to the ET events, on one hand, it calls the ttwakeup () method and on the other hand the
defined event has highest priority in the priority queue.

The ttwakeup () wakes the derived class up at the scheduled tick in order to perform the planned
activity (e.g., enqueue, dequeue, etc.). In case this method is required for the next period, it can
reschedule itself at each cycle for the next period (cf. Figure 16).

Figure 16 proposed mechanism for infinite wakeup schedule
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Figure 17 Consumer class diagram

4.1.1.4 Clocked object

The ClockedObject class enables us to benefit from the EventWrapper. The EventWrapper joints a
method within the derived class with an event and enables us to define the tick at which the method
need to be invoked. This approach provides us more flexibility for scheduling individual events. Code 1
represents, the way that EventWrapper can be employed.

class Klasse : public SimObject {
void event_method;
EventWrapper<Klasse, &Klasse::event_method> myEvent;

Code 1 EventWrapper declaration
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Figure 18 represents an overview of the simulation model and how different building blocks of the
simulation model inherited from these two abstract classes. Figure 19 depicts this inheritance of the
consumer and clockedobject class in another form.

Clocked Object

Core

Consumer

Core
Interface

11l

Clocked Object
) ' Consumer
‘ IBU

Tile

PQU

1040

Clocked Object
Consumer I

NoC Interface
(NetworkInterface_d)

Consumer

ClockedObject

4.1.1.5 Messages

Figure 18 LRS Simulation building blocks

Consumer
-

Egress Bridging Unit |

| Ingress Bridging Unit |

Serialization Unit

Figure 19 inheritance of the EBU, IBU and the SU

The transmission of the message will be triggered by a core. This transmission is scheduled through the
configuration parameters, using csv files (will be explained later in this text). The message itself is an
object which is instantiated before the simulation starts. Several attributes hold the simulation
information at each message object. While the message is traversing different units and network
elements, the content of the message in the memory will not be copied, but rather a pointer to the
message will be handed over from one element to the other one.

In order to satisfy DREAMS needs the native Message class introduced by Gem5 had to be changed. In
other words, some attributes and methods have been added to this class. In addition to that, for
instantiation of different message types, the following (shaded boxes) have been developed and
inherited from this class. Figure 20 represents the relations and this inheritance.

TTMsg |
TTMsg.hh

RCMsg
RcMsg.hh

DreamsMsg
DreamsMsg.hh

RequestMsg
RequestMsg.hh

NetworkMessage
NetworkMessage.hh

Message
Message.hh

BEMsg
BEMsg.hh

Figure 20 Message class
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4.1.1.6 Message buffer

Gemb5 provides MessageBuffer equipped with a collection of handy methods, which is employed
untouched in the simulation of the LRS. The data queue of the ports and the priority queues have been
instantiated using this class. As explained earlier, only the pointer to the message is circulated through
the LRS. This class deals only with the pointers to the messages. Therefore, all methods in this class deal
with the pointer of the message and no modification was needed, though some modifications had to be
applied in Message class.

4.1.1.7 Mixed-Criticality Address

As discussed in architectural style (D1.1.1), based on the structure of the application and platform, we
introduce the following namespace:

Criticality. Subsystem. Component. Message = Cluster.Node.Tile. Port
Logical Name (Application) Physical Name (Platform)

Each port is associated with a (hardware specific) physical name mapped with a (hardware agnostic)
logical name. These names have been defined by PhyName and LogName classes and build together a
mixed-criticality address (MCAddress). We defined a class for each of these concepts, each of which
embodies the above introduced elements (see Figure 21)

i MCAddress A PhyName A ) LogName A)
Class Class Class
7 2 r
=l Fields = Fields = Fields
®_ m_context @ m_clusterld @_ m_componentId
. m_location @ m_logNamePtr @ m_criticality
= Methods @ m_nodeld @ m_msgld
@ getlogName :ﬁ m_porﬂd @  m_phyNamePtr
@ getLogNamePtr ., m_tileld . m_subsystemId
@ getMsgld =l Methods = Methods
@ getPhyName @ getClusterld @ getComponentld
@ getPhyNamePtr @ getNodeld @ getCriticality
@ getPortld @ getPortld @ getMsgld
@ getTileld @ getTileld @ getSubsystemld
) MCAddress @ PhyName ) @ LogName
J

Figure 21 class diagrams of different classes defined for namespace

4.1.1.8 Virtual Links

Virtual Links (VLs) are an abstraction over the on-chip and off-chip networks and hide the physical
system structure of the platform from the components. A VL is an end-to-end multicast channel
between the output port of one sender component and the input ports of multiple receiver
components. Each VL is identified by VLID as well as the source port. It contains the list of destination
ports and temporal specification of the link (e.g., in case of a TT link, the period, the phase and in case
an RC link, the MINT and the jitter).

In the simulation model, virtual links will be instantiated and mapped with the source and destination
ports, once the simulation starts. Furthermore, they are part of the portConfiguration, since a part
of these configuration have been defined by the mapped VL.
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Figure 22 VirtulLink class diagram

4.1.2 The organization of the simulation model

Figure 23 demonstrates the hierarchical representation of the simulation building blocks. Shaded boxes
represent the native Gemb5 classes used in this implementation and the remaining part shows the
developed part, which will be explored in this section. The name on top of each box addresses the name
of the class and the name at the bottom shows the filename including the class declaration. Arrows
represent the pointers which realize the connections between classes.

Tile
Tile.cc
\ 4 \ 4
Core Network Interface
Core.cc Networkinterface_tt.cc
Y 4
Scheduler (LRS) NoC Interface
Scheduler.cc Networklinterface_d.cc
Core Interface Bridging Unit Priority Queue Unit Serialization Unit
Corelnterface.cc BridgingUnit.cc PriorityQueueUnit.cc SerializationUnit.cc
Port_d Port Status Priority Queue
Port.cc PortStatus.cc PriorityQueue.cc
v y
MessageBuffer Port Configuration MessageBuffer
MessageBuffer.cc PortConfiguration.cc MessageBuffer.cc

Figure 23 correspondence between classes

In the following subsections these building blocks will be explained.

01.04.2015 DREAMS Page 35 of 98



D5.2.1 Version 1.0 Confidentiality Level: PU

4.1.2.1 Cores (application layer)

In order to generate the on-chip traffic, the core class has been defined. This class simulates a typical
application running on a single partition of a core on the tile. Moreover, cores act as a sink for the
generated traffic by other cores and add the timestamp to the messages to provide the needed
statistical data for later analysis.

Cores contain a vector which include all scheduled send activities (core_schedule_table). This
vector will be initialized based on the configuration files once the simulation starts. Furthermore, they
have required links to all messages which need to be sent through the NoC (m_msgs in Figure 24).

e N
Core A

Class

= ClockedObject
= Consumer

= Fields
. core_schedule_table
"-'a m_core_id
. m_corelnterface
. m_log_name
@, m_msgs
. m_networkinterface
& m_tile
@ m_tile_id
. m_tileConfiguration
=l Methods
@ Core
@  receiveMsg (+ 1 overload)
0  sendMsg (+ 2 overloads)
@ ttwakeup
@ wakeup

Figure 24 Core class diagram

4.1.2.2 Core interface

The core interface provides the required access to the ports for cores, egress bridging unit and the
ingress bridging unit. This access comprised enqueue-ing, dequeuing, updating and retrieving the
configuration parameters. This simulates the management services provided by the core interface in
order to prohibit any possible interference between components.

As shown in Figure 13, cores do not have any access to individual ports, i.e., the core calls the provided
method from the core interface by passing the port id and the pointer to the message and the core
interface enqueues the message into the given port (enqueueCpu). This provides the core interface
possible access controls. Likewise, the egress and ingress bridging unit do not have any access to the
individual ports. PortStatus objects at the EBU, in contrast, have the required link to the individual
ports, in order to be able to update themselves and provide the EBU with the needed information.
Figure 25 represents the class diagram of the core interface.
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Figure 25 Corelnterface class diagram

4.1.2.3 Ports

Ports are the key elements and starting points to establish the partitioning in a mixed-critical platform.
We distinguish between periodic, sporadic and aperiodic ports. These traffic types imply the priority of
the message and consequently, the criticality of the respective application subsystem.

Ports are composed of the data queue, the port configuration and the port status.

-

Class
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| Port_d A

= Fields

=

m" mt’ w" m‘;' o

m_buffer
m_configuration
m_corelnterface
m_id

m_status

= Methods

e

dequeue
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getDestination

isReady
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Figure 26 Ports class diagram

01.04.2015

DREAMS

Page 37 of 98



D5.2.1 Version 1.0 Confidentiality Level: PU

4.1.2.3.1 Data queue

This part has been realized by native gem5 MessageBuffer class. This class provides needed methods
such as isReady, enqueue and dequeue. These methods will be called by the port object using the
pointer (m_buffer which is shown in Figure 26). Figure 27 describes how an enqueue or dequeue call is
initiated from a core or the EBU or the IBU.

coe e e |aueue/ . EnQuewe/ i arer |
Core Interface Port MessageBuffer
EBU/IBU | dequeue dequeue - dequeue

Figure 27 enqueue/dequeue call procedure

4.1.2.3.2 Port Configuration

The PortConfiguration class (shown in Figure 28) keeps the configuration parameters of the
respective port and embodies all configuration parameters needed for instantiation of the port. This
object will not be changed during the simulation. A pointer to an already instantiated
portConfiguration object is necessary for the instantiation of a port. The portConfiguration
object is instantiated based on the configuration defined by csv files once the simulation starts.

P
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7

'
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m_id
m_msgSize
m_partitionld
m_queueSize
m_semantic
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W

getDestination
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getQueueSize
getSemantic
getType
getVirtualLinkPtr
getVnet
PortConfiguration

eeeeeeeeee

.

Figure 28 PortConfiguration class diagram

Each TT and RC port is accessible by a unique partition in order to segregate the criticalities. The id of
this partition (m_partitionId in Figure 28) is part of the portConfiguration and this access will be
checked by the core interface.
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4.1.2.3.3 Port Status

PortStatus (shown in Figure 29) reflects the status of each port. The port status will be read by the
EBU und updated by the port. This prohibits the EBU from applying unwanted changes into the ports.

( PortStatus A
Class

= Fields
@_ m_egressBridgingUnit
@ m_id
@ m_isEmpty
@ m_isFull
@_ m_isReady
@_ m_isScheduled
@ m_lastDequeueTime
@ m_port
=/ Methods
@ ~PortStatus
@ getType
@ isFull
) isReady
@ isScheduled
@  PortStatus (+ 1 overload)

Figure 29 PortStatus class diagram

4.1.2.4 Egress Bridging Unit

The egress bridging unit (EBU) ensures timely dequeuing of TT ports, dequeuing of RC ports only when
the minimum interarrival time (MINT) is elapsed and dequeuing of BE ports only if there is enough
bandwidth left over by other two types of messages.

The EBU is defined as Consumer in order to perform the transfer of TT messages into the priority queue
based on the schedule defined in ebu_schedule_table (initialized based on the configuration file).
On the other hand, for handling the RC and BE messages, there is some situations, in which dequeuing
of the respective port is not doable, since at this tick a TT action is already scheduled. In these situations,
the EBU must schedule a dequeue process for the future, in order to not miss this event. For this
purpose, the EventWrapper will be employed to perform the dynamically scheduled dequeue events
in ebu_dq_schedule. Utilization of the EventWrapper requires the inheritance from the
ClockedObject.

Before enqueue-ing the TT and RC messages into the priority queue, the EBU retrieves the destination of
the message, based on the configuration of the virtual link and embeds this address into the message. In
contrast, there is no need for embedding the destination address for the BE messages, since the core
has already inserted this address into the message. Subsequently, the NoC interface specifies the NoC
specific route based on the destination embeds this route into the message.
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Figure 30 EgressBridgingUnit class diagram

4.1.2.4.1 Transmission of TT messages
Periodic ports will be dequeued based on the TT schedule provided by the configuration parameters.

This is done by the ttwakeup () method. The EBU wakes up each cycle a TT port dequeue is due. The
scheduled cycle and the portId is available in the configuration of the EBU.

4.1.2.4.2 Transmission of ET messages

RC and BE ports send a wakeup to the EBU once a new message is enqueued. This will be done
automatically by Consumer class, each time a new message is enqueued into the MessageBuffer.
Afterwards, the EBU handles the messages based on the state machine described in D2.1.2, section 2.
4.1.2.5 Priority Queue Unit

This unit (shown in Figure 31) has been defined to manage several priority queues and does not address

any physical architecture. The PQU includes pointers to the priority queues. Each priority queue is a
MessageBuffer joint with a priority.
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PriorityQueueUnit
Class
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®_ m_egressBridgingUnit
m_id
m_num_of_queues
m_priorityQueue
m_scheduler
m_serializationUnit
m_tileConfiguration
= Methods

@ ~PriorityQueueUnit

@ addPriorityQueue

@ dequeue

@ enqueue

@  isReady

@  PriorityQueueUnit (+ 1 ove...

+ Nested Types

Kl‘l ll‘ll Kl‘l l<‘l [ltl lr‘l lﬂ‘

A

Figure 31 PriorityQueueUnit class diagram

4.1.2.6 Serialization Unit

Looking at the LRS, one observes that at two stages merging of messages take place. First merge
happens at the EBU. As illustrated in Figure 18 the EBU merges messages of the same priority into a
same priority queue, taking into account the timing constraints defined in the configuration parameters
(e.g., periods, phases, MINTS). This merging is needed, since the SU is not aware of these temporal
configurations. The second merging takes place at the SU, since the NoC interface is priority agnostic.
This is the aim of the SU to inject the messages of highest priority each time there is free bandwidth at
NoC.

