

Distributed Real-time Architecture for
Mixed Criticality Systems

Prototype implementation of simulation
framework for DREAMS architecture

D5.2.2

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date 2015-11-30 Deliverable No. 5.2.2

Contact Person Mohammed Abuteir Organisation USIEGEN

Phone +49 271 740 2546 E-Mail
mohammed.abuteir@uni-
siegen.de

Contributors

Name Partner

Mohammed Abuteir USIEGEN

Zaher Owda USIEGEN

Hamidreza Ahmadian USIEGEN

Marcello COPPOLA ST

Jörn Migge RTAW

Tiziana Mastroti RTAW

Lionel Havet RTAW

Manuel Muñoz FENTISS

Javier Coronel FENTISS

Miltos Grammatikakis TEI

Simon Barner FORTISS

Table of Contents

Contributors .. 2

Executive Summary ... 6

1 Introduction ... 7

1.1 Relationship to other DREAMS Deliverables ... 7

1.2 Positioning of the Deliverable in the Project ... 7

1.3 Structure of the deliverable .. 7

2 System Model of the Virtual Platform ... 9

3 Implementation of Simulation Building Blocks for Virtual Platform ... 11

3.1 Implementation of the Application Core .. 11

3.2 Implementation of the Simulated LRS... 11

3.3 Implementation of the GEM5 STNoC Instance ... 12

3.4 Implementation of the Simulated Memory Gateway ... 13

3.5 Implementation of the Simulated Gateway .. 14

3.5.1 Simulation Queue Elements .. 15

3.5.2 Bridge Layer ... 16

3.5.3 Serialization Layer.. 16

3.5.4 Local Controller ... 16

4 Implementation of Simulation Building Blocks for Execution Environment of Virtual Platform .. 18

4.1 Implementation of the Simulated Hardware Components. .. 18

4.1.1 Initial Platform Configuration .. 19

4.1.2 Initial Execution Control. ... 20

4.2 Simulation of the Software components: DRAL and Partitions. ... 20

5 Implementation of Coordination Components for Simulation Tools .. 21

5.1 Co-simulation of OPNET & GEM5 .. 21

5.1.1 Co-simulation Architecture ... 21

5.1.2 Co-simulation Coordination .. 23

5.1.3 Co-simulation Coordination at Chip Level ... 25

5.1.4 Co-simulation Coordination at Cluster Level ... 27

5.2 Co-simulation of OVPSIM & GEM5 .. 29

5.2.1 Co-simulation Coordination at Gem5 level ... 29

5.2.2 Co-simulation Coordination at OVPSim/Hypervisor level ... 30

5.2.3 GEM5 OVPSim Message definition .. 33

5.2.4 OVPSim Platform Validation .. 34

6 Implementation of Model-Driven Configuration of Simulation .. 35

6.1 Configuration example: on-chip/off-chip communication .. 35

6.2 Configuration Tools for the Cluster Level .. 39

6.2.1 Specification of configuration file formats with examples.. 39

6.2.2 DREAMS meta-model correspondences ... 43

6.3 Configuration Tools for the Chip Level .. 49

6.3.1 Specification of configuration file formats .. 49

6.3.2 DREAMS meta-model correspondences ... 56

6.4 Configuration Tools for the Execution Level ... 65

6.4.1 Xtratum .. 65

7 Analysis of Simulation Traces .. 66

7.1 Trace files... 66

7.1.1 Off-chip network related events ... 66

7.1.2 On-chip network related events .. 68

7.2 Import of DREAMS System description ... 71

7.3 Import of virtual platform traces... 74

7.4 Visualization of delays synthesized from the traces ... 76

7.4.1 Delay tables ... 76

7.4.2 Delay histograms ... 78

7.4.3 Delay graphs .. 80

7.4.4 Gantt charts ... 81

8 Formal Verification Framework ... 85

8.1 Formal Verification Methodology ... 85

8.2 Implementation of the Formal Verification Methodology .. 85

8.2.1 DS Monitor: ... 87

8.2.2 US Monitor: ... 87

8.2.3 AL scoreboard: ... 88

8.3 Result ... 91

8.3.1 Compute farm and formal tool licenses .. 91

8.3.2 Proof engines ... 91

8.3.3 Run times ... 91

8.3.4 Code coverage results ... 93

8.3.5 Conclusion ... 94

9 Bibliography ... 95

Table of Figures

Figure 1: Simulation Model of Virtual Platform .. 9

Figure 2 Simulated Network-on-Chip .. 12

Figure 3 Functional Architecture of the LRS .. 12

Figure 4: Gateway simulation Building Block .. 15

Figure 5: On/Off--chip Gateway Class Diagram ... 17

Figure 6: Simulated Platform Initial Configuration.. 19

Figure 7: Initial Configuration Execution Control Flow Diagram. .. 20

Figure 8: On-chip/ off-chip Co-simulation framework .. 21

Figure 9: State Machine of the Local Controller.. 23

Figure 10: Local Controller Building Blocks in Gem5 ... 25

Figure 11: Local Controller Building Blocks for OPNET .. 27

Figure 12: OVPSim/Gem5 co-simulation state machine ... 29

Figure 13: Integration OVPSim Platform with GEM5. ... 31

Figure 14: Modules involved in the integration of simulators. ... 32

Figure 15: Execution Control Flow Diagram. ... 33

Figure 16: Inputs and outputs of the model to text configuration file generator 35

Figure 17: Schematic overview.. 36

Figure 18: Illustration of off-chip network related events to be traced ... 66

Figure 19: Illustration of on-chip network related events to be traced .. 69

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 6 of 95

Executive Summary

This deliverable describes the implementation of the DREAMS virtual platform, a simulation
framework for the DREAMS architecture. The virtual platform consists of simulation building
blocks for cluster- and chip level, implemented in accordance with the descriptions provided
in the DREAMS deliverables D5.2.1 Specification of simulation framework and D1.2.1 DREAMS
architectural style.

Configuration tools are implemented for the virtual platform allowing automatic creation of
simulator configuration files from a given system description in order to avoid error-prone
manual editing. Dedicated tools furthermore allow the visualization of simulation traces and
delay statistics.

Furthermore, the development of a formal verification methodology is presented. The formal
verification is used to validate the hardware components implemented WP2. This formal
verification is focusing the STNoC and has turned out to be an effective approach for the
verification of a given STNoC structure.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 7 of 95

1 Introduction

This deliverable is dedicated to the implementation of the simulation building blocks of the
DREAMS virtual platform. Different simulation building blocks are implemented to comply
with the architectural style. The integration of these blocks induces the integration of
different simulation tools to ensure the efficient transfer of data and control between co-
running simulations.

In order to seamlessly integrate the virtual platform into the DREAMS tool chain, a model-
driven configuration file generator is implemented. Its goal is the automatic creation of
simulator configuration files from a given system description in order to avoid error-prone
manual editing. Furthermore, to ease the analysis of simulation results, high-level properties
such as end-to-end delays are synthesized out of simulation traces.

Furthermore, the implementation of a formal verification framework for protocol verification
via a process algebra language and a modelling and a model checking tool for verification of
temporal logic properties of the STNoC is presented.

1.1 Relationship to other DREAMS Deliverables

The architectural style document D1.2.1 and the specification of the simulation framework
document D5.2.1 serve as primary source of input for the prototype implementation of the
simulation framework for the DREAMS architecture.

The meta-model (Tasks T1.4 &T 1.6 of WP1) serves as main input for the model-driven
configuration of the simulation building blocks.

The formal verification framework methodology is applied to verify the STNoC hardware
components implemented within WP2.

1.2 Positioning of the Deliverable in the Project

The goal of task T5.2 - Simulation, verification and fault-injection framework - is to provide a
framework for simulating and verifying the behavior of a mixed-criticality system based on
the DREAMS architecture. To achieve this goal, the task T5.2 is divided into three deliverables:
D5.2.1, D5.2.2 and D5.2.3.

 D5.2.1 Specification of simulation framework

 D5.2.2 Prototype implementation of simulation framework for DREAMS architecture

 D5.2.3 Fault injection framework

This document is the second deliverable of the WP5 task T5.2. The dissemination level of this
deliverable is public (PU) i.e. once approved by the European Commission (EC), it will be freely
available for download through the DREAMS project website (http://dreams-project.eu).

1.3 Structure of the deliverable

The remainder of this deliverable is structured into three main parts dedicated to the virtual
platform (sections 2, 3, 4, 5), the configuration tools and trace (sections 6, 7) and the
validation and formal verification framework (section 8)

http://dreams-project.eu/

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 8 of 95

The system model of the virtual platform is presented in section 2. The implementation
details for the on chip simulation DREAMS chip as well as Dreams gateway are explained in
section 3. Section 4 describes the implementation of the simulation environment of the
hypervisor and section 5 details the integration of the different simulation tools.

Section 6 covers the detailed specification of the virtual platform configuration file generator
as well as the mapping between the DREAMS meta-model entities and configuration file
entities. Section 7 describes the functionalities implemented for the visualization of
simulation traces and the delay statistics derived from the traces for verification purposes.

Finally, section 8 provides the description of a formal verification framework for DREAMS,
where a new methodology to verify the robustness against SEUs of a DREAMS Chip instance
is introduced.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 9 of 95

2 System Model of the Virtual Platform

The simulation model of the virtual platform as depicted in Figure Figure 1 consists of a mixed
criticality multi-core Network on a chip (NoC), Time Triggered Ethernet (TTEthernet) end-
systems and TTEthernet switches. The mixed criticality multi-core NoC is implemented using
the Gem5 simulation tool, while the TTEthernet system is implemented on basis of the OPNET
simulation tool.

Therefore, the integration of these simulation tools requires the presence of communication
and coordination interfaces. Furthermore, the coordination of these simulation tools requires
the synchronization of the simulation steps since the simulation step on one simulation tool
may depend on the result of the other simulation tool.

Multi-Core Chip

Garnet NOC

Off/On-chip
Gateway

Tile

P
a
rt

it
io

n

P
a
rt

it
io

n

LRS

NI

Tile

P
a
rt

it
io

n

P
a
rt

it
io

n

LRS

NI

Tile

P
a
rt

it
io

n

P
a
rt

it
io

n
LRS

NINI

Gem5 Simulation ToolOPNET Simulation Tool

End-
Syste

m

End-
Syste

m

End-
Syste

m

End-
Syste

m

End-
Syste

m

End-
Syste

m

End-
Syste

m

Time Triggered Ethernet

End-
Syste

m

Time
Triggere
d Switch

Gem5 & OPNET Co-simulation

Figure 1: Simulation Model of Virtual Platform

In our system model, we distinguish three types of criticality according to traffic types:

 Time-triggered for periodic messages: They are temporally defined by a period and
phase with respect to a global time base and they have highest priority.

 Rate-constrained for sporadic messages: Sporadic messages represent rate-
constrained communication with minimum interarrival times between successive
message instances.

 Best-effort for aperiodic messages: They have no timing constraints on successive
message instances and no guarantees with respect to the delivery and the incurred
delays and they have the lowest priority.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 10 of 95

A description of the simulation environment for the mixed criticality multi-core NoC and
TTEthernet system is provided in the following chapters, including a description of the
integration of the Gem5 and OPNET simulation tools.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 11 of 95

3 Implementation of Simulation Building Blocks for Virtual
Platform

Each node is a multi-core chip containing tiles that are interconnected by a NoC. The tile
consists of one or several partitions where each partition executes the application tasks, a
Local Resource Scheduler, and a network interface. According to application and architecture
requirements, the NoC has a corresponding topology for interconnecting the tiles and the on-
chip routers (e.g., mesh, torus, folded torus, hypercube, octagon).

The LRS is responsible for providing the timing guarantees (e.g., bounded latency and jitter,
guaranteed bandwidth) and the integrity of messages sent by other tiles using the time and
space partitioning.

Each multi-core NoC has an on-chip/off-chip gateway. The on-chip/ off-chip gateways are
used to establish the end-to-end communication over heterogeneous mixed-criticality
networks. The connection between off-chip and on-chip networks is established through
gateways. An on-chip/off-chip gateway is responsible for the redirection of messages
between the NoC and the off-chip communication network. Additionally, the on-chip/off-chip
gateway provides a solution for mixed-criticality systems with different timing models, fault
isolation and real-time guarantees.

Both the LRS and gateway components are integrated into a NoC model, represented by the
GEM5 STNoC model. The LRS is realized as a time-triggered extension layer on top of the on-
chip network interface, while the gateway is realized as a tile connected to the others tiles
through the NoC. The NoC simulation model implements a commercial cycle-approximate
STNoC instance on top of the fixed pipeline GARNET interconnection network which allows a
configurable network topology. GEM5 allows to configure different connected tiles (e.g., CPU,
memory controller, L2 cache controller, etc.).

3.1 Implementation of the Application Core

The application running on the core is simulated using a single file emulating the message
sources and sinks. This simulation module performs two main tasks:

 At the source core, it reads the parameters given by the trace file and injects the
messages based on those parameters.

 At the destination core, it reads the messages arrived at the ports and logs the
statistics (e.g., the arrival time, the message ID, etc.).

In case of co-simulation platforms, the application core can be substituted by the local
controller which acts as an interface between two simulation environments.

3.2 Implementation of the Simulated LRS

The LRS is realized as a time-triggered extension layer for the on-chip network interface. The
LRS is located between the application core and the NI of the simulated NoC and controls the
incoming traffic of the injected messages by the application layer (see Figure 2). At the
destination side, the LRS receives the messages from the on-chip NI and stores them to be
retrieved by the cores.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 12 of 95

C
o

re
(A

p
pl

ic
a

ti
on

 L
ay

er
)

LR
S

TT
 E

xt
en

si
o

n

N
e

tw
o

rk
 I

nt
er

fa
ce

(N
o

C
 I

nt
er

fa
ce

)

Interconnection Network

LR
S

TT
 E

xten
sio

n

N
e

tw
o

rk In
te

rfa
ce

(N
o

C
 In

te
rfa

ce)

C
o

re
(A

p
plica

tion
 Layer)

Plain NoC

DREAMS NI DREAMS NI

Figure 2 Simulated Network-on-Chip

Figure 3 represents the LRS functional architecture. The LRS serves as an egress/ingress point
to/from the NoC that enhances services available at the NoC network interface by supporting
offline scheduling, routing and traffic shaping of resource requests queued at the Priority
Queues Unit (cf. DREAMS D2.1.2 and D2.1.3).

Priority Queues Serialization
Unit

Core Interface

N
et

w
o

rk
In

te
rf

ac
e

_d

C
or

e

Egress
Bridging

Unit
TT queue

RC Priority#1

RC Priority#2

BE queue

RC Priority#3

Ingress Bridging Unit

ENQ

TT

TT

RC1

RC2

RC2

RC3

BE

BE

ENQ

ENQ

DEQ

ENQ

Figure 3 Functional Architecture of the LRS

As shown in Figure 3, the LRS is composed of the Core Interface, Egress Bridging Unit (EBU),
the Priority Queues Unit, the Serialization Unit (SU) and the Ingress Bridging Unit (IBU).

The Priority Queues Unit provides an interface between the EBU and the SU, while the Core
Interface establishes a management and configuration interface that handles message access
control between the cores and the bridging units (i.e., EBU and IBU layers). The egress
bridging unit (EBU) ensures timely dequeuing of TT ports, dequeuing of RC ports only when
the pre-specified minimum inter-arrival time (MINT) is elapsed, and dequeuing of BE ports
only if there is enough bandwidth left over by other two types of messages. Before enqueuing
the TT and RC messages into the Priority Queues Unit, the EBU retrieves the type and
destination of the message from the configuration parameters (e.g. period, phase, MINT) and
embeds them into the message.