In order to make sure that the TT messages are subject to minimal latency, timely block can be
employed. In this case, a time-triggered blocking window blocks the transmission of any sporadic or
aperiodic message in order to make sure the ongoing transmission of those message would not affect
the upcoming transmission of TT the message. Alternatively, timely block can be avoided to achieve
more efficient network bandwidth usage by the cost of possible latency of TT messages. This delay in
worst case will be the delay of transmission of one message.

SU (described in Figure 32) is defined as Consumer so that once a new message is enqueued into the
priority queues, an automatic wakeup triggers the SU to analyze the enqueued message. This unit
inherits from the ClockedObject for the same purpose explained for the EBU. There are some cases
that individual dequeuing events must be scheduled for the next coming ticks. For this purpose, the
EventWrapper fulfils this need.
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4.1.2.7 Ingress Bridging Unit
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m_priorityQueueUnit
m_scheduler
m_timely_blocked
su_schedule_table
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~SerializationUnit
SerializationUnit (+ 1 overl...
ttwakeup

wakeup

v

Figure 32 SerializationUnit class diagram

The IBU will be waked up once a message coming from the NoC arrives at the LRS. This unit dispatches
the message into the destination port based on the physical address defined in the header of the

message.

IBU (shown in Figure 33) is defined as a Consumer in order to benefit the inherited wakeup method
from this class. This means, any new message enqueued by the NoC interface sends a wakeup to the IBU
and the IBU will dequeue the message from the buffer between the IBU and the NoC Interface (which is

shown as AXI Interface).

A

IngressBridgingUnit

Class

>

- Consumer

= Fields

th llt' !lt‘ Eﬁ“ll‘b lltl K’tl

m_axilnterface
m_corelnterface
m_fromNocBuffer
m_id
m_noclInterface
m_scheduler
num_of_ports

=/ Methods

@
@

IngressBridgingUnit (+ 1 o...
wakeup

A

Figure 33 IgressBridgingUnit class diagram
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4.1.3 Configuration and data gathering

A typical on-chip end-to-end communication channel has been shown in Figure 34. We can categorize
the configuration parameters of the on-chip communication services in four categories, i.e., core, time-
triggered (TT) extension layer, the NoC and the global system-wide configurations. In this text, the
general (system-wide) configuration as well as configuration parameters for the LRS (the TT extension
layer) will be covered.

Core
TT Extension
/ \ 7 \ 7 N/ \ N\
<3 5 =2
v 17 o © NoC o X — 0
5 2 S . . SsM & 9
o = 29 interconnection o O ) ™
z < o =~
. Port configuration
° Virtual Links (TT, RC)
. Address pairs (BE)
° Schedules (TT, RC)
[ )

Figure 34 Sample on-chip end-to-end communication channel

4.1.3.1 System-wide configuration parameters

As several tiles of possibly different chips operate in the system, there are some parameters which are
necessary for the harmonized operation of network interfaces. These parameters depict the general
characteristics of the on-chip communication, mainly the virtual links and the address pairs. Some of
these parameters, e.g., the route for virtual links, might need to be joined with those of off-chip
networks in order to close the path for system-wide messages. However, in this document only the part
concerning the on-chip network will be covered.

4.1.3.1.1 Structure of the messages
In order to be able to communicate, a common defined structure for the messages is necessary. This is
characterized by the following parameters:

e Number of flits: this parameter is a static number which can vary for different message types.

e Structure of the message

O Preamble
Message size (in bytes)
Source (PhyName)
Virtual link ID/Destination
Path

O O OO
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4.1.3.1.2 Virtual links
Each virtual link is identified by the following parameters:

4.1.3.1.2.1 VLID
Identifies the VL by a number as ID.

4.1.3.1.2.2 Source

This parameter represents the mapped port with the VL as well as the mapped logical address of the
port.

PhyName: the physical name as defined in architectural style (D1.2.1) which is composed of
Cluster.Node.Tile. Port

LogName the physical name as defined in architectural style (D1.2.1) which is composed of
Criticality. Subsystem. Component. Message

4.1.3.1.2.3 Destinations
As already mentioned, VLs are end-to-end multicast channels. Therefore, for each VL several destination
ports can be defined, each of them characterized by physical and logical name as follow:

* PhyName_ i : Cluster.Node.Tile.Port * LogName_i: Cluster.Node.Tile.Port

4.1.3.1.2.4 Path

The path is a sequence of physical links which represents the path from the source port to the
destination port. Each element of this vector is the id of corresponding router.

4.1.31.2.5 Priority (RC)

As the platform is capable of supporting different priorities for rate-constraint messages, ports
dedicated for RC messages may have a parameter defining the priority.

4.1.3.1.3 Address pairs

Since the best-effort messages do not benefit the concept of virtual links, each network interface needs
to map the logical name addressed by the application to the physical name, which is needed for the
NoC. These address pairs will be available as a table and are part of system-wide configuration.

PhyName: Cluster.Node.Tile. Port <-> LogName: Cluster.Node.Tile.Port

4.1.3.2 Configuration at the LRS
As described in the architectural style (D1.2.1, Part ll, section 1.1) the LRS at the Nl is meant to
implement the temporal characteristics as well as ensuring the priorities. Configuration parameters at
the LRS can be categorized in the following groups:

e Port configuration: configuration of ports at the tile interface

e Egress bridging unit (implementation parameters and the schedule)

e Priority queues (implementation parameters)

e Serialization unit (implementation parameters and the configuration)

e Ingress bridging unit (implementation parameters)

However the egress bridging unit and the serialization unit need to be synchronized and time-triggered
in order to control other units. Therefore, the schedule will proposed only for these modules.
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4.1.3.2.1 Port configuration

Since the tile interface serves the cores and the bridging units, no schedule for this unit is needed. Each
port at the “Core Interface” can be characterized by the following configuration parameters:

4.1.3.2.1.1 Physical address of the port

According to the defined name space in the architectural style (chapter 1.1, namespace), each port can
be addressed by a unique system wide name as follows:

e C(ClusterID
e NodelD
e TilelD

e PortID

4.1.3.2.1.2 Type

Each port can be used for sending or receiving of either of following traffic types:
e TT: for periodic messages
e RC: for sporadic messages
e BE: for aperiodic messages

4.1.3.2.1.3 Partition ID
This parameter helps the hypervisor to map the port with the corresponding software component.

4.1.3.2.1.4 Virtual Link ID (VLID)
By this parameter the defined VLs will be mapped to the port.

4.1.3.2.1.5 Direction
Defines if the port will be for outgoing message (OUT) or for the incoming ones (IN).

4.1.3.2.1.6 msgSize /maxMsgSize
Defines the size of the messages are going to be sent through the port in bytes.

4.1.3.2.1.7 QueueSize

This parameter defines the length of the queue dedicated to the port. The unit is the number of
messages

4.1.3.2.2 Egress bridging unit

The egress bridging unit reads (dequeue) the ports at the right time (according to the schedule) and
feeds the messages into the corresponding priority queue. In this part, the parameters of this unit
followed by the schedule is covered.

4.1.3.2.2.1 Configuration parameters of the egress bridging unit
The current status of each port will be stored at the port status. This status will be updated by the tile
interface while the egress bridging unit has only a read-only access to them. The egress bridging unit will
be characterized by following parameters.

e List of ports (PhyName, memory address)

e List of priority queues (ID, priority)
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4.1.3.2.2.2 Schedule for the egress bridging unit

The schedule for this unit is defined by a periodic set of (dequeue and enqueue) operations defined by
following parameters:

e Period

e Phase

e Port (for dequeueing)

e  PriorityQueue (for enqueueing)

4.1.3.2.3 Priority Queues

Priority queues serve the egress bridging unit and the serialization unit. Each priority queue is allocated
to the messages of the same priority and the same type. This unit can be characterized by following
parameters and as explained earlier, there is no need for any schedule.

e QueuelD

e Type

e Priority (RC)

e QueueSize (number of messages),

4.1.3.2.4 Serialization Unit

Serialization unit reads the priority queues based on the schedule and feeds them into the NoC. It can be
characterized by the following parameter:

e List of priority queues (ID, priority, type)

4.1.3.2.4.1 Configuration of the serialization unit
e Open guarding window
0 Period
0 Opening phase
o Closing guarding window
0 Period
0 Closing phase

4.1.3.2.5 Ingress bridging unit

The ingress bridging unit is meant to dispatch the incoming messages to the corresponding port at the
right time (according to the schedule). The configuration parameters are as follow:

e List of ports (PhyName, VLID, Memory BaseAddress)

4.1.3.3 Input configuration files
Following CSV files have been used to define the configuration parameters for the simulation models:

4.1.3.3.1 HWConfig.csv
This file provides the defined topology, number of tiles and number of cores in each tile.

4.1.3.3.2 PortConfiguration.csv

This file represents the configuration all on-chip ports. Each row is dedicated to a single port and
contains the following information:
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ID Core- Partition- | Phy- Log- Type VLID Direction | Message | Queue
ID ID Address | Address Size Size

Table 1 The structure of PortConfiguration.csv

4.1.3.3.3 VLConfiguration.csv

This file provides the configuration of virtual links. As explained before, virtual links could have multiple
destinations. In order to ease the representation of the file, we consider each destination as the
termination point of each branch and define several branches with the same VLID. Each line in the file is
dedicated to a single branch of each virtual link and contains the following parameters:

VLID Type BranchID | PhyName LogName PhyName LogName
Source Source Destination Destination

Table 2 The structure of VLConfiguration.csv

4.1.3.3.4 ExampleCoreSchedule.csv

This file have defined to provide the simulation model with an example scenario. This file contains all
details needed by the core for transmission of messages. Table 3 lists these parameters.

Number of Ports

ID Tick Message-I1D Port-ID Destination-ID

Table 3 Configuration parameters at each core

4.1.3.3.5 TTSchedule EBU.csv

As described in D2.1.2, sec. 2, the EBU needs a table which contains the portlds and the instants, at
which the TT port must be dequeued. This information will be provided by this file.

Number of Ports

Number of PriorityQueues

ID Phase (tick) Port PriorityQueue

Table 4 Configuration parameters at EBU

As shown in Table 4, at the beginning of the file, the number of ports and priority queues will be
provided. Afterwards, a list of dequeue actions for a single period will be followed. This actions will be
repeated in the next periods.

4.1.3.3.6  Configuration_SU.csv

This file includes the parameter which represents whether TimelyBlock will be employed or not. In case
of timelyBlock, the opening and closing phases must be provided. Table 5 represents the parameters of
this file.

Timely-Block

ID PriorityQueue Period Opening Phase Closing Phase

Table 5 Configuration paramteres of the SU

4.1.3.4 Structure of output files

The output of the simulation model is a text file which is generated by Gem5 simulator. This file is
defined based on the chosen debug flag.
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4.1.3.4.1 Different debug flags

In order to be able to customize the debugging message based on the application, multiple debug flags
have been defined as follow:

4.1.4

USiegenHWCTg: this flag enables the debugging messages which shows the current hardware
configuration of the LRS

USiegenTT: this flag enables the messages which show the statistical and warnings related to
the TT messages.

USiegenRC: this flag enables the messages which show the statistical and warnings related to
the RC messages.

USiegenMsgTrace: this flag enables us to trace each message by capturing the message at each
stage.

USiegenFlitTrace: this flag enables us to trace each message by capturing the flits at each
stage.

USiegenTimeStamp: this flag prints the statistics of each message, once the message arrives at
the destination.

Example scenario

In order to be able to demonstrate an example for each item, we present a sample scenario as follows.
As mentioned earlier, this document covers only the on-chip communication and therefore, the
considered scenario is also pure on-chip.

This scenario represents a chip hosting four tiles (1..4), each of which have multiple ports of different
traffic types. Blue boxes represent messages and the number within the box represent the messageld.
The message ID will be incremented each time the message is sent.

Tile#0 Tile#2
BE
Protocol _>h_| hil‘_ Protocol
R R >
Core
Tile#l Tile#3
o e
Protocol Protocol
b

Core

Figure 35 Example scenario representing four tiles interconnected by four virtual links
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4.1.4.1 Global configuration

In this example, each message is composed of 9 flits. The global period is 500 ticks and the simulation
will run for one period. The topology is Spidergon with four cores and four directories. In order to
examine the operation of LRSs, messages are destined only to the cores and not to the directories.
4.1.4.2 Message injection schedule

As defined in the above tables, four virtual links represent the communication channels in the sample
scenario. The injection time of the messages into the network has been illustrated in Figure 36

Legend
Tile#1] 122 123 124
Tile#0 141 144
Tile#0
I I I N ] I I [
100 200 300 400 500

TimelyBlock
Figure 36 bandwidth allocation for TT and RC messages
The table below is another representation of the above figure. In other words, the table lists the instants

at which the messages are planned to leave the core.

NI Tick MsglID Port

0 10 71 3
0 20 141 4
0 80 72 3
0 130 142 4
0 140 73 3
0 245 143 4
0 250 111 2
0 255 74 3
0 330 144 4
0 350 75 3
0 420 76 3
1 60 122 2
1 220 123 2
1 410 124 2
3 20 314 3
3 90 315 3
3 195 316 3
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3 235 317 3
3 340 318 3
3 380 319 3

Table 6 Sample schedule for transmission of messages

Based on the schedule represented in Table 6, schedule of different units can be generated.

4.1.4.3 Sample VL configuration
As shown in Figure 35, following virtual channels interconnect the TT and RC ports of tiles together.

VLID

w N B O

Type

SP
SP
SP

Source Destination

(] () () ()]

€ S S €

© © © ©

=2 =2 =2 =

IS & Zz &

a | a. )
0.0.0.2 3.2.1.110 0.0.3.2 2.1.3.110
0.0.0.4 2.1.3.140 0.0.2.4 2.4.2.140
0.0.1.2 4.2.1.121 0.0.2.2 4.1.1.121
0.0.33 4.1.1.313 0.0.1.3 2.1.3.313

Hop#1

N RN

Table 7 Sample virtual link configuration

4.1.4.4 Sample port configuration

In the following table, an example configuration of the ports defined in the above scenario (see Figure
35) has been listed. Physical addresses as well as the IDs match the information given in the figure.

Path

Hop#2

= O N N

Hop#3

o

MINT/Period
Jitter/Phase

500 250

100 100

200 200
50 50

(O

a — = c S Q
& 5 88 g o £ 2% g
s § £33 & S g %% ¢
S8 e s FE 3

£
0 1 0.0.0.0 BE - ouT 10 10
1 1 0.0.0.1 BE - IN 10 10
2 2 0.0.0.2 PE 0 ouT 10 10
3 3 0.0.0.3 BE - ouT 10 10
4 3 0.0.0.4 RC 1 ouT 10 10
0 1 0.0.1.0 BE - ouT 10 10
1 1 0.0.1.1 BE = IN 10 10
2 2 0.0.1.2 RC 2 ouT 10 10
3 3 0.0.1.3 RC 3 IN 10 10
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4 3 0.0.14 BE - IN 10 10
0 1 0.0.2.0 BE = ouT 10 10
1 2 0.0.2.1 BE - IN 10 10
2 3 0.0.2.2 RC 2 IN 10 10
3 4 0.0.2.3 BE - IN 10 10
4 4 0.0.2.4 RC 1 IN 10 10
0 1 0.0.3.0 BE - ouT 10 10
1 1 0.0.3.1 BE = IN 10 10
2 1 0.0.3.2 T 0 IN 10 10
3 2 0.0.3.3 RC 3 ouT 10 10
4 2 0.0.34 BE - IN 10 10

Table 8 Sample port configuration
4.1.4.5 Sample egress bridging unit configuration

4.1.4.5.1 Implementation parameters

A list of port IDs and portStatus memory address shall be provided to the EBU.

4.1.4.5.2 Schedule
NI Tick Port PriorityQueue

0 253 2 T
Table 9 Sample schedule at egress bridging unit

4.1.4.6 Sample priority queues configuration

QueuelD Type  Priority Size

1 T = 10
2 RC 1 10
3 RC 2 10
4 BE - 10

Table 10 Sample priority queues configuration
4.1.4.7 Sample serialization unit configuration

4.1.4.7.1 Implementation parameters
A list of priority queues and memory address shall be provided to the SU

4.1.4.7.2 Schedule
Period Opening phase
500 200

Table 11 Sample opening guarding window for TT messages
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Period Closing phase

500 300

Table 12 Sample closing guarding window for TT messages

4.1.4.8 Sample ingress bridging unit configuration

The implementation parameters of the ingress bridging unit is the same as those of egress bridging unit,
i.e., alist of ports and the respective memory address will be provided by the CSV files.

4.1.5 Simulation result

The simulation results for 500 ticks have been shown. The difference between these two results is the
employment of the timely block at the serialization unit.

First column in the result represents the core at which the message is arrived. The second column shows
the message id. The third column represents the total delay (from the sending core until the arrival of
the message at the destination core). The forth column represent the tick at which the message left the
sender core and likewise, the last column represents the tick at which the message arrived at the
destination core. Next two column (fifth and sixth) represent the enqueue time and dequeue time at the
priority queue and likewise, the seventh and eighth column represent the time at which the message
delivered to and the time at which the last flit left the NoC interface (NetworkInterface d).

As shown in Figure 37, in case of timely block, the TT message will be delayed 22 ticks, while in case of
the shuffling (shown in Figure 38), with the same configuration and schedule, the TT message incurs 25
ticks. This longer delay is due to the fact that TT message (msg[111] have to wait until the bandwidth is
released by the previous RC message (msg[143]), whereas, in case of TimelyBlock the bandwidth is
blocked for the TT message and the RC message is not able to use it.

delay core PQU NI _d core

Core[2], msg[ 71]: 20] 10 11; 12 12; 21 30
Core[1], msg[314]: 20] 20 21; 22 22; 31 40
Core[2], msg[141]: 22| 20 21; 22 22; 33 42
Core[2], msg[122]: 18] 60 61; 62 62; 71 78
Core[1], msg[ 72]: 18] 80 81; 82 82; 91 98
Core[1], msg[315]: 20] 90 91; 92 92;101 110
Core[2], msg[142]: 20] 130 131;132 132;141 150
Core[3], msg[ 73]: 22| 140 141;142 142;153 162
Core[1], msg[316]: 20| 195 196;197 197;206 215
Core[3], msg[111]: 22] 250 253;254 254;263 272
Core[2], msg[123]: 97] 220 261;301 301;310 317
Core[1], msg[317]: 84| 235 246;301 301;310 319
Core[2], msg[143]: 83| 245 246;301 301;310 328
Core[2], msg[ 74]: 84| 255 256;311 311;329 339
Core[1], msg[318]: 20| 340 341;342 342;351 360
Core[2], msg[144]: 35| 330 346;347 347;356 365
Core[1], msg[ 75]: 25] 350 351;356 356;368 375
Core[1], msg[319]: 30] 380 391;392 392;401 410
Core[2], msg[ 76]1: 20| 420 421;422 422;431 440
Core[2], msg[124]: 68| 410 461;462 462;471 478

Figure 37 Simulation results in case of TimelyBlock
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delay core PQU NI_d core
Core[2], msg[ 71]: 20] 10 11; 12 12; 21 30
Core[1], msg[314]: 20] 20 21; 22 22; 31 40
Core[2], msg[141]: 22| 20 21; 22 22; 33 42
Core[2], msg[122]: 18] 60 61; 62 62; 71 78
Core[1], msg[ 72]: 18] 80 81; 82 82; 91 98
Core[1], msg[315]: 20] 90 91; 92 92;101 110
Core[2], msg[142]: 20| 130 131;132 132;141 150
Core[3], msg[ 73]: 22| 140 141;142 142;153 162
Core[1], msg[316]: 20| 195 196;197 197;206 215
Core[2], msg[143]: 20| 245 246;247 247;256 265
Core[1], msg[317]: 30| 235 246;247 247;256 265
Core[3], msg[111]: 25] 250 253;257 257;266 275
Core[2], msg[123]: 58] 220 261;262 262;271 278
Core[2], msg[ 74]: 34| 255 256;267 267;276 289
Core[1], msg[318]: 20| 340 341;342 342;351 360
Core[2], msg[144]: 35| 330 346;347 347;356 365
Core[1], msg[ 75]: 25| 350 351;356 356;368 375
Core[1], msg[319]: 30] 380 391;392 392;401 410
Core[2], msg[ 76]: 20| 420 421;422 422;431 440
Core[2], msg[124]: 68| 410 461;462 462;471 478
Figure 38 Simulation results in case of Shuffling
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4.2 STNoC Gem5 Model

The Gem5 STNoC backbone model extends the 5-stage Garnet Fixed Pipeline Model (cf. Figure 39)
provided by the Gem5 simulator. In fact, most of the Garnet network interface, router and link data
structures have been modified, as described in detail in Deliverable 2.1.1.

ROUte. = VC Allocator
Computation -
A
Switch Allocator
v 1 *_P'
VG ‘
vez [ 1] 1 = :
Input 1 Output 1
VCn
Input buffe
. 0
. »
. 0
vC1
S vez [TT11 "
= -
. -_—
e o Qutput 5
ven [TTT} Crosshar Switch
Input buffers
Buffer Write . Switch Switch )
Route Compute VC Allocation Allocation Traversal Link Traversal

Figure 39: The initial Garnet fixed pipeline router

More specifically, in relation to the Garnet router, we have reduced pipeline depth to match an instance
of the STNoC router architecture which processes a packet in only two clock cycles. One cycle is spent for
input buffering and route computation stages (Buffer Write and Route Compute, called IB+RC) and one
more cycle is spent for all four other stages in Garnet: virtual channel arbitration, switch allocation, switch
traversal and link traversal (VA+SA+ST+LT). More specifically, we have encapsulated the Switch Allocator
(stage 3 in Figure 6) within the VC Allocator (stage2). For this reason, changes have been made to the
event scheduling of all Gem5 router components (as outlined in sections 2.2 and 2.3 of Deliverable 2.1.1.

The Garnet Fixed Pipeline link has been modified to incur O cycles delay when “carrying” data or credit
flits between two routers or between router and NI (or vice-versa).

The Nl is an extension of Garnet Fixed Pipeline model that connects an IP to a router. This module
e checks the protocol buffer (CPU) for packets ready to be sent to the NoC. If the downstream output
VC associated with this packet has credits left, then
0 it segments (called flitisize) any such outgoing packet into a number of flits,
0 places them into an output buffer, and
0 schedules the output link for the next cycle
e checks the input buffer for incoming flits to be sent to the attached IP and upon receiving a tail flit,
the incoming packet is reassembled from the flits and inserted into the protocol buffer,
e updates credits sent by the downstream router,
e inserts rate control info for implementing NoC Firewall, and
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e inserts QoS flags for supporting STNoC QoS technology (FBA) and memory interleaving.

Quality of Service

In addition, we have enhanced the Garnet NI and router to support STNoC QoS policies at flit-level. These

Fair Bandwidth Allocation (FBA) policies apply to flits traveling on the same VC (low or high priority one)

and competing for the same output port. More specifically, we support: a) STNoC-related fields

(pk_Faction_idand pk_priority)fortagging header flits at the Initiator Nl and b) corresponding FBA

algorithms for rate control at router level. The router policy works hierarchically by

e examining the current faction (pk_faction_id) as first level of arbitration,

e implementing Packet Priority, or alternatively Round Robin or LRU policies (implemented at the
router) as 2nd level of arbitration, and

e selecting Fixed Positional Priority, Round Robin or LRU as 3rd level of arbitration (Packet Priority is
used in 2nd level arbitration, i.e. two packets competing that have the same priority).

Memory Interleaving

New generation multicore SoC platforms integrate memory controllers which implement multiple
channels. Ideally many channels can be built (a channel for every DRAM cell would be the ideal solution),
but practically, due to wire density and clock skewing issues channels are very difficult to add.

Channels allow parallel access to the DRAM device, increasing the theoretical amount of memory
bandwidth by balancing the network load among different channels through memory interleaving
techniques. Memory address interleaving can be achieved in software by carefully rewriting the system
layer, in particular memory allocation. Alternatively, the STNoC interconnect offers native support for
address interleaving at the initiator NI. This function complements address decoding policies.

4.2.1 Configuration Interfaces of the Gem5 STNoC Model

STNoC model configuration involves several Python files and header files referring to an instance of the
STNoC backbone (NI, link, synchronous router component) implemented by modifying extending the
gemb5 Garnet Fixed Pipeline model. The parameters covered in this report are a subset of Gem5 STNoC
model configuration, i.e. several performance (e.g. timing) characteristics referring to certain extensions
of the STNoC backbone.

General Network Parameters

src/mem/ruby/network/Network. py

= use_custom_tables= Param.Bool (True, ..) This parameter is set to true if using a custom
Spidergon STNoC topology with a deterministic across-first routing designed by TEI. Otherwise,
different topologies, e.g. mesh, can be selected during runtime with the default gem5 routing
scheme. The number of initiators (CPUs) and targets (cache directories or DIRs connected to
memories) is selected independently during runtime (see section on Runtime Parameters).

= control_msg _size = Param.Int(8,..). This specifies the packet size (in bytes) of a Control
packet or the size of the header in a Data message. Thus, it is used for read or forward requests

(which include header and payload) or acknowledgments (header-only packets).
configs/common/Options.py

= parser.add_option(‘*“--cacheline_size”, type="’int”, default=64) This
configures the Ruby block size (in bytes) using the runtime parameter cacheline_size
(described in runtime parameters below). The default value is 64. The total size of a Data message

(header + payload) can be calculated by summing this value to the control_msg_size.
src/cpu/testers/networktest/NetworkTest. py
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= block offset = Param.Int(6, ..) Block offset in bits. WARNING: This parameter should
always be equal to logz(cacheline_size. If not properly set, routing will not work properly
since a device address is embedded into the bits after block offset bits in the packet address.

Network Interface

src/mem/ruby/network/garnet/BaseGarnetNetwork. py
= ni_flit size = Param.Int(16, ..) is the flit size in bytes and must always match the
bandwidth_factor defined below.

Link
src/mem/ruby/network/BasicLink.py

= bandwidth_factor = 16 defines the link width or phit size (in bytes). WARNING: This
parameter should always be equal to ni_flit_size (defined above)

Router

src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork _d.py
= buffers_per_data vc = Param.Int(5, ..) Buffersize in flits for Data VC and Control
VC in VNETO (used by STNoC). Notice that this is equivalent to the number of available credits at
initialization. It is advised to define large enough buffers so that a complete message (consisting
of several flits) can be buffered, in order to avoid packets being blocked by the tail of other
packets.
src/mem/ruby/network/garnet/fixed-pipeline/VCallocator_d.hh
= int m_high prio vc offset = {-1, 0, 1} Names the highest priority VC, i.e. STNoC VCO
(or VC1) for O (or 1). It is set to -1 to disable VC priorities. The priority field is taken into account
by the router when performing VC and port scheduling. In fact, a flit traveling on a high priority
VC may preempt a low priority one; in this case, according to STNoC specifications, the STNoC
router behaves "without packet lock" which allows flit interleaving between different VCs.
= bool m_enable FBA = {true, false} enablesor disables STNoC Fair Bandwidth Allocation
QoS policies referring to each virtual channel. The FBA QoS policies are implemented at the STNoC
network interface and router. At least the first-level arbitration scheme is enabled; this scheme is
based on the m_pk_faction_id field of the packet and can be set at the network interface via
the set_faction_id(int) member function.