The LRS injects the messages into the NoC using the NIs. The connection between the LRS and
the NI is done by a FIFO.

3.3 Implementation of the GEM5 STNoC Instance

The Gem5 STNoC backbone model is a wormhole network with credit-based link level flow
control which represents an cycle-approximate instance of the commercial STNoC network-
on-chip. The model extends the 5-stage Garnet Fixed Pipeline Model provided by the Gem5
simulator (see deliverables D5.2.1 and especially D2.1.1). In fact, most of the Garnet network

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 13 of 95

interface, router and link data structures have been modified, as described in detail in
deliverable 2.1.1.

More specifically, in relation to the Garnet router, we have reduced pipeline depth to match
an instance of the STNoC router architecture which processes a packet in two clock cycles
(instances with cycle delays of one or zero cycles have not been modeled). In this instance,
one cycle is spent for input buffering and route computation stages (Buffer Write and Route
Compute, called IB+RC) and one more cycle is spent to perform all four other stages in Garnet:
virtual channel arbitration, switch allocation, switch traversal and link traversal
(VA+SA+ST+LT). More specifically, in our implementation we have encapsulated the Switch
Allocator (stage 3 in Figure 6) within the VC Allocator (stage2). For this reason, changes have
been made to the event scheduling infrastructure of all Gem5 router components (as outlined
in sections 2.2 and 2.3 of Deliverable 2.1.1.

The Garnet Fixed Pipeline link has been modified to match the STNoC synchronous link which
incurs zero cycles delay when “carrying” data or credit flits between two connected routers
or between router and NI (or vice-versa).

The NI is an extension of Garnet Fixed Pipeline model that connects an IP to a router. This
module

 checks the protocol buffer (CPU) for packets ready to be sent to the NoC. If the
downstream output VC associated with this packet has credits left, then

o it segments (called flitisize) any such outgoing packet into a number of flits,
o places them into an output buffer, and
o schedules the output link for the next cycle

 checks the input buffer for incoming flits to be sent to the attached IP and upon receiving
a tail flit, the incoming packet is reassembled from the flits and inserted into the protocol
buffer,

 updates credits sent by the downstream router; the credit round trip delay for the
synchronous link is 5 cycles, whereas this delay refers to the round trip router-to-router
delay for updating the credit of a departing packet.

 inserts rate control info for implementing NoC Firewall, and

 inserts QoS flags for supporting STNoC QoS technology (FBA) and memory interleaving.

3.4 Implementation of the Simulated Memory Gateway

The gem5 simulator is able to be executed in two modes, System Call emulation (SE) and Full
System (FS). In SE mode, a statically compiled binary file (no dynamic linking to other
executable files) is loaded to and the Gem5 simulator provides program execution services.
In FS mode, Gem5 can simulate a real system, including operating system (e.g. Linux and
Android) and hardware devices. System services, including shell commands, compiler and
debugging tools, are available by connecting to a simulated console via a telnet application.

Gem5 simulator provides a clear representation and methodology that provides visibility for
exploring the content of memory and register structures through full system simulation,
making it easier to evaluate NoC QoS mechanisms, such as LRS, bandwidth regulation using
MemGuard and Traffic Shaper developed in DREAMS WP2. It can furthermore be used to
consider fault diagnosis, isolation and repair techniques. Thus, during the early design stages,
i.e. far before the hardware is ready, Gem5 can be used as an alternative to support

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 14 of 95

preliminary (bare metal and linux) system driver/software development and verification in
the controlled environment of virtual hardware.

Memory and interconnect structure in Gem5 contains two kinds of memory models: Classic
and Ruby.

 The Classic memory system provides a fast and easily configurable Gem5 memory system,
however, at the cost of accuracy and flexibility. All objects inherit functions from a
common ancestor class MemObject. The classic memory model supports connections to
memory objects through ports, for example, connecting CPUs to caches, caches to busses,
and busses to devices and memories. Ports support three mechanisms for accessing data
(functional, atomic, and timing) and an appropriate interface for configuring the topology
and debugging. The classic memory model offers simulation efficiency and convenient
configuration, but also limited cache coherence support and accuracy.

 Ruby memory system sacrifices simulation speed to provide a flexible Gem5 memory and
interconnect infrastructure capable of accurately simulating a wide variety of memory
systems. It uses ports to connect to devices and message buffers to internally connect to
other Ruby objects. Its advantages are cache coherence support and model accuracy, at
the expense of simulation speed and flexibility.

With the classic memory system, Gem5 can model an ARM uni-or multi-processor running
Linux or Android in FS mode. In SE mode, statically linked (bare metal) applications are built
with ARM compilers. ARM architecture models within Gem5 support an ARMv7-a profile of
the ARM architecture with multi-processor extensions. This includes support for Thumb,
Thumb-2, VFPv3 (32 double register variant) and NEON. Optional features of the architecture
that are not currently supported are TrustZone, ThumbEE, Jazelle, Virtualization and Large
Physical Address Extensions (LPAE). Moreover, as pointed out in Deliverable D2.1.1, there is
limited, uniprocessor-only support of Ruby memory system, implying the use of co-simulation
with instruction set simulators (ISS) for cycle-accurate simulation of ARM-based multicore
systems.

We have used both memory models in simulations. For example, we have used Ruby memory
controller to examine relative performance benefits when multiple DMA initiators access
different memories and address interleaving is enabled. Ruby memory controller provides a
detailed system configuration parameter space (number of banks, number of ranks, delays,
tFAW, refresh time and other parameters), making it possible to explore in detail performance
and power tradeoffs of different NoC QoS mechanisms, especially MemGuard, at the memory
controller. In this context, TEI plans to focus on the relationship between existing STNoC QoS
and proposed MemGuard access control policies implemented at the memory controller (see
WP2, Deliverable D2.1.2).

3.5 Implementation of the Simulated Gateway

The structure of the simulation building block of the gateway is illustrated in Figure 4. The
constituting layers of the gateway are the bridge, serialization, local controller as well as
ingress, egress and VL queues.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 15 of 95

Gateway

Serialization
Layer

Bridge
layer

Serialization
Layer

Local
controll

er

Configuration Parameters

NoC
NI

Ingress Queues

Egress Queues

Sporadic Queues

Priority H

Priority L

Periodic Queue

Aperiodic Queues

VL Queues

Periodic VL buffers

V
L

1

V
L

n

Sporadic VL Queues

V
L

1

V
L

n

On-chip
Network

Off-chip
Network

Ingress Queues

Egress Queues

Sporadic Queues

Priority H

Priority L

Periodic Queue

Aperiodic Queues

Figure 4: Gateway simulation Building Block

The cache coherence protocol “Network test” (1) was extended to allow the gateway to
interact with the GARNET interconnection network. In what follows, a description of the
simulation building block of the gateway is provided.

3.5.1 Simulation Queue Elements

The gateway has three types of queues, as follows:

 Ingress queue: It consists of one FIFO queue for each network. The ingress queue that
connects the NoC interface with the bridge layer is implemented using a description
language for specifying cache coherence protocols to establish the connection
between the gateway and the GARNET interconnection network. The ingress queue
that establishes the connection to the off chip network is implemented using the
queue C++ class.

 Egress queues: They consist of one periodic egress queue, two sporadic queues and
one aperiodic egress queue. Each sporadic queue has its own priority level. The egress
queues are implemented using the queue C++ class.

 VL queues: There belong to two groups: one for the periodic messages and the other
one for the sporadic messages.

o Periodic VL buffers: Each periodic VL has one periodic VL buffer, which provides
buffer space for exactly one message. In case this buffer is full and another
message arrives with the same VLID, the newer message replaces the old one.

o Sporadic VL queues: Each sporadic VL has one queue. It is possible to store
several messages of the respective VL in this queue.

VL queues are implemented using the queue C++ class.

1 http://www.m5sim.org/Network_test

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 16 of 95

3.5.2 Bridge Layer

The bridge layer classifies the incoming message based on the message types. The periodic
and sporadic messages are stored in the corresponding VL queue. This is done by extracting
the virtual link id from the message and comparing it with virtual link id stored in the look-up
table. Aperiodic messages are stored in the aperiodic queue of the egress queues.

The bridge layer determines the point in time when the periodic message is relayed from the
periodic VL buffers to the periodic queue in the egress queues based on the time parameters
(i.e. period and phase). This ensures the deterministic communication behavior of the
periodic messages.

On the other hand, the bridge layer gurantees the minimum interarrival time between two
consecutive sporadic messages on the respective VL. The minimum interarrival time is part of
the configuration parameters for each VL. According to this guarantees, the bridge layer
controls the traffic shaping for the sporadic messages and redirects message from sporadic
VL queues to one of the sporadic egress queues according to the direction and priority
parameters.

The bridge layer is simulated as C++ objected which has multiple functions that ensure the
described functionality of the bridge layer (see Figure 5).

3.5.3 Serialization Layer

The serialization layer forwards the messages from the egress queues to the network (off-
chip or on-chip) according to the priority. The highest priority is assigned to periodic
messages, whereas aperiodic messages have the lowest priority.

In addition, the serialization layer uses either shuffling or timely blocking to resolve
contention between different traffic types. The timely block mechanism disables the sending
of other messages in the egress queues during a guarding window prior to the transmission
of a periodic message. For the shuffling mechanism, no guarding window is needed. In the
worst-case, the gateway delays a periodic message for the duration of a sporadic or aperiodic
message of maximum size.

The serialization layer is simulated as C++ objected which has multiple functions that ensure
the described functionality of the sterilization layer (see Figure 5).

3.5.4 Local Controller

The local controller is responsible for interfacing with the other simulation tools in order to
coordinate and communicate the transmission events between the different simulation tools.
Additionally, the local controller communicates with other local controllers in the other
simulation tools to synchronize the simulation steps since the simulation step on one
simulation tool may depend on the result of the other simulation tool. More details are
available in section 5.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 17 of 95

2

2

2

2

Sporadic_queue

Egress

Network interface

Serialization

-TimleyBlock(CurrentTime,NextSendingTime of periodics'Messages):
TimeOfCloseGuardingWindowsForPorts[],
TimeOfOpenGuardingWindowsForPorts[]
- SetIncomingMessageInQueue(Message)

-NextPeriodicMessage (currentTime) : NextSendingTime of periodicsMessage

-pullMessageFromEgressQueues(TimeOfCloseGuardingWindowsForPorts[],
TimeOfOpenGuardingWindowsForPorts[]) : PortID, sendingtime
-injectMessageToNetwork(portId, SendingTime)
-pullMessageFromEgressQueues(TimeOfCloseGuardingsWindowsForPorts[],
TimeOfOpenGuardingWindowsForPorts[]) : PortID, sendingtime
-injectMessageToNetwork(portId, SendingTime)

Bridge

ClassficationMessage(Message):PortID
setMessageINport(Message,PortID)
-PeriodicMessageScheduling(currentTime):
NextSendingTime of periodicsMessage,
Direction
-TrafficSchaping():
readymessagetomove[portID][Direction]
-removeMessageFromPorts(NextSendingTime
of periodicsMessage, Direction,
readymessagetomove[portID][Direction])
-errordetection(message)

Periodic_queue

+size

-insertMessage(Message)
-removeMssage(Message)

-staus of periodic queue
-staus of sporadic queues
-staus of aperiodic queue

-ingressQueue

+size

-insertMessage(Message)
-removeMssage(Message)

Aperiodic_queue

+size

-insertMessage(Message)
-removeMssage(Message)

Local Controller

2

Periodic_buffer

+size
+buffer_id

-insertMessage(Message)
-removeMssage(Message)
-send_status_free
-send_status_there_message

VL Queues

update the status()

- status of sporadic VL queues

Sporadic_queue

+size
+queue_id

-insertMessage(Message)
-removeMssage(Message)
-send_status_free
-send_status_there_message

1..*

- status of periodic VL bufferes

1..*

Ingress

Figure 5: On/Off--chip Gateway Class Diagram

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 18 of 95

4 Implementation of Simulation Building Blocks for
Execution Environment of Virtual Platform

This section describes the strategy followed when simulating the Execution Environment. This
is composed by a set of components such as Hardware components (processor core and
memory), the DREAMS virtualization layer, and the set of DREAMS partitions.

A simulator that emulates the hardware components for simulating the execution
environment is used as a basis. The software components of the execution environment (the
DREAMS virtualization layer, and the set of DREAMS partitions) are then executed by the
simulated hardware. This technique has been selected to reduce the efforts in development
and maintenance.

Software components of the execution environment do not need any modification and the
same software executed on the harmonized platform processor could be executed on the
simulated processor. This avoids additional efforts in the adaptation of the software. Also due
to this reason all the services provided by the hypervisor are available including extended
services available for DREAMS architecture.

Regarding maintenance, this way of simulation provides isolation of the simulated hardware
component and the executed software components. This entails that modifications in the
software components of the execution environment do not trigger a maintenance operation
in the simulator.

Additionally this isolates the application developer from the need of simulator internal
knowledge.

4.1 Implementation of the Simulated Hardware Components.

In order to simulate the hardware components of the execution environment (processors and
memory) OVPSim has been selected. OVPSim allows the creation of customized virtual
hardware platforms that include processor cores, busses, memory and even peripherals.
Additionally the simulator provides a huge interface that enables the access and control of
the simulated elements. That allows controlling and monitoring the execution. In deliverable
D5.2.1, sections 5.2 and 5.3 detail how a platform could be created.

OVPsim is now available on Windows and Linux, and is available for free only for non-
commercial use. Commercial users can use the free download for evaluation etc., for
commercial use, it is required to contact Imperas and obtain a license to a compatible
commercial product. Current OVP models are provided as Open Source under Apache 2.0. A
free unlimited license (academic) could be provided by Imperas for universities or academic
use. Additionally discounted price unlimited license could be obtained for government or EU
projects context.

As a first approximation, an initial version of the platform has been implemented. This version
does not develop processor interaction with external elements. This version will allow us to
validate the correct operation of the simulation of the hardware components. Additionally
could be used to help during the development and validation of the DRAL (DREAMS
Virtualization Layer), and the set of DREAMS partitions. The simulation provides a better
control about the execution.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 19 of 95

The following sections (4.1.1 and 4.1.2) described this simplified version. In a second approach
the initial platform is modified to integrate the interaction with the simulator that supports
the STNoC network. Such modifications are described in section 5.2.2.

4.1.1 Initial Platform Configuration

In a first approach PS (Processing System) is running with no interaction with PL (Programming
Logic).

In that simulated platform the Hypervisor and Partitions could be tested. For this purpose a
simplified platform has been developed.

Figure 6: Simulated Platform Initial Configuration.

As shown in the Figure 6: Simulated Platform Initial Configuration., the elements contained in
the platform are:

 ARM Cortex-A9-MPx2 Processor Model. [1]

 MMU

 SIMC

 NEON

 VFP

 Security extensions (Trust Zone)

 MPCore GIC

 Global Timer

 Private Timer / WatchDog.

 32 bit Processor Bus.

 Memory Regions:
o 256 Kb On Chip Memory mapped in 0x0000_0000-0x0003_FFFF.
o 1023Mb DDR Memory mapped in 0x0010_0000-0x3FFF_FFFF.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 20 of 95

 Virtual UART. Puts UART characters to stdout. Device mapped in 0xE000_1000,
0xE000_1FFF.

 Virtual Dummy devices. These are board devices not needed for simulation purposes.
Must be linked to the bus to avoid errors on accesses.

4.1.2 Initial Execution Control.

On the first approach platform once the initialization process is done, the execution control
performs a loop that executes, instruction by instruction, the program stored into memory.
The platform performs the following actions in each iteration of the loop:

Figure 7: Initial Configuration Execution Control Flow Diagram.

4.2 Simulation of the Software components: DRAL and Partitions.

As is explained previously, software components are not really simulated. Instead, their
execution is simulated through the virtual hardware platform.

The hypervisor including DRAL and the partitions are pieces of software. Once their sources
are build properly, a runnable image of this software is obtained. This image is downloaded
to the board and executed.

In the same way, the generated software could be downloaded to the virtual hardware
memory for execution.

In the process of developing and validating these software components, the virtual platform
could be very useful. It allows the developer to obtain controlled execution of the software,
and debug facilities like traces, memory inspection, etc.

1. The processor accesses the memory through the bus to
load (fetch) an instruction.

2. The processor executes the loaded instruction:
a) If the instruction not accesses the bus, the instruction is

executed.
b) Otherwise, if the instruction is a load or store,

processor accesses the bus and performs the operation
either on memory or on a device according the
accessed address.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 21 of 95

5 Implementation of Coordination Components for
Simulation Tools

This chapter introduces the co-simulation approaches that have been developed in order to
provide an integrated solution for the DREAMS virtual platform multiple simulators. Section
5.1 presents the co-simulation approach for the on-chip/off-chip simulators. The co-
simulation approach that combines the on-chip multicore network-on-a-chip simulation with
the Xtratum hypervisor is detailed in subsection 5.2.

5.1 Co-simulation of OPNET & GEM5

The proposed co-simulation framework (cf. Figure 8) consists of one off-chip simulation tool,
one on-chip simulation tool and two local controllers that implement a socket-based
communication between the simulation tools. The local controllers provide basic gateway
functionalities, as described later in this section.

5.1.1 Co-simulation Architecture

The discrete event on-/off-chip simulation tools simulate the communication behavior of the
on-/off-chip networks. Each simulation tool operates on a simulation model, which comprises
a network of the simulated end-systems or CPUs. Moreover, the simulation tool executes its
simulation based on its own local event calendar. The local event calendar contains the tool's
local events as well as global events that are used to synchronize the co-simulation based on
the co-simulation global calendar. The co-simulation global calendar represents the time
model of the execution order of both simulation tools. It contains events that have causal
relationship in the co-simulation. Moreover, managing and modifying the events of the local
event calendar is mandatory in the selection of the simulation tools that will be executed
based on the proposed framework.

Figure 8: On-chip/ off-chip Co-simulation framework

The local controllers of the proposed co-simulation framework provide a communication
interface from/to their networks. Furthermore, the local controllers introduce basic gateway

Control Flow

Local
Controller

Off-chip Simulation Tool

Local Event Calendar

Off-chip Network

Data Flow

Local
Controller

On-chip Simulation Tool

Local Event Calendar

On-chip Network

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 22 of 95

functionalities such as queuing and mapping of the incoming/outgoing messages. The
gateway functionalities are responsible for converting the exchanged message formats
between the simulation tools, and mapping the destination addresses of the incoming
messages to the target application. These functionalities require queuing structures that
handle the transmitted messages.

There are two types of communication messages between the simulation tools, data and
control flow messages. The data flow contains the exchanged data message between the off-
chip and on-chip networks. The control flow is used to manage the simulations' execution
based on the co-simulation global calendar.

The co-simulation of different simulation tools would create inconsistency during the
execution, in which a simulation step in one tool can depend on an incoming message from
the other simulation tool. The proposed framework uses a socket-based interleaving
approach to synchronize simulation steps and provide access for mutual modification of
simulation tools calendars as well as the realization of the data exchange between the
simulation tools. The socket-based interleaving approach means that simulation tools will run
one at a time. In other words, one simulation tool will run for a specific time, and the other
simulation tool shall suspend until it is time to run again. This decision is taken based on the
simulation events of the calendars of both simulation tools. The socket-based communication
of the co-simulation provides an abstraction from the simulation tools' location and their
hosting operating system.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 23 of 95

5.1.2 Co-simulation Coordination

In this section, the coordination of the local controllers that manage and control the data and
control flows of the co-simulation is presented. This procedure is called co-simulation
coordination. The co-simulation coordination is responsible for establishing the connection
between the simulation tools. The coordination between the simulation tools is based on a
client-server socket-based communication in order to establish and manage the
communication between the simulation tools. At the co-simulation setup, the socket
communication is initiated based on the configuration parameters of the co-simulation.

init

Idle

IF (!Interrupte flag)
 send next time event
End IF
+ receive MSG from Other LC

Stop

+ wait for an indication
if (interrupted indication)
Interrupte flag =true
end IF

Run

+schedule send event at MAX time
+run + calculate max

If MIN

MAX reached

finished

+ send ackg.

Yes

 interrupt received

+ delete the scheduled event
+send interrupted indication
+send the incoming data msg.

No

IF MAX

check recived msg.

IF update Time msg.

Receive msg. From opnet

received data msg

send msege to GW
Interrupte flag =false

Interrupte flag =false

Figure 9: State Machine of the Local Controller

The co-simulation coordination defines a local controller for each of the simulation tools. The
local controller serves as the interface between the simulation tool and the other local
controllers. It is also responsible for sending data and control messages to the other local
controllers. Control messages are used to modify the simulation calendar and its execution
based on the overall co-simulation global time to determine which simulation tool should be
executed. This decision is based on the calculation of the maximum time of next events of
both simulation tools.

Most of multi-core platforms are based on shared memory without any messages for on-chip
network simulations. In the proposed framework, message-based communication is assumed
for both on-chip and off-chip simulation levels.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 24 of 95

The following message types are used to communicate between the local controllers:

 Data message: it represents a message sent from the off-chip network to the on-chip
network or vice versa. The data message structure contains the following fields:

o Message Size: This parameter contains the message payload size.
o Creation Time: The message creation time is used for statistical purposes and

results analysis.
o Message Sequence Number: The message sequence number is used for

statistical purposes and results analysis.
o Message Deadline: The time limit of a message for the communication from

the sender to the receiver.
o Sender ID: This contains the sender ID.
o Destination ID: Declares the message destination ID.

 Control messages are defined as follows:
o Time of next event: Contains the time of the next event according to the

simulation tool's local event calendar.
o Finish acknowledgment: This event is sent to announce the successful

completion of a simulation step.
o Interrupt indication: Simulation tools are given a time interval to execute

based on the maximum next event times. This time interval may be interrupted
before the end of this interval is reached. This case generates an interrupt
indication with a time stamp of the interrupt event.

The behavior of the local controller is illustrated in the state machine in Figure 9. Let us discuss
how the co-simulation coordination control works using an example where we have the local
controllers LC_A and LC_B

Starting with the init state, the configuration parameters are initialized to establish the
socket-based connection. Let us assume that LC_A has its next event time after the next event
time of LC_B. In the idle state, each local controller sends the next event time based on its
local event calendar. By receiving the control message with the next event time, each local
controller compares the incoming next event time with its own next event time. According to
our example, LC_A has the maximum next event time. Therefore, LC_A goes into the stop
state and it suspends its execution until an acknowledgment message is received from LC_B.

Meanwhile the simulation tool of LC_B runs. There are two cases where the simulation tool
of LC_B is stopped. The first case occurs if the simulation reaches the next event time of the
other simulation tool. In this case, LC_B sends a finish acknowledgement message to LC_A.
When LC_A receives the finish acknowledgement, LC_A moves from the stop state to the idle
state. Then the whole procedure is repeated.

The second case occurs, if LC_B receives an interrupt from its simulation that requires sending
a data message to the other simulation tool. LC_B suspends its simulation tool and sends an
interrupt indication to LC_A. Then, LC_B sends the message data. When LC_A receives the
interrupt indication event message, LC_A moves from the stop state to the idle state to
receive the message data. When the message data has arrived, LC_A adds a new event in the
global event calendar of its simulation tool, and it injects the data message into the network
simulation. Then the whole procedure is repeated.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 25 of 95

5.1.3 Co-simulation Coordination at Chip Level

In this section, the implementation of the co-simulation coordination at Gem5 level and the
interactions with the OPNET simulation tool in the co-simulation coordination are described.
Moreover, the Gem5 local controller is implemented based on the state machine presented
earlier, and it is integrated with the gateway of the DREAMS virtual platform, with means that
it is taking advantages of the serialization, ingress and egress bridging layers of the gateway.
The building blocks of the Gem5 local controller are illustrated in the following figure.

Gem5 Local Controller

Frontend Backend

Conf.
Parameters

SendEvent()

ReceiveEvent()

Event Management
Unit

Local Controller Functionalities

Mapping Unit

Queues

To/From Calendar

To/From NoC NI

Socket-base
Communication

Control

Control Flow

Data Flow

New Message

Figure 10: Local Controller Building Blocks in Gem5

It is required that the control of simulation tools execution is possible by modifying the
simulation's local event calendar. In Gem5, it is possible to use Python and simulation
checkpoints for this purpose, but this method has two disadvantages; In the first place, it
would be required to define the simulation checkpoints before hand, which would make the
co-simulation process unrealistic. Secondly, modifying the Gem5 local event calendar at run-
time is not possible. Python and checkpoints do not allow access from the other simulation
tools to the Gem5 simulation. The execution of the co-simulation in the proposed framework
resolves these restrictions of Gem5 as illustrated in the following.

Based on the co-simulation model, the messages exchanged between the simulation tools are
classified into the control messages that are responsible for guaranteeing the correct
execution order of the simulation tools, and data messages that include the user information.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 26 of 95

In Gem5, the simulation events are categorized into global events that are related to the
overall simulation behavior (e.g., exit, run, checkpoint) and local events.

The Gem5 local event calendar contains two types of events queues; one main global events
queue and object queues. Each object in Gem5 has its own local event queue for its local
events. Control events of the co-simulation framework are implemented as Gem5 global
events.

The Local Controller in Gem5 consists of a frontend that is responsible for the socket-based
communication and a backend that is acting as an interface to the on-chip network. The local
controller involves basic gateway functionalities and an event management unit.

The frontend part is similar in both co-simulation local controllers. The local controller in
Gem5 is realized as a client and the local controller at the OPNET side acts as a server. The
frontend uses the socket-based configuration parameters (i.e. simulation tool ID, IP address,
port number) to setup the socket-based communication from the Gem5 side. The functions
for sending and receiving messages are defined as part of the frontend. The blocking socket-
based communication is controlled based on the execution steps. This blocking mechanism
provides the capability to suspend and resume the Gem5 simulation controlled by the
exchanged messages between the simulation tools of the co-simulation. In this way, the
Gem5 simulation tool is regularly suspended and the modification of the simulation calendar
is possible during the co-simulation.

The backend serves for the communication from one simulation tool to another one from an
implementation point of view. It implements the functionalities for handling the data and
control events using the local controller functionalities and the event management unit.

The Event Management Unit (EMU) of the local controller is responsible for managing existing
and new simulation events of the Gem5 local event calendar. This unit handles the control
events accordingly.

At the beginning of each iteration, the next execution order is determined locally. In case
Gem5 is not next in the execution order, the EMU requests to suspend the Gem5 simulation
by redirecting the control to the socket-based communication control, which will suspend the
Gem5 execution using the socket-based blocking receive function. However, if Gem5 has the
execution control, it schedules a new execution control event that will run the Gem5
simulation until the earlier determined time. Later it sends the finish acknowledgement event
message to the Mapping Unit (MU) to declare the termination of this execution iteration. The
MU forms the newly created control message and sends it to the socket-based
communication control.

If the local controller receives an interrupt indication event from Gem5, the MU analyzes the
interrupt event and queues the data message. Thereafter, the MU sends the control message
to the EMU. Correspondingly the EMU deletes the latest scheduled execution control event,
and then it forms the interrupt event including the interruption time. The MU dequeues the
data message to form the event. Last, the formed event is sent using the socket-based
communication control.

In case an interrupt is received from the other simulation tool, the MU analyzes the received
message. The MU sends the control message to the EMU, and the data message is queued by
the local controller functionalities. The EMU creates a new control event in the Gem5 local
event calendar, which will allow Gem5 to execute until the newly received time-stamp from
the other simulation tool. The queued data message is used at the resumption of the Gem5
simulation.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 27 of 95

5.1.4 Co-simulation Coordination at Cluster Level

OPNET provides an API to interact with external systems such as other simulation tools,
software programs, hardware devices or humans during simulation. The following figure
shows the principle of co-simulation in OPNET using the local controller's building blocks.

OPNET Simulation

Global Event Calendar

Off-chip
Network

 Control Unit

Simulation models

Simulation Kernel

External system
interface

Esys

module

Transmit
ter &

Receiver

Interface
Parameters queues

OPNET Flow
Control Function

Socket-based
Communication

Control

SendEvent()

ReceiveEvent()

Esys
Communication

interface

Local controller
functionalities

Local Controller

Figure 11: Local Controller Building Blocks for OPNET

This co-simulation consists of several components:

 Simulator Description File (SDF): OPNET uses the SDF configuration to define the platform,
kernel, bit-size, the list of object files to bind and libraries that are required by the local
controller during co-simulation.

 External system: In our case, it is the control unit, which represents the external code that
is co-simulated with OPNET.

 External System Definition (ESD): It defines the interfaces that allow OPNET to
communicate with an external system. These interfaces can be read or written by both
OPNET and the control unit.

 Esys module: This module allows the user's simulation model to interface with the control
unit through the external system interface.

 External Simulation Access (ESA) API package: The ESA API package contains functions that
can be used as a OPNET flow control function, for interface access and input/output. The
flow control function is used to setup the simulation time, process events and deal with
the simulation time keeping. The interface access functions are used to communicate
between internal end-systems and the co-simulation's control unit. The input/output
functions deal with reading and writing the interfaces' values defined in the ESD model
from process models during co-simulation.

The local controller in OPNET consists of the Esys module, the external system interface and
the control unit. The first step in the implementation of the local controller is the definition

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 28 of 95

of the interface between the Esys module and the control unit using the ESD. This interface is
realized by a message containing the follow information: application ID, message size,
creation time and sequence number. In the external system interface, the ESD provides
queues that can be read or written by the Esys model and the control unit.

The local controller processes the incoming message to the OPNET local controller. The local
controller uses the Esys communication interface to OPNET to send either data messages that
include the interface parameters or control messages that include the control events.

When the message contents are enqueued in the external system interface, the external
system interface creates an event in the global event calendar at the injection time. This event
interrupts the Esys module at the injected time. The Esys module reads the interface
parameters from the queues and creates the message based on these parameters. Then, the
Esys module sends the created message to the destination end-system.

Whenever the control message arrives to the external system interface, the flow control
function analyses the message. The control message is either an execute until, stop, suspend
or next time event request. The flow control function creates an event in the global event
calendar based on the incoming message or sends the information to the control unit about
the next event time.