= m_oqg_second arb_scheme =  {PACKET _PRIORITY_, RR_, LRU_} defines the
corresponding second-level arbitration scheme when FBA QoS is enabled.
= Int m_oqg_third arb scheme = {Fixed Positional, RR_, LRU_} defines the

corresponding third-level arbitration scheme which is used when FBA Qos is enabled and
PACKET_PRIORITY_ is selected as second level of arbitration scheme, otherwise it is ignored.

= faction_change weight affects the operation of the first-level FBA arbitration scheme by
changing the faction after a given number of packets. This field can be set at the network interface
via set_faction_weight (int)member functions.
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4.3 Integration of the LRS with STNoC backbone

As explained in section 4.1, the LRS acts as a layer on top of the plain NoC in order to enable the NoC to
support mixed-criticality. Hence, in order to examine the functionality of the simulation model, the LRS
was integrated into the STNoC simulation model. As already represented in D2.1.1, section 2, the STNoC
is a customized fixed-pipeline garnet network which interconnects DREAMS tiles (shaded boxes in Figure

40).

Router
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O

Figure 40 STNoC in Spidergon topology

Garnet however offers no support for TT transmission of message through the network. The LRS have
been introduced to bridge this gap by forming an integrated interconnection which supports both TT
and ET transmission of messages.
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Figure 41 Integrated on-chip simulation model
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4.4 Transmission of protocol messages through the LRS

The integration has been done by embedding the LRS between the cache controller and the Garnet NI
(see Figure 42). This was performed technically by redirecting the messages coming from the protocol to
a single BE port. In this way, all messages coming from the protocol will be enqueued into a single BE
port and the port will be later dequeued by the EBU and injected to the NoC by the SU. Likewise, the
coming messages from the NoC will be enqueued into another BE port in order to be dequeued by the
protocol.

LRS
[ [ oe ]

Protocol

Al

Networkinterface_d

NoC

[N

Al

Figure 42 Integration of the LRS with Garnet

4.5 Source Based Routing

The default routing scheme employed by the Garnet is the routing algorithm which tries to choose the
route with minimum number of link traversals. In the implementation of the LRS on the other hand,
source-based routing scheme has been implemented. In this scheme, the source (the core or the LRS)
attaches all needed routing information to the message. This information will be read at each router in
order to find the output port at the router. This needs a slight change at the NetworkInterface_d,
the F1it_d and routing unit of the Router_d.

4.5.1 Modifications at NetworkInterface_d (NoC Interface)

In order to be able to store the retrieved path from the configuration file, a routing_table has been
added to the NetworkInterface_d. This table will be initialized once the simulation starts. Then for
each message, the NetworkInterface_d will search for the destination nodeID (given by
configuration files for each tile) and embed the given path into the message (see Code 2).

std: :map<NodelD, vector<int>> Networklnterface_d::routing_table;

Code 2 [NetworkInterface _d.hh] added routing table to store the routes retrieved from the configuration

Once the message is delivered to the NetworkInterface_d to be injected into the network, the
shown code in Code 3 will embed the path into the head flit, in order to provide the router with needed
information.

auto iter = Networklnterface _d::routing_table.begin();
iter = NetworklInterface_d::routing_table.find(destiD);
it (iter = NetworkInterface_d::routing_table._end())

{
}

fl->setRoutingPath(NetworklInterface_d::routing_table[destiD]);

Code 3 [Networkinterface_d.cc] insertion of the path in flitisizeMessage-Method
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4.5.2 Modifications at Flit_t

The following attributes have been added to F1it_d to convey the routing information to the routers.

class flit d {
public:
int getNextRoutingDestination();
void setRoutingPath(std::vector<int> path);
bool isSourceBasedRouting();
private:
std: :vector<int> m_routing_path;
int m_routing_counter;

};

Code 4 applied changes in flit.hh for SB routing

The following method (shown in Code 5) returns the output port at the router.

int Flit_d::getNextRoutingDestination() {
if (m_routing_counter < m_routing_path.size())

{
return m_routing_path[m_routing_counter++];
}
std::cout << "No routing entry found” << std::endl;
return -1;

}

void flit_d::setRoutingPath(std::vector<int> path) {
m_routing_path = path;

}

Code 5 applied changes in flit.cc for SB routing

4.5.3 Modifications at the Routers

In order to avoid unnecessary modifications, the router checks whether the current flit belongs to a
message which carries the path information or not. In case of source-based routing, the router reads the
respective output port from the flit and returns the value to the switch to forward the message to the

given port.

if (t_flit->isSourceBasedRouting()) {
return t_flit->getNextRoutingDestination();

} else
{
[..1] 7/ Normal route computing
}
Code 6 [RoutingUnit_d.cc] getting the output port at the router
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5 Specification of Simulation Environment for Execution

Environment

The Execution Environment corresponds to an Application Tile within of the DREAMS architecture (see
Figure 43). The Application Tile defines the core execution services, which are realized by a virtualization
layer on top of one or more processor cores. The hypervisor establishes the partitions for the execution
of components with guaranteed computational resources. Within each partition, an operating system
and/or a DREAMS Abstraction Layer (DRAL) are deployed to provide software-support to application
services. An application service is realized by an application component inside a partition. The application
service provides its service to other components using the core communication services, where a partition
with an application service is a communication end point. Core communication services are simulated on
external simulation environments while the application tile simulation will be detailed in this section.
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Figure 43: The execution environment corresponds to the Application Tile within the DREAMS platform (source D3.2.1).
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5.1 Simulation Building Blocks

OVP has been selected as simulation environment to simulate the DREAMS Application tile or Execution
Environment.

Main components to be simulated are the following (see section 2.3):

e Processor: ARM Dual-Core Cortex-A9 processor. OVPSIM or CPUManager simulator provides the
ARMV7-A architecture simulation.

e Hypervisor: XtratuM hypervisor. Services and functionalities will be simulated fully.

e Partition: This component could include DRAL, DREAMS application environment, LRM, MON and
LRS. These latter three applications will be included depending on the availability of them from
other tasks during the deployment phase of the simulation.
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Integration of the OVP simulator with other simulation tools is addressed using TCP/IP protocol. For this
integration a DREAMS Wrapper library will be designed to receive generic simulation control commands
and translate these commands to OVP commands. Simulation control commands could be generated from
a global coordination component. This wrapper should also be able to receive application data from other
simulations and injects it in the OVPSIM simulation and also exports data from OVPSIM simulation to the
other simulations.

Execution environment is composed of software components that correspond to hypervisor and
partitions. The services provided by the hypervisor will be available on the simulation environment in the
same way as for a physical environment. Therefore, the partitions on top of the hypervisor will be those
as the implemented on a real machine. This also meaning that DREAMS services such as LRM, MON and
LRS will be simulated based on the availability of them in the phase of implementation of simulation
framework, i.e., if those services are integrated and instrumented in real software partitions during the
prototype implementation, those services could be included as subcomponents of the execution
environment.

5.2 Simulation Tools

OVP is used to simulate part of the hardware platform, concretely the processor, memory and its bus
interaction. OVP is a simulation environment composed by 3 components:

e OVPmodels. These are true Open Source Software that model processors peripherals and
platforms.

e OVP APIs. The APIs enable users to model processors, peripherals behavioral models and
platforms to create extremely fast software virtual platforms. This component consists of C/C++
header files and associated documentation for each API.

e OVPsim. This is released as a binary only implementation as a dynamically linked. OVPsim is
provided with wrappers for C, C++, SystemC, and OSCI SystemC TLM (TLM2.0) environments.

With the free, open source, OVP models, OVPsim produces Instruction Accurate (IA) simulations of
platforms running unmodified software binaries at typical speeds up to 500 MIPS.

The different components have different licenses:

e OVP models created by Imperas and donated to OVP are licensed under a modified Apache 2.0
open source license.

e OVP APIs are licensed with the simulator license - which is a click-through and gives users free
usage of the APls.

e OVPsimis licensed under a click-through license at point of installation. This licenses allows usage
by the downloader for non-commercial use and prohibits reverse engineering etc.

5.2.1 Imperas and OVPWorld.

Imperas Software, Ltd. is a team of leading simulation and tool technologists combined with embedded
software applications professionals. OVPWorld was formed in 2008 by Imperas Software, who donated a
range of capabilities and model libraries to simplify the creation and use of virtual platforms.

5.2.2 CpuManager or OVPsim.

CpuManager is the commercial product available from Imperas. OVPsim is the freely-available version of
this product. It is free to use for non-commercial usage and it is hoped that users will contribute back with
suggestions for enhancements and will add more models to the open source model library.

01.04.2015 DREAMS Page 61 of 98



D5.2.1 Version 1.0 Confidentiality LeveL: PU

5.2.3 ICM, Innovative CPU Manager

The ICM is a C API used to create the platform net list of your design/system for use with OVPsim. ICM
allows instantiation of multiple processors, buses, memories and peripherals. Using buses, memories and
processors can be interconnected in arbitrary topologies. It enables arbitrary multiprocessor shared
memory configurations, and heterogeneous multiprocessor platforms. There are also ICM calls to load
application programs into simulated memories and to simulate the platform.

5.3 OVPSim Configuration Interfaces

The ICM API provides a set of functions that cover the platform creation, application load and execution,
and information logging and management. In the following subsections the main of these are described.

5.3.1 Platform Creation and Initialization.
The OVPSim simulation mode is based

e icminit: This function initializes the simulation environment prior to a simulation run. It should be
the first ICM routine called in any application. It names the platform, specifies attributes to control
some aspects of the simulation to be performed, and also specifies how a debugger should be
connected to the application if required.

e icmNewBus: In order to use an explicit address space mapping, it is first necessary to create a bus
to which all address-mapped components will be connected. A bus is defined using the function
icmNewBus, which takes a bus name and bit width as arguments.

e icmNewProcessor: This function is used to create a new processor instance. Processor is initialised
using this unique function, despite that the 12 input parameters provide a huge amount of
configuration possibilities. Among these stand out the processor architecture variant and
endianness, trace and exception emulation.

0 icmConnectProcessorBusses: Once the processor is created, usually it must be connected to
any bus. This function, which takes a processor and two busses, the instruction bus and the
data bus, as arguments (the simulator permits processors to have distinct data and
instruction busses), connects processor and bus. Most processors use the same address
space for both data and instruction accesses, so often the bus arguments have the same
value.

e icmNewMemory: Any number of memory objects can then be defined and connected to the bus.
A memory is defined using icmNewMemory, which takes a memory name, access privileges and
high address bound as arguments.
icmConnectMemoryToBus: Once a memory has been created, it can be connected to a bus using
this function, which takes a bus object, a memory port name, a memory object and a bus address
as arguments.

e icmLoadProcessorMemory: Once a processor has been instantiated by icmNewProcessor, this
routine is used to load an object file into the processor memory. Currently accepted formats are
ELF and TI-COFF.

e icmTerminate: This function must be called at the end of simulation to:

O Free memory.

0 Return any licenses to the license server.

0 Ensure all tools have finished writing their results files.
0 Print the simulation statistics (if required).
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5.3.2 Simulation Execution.
The application load in the memory of the processor could be run using one of these provided functions:

e icmSimulatePlatform: This function is used to run simulation of the processor and program, for a
specified duration. Note that time is not exactly simulated respect to the hardware platform.
e icmSimulate, can be used to simulate a specific processor for a precise number of instructions
and then returns. The precise reason why simulation stopped is indicated by the return code.
The simulation could be interrupted by using breakpoints and watchpoints. When a breakpoint has been
set for a specific address, any attempt by the processor to execute at that address will cause
icmSimulatePlatform or icmSimulate to return with the processor’s stopReason.
e icmSetAddressBreakpoint: Allow breakpoints to be set for a specific processor
e icmClearAddressBreakpoint.
e Two routines allow breakpoints to be set and cleared for a specific processor and address:
O icmSetAddressBreakpoint: to set the breakpoint.
0 icmClearAddressBreakpoint: to clear the breakpoint.
e Four routines allow watchpoints to be set and cleared for a specific processor, address and access
modes:
0 icmSetProcessorReadWatchPoint: to set the watchpoint in Read Mode.
O icmSetProcessorWriteWatchPoint: to set the watchpoint in Write Mode.
0 icmSetProcessorAccessWatchPoint: to set the watchpoint in Any Access Mode.
0 icmClearProcessorWatchPoint: to clear the watchpoint in Read Mode.
e Adding callbacks across memory regions allows memory watchpoints, amongst other features, to
be implemented. A callback is executed whenever there is either a read or a write access to a
specified range of memory addresses.
0 icmAddReadCallback: to set the Callback in Read Mode.
0 icmAddWriteCallback: to set the Callback in Write Mode.

5.3.3 Information Access.

Exists a set of functions to access the registers and memory areas during the simulation to trace or debug
the execution.

Reading and Writing Processor Registers:

e icmGetPC: The return value from icmGetPC is of type Addr, which is a 64-bit unsigned integer. For
processors with address widths less than 64 bits, this value should be cast to an appropriate sized
value if it is to be used subsequently in an arithmetic expression.

e icmReadReg: The current value of any processor register can be found using icmReadReg, which
fills a byref argument buffer with the current value of a named register.

e icmWriteReg: To write a processor register, there is a similar function icmWriteReg.

The memory space can also be read and written directly using two functions:

e icmReadProcessorMemory: This function transfer N bytes of data between the simulated
memory space and the local buffer using the simulated memory address.

e icmWriteProcessorMemory: This function transfer N bytes of data between a local buffer and the
simulated memory space using the simulated memory address.