When a message from the off-chip network arrives at the Esys module, the Esys module
extracts the interface parameters from the message and puts them in the queues. The
external system interface stops the simulation and informs the control unit that there is a
new data message.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 29 of 95

5.2 Co-simulation of OVPSIM & GEM5

The overall approach of the Gem5/OVPSim co-simulation is based on the interleaving tick-
based simulation presented in D5.2.1. In this deliverable, the low-level building blocks
description of the co-simulation is presented. The duration of the defined tick is defined by
the OVPSim-MIPS execution since its execution cycles are longer than the once required by
the Gem5. For this co-simulation setup, the Gem5 on-chip simulator will be the server of the
blocking socket-based co-simulation. The initialization time of each of the simulators differ,
therefore the simulators have to exchange their readiness for co-simulation as soon as the
initial phase is done. The server (in our case, Gem5) is the one responsible for starting the co-
simulation.

init

Wait

Run

+ Schedule send event at MIPS
+ Run until MIPS
+ Process received messages
+ Enqueue msgs for OVPSim
+ Queue messages to-be-sent

Finished

+ Send ackg. + enqueued msgs

MIPS reached

Initiate simulators

Ackg.
received

Figure 12: OVPSim/Gem5 co-simulation state machine

The concept of the co-simulation here is similar to the generic co-simulation architecture
discussed earlier (cf. subsection5.1.1), so once would expect two local controllers, one for
each of the simulator tools as discussed in the next two subsections.

5.2.1 Co-simulation Coordination at Gem5 level

The local controller required for Gem5 in this co-simulation has the same structure as
presented earlier. The only difference is the integration of the local controller directly to the
network interface and it is talking directly to the LRS, which means that the OVPSim simulator
is agnostic about the on-chip network and its virtual links. Therefore, a static configuration
input is required to provide the ports mapping to the mapping unit of the local controller. The
following configuration table is an example of such ports mapping configurations.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 30 of 95

Table 1: Ports mapping configuration table

Port ID Trafic Type Memory Size Virtual Link ID

1 TT 0x0000000 64B 1

2 RC 0x0001000 2KB 1

.. …

N-1 RC 0x001D000 3KB 20

N RC 0x0020000 1KB 20

There are two types of control messages used in this co-simulation:

 Run: This event is sent once by each of the simulators after the finishing of their
initialization phase to indicate that they are ready for to start the co-simulation.

 Finish acknowledgment: This event is sent to announce the successful completion of
a simulation step.

Data messages exchanged between the co-simulators are mainly the payload of the message,
and the local controller of the Gem5 simulator is responsible of the correct mapping and
addressing of the messages. This is achieved with the help of the LRS provided in the network
interface (cf. Figure 13). The detailed content of the messages is explained in section 5.2.3.

Simulators will run one per time while the other simulator will be stopped and waiting for the
finish acknowledgment of the running simulator in addition to the buffered messages. The
execution flow from Gem5 point of view is shown in Figure 12. Starting with the initiation face,
the Gem5 simulator will wait until it receives the acknowledgement control message and the
enqueued data messages of the OPVSim previous execution. In case there are data messages
that were addressed to the Gem5 on-chip simulation, Gem5 starts its run state with
scheduling a send event at the next MIPS using the events management unit, and executes
until this MIPS. Meanwhile, it starts processing the buffered data messages by sending them
to the corresponding ports with the help of the local controller’s mapping unit. Moreover,
messages distanced to the hypervisor will be buffered and sent at the end of the execution
tick of the Gem5 simulator.

5.2.2 Co-simulation Coordination at OVPSim/Hypervisor level

Based on the first approach described in section 4.1, where the hypervisor is running over the
simulated PS without PL, a new platform is implemented. The extension allows the interaction
with the PL where is placed the STNoC in the real HP. To perform the emulation of this
interaction the OVPSim simulator and GEM5 need to be integrated. Some elements therefore
need to be added to the initial proposal as shown in the Figure 13:

 Programming Logic Virtual Device

 OVPSim Local Controller
 Execution Control Module (Adaptation)

These elements and their internal modules are depicted in the Figure 14 and described in the
following subsections.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 31 of 95

Figure 13: Integration OVPSim Platform with GEM5.

5.2.2.1 Programming Logic Virtual Device

The PLVD (Programming Logic Virtual Device) is a software module placed in the OVPSim
platform and connected to the BUS in the memory range corresponding the PL [0x4000_0000-
0xBFFF_FFFF]. Each time the processor accesses the bus in this address range, the device is
accessed and take the simulation control.

The module contains 3 different components:

 MEMORY areas. These correspond to the memory interface available in the NIC
(Network Interface Controller) of the LRS simulated by GEM5.

 MEMORY CONTROLLER is in charge to write or read the memory attending the bus
interface. Moreover modifies the memory on DATA MANAGER request. And
additionally alerts the DATA MANAGER when the processor modifies memory.

 DATA MANAGER is responsible to interact with the OLC (OVPSim Local Controller). The
component controls the data modification between MEMORY CONTROLLER and OLC.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 32 of 95

Figure 14: Modules involved in the integration of simulators.

5.2.2.2 OVPSim Local Controller

The OLC (OVPSim Local Controller) is a software module placed in the OVPSim platform. OLC
is in charge to coordinate the simulators OVPSim and GEM5. As shown in Figure 14 the
module has some internal components and interfaces that interact between the GEM5
simulator and the OVPSim modules.

 COMMUNICATIONS MODULE manages the TCP-IP Network Interface. Is in charge of
configuring, write and read from the communication channels (TCP-IP sockets). The
communication is based on string messages passing.

 MESSAGE ANALYSER receives and parses the messages providing from the
COMMUNICATIONS MODULE. Depending on the type of the message: DATA or CTRL.
Interacts with the PLVD (Programming Logic Virtual Device) or the EVENT MANAGER
respectively. The detailed content of the messages is explained in section 5.2.3

 EVENT MANAGER Receives 3 different types of events:
o New data event from the PLVD. In this case generate a DATA Message and queue

in the COMMUNICATIONS MODULE.
o Run event from the MESSAGE ANALYSER. The ECM (Execution Control Module

(Adaptation)) must be requested to run a new instruction (or run for the
equivalent amount of time).

o Finish event from the ECM. The component proceeds to indicate to the
COMMUNICATIONS MODULE that a CTRL message must be sent. If any DATA
Message is queued both messages could be send together.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 33 of 95

5.2.2.3 Execution Control Module (Adaptation)

The ECM (Execution Control Module) has been adapted to allow new synchronization
features. A new interface with the OLC (OVPSim Local Controller) module is implemented.
Through this interface the module receive commands to execute a new instruction in the
processor (or run for equivalent time). When instruction is completely executed OLC is alerted
through this interface to send the corresponding message to GEM5.

With these considerations, the execution flow loop explained in section 4.1.2 has been
modified as follows:

Figure 15: Execution Control Flow Diagram.

5.2.3 GEM5 OVPSim Message definition

The communication between both simulators is based on TCP-IP. Gem5 acts as server and is
in charge of start the communication. Once the connection is stabilized, the communication
is based on string message passing. The main characteristics of the messages are:

 Messages are Strings that are separated with “$” in case of multiple fields.

 Messages start and end with “$”.

 The first element in the message is the type:
o DATA.
o RUN (Control).
o FINISH (Control).

Depending on the Type messages contain the following elements:

5.2.3.1 DATA Message

Data messages contains pairs of values separated by “|”. Each of the pairs contains an address
and its value in hexadecimal separated by “:”. As example in the scenario where:

 The address 0x4000_0000 is written with the value 0x0000_0001.

1. Wait for a Run command from OLC.
2. The processor accesses the memory through the bus to

load an instruction.
3. The processor executes the loaded instruction.
4. Inform the OLC module.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 34 of 95

 The address 0x4000_0004 is written with the value 0x0000_0010.

The corresponding message must be:

$ DATA $ 0x4000_0000 : 0x0000_0001 | 0x4000_0004 : 0x0000_0010 $

5.2.3.2 RUN Message

Run messages represent the command to advance in the simulation. Each message contains
the global simulation time in nanoseconds. This message is always sent from GEM5 to
OVPSim. The time is included in order to maintain a global synchronised the global time.

The resulting message if GEM5 send a RUN command to OVPSIM where the end global time
must be 1.254.132us:

$ RUN $ 1254132 $

Additionally a run message could contain an embedded DATA message if required.

The resulting message assuming the previous scenario:

$ RU
N

$ 125413
2

$ DAT
A

$ 0x4000_000
0

: 0x0000_000
1

| 0x4000_000
4

: 0x0000_001
0

$

5.2.3.3 Finish Message

Finish Messages are sent from OVPSim to GEM5 each time the first is ready to execute a new
command.

The basic message only contains the type as follow:

$ FINISH $

Additionally a finish message could contain an embedded DATA message if required:

$ FINISH $ DATA $ 0x4000_0000 : 0x0000_0001 $

5.2.4 OVPSim Platform Validation

To validate the interaction between GEM5 and OVPSim a module that emulates the interface
GEM5 Local Controller is developed. Also, an application that accesses areas corresponding
to the memory of the ports is implemented in a partition.

The application writes a value in a memory address (addressX) then performs the reading in
several related memory positions (addressX and addressX+Y).

The module follows the flow shown in Figure 15, generating the needed messages and parsing
the received ones. When a message for the modification of a memory location (addressX) is
received, the memory location (addressX + Y) is changed into this value by generating the
corresponding message. Thus, when the application performs the reading in both memory
locations, the read values should match.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 35 of 95

6 Implementation of Model-Driven Configuration of
Simulation

This section provides the detailed specification of the virtual platform configuration file
generator. As recalled in Figure 16, its purpose is the automatic creation of the set of
simulator configurations files that correspond to a given DREAMS system model, so as to
avoid errors that would easily be introduced by a manual configuration and to increase this
way the confidence in the outcomes of a simulation, which are used for validation purposes.
The virtual platform configuration file generator is implemented with the help of the
configuration framework provided by WP4 / T4.2.

Figure 16: Inputs and outputs of the model to text configuration file generator

We start by describing in Section 6.1 an example system, which serves in the following section
as basis for concrete configuration files examples. Then follows the detailed specification,
which is divided into three domains: cluster level (Section 6.2), chip level (Section 6.3) and
execution level (Section6.3).

6.1 Configuration example: on-chip/off-chip communication

In this section, we describe an example scenario for the virtual-platform, which takes into
account the following limitations of the virtual platform:

 At most one node may contain a NOC.

 No intra-tile communication.

 The simulated on-chip communication does not support multi-cast.

 The same txWindow is used for all ports through which a TT frame is emitted in a off-
chip network router

The following figure gives an overview, where we suppose that each tile has exactly one
processor core:

Generation
Templates

DREAMS model

Configuration Files

DREAMS “Model
to Text”

Framework
Framework

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 36 of 95

Figure 17: Schematic overview

Since partition ports can either receive or send exactly one virtual link and because the
depicted arrows represent the paths of more than one message, the ports shown in Figure 17
correspond actually to several ports in the actual configuration.

The messages exchanged between applications are shown in the following table:

Messages

Name Sender Receiver(s)

Msg_1_TT_NOC Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-3 Node1/Tile 1-2/Partition 1-2-1/Port 1-2-1

Msg_1_TT Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-1 Node2/Tile 2-1/Partition 2-1-1/Port 2-1-1

Node3/Tile 3-1/Partition 3-1-1/Port 3-1-1

Msg_2_RC_NOC Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-4 Node1/Tile 1-2/Partition 1-2-1/Port 1-2-2

Msg_2_RC Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-2 Node2/Tile 2-1/Partition 2-1-1/Port 2-1-2

Node3/Tile 3-1/Partition 3-1-1/Port 3-1-2

Msg_3_TT Node2/Tile 2-1/Partition 2-1-1/Port 2-1-3 Node3/Tile 3-1/Partition 3-1-1/Port 3-1-3

Node1/Tile 1-1/Partition 1-1-2/Port 1-1-5

Msg_4_RC Node2/Tile 2-1/Partition 2-1-1/Port 2-1-4 Node3/Tile 3-1/Partition 3-1-1/Port 3-1-4

Node1/Tile 1-1/Partition 1-1-2/Port 1-1-6

Each message is mapped to exactly one DREAMS Virtual Link, which is used to transport it:

DREAMS Virtual Links

Name Sender Receiver(s)

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 37 of 95

VL_1_TT_NOC Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-3 Node1/Tile 1-2/Partition 1-2-1/Port 1-
2-1

VL_1_TT Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-1 Node2/Tile 2-1/Partition 2-1-1/Port 2-
1-1

Node3/Tile 3-1/Partition 3-1-1/Port 3-
1-1

VL_2_RC_NOC Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-4 Node1/Tile 1-2/Partition 1-2-1/Port 1-
2-2

VL_2_RC Node1/Tile 1-1/ Partition 1-1-1/Port 1-1-2 Node2/Tile 2-1/Partition 2-1-1/Port 2-
1-2

Node3/Tile 3-1/Partition 3-1-1/Port 3-
1-3

VL_3_TT Node2/Tile 2-1/Partition 2-1-1/Port 2-1-3 Node3/Tile 3-1/Partition 3-1-1/Port 3-
1-3

Node1/Tile 1-1/Partition 1-1-2/Port 1-
1-5

VL_4_RC Node2/Tile 2-1/Partition 2-1-1/Port 2-1-4 Node3/Tile 3-1/Partition 3-1-1/Port 3-
1-4

Node1/Tile 1-1/Partition 1-1-2/Port 1-
1-6

The characteristics of the VLs are shown in the following table:

VLs Period / MINT Size

VL_1_TT_NOC 10 ms 100 byte

VL_1_TT 10 ms 100 byte

VL_2_RC_NOC 15 ms 200 byte

VL_2_RC 15 ms 200 byte

VL_3_TT 20 ms 300 byte

VL_4_RC 30 ms 400 byte

The following table shows all DREAMS ids that are used in the CSV configuration files and the
trace files, which are mostly based on numerical identifiers. These numerical identifiers must
satisfy the following rules:

 message IDs must be unique in the considered system

 VL IDs must be unique in the considered system

 port IDs must be unique within the tile to which they belong

 tile IDs must be unique within the nodes to which they belong

 node IDs must be unique within the cluster to which they belong

Name DREAMS IDs

Msg_1_TT 1

Msg_1_TT_NOC 11

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 38 of 95

Msg_2_RC 2

Msg_2_RC_NOC 12

Msg_3_TT 3

Msg_4_RC 4

VL_1_TT 1

VL_1_TT_NOC 11

VL_2_RC 2

VL_2_RC_NOC 12

VL_3_TT 3

VL_4_RC 4

Node1 1

Tile 1-1 1

Partition 1-1-1 1

Port 1-1-1 1

Port 1-1-2 2

Port 1-1-3 3

Port 1-1-4 4

Partition 1-1-2 2

Port 1-1-5 5

Port 1-1-6 6

Tile 1-2 2

Partition 1-2-1 1

Port 1-2-1 1

Port 1-2-2 2

Tile 1-3 3

Node2 2

Tile 2-1 1

Partition 2-1-1 1

Port 2-1-1 1

Port 2-1-2 2

Port 2-1-3 3

Port 2-1-4 4

Node3 3

Tile 3-1 1

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 39 of 95

Partition 3-1-1 1

Port 3-1-1 1

Port 3-1-2 2

Port 3-1-3 3

Port 3-1-4 4

6.2 Configuration Tools for the Cluster Level

6.2.1 Specification of configuration file formats with examples

The specification of the configuration parameters for the simulated off-chip network
components is an updated version of the information provided in D5.2.1, Section 3.3. The
shown examples files correspond to the example scenario presented in Section 6.1.

6.2.1.1 Simulated TTEthernet Switch

One configuration file is used for each off-chip switch. It contains parameters for time
triggered and rate constrained Virtual Link (VL) that traverse the switch.

6.2.1.1.1 Definition of required configuration parameters

 Traffic type: allowed traffic type values are “TT” for time triggered and “RC” for rate
constraint virtual links.

 Virtual link id: identifier of the VL. Range: 0 - 255 (integer)

 Period/MINT: Period in microseconds (double) for periodic messages or “minimum
interval time” (MINT) in microseconds (double) for sporadic VLs

 Phase/ jitter: Phase in microseconds (double) for periodic message (Notice: same
value for all Receiver ports) or Jitter in microseconds (double) for sporadic message.

 Sender port: numerical identifier of the switch port through which the VL is received.
Range: 1-8 (integer)

 Receiver port: numerical identifier of a switch port through which the VL is send out.
Range: 1-8 (integer)

 Size: Message size of Ethernet frame (payload + 28 bytes) in bytes (integer)

 Queue ID: numerical identifier of the queue used to store the VL (integer). Starts from
50.

6.2.1.1.2 CSV File Format

Each switch has its own configuration file:

 The semicolon “;” is used to separate fields.

 Each file must include the name of the switch in the second field of the first line.

 The second line should contain the column headers with the parameter names, in the
order in which they are presented in previous Section. The actual contents of these
header cells are however not parsed by the configuration tool of the simulator.

 Starting with the third line, there shall be exactly one line for each virtual link that
crosses the switch. The cells of the line shall contain the values of the parameters in
the order in which they are specified in the previous section.

 The first “Receiver port” cells shall be used as needed and the other shall contain -1.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 40 of 95

6.2.1.1.3 Sample file

switch_R.csv:

6.2.1.2 Simulated Node with a Core

On configuration file is used for all simulated nodes that do not have a NOC. It contains
parameters for each time triggered and each rate constraint Virtual Link (VL) sent by these
nodes.

6.2.1.2.1 Definition of required configuration parameters

 Node Name: Name of the simulated node (String)

 Virtual link identifier: numerical identifier of the VL. Range: 0 - 255 (integer)

 Traffic Type: allowed traffic type values are “TT” for time triggered and “RC” for rate
constraint virtual links.

 Period/MINT: Period in microseconds (double) for TT VLs or “minimum interval time”
(MINT) in microseconds (double) for RC VLs.

 Start Time: Starting time in microseconds of the application. For TT VLs it is the phase
parameter. For RC VLs, it is the first sending time, which is followed by random dates
consistent with the MINT.

 Size: payload of the VL size, in bytes (integer)

 Queue ID: numerical identifier of the queue used to store the VL (integer). Each node
starts the queue ID from 0 for the periodic and from 2 for the sporadic.

6.2.1.2.2 CSV File Format

All the nodes with one core share one configuration file.

 The semicolon “;” is used to separate fields.

 The first line of the configuration should contain the names of the parameters in the
order in which they are presented in the previous section.

 Starting with the second line, there should be exactly one line for each sent virtual
link.

6.2.1.2.3 Sample file

nodes-without-noc.csv:

6.2.1.3 Simulated on-chip/off-chip Gateway: time triggered virtual links

On configuration file is used for the parameters related to the sending and receiving of time
triggered virtual links in the on-chip/off-chip gateway of the unique node with NOC.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 41 of 95

6.2.1.3.1 Definition of configuration parameters

 VLID: numerical identifier of the VL. Range: 0 - 255 (integer)

 DIR: the message direction (IN=1/OUT=2)

 Period in microseconds (double)

 Phase in microseconds (double)

 Message size(in bytes) (integer)

 Queue ID: numerical identifier of the queue used to store the VL (integer). Values
start from zero.

6.2.1.3.2 CSV File Format

All time triggered virtual links that transit through the on-chip/off-chip gateway of the unique
node with NOC must be described in one configuration file:

 The comma “,” is used to separate fields.

 The first line of the configuration should contain the names of the parameters in the
order in which they are presented in the previous section.

 Starting with the second line, there must be exactly one line for each time triggered
virtual link.

6.2.1.3.3 Sample file

gateway-TT.csv:

6.2.1.4 Simulated on-chip/off-chip Gateway: rate constraint virtual links

On configuration file is used for the parameters related to the sending and receiving of rate
constraint virtual links in the on-chip/off-chip gateway of the unique node with NOC

6.2.1.4.1 Definition of configuration parameters

 VLID: numerical identifier of the VL. Range: 0 - 255 (integer))

 DIR: the message direction (IN=1/OUT=2)

 Minimum interval time (MINT) in microseconds (double)

 Maximum message size (in bytes) (integer)

 Priority: the priority is used only for sporadic messages (high =1 /low=0)

 Queue ID: numerical identifier of the queue used to store the VL (integer). Values
start from zero.

6.2.1.4.2 CSV File Format

All rate constraint virtual links that transit through the on-chip/off-chip gateway of the unique
node with NOC must be described in one configuration file:

 The comma “,” is used to separate fields.

 The first line of the configuration should contain the names of the parameters in the
order in which they are presented in the previous section.

 Starting with the second line, there shall be exactly one line for each rate constraint
virtual link.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 42 of 95

6.2.1.4.3 Sample file

gateway-RC.csv:

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 43 of 95

6.2.2 DREAMS meta-model correspondences

In this section are specified the mappings between the DREAMS meta-model entities and the configuration entities. A separate sub-
section is present for each type of configuration file.

6.2.2.1 Simulated off-chip switch configuration file

Number of CSV files As may files as there are switches in the off-chip network.

Scope of a CSV file Exactly one switch.

File name rules Switch_<name of the concerned switch>.csv

Cell separator ;

MM Package eu.dreamsproject.psm.simulation.offchip.model

MM Namespace http://www.dreamsproject.eu/psm/simulated/offchip

File Header

MM EClass SwitchConfiguration

Field DREAMS meta-model Notes

SW ((INamedElement)

SwitchConfiguration.modelElement).name
SwitchConfiguration.modelElement should point to a
eu.dreamsproject.platform.model.offchipnetwork

.OffChipNetworkRouter (in the physical
PlatformArchitecture) that implements the

INamedElement interface.

Line

MM EClass SwitchConfigurationItem (contained by SwitchConfiguration)

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 44 of 95

Column
title

DREAMS meta-model Conversion MM → CSV

Traffic Type SwitchConfigurationItem.getTrafficType() TrafficType.TIME_TRIGGERED → TT

TrafficType.RATE_CONSTRAINT → RC

Virtual Link
Id

SwitchConfigurationItem.getVirtualLinkId()

Period

/MINT

SwitchConfigurationItem.getPeriodMint_s() * 1000000 (s to us)

Phase /
Jitter

SwitchConfigurationItem.getPhaseJitter_s() * 1000000 (s to us)

Sender port SwitchConfigurationItem.getSenderPortId()

Receiver
port

SwitchConfigurationItem.getReceiverPortPortIdList().

get(0)

Receiver
port

SwitchConfigurationItem.getReceiverPortPortIdList().

get(1) or -1
Result of getReceiverPortPortIdList() is
not padded to size 8

Receiver
port

SwitchConfigurationItem.getReceiverPortPortIdList().

get(2) or -1
See above

Receiver
port

SwitchConfigurationItem.getReceiverPortPortIdList().

get(3) or -1
See above

Receiver
port

SwitchConfigurationItem.getReceiverPortPortIdList().

get(4) or -1
See above

Receiver
port

SwitchConfigurationItem.getReceiverPortPortIdList().

get(5) or -1
See above

Receiver
port

SwitchConfigurationItem.getReceiverPortPortIdList().

get(6) or -1
See above

Size SwitchConfigurationItem.getPayLoadSize_bytes() + 28 for Ethernet header

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 45 of 95

Queue ID SwitchConfigurationItem.queueId

Notes:

 The “Sender Port” is the port through which the frame arrives at the switch.

 A “Receiver Port” is a port through which the frame exits the switch.

 The Phase is valid for all ports of the switch through which the virtual link is sent out

6.2.2.1.1 Simulated Node with a Core configuration file

Number of CSV files One per off-chip network

Scope of a CSV file All virtual links send by nodes connected to the off-chip network but do not contain a on-chip network,
i.e. that contain only one tile.

File name rules NodesWithoutNoc.csv

Cell Separator ;

MM Package eu.dreamsproject.psm.simulation.offchip.model

MM Namespace http://www.dreamsproject.eu/psm/simulated/offchip

File Header

N/A

Line

MM EClass SingleCoreNodeConfigurationItem

(contained by SingleCoreNodeConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 46 of 95

Node Name ((INamedElement) SingleCoreNodeConfiguration

.modelElement).name

Virtual Link Id SingleCoreNodeConfigurationItem.getVirtualLinkId()

Traffic Type SingleCoreNodeConfigurationItem.getTrafficType() TrafficType.TIME_TRIGGERED → TT

TrafficType.RATE_CONSTRAINT → RC

Period/MINT SingleCoreNodeConfigurationItem.getPeriodMint_s() * 1000000 (s to us)

Start Time SingleCoreNodeConfigurationItem.getSendingTime_s() * 1000000 (s to us)

Message Size SingleCoreNodeConfigurationItem.getPayloadSize_bytes()

Queue ID SingleCoreNodeConfigurationItem.queueID

Notes:

 SingleCoreNodeConfiguration.modelElement should point to a eu.dreamsproject.platform.model.node.Node (in the physical
PlatformArchitecture) that implements the INamedElement interface.

6.2.2.2 Simulated on-/off-chip Gateway configuration files

6.2.2.2.1 Periodic frames configuration files

Number of CSV files At most one, for the gateway of the unique node with Noc, if present.

Scope of a CSV file The time triggered Virtual Links sent or received by the gateway of the unique node with Noc.

File name rules gateway-TT.csv

Cell separaror ,

MM Package eu.dreamsproject.psm.simulation.offchip.model

MM Namespace http://www.dreamsproject.eu/psm/simulated/offchip

File Header

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 47 of 95

N/A

Line

MM EClass PeriodicGatewayConfigurationItem (contained by GatewayConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

VLID PeriodicGatewayConfigurationItem.getVirtualLinkId()

Period PeriodicGatewayConfigurationItem.getPeriodMint_s() * 1000000 (s to us)

Phase PeriodicGatewayConfigurationItem.getPhase_s() * 1000000 (s to us)

Message Size
[bytes]

PeriodicGatewayConfigurationItem.getPayloadSize_bytes()

Direction PeriodicGatewayConfigurationItem.getTrafficDirection() TrafficDirection.INPUT → 1

TrafficDirection.OUTPUT → 2

Queue ID PeriodicGatewayConfigurationItem.queueID

6.2.2.2.2 Sporadic frames configuration files

Number of CSV files At most one, for the gateway of the unique node with Noc, if present.

Scope of a CSV file The time triggered Virtual Links sent or received by the gateway of the unique node with Noc.

File name rules gateway-RC.csv

Cell Separator ,

MM Package eu.dreamsproject.psm.simulation.offchip.model

MM Namespace http://www.dreamsproject.eu/psm/simulated/offchip

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 48 of 95

File Header

N/A

Line

MM EClass SporadicGatewayConfigurationItem (contained by GatewayConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

VLID SporadicGatewayConfigurationItem.getVirtualLinkId()

MINT SporadicGatewayConfigurationItem.getPeriodMint_s() * 1000000 (s to us)

Priority SporadicGatewayConfigurationItem.getPriority() getPriority() > 0 → 1

getPriority() == 0 → 0

Maximum Message
Size [bytes]

SporadicGatewayConfigurationItem.getPayloadSize_bytes()

Direction PeriodicGatewayConfigurationItem.getTrafficDirection() TrafficDirection.INPUT → 1

TrafficDirection.OUTPUT → 2

Queue ID PeriodicGatewayConfigurationItem.queueID

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 49 of 95

6.3 Configuration Tools for the Chip Level

6.3.1 Specification of configuration file formats

The specification of the cluster level configuration file generator for the virtual platform is an
updated version of the information provided in D5.2.1, Section 4.1.3.

Remember that the simulation model supports only one node with NOC. The perimeter of the
configuration files is that of the unique node with NOC.

At on-chip level, the unit of time used in the gem5 based simulation is the “tick” and therefore
all time values must be expressed as multiples of ticks. Since the tick is set to 1 nanosecond of
real time, it is equivalent to say that time values are expressed in nanoseconds.

The shown examples files correspond to the example scenario presented in Section 6.1. For
better readability of the examples, we have used the character “#” to indicate comments, which
either recall the title of the columns, including units, or describe the following line.

6.3.1.1 Hardware configuration parameters

A configuration file is used to describe the hardware layout of the chip.

6.3.1.1.1 Definition of required configuration parameters

 Global period: The least common multiple of the periods of the periodic messages,
expressed in ticks (integer)

 Number of tiles: The number of tiles on the chip (integer)

 Tile ID: numerical identifier of the tile (integer)

 Number of cores: The number of cores on each tile (integer)

 Number of partitions at the core : The number of the partitions at each core (integer)

 Number of ports at the tile: The number of ports on the tile (integer)

6.3.1.1.2 CSV File Format

The format of the CSV file is the following:

 First cell of first column: global period

 First cell of second column: number of tiles

 Starting with line 3, a line for each tile
o First cell: numerical id of the tile
o Second cell: number of core in the tile
o Starting from cell 3: for each core, number of partition running on the core
o Last cell: number of ports in the tile

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 50 of 95

6.3.1.1.3 Sample file

HWConfig.csv:

6.3.1.2 Ports configuration parameters

One configuration file is used to specify which partition ports of the unique node with NOC send
or receive which virtual link.

6.3.1.2.1 Definition of required cofiguration parameters

 Port ID: numerical identifier (integer) of a port

 Core ID: numerical identifier (integer) of the of the core, which has the right to write
into/read from the port

 Partition ID: numerical identifier (integer) of the of the partition, which has the right to
write into/read from the port

Global
period

Number
of tiles

Tile_ID
#1

numbers
of Cores

Num.
Partitions
at Core#1

Num.
Partitions
at Core#2

Partitions at
Core#3 …

Num.
Partitions
at Core#n

Number
of ports

Tile_ID
#2

numbers
of Cores

Partitions
at Core#1

Partitions
at Core#2

Partitions at
Core#3 …

Partitions
at Core#n

Number
of ports

…
numbers
of Cores … .. … .. … …

Tile_ID
#n

numbers
of Cores

Partitions
at Core#1

Partitions
at Core#2

Partitions at
Core#3 …

Partitions
at Core#n

Number
of ports

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 51 of 95

 Physical Address: The physical name2 of the port: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟. 𝑁𝑜𝑑𝑒. 𝑇𝑖𝑙𝑒. 𝑃𝑜𝑟𝑡. (Integer.
Integer. Integer. Integer)

 Logical Address: The Logical name of port:
𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦. 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡. 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 (Integer.Integer.Integer.Integer)

 Type : Each port can be used for sending or receiving of either of the following traffic
types:

o TT: for periodic messages (String, “TT”)
o RC: for sporadic messages (String, “RC”)
o BE: for aperiodic messages (String, “BE”)

 VLID: In case of TT or RC ports, this parameter denotes the numerical identifier of the
virtual link, to which the port corresponds to. This correspondence includes the temporal
characteristics of the port. In case of BE ports, this value must be “-1” (integer)

 Direction: Defines if the port is used for outgoing message (OUT) or for the incoming ones
(IN) (String, ”IN ” or “OUT”)

 Semantics: Whether is an event port or an state port (String, “EVENT” or “STATE”)

6.3.1.2.2 CSV File Format

A line of the CSV file corresponds to a sending or a reception of a virtual link at some port. The
cells contain the values of the parameters in the order in which they are described in the previous
section.

6.3.1.2.3 Sample file

HL_PortConfig.csv:

6.3.1.3 VLS configuration parameters

On configuration file is used to describe all virtual links exchanged in the modeled system.