5.4 Hypervisor configuration file

Specification of the execution environment is based on specification of the XtratuM hypervisor, i.e., the
configuration of the hypervisor will determine the configuration of the platform to be simulated:
processors and memory available, numbers of partitions, resources allocation to partitions, scheduling
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plan, channels of communication, among others. The DREAMS meta-model maps the majority of
information of the XtratuM configuration file (XM_CF). Specific information needed by the XM _CF but not
included in the DREAMS meta-model will be pre-configured at default values valid for the simulation.

This section describes briefly the more relevant aspects of the specification for the XtratuM configuration
file. However, a complete description of the attributes and features of each element in the XM_CF is
beyond the scope of this document. Complete information about this issue can be found in the document
“D2.3.1 XtratuM support of enhanced hypervisor layer services: description and interfaces” and in the User
Manual “XtratuM Hypervisor for ARM Cortex A9” [6].

Some of the parts of the configuration file are shown as example below:

e The configuration file contains information about the platform cores:

<ProcessorTable>
<Processor id="0" frequency="400Mhz">

</Processor>
<Processor id="1" frequency="400Mhz">

</Processor>
<ProcessorTable>

e The partitions are described with some attributes regarding their permissions:

<PartitionTable>
<Partition id="0" name="Partition0" flags="system boot" console="Uart">

</Partition>
<Partition id="1" name="Partition1" flags="boot fp" console="Uart">

</Partition>
<Partition id="2" name="Partition2" flags="boot" console="Uart">

</Partition>
</PartitionTable>

In each definition of partition, the possible values for "flags" are: "system", "fp", "boot",
icache_disabled", "dcache_disabled".
0 '"system": define the rights to manage the system. System partitions are allowed to
manage and monitor the state of the system and other partitions.
0 "fp" :enable the use of the floating point coprocessor
0 "boot" : the partition starts their execution once their first execution slot is scheduled. If
it is not defined, the partition will start their execution when other partition performs a
reset partition.
O ‘"icache_disabled and dcache_disabled": disable respectively the use of instruction and
data caches.

e The configuration file contains information about the scheduling plan. Partition 0 and 1 are
attached to processor 0 and the partition 2 is attached to processor 1. Each processor has
independent scheduling plans to schedule the execution of the partitions. In the example, each
processor defines two plans available:

<Processor id="0" frequency="400Mhz">
<CyclicPlanTable>
<Plan id="0" majorFrame="3s">
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<Slot id="0" start="0s" duration="500ms" partitionld="0" />
<Slot id="1" start="1s" duration="500ms" partitionld="1" />

</Plan>

<Plan id="1" majorFrame="1200ms">
<Slot id="0" start="800ms" duration="400ms" partitionld="1" />

</Plan>

</CyclicPlanTable>
</Processor>

e Memory regions available in the hardware or memory areas expected to be used in the system
are describe:

<MemoryLayout>

<Region type="rom" start="0x0" size="1MB" />

<Region type="sdram" start="0x00100000" size="1024MB" />
</MemoryLayout>

e Description of the hypervisor: device to be used as console, definition of actions for health
monitoring events, size of memory reserved for the hypervisor image plus configuration file of
the system.

<XMHpypervisor console="Uart">
<PhysicalMemoryArea size="512KB" />
</XMHypervisor>

e For each partition is defined: physical memory areas allocated, inter-partition communications
ports, hardware resources and definition of actions for health-monitoring events:

<Partition id="0" name="Partition0" flags="system boot" console="Uart">
<PhysicalMemoryAreas>
<Area start="0x10000000" size="1MB" />
</PhysicalMemoryAreas>
<PortTable>
<Port type="queuing" direction="source" name="portQ"/>
<Port type="sampling" direction="source" name="portS"/>

</PortTable>
<HwResources>
<APBDev device="ZEDBOARD_DEV_TTC ZEDBOARD_DEV_UART2" />
</HwResources>
<HealthMonitor>
<Event name="XM_HM_EV_ARM_PREFETCH_ABORT" action=
"XM_HM_AC_PROPAGATE" log="no" />
<Event name="XM_HM_EV_ARM_UNDEF_INSTR" action=

"XM_HM_AC_PARTITION_COLD_ RESET" log="yes" />
</HealthMonitor>
</Partition>

e Finally, the inter-partition communication channels among partitions are defined. These channels
link the communication ports defined in each partition.

<Channels>
<QueuingChannel maxNoMessages="16" maxMessagelLength="128B">
<Source partitionld="0" portName="portQ"/>
<Destination partitionld="1" portName="portQ"/>
</QueuingChannel>
<SamplingChannel maxMessagelLength="128B">
<Source partitionld="0" portName="portS"/>
<Destination partitionld="1" portName="portS"/>
<Destination partitionld="2" portName="portS"/>
</SamplingChannel>
</Channels>
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6 Multi Simulation Architecture

Concepts and specifications of the multi simulation architecture are identified in this section. The idea of
the interleaving execution of multi simulation architecture is presented in section 6.1. In later sections the
major simulation control executions are shown. The control of simulation framework at the chip level and
cluster level is described at section 6.2. The simulation control of the execution environment at chip level
will be illustrated in section 6.3. The coordination of the simulation components is analyzed in section 6.4.
Finally, in section 6.5, dataflow and control-flow of the multi simulation architecture are discussed.
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Figure 44: Gem5/OPNET multi simulation architecture

6.1 Discrete Event Simulations

In discrete event simulations, each event occurs at a particular point of time and then it should propagate
changes to the simulation controller. During discrete events execution, the simulation controller jumps
from one event to the next one, and no events or changes of the simulation system can occur in between
two consecutive events.
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For the purpose of the DEARMS project, the virtual platform of the project shall support multi simulation
framework to combine different discrete event simulators in order to provide on-chip/off-chip simulation
framework of the DEARMS platform. This simulation framework will be provided to the demonstrators in
WP6, 7 and 8.

The proposed multi simulation architecture will support two major simulation setups. The first one is for
the on-chip/off-chip simulation, in which OPNET and Gem5 will be used. For this setup an interleaving of
discrete event simulation approach is presented in 6.1.1. Secondly, a tick-based discrete event simulation
for Gem5 and OVPSim will be used to introduce an execution environment for on-chip simulation in 6.1.2.

In the DREAMS virtual platform, Gemb5 is a cycle accurate simulation tool that is used to simulate the
DREAMS chips (see section 3.2.2), in combination with OPNET (see section 3.2.1) that is used to simulate
the off-chip network including end systems and switches. These two cycle accurate simulation tools have
their own simulation calendar in which discrete events are scheduled on time base. OVPSim on the other
hand is not cycle accurate simulator and it requires different simulation control handling. The
parallelization of the simulation tools would create overlapping and inconsistency in the executions
especially for events that depends on results of the other simulation tool. The coordination of these
simulation tools requires the definition of simulation control approaches that avoids such cases. For the
scope of the DREAMS virtual platform, we are going to use two simulation approaches, interleaving and
tick-based simulations. In order to implement these approaches we introduce a set of coordination
controllers that communicate using TCP/IP socket, these controllers will be integrated in the DREAMS
multi simulation architecture in order to manage the executions of the simulation tools and to coordinate
their execution (see, Figure 44).

6.1.1 Interleaving discrete event simulation

Interleaving simulation executions means that simulators will run once a time. In other words, one
simulation tool will run for a specific time and the other simulation tool shall suspend its executions until
itis time to run again, based on the collected time events of the upcoming events of both simulation tools.

[ . |
Virtual
| [
: Platform | W { N > :
| Gx Gy OPx Gz OPy |
[ [
[ [
| OPNET ‘ I
[ [
: OPx OPy :
| GEMS ‘ |
: Gx Gy Gz :
[ [

Figure 45: Gem5/OPNET simulation control execution time lines

The major idea in this approach is that the simulation tool with the smallest next time event will be
allowed to run until the next maximum time event of the other simulators. In the meanwhile, the
simulators with the maximum next time event will suspend until the other simulator finishes its current
execution or it sends an early update event. In both cases a new calculation of the next time event will be
performed before the simulation tools proceed for the next event in their simulation calendar. In case
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that the next events of the two simulation tools are at exactly the same moment, both simulation tools
run until this next event.

As shown in Figure 45, the time lines of the Gem5, OPNET show the upcoming events of each simulation
based on their own current calendar. The coordination controllers of the multi simulation architecture
guarantee that each simulation tool is sending its own execution time of the upcoming event, in order to
decide with simulator is going to start and for how long shall it run. In this example, OPNET has the
following events {OP,, OP,} and Gemb5 has {G,,G,,G}.

Both simulation tools will send their upcoming events {OPy Gy}, this would mean that Gem5 would start
and can run until the execution time of the first next event of OPNET which means that the first execution
sequence is {Gx,Gy,0OP4}. In which GEMS5 has run until {OP,}, then OPNET will run until its planned event
{OP,}. Afterward, the coordination controllers would calculate the next execution sequence based on the
remaining events in both simulators and this will result in the following overall execution sequence of the
virtual platform coordination { G4,Gy,0OPx,G,0P,}.

6.1.2 Tick-based discrete event simulation

Simulating the execution environment at the chip level using the hypervisor simulator using OVPSim
introduces further challenges. The major difference with respect to the simulation tools considered so far
(i.e. OPNET, Gemb) is that we are asked to handle a non-cycle accurate simulation tool. Simulations in
OVPSim are based on the Millions of instructions per second (MIPS), this is usually defined during
simulation configuration phase, i.e, the temporal duration of each instruction will depend on the MIPS
defined in the simulation environment and it is assumed that all instructions have the same WCET. So the
temporal granularity in the execution or minimum time step will depends on the duration of an
instruction. This would mean that we could not control the execution as we did in using the interleaving
approach; consequently, we are introducing the so-called tick-based coordination control for the
simulation tools in this case.

The fundamental solution presented in this approach is that simulation tools shall run for one tick and
stop for controlling exchanged data or new event requests. The simulation tick is defined based on
extensive experiments that need to be done for the OVPSim simulation to determine the optimum MIPS
for running the simulation in combination with Gem5.

Local Controller Glo'bal Local Controller OVPSim
Coordinator

L

] |

| Cm N

| setSocketConnection() Set ports configuration() setSocketConnection()
|

|

loop A } | }
hand {send queued msg end queued msgs}h al
andle msgs l
F & X Run until next tick (T) Run until next tick(MIPS) . andle msgs
While: t<T | While: t< MIPS
|
|

. Run internal instructions
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|
|
|
| |
|
——t——redirect sendMsgs——p> |
| redirect sendMsg:
| nqueue M ‘
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4 i [ |
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Figure 46 : Sequence diagram of the simulation control for Gem5/0OVPSim
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As shown in the sequence diagram in Figure 46, the coordination control starts by setting the socket IPs
and ports. Then both simulation tools will run for a predefined time (T), where T = [MIPS-A, MIPS+A].
Where (4) is a time variation of the OVPSim due to the non-cycle accurate simulation tool, this A is
supposed to be very small. Since the MIPS executions might be slightly different each time in comparison
with Gemb5.

The coordination control will request from both simulation tools to execute until T and stop after that to
receive data/control messages from the other simulation tool (if there are any). Then the simulation
would start the execution of their event/instructions as long as the simulation time is less than T. In the
meantime simulation tools will redirect their messages to the global coordinator (GC), who is responsible
of queuing the messages to the correspondent queues of each simulator. Before the simulation tools start
for the next tick, the GC should send them their queued messages of the previous tick.

6.2 Multi Simulation Architecture Control

The components forming the multi simulation architecture and different simulation levels are presented
in this section. As shown in Figure 44, it is divided into three major parts; the on-chip, off-chip and the
global coordinator.

6.2.1 Global Coordinator

Different simulation tools might have execution limitations like operating systems, communication data
formats and configuration parameters. Therefore, combining different simulators requires the presence
of proper communication interfaces. Furthermore, the coordination of the virtual platform’s multi
simulation architectures requires continues time control of the event based executions of different
simulators for the whole simulation time.

The Global coordinator is responsible for establishing the connection between the different simulation
tools. It acts as the server of a client-server TCP/IP based setup. This global coordinator shall be able to
create blocking data and time control flow, though the socket based communication should be able to
receive and send at any point of time without any message loss. At the beginning of the simulation setup,
the global coordinator initiates the socket and creates the connections based on the configurations of the
multi architecture simulation. In our case, we have two clients OPNET or OVPSim and GEMS5 . In the case
of interleaving of discrete event simulation the global coordinator acts as communication bus between
the two simulators, without any control for the execution sequence. This control has been moved to the
clients (so-called, GEM5/OPNET local controllers.)

In the case of tick-based discrete event simulation, the simulation tools halt after each execution tick to
receive instructions and events from the other simulation tool, therefore, the global coordinator consists
of the control decision unit based on time, as well as the incoming/outgoing queues that are responsible
for buffering the instructions and events that have been sent while executing during the previous tick.

6.2.2 Simulation control at chip level

OVPSim realizes the tile core execution, communication and application services on the top of one or
more processor cores at chip level. In order to simulate the multi tiles network-on-chip, the combination
of the GEM5 multicore simulation tool with the OVPSim is required. This arrangement will be realized as
shown in Figure 47.

The local controllers of the chip level are responsible for managing, redirecting and controlling the
simulator execution at chip level. For the purpose of the simulation control at the local controllers, they
are structured as follow. A local controller consists of two major parts; first is the part (front-end)
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responsible for providing the TCP/IP communication based on the simulation configuration setup. The
second part (or the back-end) is the part responsible for interfacing the controller to the on-chip network
interface of the network-on-chip. It is also responsible for messages mapping and parsing in both
directions from and to the simulator.