6.3.1.3.1 Definition of required configuration parameters

 VLID: numerical identifier (integer) of a Virtual link.

 Type: VL type (String “TT”or “RC”)

 Source: Physical name of the source port:
o PhyName: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟. 𝑁𝑜𝑑𝑒. 𝑇𝑖𝑙𝑒. 𝑃𝑜𝑟𝑡 (Integer. Integer. Integer. Integer)

 Destination: The current implementation of the NoC does not support multicast VLs. This
field includes the physical name of the destination port.

2 DREAMS architectural style (D1.1.1)

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 52 of 95

o PhyName_i: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟. 𝑁𝑜𝑑𝑒. 𝑇𝑖𝑙𝑒. 𝑃𝑜𝑟𝑡 (Integer. Integer. Integer. Integer)

 Period/MINT: The value of the period for TT messages or the MINT for RC messages in
ticks (integer)

6.3.1.3.2 CSV File Format

A line of the CSV file corresponds to one sending or reception of a virtual link at some port. The
cells contain the values of the parameters in the order in which they are described in the previous
section.

6.3.1.3.3 Sample file

VLConfig.csv:

6.3.1.4 TT schedule for the EBU

One configuration file is used for the emission phase of time triggered virtual links in partition
ports.

6.3.1.4.1 Definition of required configuration parameters

 Tile id : numerical identifier (integer) of a tile

 Phase: Time, with respect to the period, at which the message is dequeued from the port,
expressed in ticks (integer)

 Port id: numerical identifier of the port which is dequeued (integer)

6.3.1.4.2 CSV File Format

A line of the CSV file corresponds to one sending of a TT virtual link at some port. The cells contain
the values of the parameters in the order in which they are described in the previous section.

6.3.1.4.3 Sample file

TT_Schedule_EBU.csv

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 53 of 95

6.3.1.5 TT schedule for the serialization unit

One configuration file is used for global parameters of the time triggered communication.

6.3.1.5.1 Definition of required configuration parameters

 Timely block/shuffling: activation of timely block in the entire chip. In case of non
activation, i.e. activation of shuffling, the information given for guarding window will be
ignored
(1 activated, 0 deactivated)

 Tile id : numerical identifier (integer) of a tile

 Period: period of the guarding window, expressed in ticks (integer)

 Openning phase: Starting phase of the guarding window, expressed in ticks (integer)

 Closing phase: Closing phase of the guarding window, expressed in ticks (integer)

6.3.1.5.2 CSV File Format

A line of the CSV file corresponds to a tile of the chip. The cells contain the values of the
parameters in the order in which they are described in the previous section.

6.3.1.5.3 Sample file

TTSchedule_SU.csv:

6.3.1.6 Message configuration parameters

On configuration file is used to describe the messages send by applications.

6.3.1.6.1 Definition of required configuration parameters

 MsgId: numerical identifier (integer) of the message

 Type: type of the message (String, TT, RC or BE).

 VLID: identifier (integer) of a VL in case of TT and RC messages, and -1, otherwise, -1
(integer)

 Deadline: the message deadline, in ticks, which is used for statistic and result analysis.
(integer).

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 54 of 95

 Max_MSG_ Size: Maximum message size, in bytes (integer)

6.3.1.6.2 CSV File Format

A line of the CSV file corresponds to a message send by some application. The cells contain the
values of the parameters in the order in which they are described in the previous section.

6.3.1.6.3 Sample file

Msg.csv:

6.3.1.7 Trace file

One configuration file is used to specify the times when messages instances are injected into the
partition ports.

6.3.1.7.1 Definition of required configuration parameters

 Tile ID: numerical identifier (integer) of the tile from which the message is injected in the
network. (integer)

 Tick: the time, in ticks, of the message injection (integer)

 Msg id: numerical identifier (integer) of the messages

 Port Id: numerical identifier (integer) of the port, in which the message is enqueued

 Logical address of Destination: in case the message is enqueued into a best-effort port,
the logical address of the destination can be declared explicitly through this field. In case
of TT or RC ports, -1 must be given (integer.integer.integer.integer OR -1)

 Payload: contains the payload of the message (integer.integer…., max 1024)

6.3.1.7.2 CSV File Format

A line of the CSV file corresponds to the sending of an instance of a message at some specified
time through the foreseen port. The cells contain the values of the parameters in the order in
which they are described in the previous section.

6.3.1.7.3 Sample file

MsgInjection.csv:

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 55 of 95

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 56 of 95

6.3.2 DREAMS meta-model correspondences

In this section are specified the mappings between the DREAMS meta-model entities and the configuration entities. A separate sub-
section is present for each type of configuration file.

6.3.2.1 Simulated on-chip communication

6.3.2.1.1 Hardware configuration parameters

Number of CSV files At most one, for unique node with Noc, if present.

Scope of a CSV file The tiles of the unique node with Noc in the simulated system.

File name rules HWConfig.csv

Cell separator ,

MM Package eu.dreamsproject.psm.onchip.com.model

MM Namespace http://www.dreamsproject.eu/psm/onchip/com

File Header

MM EClass OnChipNetworkConfiguration

Field DREAMS meta-model Conversion MM → CSV

Global period OnChipNetworkConfiguration.getHyperPeriod_s() × OnChipNetworkConfiguration.

simulationTicksPerSecond

(from s to simulation ticks)

Number of
tiles

OnChipNetworkConfiguration.getNumTiles()

Line

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 57 of 95

MM EClass OnChipNiLrsConfiguration (contained by OnChipNetworkConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

Tile id OnChipNiLrsConfiguration.getTileId()

Number of
Cores

OnChipNiLrsConfiguration.getCores().size()

Number of
partitions at the
core

OnChipNiLrsConfiguration.getPartitions(core).size()

Number of ports
at the tile

OnChipNiLrsConfiguration.getPorts().size()

Notes:

 The must be as many non commented lines as “Number of tiles” declared in the second field.

 There must be as many “Number of partitions at the core” cells in a line as the declared in the “Number of Cores” cell.

6.3.2.1.2 Ports configuration parameters

Number of CSV files At most one, for unique node with Noc, if present.

Scope of a CSV file The tiles of the unique node with Noc in the simulated system.

File name rules PortsConfig.csv

Cell separator ,

MM Package eu.dreamsproject.psm.onchip.com.model

MM Namespace http://www.dreamsproject.eu/psm/onchip/com

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 58 of 95

File Header

N/A

Line

MM EClass PortConfigurationItem (contained by PortConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

Port ID PortConfigurationItem.getPortId()

Core ID PortConfigurationItem.getCoreId()

Partition ID PortConfigurationItem.getPartitionId()

Physical Address PortConfigurationItem.getPhysicalName()

Logical Address PortConfigurationItem.getLogicalName()

Type PortConfigurationItem.getTrafficType() TrafficType.TIME_TRIGGERED → TT

TrafficType.RATE_CONSTRAINT → RC

TrafficType.BEST_EFFORT → BE

VLID PortConfigurationItem.getVirtualLinkId()

Direction PortConfigurationItem.getDirection() TrafficDirection.INPUT → IN

TrafficDirection.OUTPUT → OUT

Semantics PortConfigurationItem.getSemantics() PortSemantics.EVENT → EVENT

PortSemantics.STATE → STATE

6.3.2.1.3 VLS configuration parameters

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 59 of 95

Number of CSV files At most one, for unique node with Noc, if present.

Scope of a CSV file All DREAMS virtual links that are that are sent or received by a tile of the node with a Noc in the simulated
system.

File name rules VLsConfig.csv

Cell separator ,

MM Package eu.dreamsproject.psm.onchip.com.model

MM Namespace http://www.dreamsproject.eu/psm/onchip/com

File Header

N/A

Line

MM EClass VirtualLinkConfigurationItem

(contained by VirtualLinkConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

VLID VirtualLinkConfigurationItem. getVirtualLinkId()

Type VirtualLinkConfigurationItem. getTrafficType() TrafficType.TIME_TRIGGERED → TT

TrafficType.RATE_CONSTRAINT → RC

Source VirtualLinkConfigurationItem.getSourcePhysicalName()

Destination VirtualLinkConfigurationItem.
getDestinationsPhysicalNameList().get(0)

Period/MINT VirtualLinkConfigurationItem.getPeridMint_s() × OnChipNetworkConfiguration.

simulationTicksPerSecond

(from s to simulation ticks)

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 60 of 95

6.3.2.1.4 TT schedule for the EBU

Number of CSV files At most one, for unique node with Noc, if present.

Scope of a CSV file The unique node with a Noc in the simulated system.

File name rules TTSchedule_EBU.csv

Cell separator ,

MM Package eu.dreamsproject.psm.onchip.com.model

MM Namespace http://www.dreamsproject.eu/psm/onchip/com

File Header

N/A

Line

MM EClass EgressBridgingUnitTimeTriggeredScheduleEntry

(contained by EgressBridgingUnitTimeTriggeredSchedule)

Column title DREAMS meta-model Conversion MM → CSV

Tile id EgressBridgingUnitTimeTriggeredScheduleEntry.getTileId()

Phase EgressBridgingUnitTimeTriggeredScheduleEntry.getPhase_s() × OnChipNetworkConfiguration.

simulationTicksPerSecond

(from s to simulation ticks)

Port id EgressBridgingUnitTimeTriggeredScheduleEntry.getPortId()

6.3.2.1.5 TT schedule for the serialization unit

Number of CSV files At most one, for unique node with Noc, if present.

Scope of a CSV file The unique node with Noc in the simulated system.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 61 of 95

File name rules TTSchedule_SU.csv

Cell separator ,

MM Package eu.dreamsproject.psm.onchip.com.model

MM Namespace http://www.dreamsproject.eu/psm/onchip/com

File Header

N/A

Line

MM EClass SerializationUnitTimeTriggeredScheduleEntry

(contained by SerializationUnitSchedule)

Column title DREAMS meta-model Conversion MM → CSV

Timely
lock/shuffli
ng

OnChipNiLrsConfiguration.

mediaAccessConflictResolutionPolicy

MediaAccessConflictResolutionPolicy

.TIMELY_BLOCK → 1

MediaAccessConflictResolutionPolicy

.SHUFFLING → 0

Tile id SerializationUnitTimeTriggeredScheduleEntry.getTile

Id()

Period SerializationUnitTimeTriggeredScheduleEntry.getPeri

od_s()
× OnChipNetworkConfiguration.

simulationTicksPerSecond

(from s to simulation ticks)

Opening phase SerializationUnitTimeTriggeredScheduleEntry.getOpen

ingPhase_s()
See above

Closing phase SerializationUnitTimeTriggeredScheduleEntry.getClos

ingPhase_s()
See above

Notes:Since the media access conflict resolution policy can be configured per NI LRS, the setting can be obtained in
OnChipNiLrsConfiguration that references the corresponding Tile.

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 62 of 95

6.3.2.1.6 Message configuration parameters

Number of CSV files Exactly one.

Scope of a CSV file The simulated system.

File name rules Msg.csv

Cell separator ,

MM Package eu.dreamsproject.psm.simulation.model

MM Namespace http://www.dreamsproject.eu/psm/simulation

File Header

N/A

Line

MM EClass MessageConfigurationItem (contained by MessageConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

Message Id MessageConfigurationItem.getMessageId()

Type MessageConfigurationItem.getTrafficType() TrafficType.TIME_TRIGGERED → TT

TrafficType.RATE_CONSTRAINT → RC

TrafficType.BEST_EFFORT → BE

VLID MessageConfigurationItem.getVirtualLinkId()

Deadline MessageConfigurationItem.deadline_s × OnChipNetworkConfiguration.

simulationTicksPerSecond

(from s to simulation ticks)

MAX_Msg_Size MessageConfigurationItem.getPayloadSize_bytes()

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 63 of 95

6.3.2.1.7 Trace file

The purpose of this configuration file is to specify a scenario of the behavior of the applications with respect to the sending of
messages. For this purpose it defines sequence of “message injection times”.

If the application is modeled in DREAMS as well as the scheduling of tasks, then the injection times of messages sent by periodic tasks
can be generated for a given time horizon. Otherwise, the injection times need to be generated with a random number generator
according to some pattern. But which patterns make sense also depend on the actual demonstrator applications and will therefore
only be covered in D5.2.3 through a dedicated extension of the configuration file generator.

Number of CSV files Exactly one.

Scope of a CSV file The simulated system.

File name rules Trace.csv

Cell separator ,

MM Package eu.dreamsproject.psm.simulation.model

MM Namespace http://www.dreamsproject.eu/psm/simulation

File Header

N/A

Line

MM EClass TraceConfigurationItem (contained by TraceConfiguration)

Column title DREAMS meta-model Conversion MM → CSV

Tile ID TraceConfigurationItem.getTileId()

Tick TraceConfigurationItem.getInjectionTi

me_s() or random value (see notes)
× OnChipNetworkConfiguration.

simulationTicksPerSecond

D5.2.2 Version 1.0 Confidentiality Level: PU

30.11.2015 DREAMS Page 64 of 95

MsgId TraceConfigurationItem.getMessageId()

Port Id TraceConfigurationItem.getPortId()

Logical address of
Destination

TraceConfigurationItem.
getDestinationsLogicalNameList().get(

0)

Payload N/A

Notes:

 The trace related extension of the configuration file generator (D5.2.3) will generate a line for each injection of an instance of
a message, with appropriate values for “Tick” (injection time) and “Payload”.

 In case the “Tick” value should be derived from the meta-model, TraceConfigurationItem.resourceAllocation must point to a
ResourceAllocation in an appropriate ResourceSchedule (e.g., a task schedule that contains the scheduling of the sender task
of the message identified by TraceConfigurationItem.getMessageId()).

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 65 of 95

6.4 Configuration Tools for the Execution Level

6.4.1 Xtratum

Since Xtratum configuration files are the same for the physical and virtual platform the
detailed specification of the configuration file generator is provided only in one deliverable,
namely D4.2.1.

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 66 of 95

7 Analysis of Simulation Traces

In this section we describe the functionalities implemented for the analysis and visualization
of communication traces produced by the DREAMS simulator. Further extensions, related to
fault injection for instance, will be described in the next deliverable D5.2.3.

We provide in Section 7.1 a refined and extended specification of the communication trace
file formats. Sections 7.2 and 7.3 respectively explain how to import the description of the
simulated system and the trace files produced by the simulators. Section 7.4 finally describes
how the traces and the derived statistics can be visualized.

7.1 Trace files

In this section we provide a refined and extend specification of the format of traces files
related to off-chip-network communication and on-chip communication. It replaces the
specification dedicated to these trace files in D5.2.1.

Furthermore, all trace files need to be generated in the same folder and their names must be
conformant to the following schema:

Trace file Schema

Off-chip network off-chip-com_<off-chip network name>.txt

On-chip communication on-chip-com_<chip name>.txt

7.1.1 Off-chip network related events

With respect to D5.2.1, we have added events at router level to be able to trace the different
delays that occur during the traversal of the off-chip network. Furthermore, the
FrameQueued event is added at gateway level to distinguish the time when a frame is queued,
from the time where its transmission actually starts.

Figure 18: Illustration of off-chip network related events to be traced

Node

Node Off-chip Network

G
at

ew
ay

Inter-cluster
Gateway

Off-chip Network

Gateway

Node

G
at

ew
ay

Cluster 1

Cluster 2

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 67 of 95

Recall that for each off-chip network, the relevant events are written to a separate file. The
events concern the emission and reception of frames between on-chip / off-chip gateways
and inter-cluster gateways. The scope is illustrated in Fehler! Verweisquelle konnte nicht
gefunden werden.:

Five different kinds of events are considered. Their trace file syntax is as follows:

<TIME> FrameQueued Gateway <GATEWAY_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

<TIME> FrameTx Gateway <GATEWAY_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

<TIME> FrameRx Gateway <GATEWAY_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

<TIME> FrameRx Router <ROUTER_PORT_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

<TIME> FrameTx Router <ROUTER_PORT_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

With respect to the loss of frames due to insufficient memory in the routers, the following
event is defined:

<TIME> FrameDiscarted <ROUTER_ID> <FRAME_ID> <FRAME_INSTANCE_ID>

The semantics and precise formats are defined in the following table:

Line item Description Format / Value

<TIME> Time when the event occurred. Time unit: 1 tick = 1 ns

FrameQueued Gateway A frame instance is queued for
transmission over the off-chip
network, as soon as allowed by the
protocol. Depending on the traffic
class and priority, the frame is either
immediately transmitted (time
triggered) or may wait in a queue
(rate constraint or best effort).

Verbatim.

FrameTx Gateway Effective start of the transmission of
a frame instance. It might have
waited in the queue or not.

Verbatim.

FrameRx Gateway Frame instance has arrived at a
gateway over the off-chip network
and the contained messages are
ready for being forwarded inside the
connected node or over the off-chip
network of the connected cluster.

Verbatim.

FrameRx Router Frame instance has arrived at a
router port.

Verbatim

FrameTx Router Effective start of the transmission of
a frame instance. It might have
waited in the queue or not.

Verbatim

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 68 of 95

<GATEWAY_ID> Identifier of the concerned gateway. Numerical ID of the node and
the tile that hosts the gateway:

<Node_ID>.<Tile_ID>

<ROUTER_PORT _ID> Identifier of the concerned router
port.

Name the of Router (i.e. not a
numerical ID) and numerical ID
of the port:

<Router Name>.<Port_ID>

<FRAME_ID> Identifier of the concerned frame. Numerical ID of the DREAMS VL
transported by the frame.

<FRAME_INSTANCE_ID> Identifier of the frame instance. This
identifier is incremented with each
“FrameTx Gateway” event.

Sequence number of the off-
chip frame.

7.1.2 On-chip network related events

With respect to D5.2.1, the MessageQueued event is added at partition port level to
distinguish the time when a message is queued, from the one where its transmission actually
starts.

Recall that for each on-chip network, the relevant events are written to a separate file. These
events concern the emission and reception of messages between NI ports and the on-chip /
off-chip gateways. The scope is illustrated in Figure 19:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 69 of 95

Figure 19: Illustration of on-chip network related events to be traced

Four different kinds of events can be identified. Their trace file syntax is as follows:

<TIME> MessageQueued OutPort <PORT_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>

<TIME> MessageTx OutPort <PORT_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>

<TIME> MessageRx InPort <PORT_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>

<TIME> MessageTx Gateway <GATEWAY_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>

<TIME> MessageRx Gateway <GATEWAY_ID> <MESSAGE_ID> <MESSAGE_INSTANCE_ID>

The semantics and precise formats are defined in the following table:

Line item Description Format / Value

<TIME> Time when the event occurred. Time unit: 1 tick = 1 ns

MessageQueued A message instance has been written
to the port, and is thus ready for being
sent, as soon as the network interface
foresees it (TT) or allows it (RC).

It corresponds to the „tick“ column in
trace configuration file of the virtual
platform.

Verbatim.

MessageTx OutPort A message instance, contained in the
output port, is emitted. Depending on

Verbatim.

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 70 of 95

the location of the destination and the
optional presence of a NOC, one or
several of the following happen after
the event has occured:

 copying to destination ports
on the same Tile

 if NOC: reading by the bridging
layer for further processing in
order to sent the message over
the NOC

 if no NOC: reading by the on-
chip / off-chip gateway for
transmission over the off-chip
network

MessageRx InPort A message instance is ready in the
input port for being read by tasks in the
related partition.

Verbatim.

MessageRx Gateway Message instance, coming from inside
the chip (over the NOC or not) is ready
for being put into a frame for sending
over the off-chip network.

Verbatim.

MessageTx Gateway Message instance, coming from the
off-chip network, is forwarded inside
the chip:

 if NOC: reading by the bridging
layer for further processing in
order to sent the message over
the NOC

 if no NOC: copying to
destination ports

Verbatim.

<PORT_ID> Hierarchical identifier of the
concerned port, without Node and
Cluster part, since the scope of the
trace file is limited to a Node.

Numerical ID of the tile and
the port:

<Tile ID>.<Port ID>

<GATEWAY_ID> Identifier of the Gateway. Numerical ID of the tile
that hosts the gateway.

<MESSAGE_ID> Hierarchical identifier of the
concerned message.

Numerical ID of the
message exchanged
between applications.

<MESSAGE_INSTANCE_ID> Identifier of the message instance. This
identifier is incremented with each
“MessageTx OutPort” event.

Sequence number of the
off-chip frame.

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 71 of 95

7.2 Import of DREAMS System description

In this section we describe how to import the description of a DREAMS model into RTaW-
Timing. The screen-shots are based on the “Virtual-Platform scenario 1”, described in Section
6.1.

To be able to perform the import and analysis of DREAMS simulation traces, the description
of the simulated system, needs first to be imported into RTaW-Timing. For this purpose, an
“RTaW-Timing CSV file” exporter is developed in T4.4 as part of the tool-chain, see D4.4.1.

Before starting to import the system description, make sure to start with an empty model
(use “New” from the files menu, if needed). In order to import the description of the

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 72 of 95

simulated system, select the “Node Hierarchy Architecture” entry from the “Merge / Import”
sub-menu:

Leave “;” as separator and left-click in the “Directory Name” field to bring up the “folder selection
dialog”:

Then, navigate to the folder where the csv files have been produced by the “RTaW-Timing
CSV exporter” and select that folder. Make sure that only the csv files produced by the
“RTaW-Timing CSV exporter” are present in that folder. Then click “Ok” and “Yes” in order to
execute the import:

Depending on your OS, you might have to manually open the nodes in the exportation tree,
in order to see the created entities, which we will describe below.

All entities whose name start by “Mixed”, are used in RTaW-Timing to describe the complete
configuration that has been simulated.

The NodeSet “Cluster ChipSet” groups the chips that are present in the modeled system. In
the shown example we have two chips called “Node1” and “Node2”:

The DataComNeed “MessageSet” is the inventory of the messages that are exchanged
between applications. In this example we have in principle one TT and one RC message, but

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 73 of 95

because the simulator does not support multicast at on-chip level, these message are
duplicated so as to use “multi-unicast” instead.

The IPDUComNeed “DreamsVLSet” is the inventory of the DREAMS Virtual Links used in the
simulation to transport the messages.

The FrameComNeed “OffChipNetwork FrameSet” is the inventory of the frames used to
transport the DREAMS Virtual Links over the off-chip network:

The FrameComNeed “OnChipNetwork 1 FrameSet” is the inventory of the frames used to
model in RTaW-Timing the transportation of the DREAMS Virtual Links over the on-chip
network:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 74 of 95

7.3 Import of virtual platform traces

Notice that before being able to import simulation traces, the description of the simulated
system must be contained in the currently opened model (see Section 7.2).

In order to import simulation traces, select the “Dreams traces” entry from the
“Merge/Import” sub-menu:

Left-click in the “Directory Name” field to bring up the “folder selection dialog”:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 75 of 95

Navigate to the folder where the trace files are located and select that folder. Then click “Ok”
and “Yes” in order to execute the import. The result is

 a “Simulation” entity that contains the derived statistics

 a “Trace” entity that contains composed Gantt charts, build from the traces

 several “Graphic” entities, that show delay under the form of graphs

In the next section is described how the synthesized statistics and Gantt charts can be
visualized.

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 76 of 95

7.4 Visualization of delays synthesized from the traces

The derived statistics can be visualized in three ways: as tables, as histograms and as graphics.
Furthermore, Gantt chart are available that show the traces from a particular point of view.

7.4.1 Delay tables

DREAMS Messages are modeled as DataFlows and therefore their transmission delay
statistics are visible in the details pane of the DataComNeed entity “MessageSet” created
during import. Double-click on the “MessageSet” node in the exploration tree on the left and
select a simulation:

These message delays span form the time when a message is written to a partition port until
the time when it is ready for reading in the destination partition port.

DREAMS Virtual Links are modeled as IPDUFlows and thus the transmission delay statistics
are visible in the details pane of the IPDUComNeed entity “DREAMSVLSet” created during
import. Double-click on the “DREAMSVLSet” node in the exploration tree on the left and
select a simulation:

These Virtual Link delays span form the time when the virtual link instance is created by the
NI on emission port side, until the time when its contained message is ready for reading in
the destination partition port.

Delays suffered by DREAMS Virtual links on the On-chip network, are associated to the
corresponding on-chip frames and are therefore visible in the details pane of the
FrameComNeed entity “OnChipNetwork 1 FrameSet” created during import under the node
that has a Noc. Double-click on the “OnChipNetwork 1 FrameSet” node in the exploration tree
on the left, below “Node1” (see end of Section 7.2) and select a simulation:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 77 of 95

These on-chip delays span form the time when the virtual link instance is handled over to the
Noc on emission side, until the time when its contained message is ready for reading in the
destination partition port.

Off-chip network frames are modeled as FrameFlows at root level and thus the transmission
delay statistics are visible in the details pane of the FrameComNeed entity “OffChipNetwork
FrameSet” created during import at root level. Double-click on the “OffChipNetwork
FrameSet” node under the “FrameComNeed” node in the exploration tree on the left:

The “End-To-End Delays” table shows statistics on network traversal times, which span span
form the time when the off-chip frame instance is created and ready for transmission, until
the time when it is completely arrived in the destination node.

A simple-click on the “Local Delays” table brings to the front the table that shows statistics on
the “network segment traversal times”:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 78 of 95

The “Segment” column shows the PortOwner (Node or Router) containing the port though
which the frame is transmitted over a link to the next PortOwner in the routing path. The
delay spans from the time when the frame has completely arrived in the indicated PortOwner
until the time when it is complete arrived in the following PortOwner. This view allows
indentifying which network segments induce the highest delays.

7.4.2 Delay histograms

By right-clicking on a line in a delays table (see previous section) one can bring up the
following context menu:

Select the “Show Histogram” entry, in order to open the graphical view of the histogram:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 79 of 95

As can be seen by clicking on the “Data” tab (lower left corner) one can see that in this small
example there are only three values in the histogram:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 80 of 95

7.4.3 Delay graphs

Recall that during the import of traces, some graphics have been crated automatically:

In order to visualize them, one must double-click on the corresponding node in the
exploration tree on the left:

Notice that by default, the “Data” table is shown; click on the “Graphic” tab in the lower left
corner to get the graphic in full size:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 81 of 95

Since “DividedByConstraint” is checked, the y-axis shows the percentage of the delay with
respect to the latency constraint. A value below 100% means that the constraint is satisfied.
If you uncheck “DividedByConstraint”,

then the delays are displayed in ms:

7.4.4 Gantt charts

Three kinds of Gantt charts are created by the import under the form of traces:

For each message a Gantt chart is created, which shows not only each message instance, but
also the VL and frame instances used to transport it over the on-chip and off-chip network:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 82 of 95

The screen shot shows the Gantt chart for “Msg_RC”, where three instances are visible. The
sequence number (instance n° …) is shown in the tool tip of the instance. To bring up a tool
tip keep the pointer over the rectangle:

The information provided in the tool-tip have the following meaning:

Information Meaning

Name The name of the message or frame.

Ix Time when the message or frame is queued for transmission.

Tx Time when the transmission starts.

Rx Time when the message or frame has been completely received

The rectangles in the Gantt charts have to presentation styles, with the following meaning:

Presentation style Meaning

Dotted line / empty rectangle Waiting in a queue at the entrance point of the communication
layer or in some intermediate element such as a router port.

Solid line / filled rectangle Being transmitted.

Note: the waiting at the entrance point might not be known from the information available
in a trace; in that case the “Solid line / filled rectangle” style is used for the entire
communication time, as for example for the NOC.

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 83 of 95

By communication layer, is meant the following, depending on the entity:

Entity Ingress point / waiting Egress point

DREAMS Message Source NI port Destination NI port

DREAMS Virtual
Link

Outgoing NI queue Incoming NI queue

Off-chip frame Source TTEthernet interface Destination TTEthernet interface

Emitting node or router port Following receiving router or node
port on the routing path

On-chip frame Source NOC interface Destination NOC interface

In the following Gantt chart extract we see the first instance of the message Msg_RC, together
with the VL and frames used to transport it:

The following things can be observed:

 “Msg_RC”: the waiting in the “Source NI port” is known from the trace and thus a
small “dotted line / empty rectangle” is shown. As soon as the NI takes the instance
of Msg_RC into account, the rectangle is drawn filled until the arrival at the
“Destination NI port”.

 “VL_RC”: There is no “dotted line” part, because the NI only creates VL instance, when
their communication is allowed / foreseen.

 “OnChipFrameSet 1: VL_RC”: there is no “dotted line / empty rectangle” part, because
no details are known from the trace about over the NOC transmission.

 “OffChipFrameSet: VL_RC”: two empty and two filled rectangles are shown. They
correspond to the waiting and transmission times in the two network segments:

o “Node1 “R”
o “R” “Node2”

Another of the generated Gantt chart provides an overview of the communication of all
messages:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 84 of 95

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 85 of 95

8 Formal Verification Framework

8.1 Formal Verification Methodology

There are two distinct tasks involved in the verification of STNoC components that have to be
performed at two different points in time. When designing a component, it must be verified
that any configuration of this component that may be generated using the iNoC platform will
be free of functional bugs. When using a component to create a NoC that meets the needs of
a particular SoC, it must be verified that the configuration that has been generated is free of
functional bugs in its utilization context.

The second task does not present uncommon challenges, but the first one definitely does due
to the extremely large number of potential configurations of the components. Finding a bug
in a component when generating a network for a SoC project could have an adverse impact.
Correcting the component design could turn out to be a significant effort and a substantial
re-verification effort could be required if interactions with other components are impacted
by changes. As a result, it could be impossible to avoid delaying some milestones of the SoC
project. Therefore, it is critical to verify as many configurations as possible during the design
phase of the components, in the amount of time available before the platform gets used in
SoC projects.

Using simulation to verify a component means developing a new testbench and a new set of
tests for each type of configuration. Constrained random tests have to be used, which implies
that adequate means to collect coverage metrics must be developed. Tests generation
followed by coverage analysis loops are then required to gain sufficient confidence.

We estimated that formal verification would be better suited for the task for several reasons:

 The behavior of a component in its different types of configurations could be
expressed with parameterized properties. The parameters used in the iNoC platform
to generate a particular component configuration could also be used to configure the
properties. A verification environment could then be readily available every time a
new component configuration would be generated, with no setup time and effort.

 There would be no need to develop new tests to verify a new configuration. Only
machine time would be required, thus saving precious verification resources.

 Exhaustive coverage of the configurations tested could be achieved, which is generally
impossible with simulation given the available time and resources.

8.2 Implementation of the Formal Verification Methodology

The core of the formal verification methodology is based on the specification of a set of SVA
properties for the STNOC, in particular to the communication part of the STNoC.