£ |
|2
| 8 Simulation - > Local Simulation Controller |
- > |
| Controller A |
: OVPSim/Hypervisor |
o] ]
\A 4
Global
Coordinator
] » Time Control Ak
-«—» Data Control r—r=----- - - - - =" |
| DREAMS Chip
| LA/ |
GEMS Calendar
GEMS Local I B { GEMS Simulator |
| Simulation Controller
| Ports |
| Network Interface Tile Tile :
| | | |
| | NOC ) |
| N - |
| Tile Tile Tile |
|
| GEMS5 |

Figure 47: Gem5/0VPSim multi simulation architecture

In regard to the chip level simulation, the global coordinator defines the control sequence of the execution
time tick (T) and it will allow the local controllers of the GEM5 and OVPSim to run until this time T, by
invoking the control events into the simulation calendars of the simulators (see Figure 48).

Form OVPSim point of view, the (T) time represents the minimum set of instructions that have to be
executed within this time limit. In the meanwhile the local controller is responsible for buffering the
OVPSim instructions of the current execution the global coordinator, while it is executing the instructions
of the previous tick. In this way there will be no interaction between the two simulators while running.
As shown in Figure 48, after each tick the global coordinator will redirect the instructions/events to the
correspondent local controllers that will modify the simulation calendars accordingly. Similarly, the GEM5
local controller is able to redirect data messages, alter and insert control events to the GEM5 simulation
calendar. Further details of the GEMS5 local controller will be discussed in the next subsection.

01.04.2015 DREAMS Page 70 of 98



D5.2.1 Version 1.0 Confidentiality LeveL: PU

Local Controller GIoPaI Local Controller OVPSim
Coordinator

e ] l ‘
handle msgsfsend queued m l end queued msgs}hand\e msgs
-1; Run until next tick (T) Run until next tick(MIPS I
While: t<T J |

Run internal events

;
|
|
|
——f—redirect sendMsgs——p> <
redirect sendVisgs

‘ nqueue M ‘

] | 4j7enqueue Msgs:

| |

| |

; ;

| |

; ;

| |

-

setSocketConnection() Set ports configuration() setSocketConnect\on()

£ 1'

hi

Whlle t<MIPS

|
|
} Run internal instructions
|
|

enqueue to OVPSim que ue}
enqueue to Gem5 queue

Figure 48: Sequence diagram of the OVPSim local controller simulation control

Before the simulation of the OVPSim simulator starts, the virtual board or platform must be set up. During
this process the platform creates and initializes the processors and peripherals and interconnects them
using a bus.

Memory areas must be created and initialized using the binary image of the Execution Environment, and
must be connected to the bus. Finally the platform is connected to the wrapper and waits for control
commands coming from the global coordinator.

As explained in section 6.1.2, the simulation is tick-based. The reason is that for OVPSim simulation time
is advanced at the end of each simulation quantum (which is global across the simulator), so that by
choosing the length of time simulated in each quantum and the number of instructions executed by each
processor in a quantum (by the MIPS rating), each processor is given a number of instructions to execute.
In this case the quantum is set up in a value of 1 instruction, the minimum value.

With these constraints, once the platform finishes the initialization process remains at the Execution
Environment code entry point waiting for commands. According the tick-base policy the commands could
be:

e runUntilNextTick(): When the OVPSim simulator receives this command, it runs the next
instructions and the simulation time is updated until T=T+(1/MIPS). Is not possible under any
circumstances to stops the simulation until this command is finished.

e updateRegistersState(): These command is used when the Gem5 of the coordinator needs to
update the memory map values.

If during the execution of an instruction the processor modifies or accesses the memory region where the
STNoc is mapped, this access is communicated to the coordinator using the message queue.

In the same way, Simulation Time could be accessed or modified at any time using this mechanism.

6.2.3 Simulation control at cluster level

The multi simulation architecture at the cluster level covers on-chip/off-chip simulation interests of the
DREAMS demonstrators based on the virtual platform requirements defined in D1.1.1. As described at the
beginning of this section, in the DREAMS virtual platform we combine OPNET for the simulation of the off-
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chip routers, gateways and connections with the GEM5 multicore Garnet/STNoC model for on-chip
simulation by using the multi architecture interleaving simulation approach. As described in subsection

6.2.1, the global coordinator is responsible of redirecting the virtual platform control and data messages
without intervening in the simulation itself.
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Figure 49: Local controller state machine

The simulation control is in total responsibility of the local controllers of the simulation. The execution
time of the simulators is defined dynamically based on the simulators local schedule. The state machine
(Figure 49) illustrates the execution flow of the local controllers. The local controller requests a time
update to find the time of the next planned execution event of the other simulator schedule, this is
happening in both local controllers in order to find and calculate locally the execution order and duration

as discussed earlier in section 6.1.1. The outcome of calculated max-next is always the same in both
controllers in each calculation request.
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Figure 50: Sequence diagram of the simulation control, regular execution case

The simulation starts with the initiation of socket communication between the global coordinator and the
local controllers. The coordination of the two simulators can be separated into two cases. The regular
execution case, as illustrated in Figure 50 the running simulator completes its execution until the end of
the calculated maximum next-time. In this case, one simulator is running while the other is waiting for a
“start” instruction. Then the simulation tool that was on hold has to execute until the calculated max-next
(it will be his planned next time event), then a new calculation request is started. The two simulation tools
will run alternately until a new event that has a dependency with the other simulation tool is sent.
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Figure 51: Sequence diagram of the simulation control, new event update case

New events that are addressed to the other simulation tool might occur while executing before the end
of the max-next time. Those events (see, Figure 51 “newEventUpdate”) induce the second case of
coordination, in which, the running simulation tool will send an update event then its local controller will
set the simulation tool on hold and redirect the new event to the other simulator which will start by adding
this new control event to its local simulation schedule and the a new round for calculating the next-max
time in both local controller is started.
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6.2.4 Dataflow and Control flow between Simulations

The local controllers consist of a front- and a back-ends. The front-end is responsible of the socket based
connection and it is similar in all local controllers for the different simulation tools. The back-end of a local
controller is responsible of the message mapping and parsing. The back-ends differ from one simulation
tool to another from implementation point of view while they have the same functionalities in regard to
the data and control flows. The messages exchanged between the simulators are classified into the control
events responsible for guaranteeing the correct execution order in the simulation tools, and data
messages which include regular communication messages between the different on-chip/off-chip tiles.

Event Types Data Message Format

Data Message Message Size
Run Until <time T> Creation Time

Event Update <time T> Message Sequence Number

Acknowledgment Event Message Deadline
Start Simulation Event PortID
Stop Simulation Event Message Type
VLID
BE source Logical Address
BE Destination Physical Address

Criticality Level

Figure 52: Multi Simulation Architectures Event Types

6.2.4.1 Event Types
The DREAMS virtual platform data message structure contains the following fields:

e Message Size (integer): this parameter contains the messages payload size

e (Creation Time (double): the message creation time, used for statistical and fault injection
purposes.

e Message Sequence Number (integer): the message identification number, used for message
routing and for statistical and fault injection purposes.

e Message Deadline (double): The message time limit, used for statistical and fault injection
purposes.

e PortlID (integer): The message port identification number, used for routing.

e Message Type: The message type, it can be (Time Triggered, Best Effort or Rate Constraint
message)

e VLID (integer): Virtual link ID of the message, used for routing

e BE source Logical Address: In case of best effort message the logical address of the source of the
message shall be included as defined in the architecture style deliverable D1.2.1.

e BE Destination Physical Address: In case of best effort message the destination physical address
of the message shall be included as defined in the architecture style deliverable D1.2.1.

01.04.2015 DREAMS Page 74 of 98



D5.2.1

Version 1.0 Confidentiality LeveL: PU

Criticality Level: To support different message criticality levels, the message criticality shall be
included.

Moreover, the control flow of the simulation requires the following control event messages:

Run Until <time T>: This control message inform the local controller to run until a specific time
(T), this time calculated based on the max-next time as described earlier.

Event Update <time T>: This control message is sent in case of schedule changes in a simulator
while running, it stops the current running simulator and update the other simulator with the new
event and its execution time.

Acknowledgment Event: this event is sent when a simulator has completed his execution of a
previous “Run Until <time T>" event in order to synchronize the simulation controllers and to start
a new max-next time calculation.

Start Simulation Event: This event starts the simulator through it is local controller to begin the
simulation and set the socket based connections.

Stop Simulation Event: used to announce the end of the simulation for simulation controllers and
end the socket based connections to the global coordinator.
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7 Model-Driven Configuration of Simulation Environment

The model of an instance of the DREAMS architecture to be simulated is concretely available as a set of
EMF model files, since the relevant DREAMS sub-meta-models (application, platform, platform specific)
are defined as EMF meta-models (see D1.4.1 and D1.6.1).

In order to realize the tool supported configuration of the simulation blocks out of the DREAMS model of
an instance of the DREAMS architecture, two approaches have been considered:

1. Simulation block specific configuration code that uses the EMF APl to extract the needed
configuration data from the EMF model files, in order to configure “on the fly” the simulation
block during the initialization phase of the simulation.

2. The model-to-text transformation framework of Autofocus (see T4.2) is used for generating
simulation block specific configuration files with dedicated CSV format off-line before the
simulator is started. During the initialization phase of the simulation, these configuration files are
read in order to set up the simulation building blocks. The model-to-text transformation is based
on templates which consist of static text and dedicated instructions that extract data from
specified system model during the execution of the model-to-text transformation and insert them
at specified positions in the template in order to produces the configuration file.

After some investigations, it has been concluded that the generation of configurations files with the help
of model-to-text transformation is the more convenient approach. The reason is twofold: on the one
hand, the EMF API for extracting information from a DREAMS model is by default only available in Java,
whereas the simulation blocks are implemented in C/C++. A generator of a C++ version of the EMF API has
been identified but found to have blocking limitations such as the handling of multiple model files. On the
other hand, the usage of simulation block specific configuration files allows to configure the simulation
building blocks even if the model-to-text transformation is not (yet) available or the simulation building
blocks are used in an other than the DREAMS context.

Thus, the generation file generator will be implemented as shown in Figure 53. If the DREMAS model does
not cover certain parameters needed in the configuration files of a simulation block, then these could be
added statically or dynamically through the generation templates.
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Figure 53: Inputs and outputs of the model to text configuration file generator

7.1 Information from Platform-Specific Model for Simulation
Environment

Most of the information needed for the generation of the configuration files of the simulation block are
provided by the “platform specific model”. But since the detailed specification of the “platform specific
model” will only be available in M32 we can give here only an overview of the kind of information it will
provide.

The central purpose of the “platform specific model” is to define the mapping of the applications to the
hardware platform and how the provided execution and communication resources are shared.

Applications are mapped to partitions that are regularly allowed by the LRS to execute, on one or several
processor cores, according to the current resource configuration. Inside a partition, tasks of the
application are scheduled according to some scheduling policy, such as cyclic and priority based
scheduling. The description of these aspects in the “platform specific model” provides the information
required for configuring the “Execution Environment” simulation block.

Depending on the mapping of the applications, some messages need to be sent over the on-chip or even
over the off-chip network. How these communication resources are shared for the transmission of the
messages is defined by the on-chip and off-chip network configurations. The description of these aspects
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in the “platform specific model” provides the information required for configuring the “Network
Interfaces”, the TTEthernt, the EtherCat and the Noc simulation blocks.

7.2 Specification of Configuration File Generators

The configuration file generators will be integrated into the DREAMS model editor and implemented with
the help of the DREAMS model-to-text transformation framework or direct transformations (e.g., for XML
files that conform to a schema). From context menus, it will be possible to execute the configuration file
generation separately for each of the simulation blocks. Depending on the specificities of the simulation
block, the user may be asked to set values for parameters that are not covered by the DREAMS meta-
model (e.g., by providing an external configuration file template that is either created manually or using
existing tools for the corresponding building block). As pointed out in D1.3.1, Sec. 3.6), this approach has
been selected for configuration generation in order to separate implementation specific (i.e.,
configuration parameters that are specific to concrete implementations of the DREAMS architectural
style), and use-case specific (e.g., parameters that are specific to the configuration of the simulation) from
parameters stemming from the DREAMS architectural style.
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8 Analysis of Simulation Traces

In this section, we describe the higher level properties that will be synthesized from the traces (Section
8.4) and the events that must therefore be logged in the simulation traces (Section 8.1). Furthermore, we
explain the overall structure of the traces files (8.2) as well as the detailed specification of each kind of
trace file (Section 8.3).

8.1 Events that need to be logged in the simulation traces

Let us recall that in discrete event simulators, the evolution of the system model is driven by the
occurrence of events that induce state changes. To be able to analyze the simulated behavior after the
simulation and synthesize higher level properties, a certain subset of these events needs to be written to
trace files. These subsets of events depend on the properties that should be analyzed and on the
objectives of the analysis. In the following section we describe which events are needed for end-to-end
delays.

8.1.1 End-to-end Delays

In the DREAMS meta-model, end-to-end latency constraints are described with the help of timing chains.
By definition, a timing chain consists of a stimulus event and a response event that are related by a cause
and effect relation. If the response is the writing of a command to an actuator, for example, then the
stimulus could be the reading of a sensor value that has been used in the elaboration of the command for
the actuator. Depending on how many tasks are involved in the elaboration of the command and where
they are allocated on the platform, the timing chain can (and must) be decomposed in to chain segments
that detail how the stimulus leads to the response.

The relation between the sensed value and the applied command results generally from an alternating
chain of tasks and messages, where a message is produced by the preceding task and read by the following
task:

Message1 Message2

Sensor Data Actuator Data

Figure 54: Example of timing chain at task level

Figure 54 shows the example of a timing chain at task level, where the following temporarily ordered
events occur during the transformation of a senor data value into an actuator data value:

Task A reads instance n of the sensor data value

Task A produces instance m of Messagl, elaborated from instance n of the sensor data

Task B reads instance m of Messagel

Task B produces instance p of Messag2, elaborated from instance m of Messagel

Task B reads instance p of Message2

6. Task B produces instance g of the actuator data value, elaborated from instance p of Message2

uhwN e

In the above list, we explicitly mention instances of messages and data values, because tasks execute in
some recurrent manner and read and write at each execution (potentially) different instances of the
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messages and data values. The indices are all the same in the special case where all involved task have
the same period and are scheduled in a time triggered manner. The cause and effect relation between a
stimulus and a response event exists in a timing chain only when a following task reads the same instance
of message than that produced by the previous task in the chain. Regarding the relation between the
inputs and outputs of the execution of a task, it seems to us reasonable to suppose that the read instance
of the input data is always used in the elaboration of the written instance of the output data.