 As in any network device, the communication in the STNoC is defined by a set of rules (STNoC
protocol) that enable two or more STNoC components to communicate between them:
transmit and receive information

 There are essentially three parts in the STNoC protocol:

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 86 of 95

 The composition rules that specify the structure of a correct packet. The first flits of a
packet convey packet routing and QoS/BE service information, and the following flits
are either payload flits or ARM AMBA interconnect request/response flits.

 The sideband signals that are associated to flits. For example, a 3-bit signal indicates
whether the flit that is present on the physical link is the first flit of a packet, an
intermediate flit, or the last flit of a packet.

 The credit based control flow that ensures that an upstream component (router, AL,
NI) only sends flits to a downstream component when it is ready to accept them, i.e.
when it has space available for them in its input buffer.

A set of SVA properties has been developed to model the communication protocol between
an US component and a DS component over the physical link that connects them.

These properties are parameterized with the iNoC platform parameters that control the
generation of STNoC components. Examples of parameters include size of the flit, length of
the header, number of byte enable bits within a payload flit, presence/absence of optional
sideband signals, etc. Because properties use the same parameters as the iNoC platform, a
protocol checker is readily available every time STNoC components are generated.

RTL code has been written to keep track of the number of flits that the US component sends
to the DS component and of the number of credits that the DS component sends to the US
component. Properties make use of this RTL code to check that no overflow of the input buffer
of the DS component can occur and that the valid/credit round trip delay is always within
range.

In order to give a better idea what has been implemented, hereafter we provided a detailed
description of the methodology by the Adaptive Link (AL) example. However considering the
modularity of the STNoC technology the methodology applied to other components reflects
the same approach.

The Figure below illustrates the environment that has been developed to formally verify the
AL.

DS Monitor AL Monitor

US
Component

US Monitor

flit

flit_id

flit_id_atomic

flit_id_error

valid

credit

flit

flit_id

flit_id_atomic

flit_id_error

valid

credit

Adaptive
Link

SVA

VHDL

SVA SVA

DS
Component

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 87 of 95

The environment is a mix of VHDL and SystemVerilog elements. The RTL model of the AL is
written in VHDL. The SVA properties used for formal verification are encapsulated in
SystemVerilog modules that are attached to the AL entity using bind statements. The
SystemVerilog modules only read input/output signals of the AL, so the approach is non-
intrusive.

The AL is treated as a black-box for formal verification with no assumption made about its
implementation. All properties are expressed in terms of input/output signals of the AL and
no internal signal has been used. Properties have been developed using the functional
specification of the AL only, which is the best possible approach to verification.

The following figure provides a more detailed view of the verification environment.

8.2.1 DS Monitor:

The role of the DS Monitor is to verify that the DS interface of the AL behaves properly when
it communicates with the DS interface of a bug-free US component.

The DS Monitor module encapsulates the properties that model the communication protocol
between a US component and a DS component over the physical link that connects them. All
the properties that model the behavior of the DS interface of the US component are
configured as constraints (assume properties) for formal verification and all the properties
that model the behavior of the DS interface of the AL are configured as assertions (assert
properties).

8.2.2 US Monitor:

The role of the US Monitor is to verify that the US interface of the AL behaves properly when
it communicates with the US interface of a bug-free DS component.

Adaptive Link

Scoreboard

Packet
Compositi

on FSM

Credit-
based

Control
Flow FSM

Sideband
Signals

FSM

Upstream Monitor

Upstream signals
(incoming Flits, flow control,

sideband)

Packet
Compositi

on FSM

Credit-
based

Control
Flow FSM

Sideband
Signals

FSM

Downstream Monitor

Downstream signals
(outgoing Flits, flow control,

sideband)

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 88 of 95

Like the DS monitor, the US Monitor encapsulates the properties that model the
communication protocol between a US component and a DS component. However, they are
configured differently.

All the properties that model the behavior of the US interface of the DS component are
configured as constraints (assume properties) for formal verification and all the properties
that model the behavior of the US interface of the AL are configured as assertions (assert
properties).

8.2.3 AL scoreboard:

The flow of flits through the AL may be suspended temporarily. This happens when the input
buffer of the AL or the input buffer of the DS router gets full. If the input buffer of the AL gets
full, the AL is unable to accept new flits from the US router until some space frees up. If the
input buffer of the DS router gets full, the AL must stop sending flits to the DS router until it
signals that it has space to accept them.

Therefore, we can have three types of scenarios:

 The AL does not accept flits from the US router but it sends flits to the DS router. The
flow of flits is suspended on the US side of the AL only.

 The AL accepts flits from the US router but does not send flits to the DS router. The
flow of flits is suspended on the DS side of the AL only.

 The AL does not accept flits from the US router and does not send flits to the DS router.
The flow of flits is suspended on both sides of the AL.

In a downsizing configuration, a flit entering the US interface of the AL is split into several
smaller flits that are sent one by one to the DS interface. In an upsizing configuration, several
flits entering the US interface are stored within the AL and combined together to create a
larger flit that is sent to the DS interface once it is complete.

In a frequency adaptation configuration, the US interface clock and the DS interface clock
have different frequencies, so flits enter and exit the AL at a different pace. The DS clock and
US clock may be asynchronous, with the same frequency or different frequencies.

In a packet store&forward configuration, the AL stores the incoming flits and does not forward
them to the DS interface until a complete packet has been received.The scoreboard has been
designed to handle several scenarios, from the simplest ones to the most complex ones. Its
architecture is illustrated below

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 89 of 95

The flow of data through the scoreboard is as follows:

 Flits entering the US interface of the AL go through the predictor. The role of this
module is to generate the reference flits, i.e. the flits that will eventually appear at the
DS interface if the AL behaves correctly.

- The reference flits that get generated by the predictor are stored in the register bank.
The AL introduces latency, so a flit that comes out of the predictor cannot be compared at
once with the flit that is present at the DS interface.

- Every time a flit appears at the DS interface, a comparator checks that it is the same
as its corresponding reference flit that has been previously stored in the register bank.

The US pointer module calculates the addresses in the register bank where reference flits that
come out of the predictor have to be written. It is based on a counter that keeps track of the
flits entering the AL through its US interface.

The DS pointer module calculates the addresses in the register bank where reference flits
have to be read for comparison to the flits that appear at the DS interface. It is based on a
counter that keeps track of the flits exiting the AL through its DS interface.

The comparator module checks that outgoing flits that appear at the DS interface are identical
to their corresponding reference flits that were stored previously in the register bank.

The US side (predictor, US pointer, register bank write operations) and the DS side (DS pointer,
comparator, register bank read operations) of the scoreboard are in two different clock
domains that are not linked together in any way. No read/write races on the register bank
can ever occur because the AL always introduces latency. Configurations of the AL with
asynchronous US/DS clocks can be handled as well as configurations with synchronous US/DS
clocks.

For the sake of clarity, we only mentioned flit signals in our description of the scoreboard. In
reality, the scoreboard also takes care of the sideband signals using a similar mechanism as
for the flits

Upstrea
m

Downstr
eam

Predi
ctor =

Register Bank

Scoreboard

Adaptive

Link

Upstream
signals

Downstream
signals

Comparator

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 90 of 95

As described in the previous deliverable, the verification environment has been written in
SystemVerilog for the RTL part of it and in SVA for the properties. The RTL model of the AL is
in VHDL, so mixed-language binding mechanisms of SystemVerilog have been used.

Table 2 shows the number of SVA properties that have been written and how they are
configured in the different modules of the verification environment.

SystemVerilog module
Number of SVA
properties

Property configuration

US packet composition FSM 22 Assume

US credit-based control flow FSM 8 4 Assume, 4 Assert

US sideband signal checker 18 Assume

DS packet composition FSM 28 Assert

DS credit-based control Flow FSM 8 4 Assume, 4 Assert

DS sideband signal checker 16 Assert

Scoreboard 4 Assert

Table 2: SVA properties and their configuration

The role of assume properties is to enforce constraints on the behavior of the output signals
of the verification environment that drive the AL. Assert properties are applied to the AL and
model the behavior it must exhibit to be exempt of functional bugs.

For example, the verification environment must not send a flit to the US interface of the AL if
its input buffer is full. This behavior is captured using assume properties because this is what
a US router does (a bug-free one). The US interface of the AL must send a credit to the US
router every time a slot frees up in its input buffer. This behavior is captured as an assert
property because this is what we expect the AL to do.

Note that assertions that apply to flits are bus-wide, i.e. they apply to the value of the entire
bus.

Also note that, thanks to the architecture of the scoreboard, all properties are triggered by
only one clock.

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 91 of 95

8.3 Result

Formal proof was run on large numbers of representative of all potential configurations.
Special attention was paid to the most complex configurations that are more likely to be
impacted by functional bugs. We also made sure that every configuration parameter got
exercised.

Proof run times generally depend on the number of licenses of the formal tool and the
compute farm that are being used. In the environment that was at our disposal, the average
value of the proof per each STNOC completed for simplest configurations. Components that
include downsizing configurations typically took a day or two to complete. While components
including some upsizing configurations were still running after 5 days and the jobs were
terminated leaving some assertions unproved. Many of the Store&Forward configurations
that we tested did not finish in 5 days, which was clearly due to the presence of large FIFOs.

8.3.1 Compute farm and formal tool licenses

An obvious factor that influences the proof run times is the compute farm you have access
to:

- Number of processors and RAM size of machines
- Number of jobs that can be run in parallel

In our experience with the AL, increasing the number of processors beyond 4 and the RAM
size beyond 256Gbytes did not bring further improvements.

The number of jobs run in parallel has a massive impact on proof run times. However, running
more jobs in parallel requires more licenses of the formal proof tool, so cost is a constraint.

8.3.2 Proof engines

The formal proof tool that we used has 18 proof engines that execute different types of
algorithms. Depending on some characteristics of the design to be verified and its associated
properties, some proof engines perform better than others. The tool uses heuristics to
automatically select proof engines.

The tool we used can display graphs that show the progress of the different proof engines
over time as the proof goes on. We used this feature to thoroughly analyze the performance
of the various types of proof engines for the different families of configurations of the AL
(upsizing, downsizing, packet store&forward, etc). We found out that for some configurations
of the AL, the proof engines automatically selected by the tool were making very slow
progress or even hardly noticeable progress. In these cases, we experimented with the other
engines and analyzed their relative performance. Through a trial and error process we were
able to identify the best proof engines for all families of AL configurations, which led to
tremendous improvements.

8.3.3 Run times

The run times that are given hereafter were obtained with up to 30 licenses of the formal
proof tool, up to 50 jobs running in parallel on the compute farm, and 4CPU machines with
256GBytes of memory.

Relay station configurations

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 92 of 95

The relay station is the simplest of all the AL configurations. The AL delays incoming flits by
one clock cycle and forwards them as is to the DS router. Relay stations are mainly used to
break long wires that are incompatible with physical design constraints.

A complete proof of this type of configurations could be obtained for all the possible flit sizes.
Run times are shown in the diagram below.

As it can be seen on the diagram, the run times do not double with the flit size. This is because
the formal proof tool is able to vectorize the assertions applied to flits, i.e. it handles a flit as
a single entity rather than a collection of individual bits.

Downsizing/upsizing configurations

The proof run times for downsizing/upsizing AL configurations mainly depend on the input flit
size to output flit size ratio, and on the flit sizes.

Unlike in the relay station configuration, it is difficult for the formal proof tool to vectorize the
flits.

In the case of a downsizer, the AL splits the input flits into several output flits but the output
flits are not a mere partition of the input flits. As an example, a 72-to-18bits downsizing AL
receives 72bits flits from the US router on its US interface and sends 18bits flits to the DS
router through its DS interface (x4 downsizing ratio). Each 72bits input flit includes 64bits of
payload and 8 byte-enable bits, one for each payload byte. The AL reassigns the byte-enable
bits to the output payload bits, each output flit containing 2 bytes of payload and 2 byte-
enable bits.

A downsizing AL may also drop some output header flits because they don’t convey any
network layer header or transport layer header information. Using the same 72-to-18bits
example, assume that the header occupies 100bits. At the US interface, two flits are required
to transmit the header. At the DS interface, only three flits are sufficient to transmit the
header, so the divide x4 ratio does not apply to the header.

The diagram below shows run times for x2 downsizing configurations.

0

5

10

15

20

25

30

35

18bits 36bits 72bits 144bits

Relay station configurations

Run time (min)

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 93 of 95

Upsizing configurations present similar challenges as downsizing configurations, and proof
run times are similar.

Packet store&forward configurations

AL configurations that implement the packet store&forward functionality use a FIFO to store
incoming flits until a complete packet has been received.

The presence of this FIFO has a dramatic impact on proof run times. As the depth of the FIFO
increases, the run times increase sharply.

We have not been able to get complete proofs in 3 days with the maximum number of licenses
we had at our disposal for ALs with a FIFO depth greater than 14 flits, the maximum depth
being 32 flits.

The EDA vendor of the formal proof tool that we used provides ‘proof accelerators’ that are
designed to address the specific challenges posed by FIFOs. These accelerators are blackbox
modules that encapsulate some ‘secret sauce’ and that the user has to instantiate in the
verification environment. We experimented with one of these proof accelerators and got
excellent results for AL configurations with the same input/output flit sizes. We were able to
prove a 144-bits AL with a 32 flits deep FIFO in less than 4 hours.

Unfortunately, due to packet header handling issues, we could not apply the proof accelerator
to packet store&forward configurations that also perform flit downsizing and upsizing.

8.3.4 Code coverage results

In order to measure code coverage, the formal proof tool generates cover properties that it
then tries to prove.

A cover property is associated to a line in the RTL code of the AL. If the tool can prove the
property, then the line is covered. Some other properties are associated to ‘if-else’ branches
and aim at checking whether both the ‘if’ branch and the ‘else’ branch are covered.

The diagram below shows the coverage achieved as a function of run times for a 36-to-144bits
upsizing configuration. Coverage increases rather rapidly during the first 6hours, and then
tends to stagnate during the remaining 4hours until all the cover properties get proven,
yielding 95% coverage.

0

5

10

15

20

25

30

35

36-to-18bits 72-to-36bits 144-to-72 bits

Donwsizing by 2x configurations

Run time (hours)

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 94 of 95

The code coverage figures that we obtained ranged from 74% to 95%, depending on AL
configurations.

Packet store&forward configurations had the lowest coverage of all the configurations that
we verified. As described above, we were not able to get complete proofs for FIFO depths
greater than 14 flits.

For most of the other configurations, coverage numbers were within a 90% to 95% range. For
each of them, coverage results pointed to some dead code in the RTL model of the AL, which
can be explained as follows.

The RTL model of the AL has been designed to implement all configurations with the same
code. VHDL generic’s (parameters) are used to select a given configuration. As a result, each
configuration leaves unused some code pieces that are only useful to other configurations.
The first step in the formal proof process consists in synthesizing the design, so most of the
logic that does not contribute to the selected configuration gets eliminated during that step
(tied nets, redundant logic, etc). However, some of that logic cannot be removed by synthesis.

8.3.5 Conclusion

 Formal verification has proved a very effective approach to verifying the STNoC.

0

10

20

30

40

50

60

70

80

90

100

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

36-to-144bits Upsizer
Coverage as a function of run times (hours)

Coverage (%)

D5.2.2 Version 1.0 Confidentiality Level:PU

30.11.2015 DREAMS Page 95 of 95

9 Bibliography

[1] Imperas Software Limited, “Model Specific Information for variant ARM_Cortex-A9MPx2”,
http://www.ovpworld.org/modeldocs/OVP_Model_Specific_Information_arm_Cortex-
A9MPx2.pdf