The delay between the writing of a message instance by a previous task and the reading of the message
instance by a following task depends on the used (hierarchical) scheduling mechanism and on whether
the messages are stored in some local memory or transmitted over on-chip and/or off-chip networks. The
later depends on the allocation of the tasks to the Tiles of physical platform. In the following Figure 55 is
shown timing chains where all kinds of communications are involved:

e intra-partition task communication (not covered by DREAMS services)

e intra-tile, inter-partition communication (supported by DRAL)

e inter-tile communication over the NOC

e inter-node communication over an off-chip network

e inter-node, inter-cluster communication through an inter-cluster gateway

Node

Noc Off-chip Network Noc

e Rackent |

| r===- | Inter-cluster Gateway

—

AV Off-chip Network )
1 1
i i
i l i
Tie| |
Cluster 1 E E
Cluster 2 '
1

Figure 55 — lllustration of timing chains after deployment

As shown in the figure, the communication may also span an inter-cluster gateway.
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Notice that different periods or recurrence pattern of consecutive tasks in the timing chain may also have
an influence on these delays.

In general, in order to be able to establish the cause and effect relation between a stimulus and a
response, the traces must contain several intermediate events from the timing chain that allow deducing
the cause and effect relation. In the initial example we have mentioned already to kinds of such events:

a) A message instance, produced by a task, is ready for being read
b) A message instance has been read by a task

In case of inter-partition communication through the DRAL, a produced message is stored in an output
port in the NI and then copied to the input ports of the local destination; thereafter it is ready for being
read. In case of intra-partition communication (not covered by DREAMS services), the messages are stored
in some memory location, but the event a) must still have the semantic of “ready for being read”.

Depending on the granularity of the tasks simulation models, the behaviors of the tasks might be black
boxes so that it is not possible to known when input messages are exactly read or output message are
exactly written. In that case, an approximation may consist in considering the execution start and end (of
recurring tasks) to be the time where the messages are read or written.

If the communications goes across on-chip and/or off-chip networks then more events are required to be
able to follow the progress of the transmission and match the instances of the messages on sender and
receiver side:

c) A message instance, located in an Network interface port and coming from a tile, is elected for
transmission over the NOC by the NI (Bridging of Outgoing Messages)

d) A message instance, arriving from the NOC, is available in the ingress queue of the on-chip/off-
chip NI

e) A message instance is elected by the on-chip/off-chip NI (Bridging Service) for transmission over
the off-chip network

f) A message instance, arriving from the off-chip network, is available in the ingress queue of the
on-chip/off-chip NI

g) A message instance is elected by the on-chip/off-chip NI (Bridging Service) for transmission over
the NOC

h) A message instance, arriving from the NOC, has been written by the NI to the corresponding port

If no NOC is present, then additional variant of these events exist:

i) A message instance, located in an NI port and coming from a tile, is elected by the on-chip/off-
chip NI (Bridging Service) for transmission over the off-chip network

j) A message instance, arriving from then off-chip network, has been written by the NI to the
corresponding NI port

Notice the following important point regarding the way the events are defined: if the event concerns the
arrival of a message or a frame, than the event occurs when the message or a frame is available for the
next step in the chain. This implies that if in a chain an arrival event occurs at some time to and the
following event (selection for sending or reading) occurs at some time t;>to, then it is the same instance
of the message that is concerned — unless it is overwritten by the arrival of the next instance. The analysis
of the simulation trances is based on this supposed property.

If a time triggered scheduling scheme is used for task execution and message communication, then the
occurrence time of the response events and that of the corresponding stimulus event can be predicted.
In that case, one could wonder if it is useful to derive the response event for a stimulus event from the
intermediate event from the traces. But the goal of the simulation is to detect non-conformances, due to
what-ever cause, including errors in the design algorithms/methods that are supposed to produce design
solutions that are correct by construction.
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8.1.2 Frames discarded by routers because of insufficient memory

It would be interesting to deduce the loss of a frame due to insufficient memory in a router from the
missing re-transmission of a frame instance that has arrived at the router, since this approach would
potentially allow detect other problems in the design or configuration. It would however be rather difficult
to find a reliable criterion for identifying a frame loss, since the departure of a following frame instance
can easily be misinterpreted as the transmission of the actually lost frame instance. Furthermore, it would
be impossible to distinguish limited memory from other may be not foreseen causes. Therefore the frame
transmission events in the traces should:

e contain frame instance identifiers

e contain explicit frame discarding events, due to insufficient memory
8.1.3 Task Response Times
By definition, the “response time of a task” is the delay between the times when the tasks is eligible for
execution until the time when its execution ends. In between it might be waiting at some time for getting
(again) access to the execution resource. This definition is adapted to the context where task execute
periodically or in some other recurrent manner and where an execution start and end can be identified.
In order to be able to analyze task response times, the task execution related traces should

e Contain the following events:
0 tasks instance activation time
0 tasks instance execution end time
e contain task instance identifiers
Notice that in case of time triggered tasks scheduling, tasks are usually only activated when no other task
is competing for the execution resource and thus, the “activation time” is equal to the “execution start
time”.
Depending on the level of details of simulation model, the scheduling of application task might not be
modeled. In that, task response time related traces are not generated and the dnd-to-end statistics are
based on the partition execution related events.

8.2 Overall Structure of Trace Files

8.2.1 Layout of a trace file
An efficient and often used structure of trace file is the following:

e every line contains the description of an event
e the line separator is the new line character “\n” (C/C++ or Java)
e the order of appearance of the lines reflect the order of occurrence of the events
e The description of an event consists in
1. time stamp that corresponds to the date of occurrence
2. keyword that identifies the type of event
3. event specific details
e character uses to separate items in a line is the space character

Thus, the structure of a line would be the following:
<TIME> <EVENT_TYPE> ... details ...
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8.2.2 Scope of a trace file
| would be possible to use just one file for all events of the simulation. However,

e the simulator consists of several simulation blocks, which might be implemented as distinct
processes. The resulting need of “simultaneous” write access to a same file would either be
impossible to realize or lead to a performance bottle neck.

e if the scope of afile is for example only one network, i.e. the file only contains events related to
only one network, then it would not be necessary to repeat the identifier of the network in every
line, which would reduce the size of the file.

The scope of a trace file should therefore be not larger than one simulation block. The scope of the trace
file could be coded into the name of the file.

8.2.3 Identifiers

The trace analysis tool must be able to relate the entities concerned by the events logged in the trace files
to those described in the meta-model. In [5] is suggested a name based hierarchical identification scheme
that would be independent of the context where the model data is handled (XML file, in memory, etc).
This scheme should also be used in the trace files, but if hierarchical names are long then this may lead to
large trace files. For the trace files, the hierarchical names should be based on numerical identifiers that
are also stored in the DREAMS model file.

8.3 Trace Files and events

8.3.1 Off-chip network related events

For each off-chip network, the relevant events are written to a separate file. The events concern the
emission and reception of frames between on-chip / off-chip gateways and inter-cluster gateways. The
scope is illustrated in Figure 56:

Node

Node Off-chip Network
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Figure 56: lllustration of off-chip network related events to be traced
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Two different kinds of events can be identified. Their trace file syntax is as follows:

<TIME> FrameTx Gateway <GATEWAY_ID> <FRAME_ID> <FRAME_INSTANCE_ID>
<TIME> FrameRx Gateway <GATEWAY_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

With respect to the loss of frames due to insufficient memory in the routers, the following event is
defined:

<TIME> FrameDiscarted <ROUTER_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

The semantics are defined in the following table:

FrameTx Gateway A frame instance is queued for transmission over the off-chip network, as
soon as allowed by the protocol. Depending on the traffic class and
priority, the frame is either immediately transmitted (periodic) or may
wait in a queue (rate-constraint or best effort).

FrameRx Gateway Frame instance has arrived and the contained messages are ready for
being forwarded inside the connected node or over the off-chip network
of the connected cluster.

<GATEWAY_ID> Identifier of the concerned gateway.
<ROUTER_ID> Identifier of the concerned router.
<FRAME_ID> Identifier of the concerned frame.

<FRAME_INSTANCE_ID> Identifier of the frame instance. This identifier is incremented with each
“FrameTx Gateway” event.

8.3.2 On-chip network related events

For each on-chip network, the relevant events are written to a separate file. These events concern the
emission and reception of messages between NI ports and the on-chip / off-chip gateways. The scope is
illustrated in Figure 57:
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Figure 57: lllustration of on-chip network related events to be traced

Four different kinds of events can be identified. Their trace file syntax is as follows:

<TIME> MessageTx OutPort <PORT_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>
<TIME> MessageRx InPort <PORT_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>
<TIME> MessageTx Gateway <GATEWAY_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>
<TIME> MessageRx Gateway <GATEWAY_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>

The semantics are defined in the following table:

MessageTx OutPort A message instance, contained in the output port, is emitted. Depending
on the location of the destination and the optional presence of a NOC,
one or several of the following happen after the event has occured:

e copying to destination ports on the same Tile

e if NOC: reading by the bridging layer for further processing in
order to sent the message over the NOC

e if no NOC: reading by the on-chip / off-chip gateway for
transmission over the off-chip network
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MessageRx InPort

A message instance is ready in the input port for being read by tasks in
the related partition.

MessageRx Gateway

Message instance, coming from inside the chip (over the NOC or not) is
ready for being put into a frame for sending over the off-chip network.

MessageTx Gateway

Message instance, coming from the off-chip network, is forwarded inside
the chip:

e if NOC: reading by the bridging layer for further processing in
order to sent the message over the NOC
e if no NOC: copying to destination ports

<PORT_ID>

Hierarchical identifier of the concerned port, without Node and Cluster
part, since the scope of the trace file is limited to a Node.

<GATEWAY_ID>

Identifier of the Gateway.

<MESSAGE_ID>

Hierarchical identifier of the concerned message.

<MESSAGE_INSTANCE_ID>

Identifier of the message instance. This identifier is incremented with
each “MessageTx OutPort” event.

8.3.3 Partition execution related events

For each Tile, the relevant events are written to a separate file. These events concern the execution of the
partitions according to some plan that guaranties time separation. The scope is illustratedin Figure 58:

Tile
Core Core
Partition Partition
Partition
Partition

Figure 58 : lllustration of events to be traced that are related to the execution of partitions

Two different kinds of events can be identified. Their trace file syntax is as follows:

<TIME> PartitionSelectedForExecution <CORE_ID> <PARTITION_ID>

<TIME> PartitionSuspended <CORE_ID> <PARTITION_ID>

The semantics are defined in the following table:
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PartitionSelectedForExecution | The partition gains (again) exclusive access to a processor core, i.e. is

(again) able to execution.

PartitionSuspended

The exaction of the partition ends is suspended.

<PARTITION_ID>

Identifier of the Partition.

<CORE_ID>

Identifier of the processor core.

8.3.4 Task execution related events

For each partition, the relevant events are written to a separate file. These events concern the execution
of the tasks according to some scheduling policy. The scope of the trace file is illustrated in Figure 59:

Partition

Figure 59: lllustration of events to be traced that are related to the execution of tasks

Four different kinds of events can be identified. Their trace file syntax is as follows:

<TIME> TaskInstantiated <TASK_ID> <TASK_INSTANCE_ID>

<TIME> TaskSelectedForExecution <TASK_ID> <TASK_INSTANCE_ID>
<TIME> TaskSuspended <TASK_ID> <TASK_INSTANCE_ID>

<TIME> TaskInstanceEnded <TASK_ID> <TASK_INSTANCE_ID>

The semantics are defined in the following table:

TaskInstantiated

The recurrent task has been instantiated again, i.e. is ready for a new run,
as soon as the task scheduler selects the task for execution.

TaskSelectedForExecution

The task scheduler has selected (again) the task instance for execution.

TaskSuspended

The task scheduler has suspended executuion the task instance.

TasklnstanceEnded

An instance of the recurrent task has arrived at the end of its run.

<TASK_ID>

Identifier of the task.

<TASK_INSTANCE_ID>

Identifier of the task instance. This identifier is incremented with each
“Tasklnstantiated” event.
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8.4 Properties synthesized from the Traces

Depending on the availability of the traces, the following properties can be synthesized:

Observed properties Deduced properties

End-to-end delays Statistics on the end-to-end delays, for each
specified end-to-end latency constraint

Frame losses Statistics on inter-frame loss time per router and
per traffic class.

Task response times Statistics on task response times

By “statistics” we mean the histogram of observed values, the classical min, average and max statistics
and last but not least quantile, i.e. thresholds that are overstepped only with a small probability.
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9 Specification of Formal Verification Framework for DREAMS

Mixed Criticality systems are systems where safety, timing, security or reliability are the most important
proprieties to verify. In fact such systems have to deliver a response to an event within a certain time
period. A failure in such systems may have catastrophic consequences. Such systems are getting
increasingly complex, especially with the introduction of multicore platforms. Typical examples of such
systems are wearable medical devices, which combine life-supporting functionality with low power
wireless connectivity to support remote monitoring by the patient or doctor. Other systems that include
multiple real-time functions with different levels of criticality are related to automotive. Formal
verification can play an important role in verifying some of properties previously mentioned. In fact
formally proving that single hardware or software components are corrects we can try in several cases by
composition to prove the correctness of the overall systems.

STNOC is one of the key components of the DREAMS architecture template. As already mentioned
DREAMS provides a natural mapping of the current and next generation mixed critical architectures.

In this section we present how to apply formal verification, more specifically property checking, to verify
the functionality of the configurable components that are used to build STNoC networks. Although
methodology and the framework could be used for all the on-chip and off-chip communication
infrastructures we are going to focus to one or two components of STNoC. The components of a STNoC
network are first presented and the motivations for using formal verification are discussed.

9.1 STNOC components

Figure 60 shows the main components that are used to build a STNoC network.
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Figure 60 STNOC
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Routers are responsible for routing packets to destination based on the contents of their headers and for
ensuring the required Quality of Service (QoS) or Best Effort (BE) service. Adaptive Links (AL) are inserted
in router-to-router links to break long wires for physical implementation, perform frequency conversion,
and flit size downsizing/upsizing. Network Interfaces (NI) perform protocol conversion between ARM
AMBA interconnects (AXI, ACE) and the network of routers that use the STNoC protocol.

Two virtual networks are implemented on top of two disjoint virtual channels that share the physical link
bandwidth.

STNoC networks are constructed using the iNoC design platform that ST has developed for that purpose.
Components are generated based on parameter settings provided by the user via a graphical interface or
scripts.

9.2 Motivations for using formal verification

There are two distinct tasks involved in the verification of STNoC components that have to be performed
at two different points in time. When designing a component, it must be verified that any configuration
of this component that may be generated using the iNoC platform will be free of functional bugs. When
using a component to create a NoC that meets the mixed criticality needs of a particular SoC, it must be
verified that the configuration that has been generated is free of functional bugs, and that the underline
protocol is correct in term of timing.

The second task does not present uncommon challenges, but the first one definitely does due to the
extremely large number of potential configurations of the components. Finding a bug or a protocol
violation in a component when generating a network for a SoC project could have an adverse impact,
especially for mixed critical systems. Correcting the component design could turn out to be a significant
effort and a substantial re-verification effort could be required if interactions with other components are
impacted by changes. As a result, it could be impossible to avoid delaying some milestones of the SoC
project. Therefore, it is critical to verify as many configurations as possible during the design phase of the
components, in the amount of time available before the platform gets used in SoC projects.

Using simulation to verify a component means developing a new testbench and a new set of tests for each
type of configuration. Constrained random tests have to be used, which implies that adequate means to
collect coverage metrics must be developed. Tests generation followed by coverage analysis loops are
then required to gain sufficient confidence. However we never reach the 100% confidence. This means
that this is an issue especially for Mixed Critical Systems.
We estimated that formal verification is well suited for the mixed criticality systems for several reasons:
- The behavior of a component in its different types of configurations could be expressed with
parameterized properties. The parameters used in the iNoC platform to generate a particular
component configuration could also be used to configure the properties. A verification
environment could then be readily available every time a new component configuration would be
generated, with no setup time and effort.
- There would be no need to develop new tests to verify a new configuration. Only machine time
would be required, thus saving precious verification resources.
- Exhaustive coverage of the configurations tested could be achieved, which is generally impossible
with simulation given the available time and resources.
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We have selected the Adaptive Link (AL) as the first component to be tested using this formal verification
approach. There were two reasons for making this choice. Firstly, the AL is less complex than the router
and Network Interfaces (INl) components which would make it a better vehicle to develop our formal
solution and gain experience with it. Secondly, the techniques to be use are quite generic so we can extend
to other components . The AL was tested indirectly by inserting it between two routers and generating
traffic, which obviously limited the coverage that could be achieved. This means that we cannot use the
AL in Mixed criticality system based on STNoC due to lack of full coverage. For this reason thanks to
DREAMS project we are introducing a new way to verify mixed critical systems and the outcome of this
task can be used by the WP8 demonstrator as wellas other internal ST mixed critical products.

9.3 The Adaptive Link

The Adaptive Link (AL) component has a downstream (DS) interface that receives packets from an
upstream component (router, AL, NI) and an upstream (US) interface that sends the packets to a
downstream component.

An AL can perform various functions:

- Relay station: used to break wires that are too long for physical design. The AL acts as retiming
registers.

- Frequency conversion: used when the DS and US interfaces operate with two different clocks
which are synchronous but have different frequencies.

- Flit upsizing/downsizing: used when the flit sizes on the DS and US sides are different.

- Asynchronous clocks adaptation: used when the DS and US interfaces operate with two different
clocks which are asynchronous. The two clocks may or may not have the same frequency.

- Store&Forward: used to store complete packets within the AL before sending them to the
downstream component.

Complex configurations can be generated that combine several of these functions. For example, the same
AL may implement frequency conversion, flit upsizing and Store&Forward

Like the other STNoC components, the AL supports the two Virtual Networks.

9.4 Modeling of the STNoC protocol with SVA properties

There are essentially three parts in the STNoC protocol:

- The composition rules that specify the structure of a correct packet. The first flits of a packet
convey packet routing and QoS/BE service information, and the following flits are either payload
flits or ARM AMBA interconnect request/response flits.

- The sideband signals that are associated to flits. For example, a 3-bit signal indicates whether the
flit that is present on the physical link is the first flit of a packet, an intermediate flit, or the last
flit of a packet.

- The credit based control flow that ensures that an upstream component (router, AL, NI) only
sends flits to a downstream component when it is ready to accept them, i.e. when it has space
available for them in its input buffer.
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A set of SVA properties will be developed to model the communication protocol between an US
component and a DS component over the physical link that connects them. This methodology used here
can be easily exported to other on-chip and off-chip communication infrastructures

These properties will be parameterized with the iNoC platform parameters that control the generation of
STNoC components. Examples of parameters include size of the flit, length of the header, number of byte
enable bits within a payload flit, presence/absence of optional sideband signals, etc. Because properties
use the same parameters as the iNoC platform, a protocol checker will be readily available every time
STNoC components are generated.

Then some RTL code has to be written to keep track of the number of flits that the US component sends
to the DS component and of the number of credits that the DS component sends to the US component.

Properties will make use of this RTL code to check that no overflow of the input buffer of the DS
component can occur and that the valid/credit round trip delay is always within range. This is very
important to insure that the protocol timing used to compute the WCET is the one that we find in the real
implementation.
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10 Fault injection on Hardware Emulation Flow for DREAMS chip

Hardware emulation is the next step after simulation. Without emulation, there is no way from the
simulation point of view to run concurrently Hardware and Software. Hardware emulation is the only
technology enabling to run applications in an acceptable time. Today there are two different technologies
called FPGA-based emulator and emulators based on custom silicon. In the first class, the core element is
a custom FGPA designed for emulation applications, while the second class, the core element is an array
of simple Boolean processors that execute a design data structure stored in large memories. Regarding
the underline emulation technology used we have developed a framework to extend the current
hardware emulation flow toward the fault injection support. Faultinjection is important to evaluating the
dependability (the study of failures and errors) of a System on Chip. The dependability of a system is the
study the detection and isolation of failures and errors as well as the reconfiguration and recovery
capabilities.

Often during the design phase the dependability of SoC is evaluated using simulation based fault injection
which assumes that errors or failures occurs according a predetermined statistical distribution. The main
drawback is the difficulty to provide accurate input parameters that can reflect the reality especially in
the case of Mixed critical system where the timing is critical. On the other side, testing a prototype will
allow us to evaluate the system without any assumption yielding towards more accurate results. In fact in
prototype based fault injection methodology faults are injects using random inputs enabling a better
understanding of the effectiveness of fault tolerance mechanisms as well as concrete number of the
coverage related to error detection and recovery mechanisms. Last but not least, implementing the fault
injection using emulation it is possible to speed up and cover the huge number of faults that we need to
be checked.

The injection of Faults can be done at hardware level and /or software level. In the first case we consider
logical or electrical faults while in the second case we consider code or data corruption. Using the
emulation based fault injection is a step further in this direction since instead to consider a prototype we
consider a fully operational SoC therefore fault injection provides information about the real-life failures.
Injecting random fault faults while running real software provides a way to validate the SoC against the
actual errors and failures. However the only blocking point using emulation based fault injection is the
amount of software/workloads that we are able to run.

10.1The Fault Model

In this section we describe a new methodology to validate the functionalities and the robustness against
soft errors of a DREAMS Chip instances. As described in [7] register-transfer level (RTL) is a design
abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between
hardware registers, and the logical operations performed on those signals. Register-transfer-level
abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level
representations of a circuit, from which a lower-level representations and ultimately actual wiring can be
generated. Design at the RTL level is typical practice in modern digital design. Considering the amount of
details, RTL simulations are very slow implying the impossibility to simulate chip instances such as
DREAMS ones. In order to solve this problem emulation has been introduced enabling the complete
verification of the system. Testing of digital circuits has traditionally been done using fault models. There
are several fault models however in this chapter we consider only the following models:

e SEU: Single Event Upset
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0 flip the value of a flip-flop (0—1, 1—0)

0 value remain corrupted until next write in register
e STUCK-AT 0/1 (STK)

O stuck the value of a flip-flop to 0/1 permanently
e MBU: Multiple Bit Upset

= flip the value of several (1—n) flip-flop
= similar behavior to SEU for each individual corrupted flip-flop
=  MCU: Multiple Cell Upset
= flip content of 1 to 6 memory cells according to the content stored in adjacent cells
= value in cells remains corrupted until next write in memory cell

= simulate physical propagation of error

10.2 The fault injection DREAMS Emulation Platform

As mentioned, Soft errors, also referred to as Single-Event Upsets (SEUs), are transient faults caused by
various types of radiation and interferences. Neutrons originated by cosmic rays, alpha particles
originated by the natural emission of the molding composing the packages of electronic devices, electro-
magnetic interference and electrical noise can abruptly flip the stored state of a system and cause a wrong
functionality. This liability is becoming more and more probable with the technology scaling and micro
architectural trends. This creates system reliability concerns, especially for chips used in Mixed Criticality
Systems such as automotive, healthcare, networking industries, and generally on electronics systems
where functional safety is a requirement. The figure below show a generic Fault injection environment
which typically consists of the DUT (aka SoC) plus a fault injection library, a workload generator, workload
library , controller, monitor, data collector and data analyzer. The fault injection injects faults into the
emulated SoC and executes the software from the workload generator (baseline software with
applications). The monitor tracks the execution while the data collector tracks data at runtime. The data
analyzer performs the data analysis. The controller is a software that run on a separate computer and
control the overall framework, for this reason is often referred as software controller or software host
controller

/ Controller \

—_—— e ‘
Libra Library ‘
Fault Workload == Data Collector
Injector Generator |

\

Figure 61 Fault injection Framework
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The fault injection emulation framework developed in DREAMS is composed of several DREAMS hardware
blocks (synthesized on the hardware emulator platform) and Fault injection environment that runs on a
host platform which allows for greater flexibility and portability.

The Hardware emulation platform is based on Mentor Veloce technology which accelerates block and full
SoC RTL simulations during all phases of the design process. Veloce2 enables pre-silicon testing and debug
at hardware speeds, using real-world data, while both hardware and software designs are still fluid the
key features are

e Scalable verification platforms with capacities from 16 million to 2 billion gates
e Common configuration and debug software across the Veloce family

e Simulator-like debug environment

e 100% internal DUT visibility

o Network accessible, multi-user systems.

The technology is based on custom silicon using a highly optimized SoC chip technology. The Veloce SoC,
while FPGA-like in its computation resources, has a different kind of network for interconnecting the
computation resources that is optimized specifically for faster compile time. The constraint in designing
programmable logic core is not to build the most optimized commercial FPGA, but to optimize the logic
for emulation applications using a distinctive interconnect network. Veloce SoC supports a capability to
independently compile the logic part of the design from the communication part; these are unique steps
that use distinct, system-level resources for predictable compiles.

Using the veloce emulators the synthetized DREAMS Hardware blocks are enhanced with so called flip-
flop saboteurs. These flip-flops provide the injection method of the faults. For examples, each register in
the DUT is enhanced with extra logic (called flip-flop saboteurs)) that emulates a particular fault model
by changing the flip flop value. The flip flop saboteurs are used to emulate the different fault models
previously described. The flip-flop saboteurs introduce faults into the DUT and they are controlled by the
software host controller. The software controller controls the different design-under-test instances and
receive/send fault data/fault results to the software host controller through the so called SCEMI-API
interface. Thanks to SCEMI interface, the software controller can be executed in a separate computer.

The SCEMI-API interface allows system co-emulation between an untimed software test bench linked to
a design-under-test (DUT) which is for example mapped into an emulation platform through some
communication channels as shown in Figure 62. In addition, it enables an easy integration of new and
heterogeneous hardware emulator technology that supports this API. Currently, Cadence Palladium, EVE
Zebu and Mentor Veloce are seamlessly integrated in the platform.
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Figure 62 SCEMI API
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In order to speed up the fault injections coverage an extra hardware controller is added to the DUT as
shown in Figure 63. This hardware component, still controlled by the software controller enable to runin
parallel different scenario of fault injections reducing the time to reach the target level of fault coverage.
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Figure 63 Emulation Platform

In fact, the hardware control block enables to handle multiple parallel instances of the same DUT (SOC).
It continuously monitors the state of the different instances of the DUT and starts a new fault injection as
soon as a previous one has completed. The software controller is multithreaded and is able to control
several hardware emulators in parallel. An example of DUT is the architecture of STNoC defined in
DREAMS for the harmonized platform. Using the Hardware controller is possible to run in parallel different
fault injection instances testing different fault models. For instance, we can think to have two instance of
the DUT in which we inject faults to the request network (Instance 1) and response network (instance 2)
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Figure 64 STNOC DREAMS instance
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The emulation based fault injection framework is well suited for system such as the mixed critical ones
that require high time resolution.
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