
[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 1 of 71

Distributed Real-time Architecture for Mixed
Criticality Systems

Fault injection framework D5.2.3

Project Acronym DREAMS Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date Deliverable No. 5.2.3

Contact Person Mohammed Abuteir Organisation USIEGEN

Phone +49 271 740 2546 E-Mail mohammed.abuteir@uni-siegen.de

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 2 of 71

Contributors

Name Partner

Mohammed Abuteir USIEGEN

Zaher Owda USIEGEN

Cristina Zubia IKL

Félix Casado IKL

Marcello COPPOLA ST

Lukas Kohutka TTT

Arjan Geven TTT

Jorn Migge RTaW

Manuel Muñoz FENTISS

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 3 of 71

Table of Contents

Contributors .. 2

Executive Summary ... 8

1 Introduction .. 9

1.1 Relationship to other DREAMS Deliverables .. 9

1.2 Positioning of the Deliverable in the Project .. 9

1.3 Structure of the deliverable .. 9

Part A: Hardware Fault Injection .. 11

2 Real-Time Fault-Injection Framework ... 12

2.1 Introduction .. 12

2.2 Fault Injector Requirements ... 12

2.3 Fault Injector Implementation .. 13

2.3.1 Hardware platform and overall solution... 13

2.3.2 Idle operation .. 15

2.3.3 Faults injection .. 16

2.3.4 Software Control ... 18

2.4 Evaluation ... 20

2.4.1 Set-up .. 20

2.4.2 Test results .. 21

2.4.3 Real-Time Fault-Injection Framework in the wind power demonstrator 24

3 On-chip Fault-Injection Framework .. 26

3.1 Fault injection Emulation Platform ... 26

3.2 The Fault Model .. 26

3.3 The DREAMS Fault Injection Emulation Platform ... 27

3.4 Evaluation ... 31

3.4.1 Set-up .. 31

3.4.2 Test description ... 32

3.4.3 Test results .. 33

3.5 Conclusions ... 33

Part B: Simulation Environment and Fault Injection ... 34

4 Validation of the DREAMS Chip Simulation Framework ... 35

4.1 DREAMS Chip Co-Simulation Virtual Platform .. 35

4.1.2 Gem5 Configuration and Execution Instructions .. 38

4.2 Synthetic Use Case Validation ... 38

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 4 of 71

5 Simulation Fault-Injection Framework ... 41

5.1 Fault Injector Implementation .. 41

5.1.1 Omission Failure .. 41

5.1.2 Corruption ... 41

5.1.3 Link Failure .. 42

5.1.4 Crash Failure.. 42

5.1.5 Delay Failure.. 43

5.1.6 Babbling idiot Failures ... 43

5.1.7 Masquerading Failure ... 43

5.2 Evaluation ... 43

5.2.1 Simulation Framework in the avionic demonstrator .. 44

6 Implementation of Model-Driven Configuration for the Simulation Framework 47

6.1 How to Configure and Execute the Generation .. 47

6.1.1 Description .. 47

6.1.2 Relations and dependencies with other tools .. 47

6.1.3 Inputs .. 47

6.1.4 Outputs ... 47

6.1.5 Running the generator .. 48

6.2 Configuration Files for the Cluster Level ... 53

6.2.1 Specification of Configuration File Formats with Examples ... 53

6.3 Configuration Files for the Chip Level ... 54

6.3.1 Specification of Configuration File Formats .. 54

7 Analysis of Simulation Traces .. 57

7.1 Trace Files ... 57

7.1.1 Off-chip Network Related Events .. 57

7.1.2 On-chip network related events ... 57

7.2 Export of DREAMS System Description to RTaW-Timing Tool .. 58

7.3 Visualization of Trace Analysis Results ... 59

7.3.1 Frame Drop Tables .. 59

Part C Validation Framework .. 60

8 Validation Framework ... 61

8.1 Validation Methodology ... 61

8.1.1 Hardware Testing Strategy .. 61

8.1.2 Test Bench Concept .. 62

8.1.3 Modeling Concept ... 62

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 5 of 71

8.1.4 CLK model ... 63

8.1.5 RESET model.. 64

8.1.6 DIO model ... 64

8.1.7 GMII MON model .. 65

8.1.8 GMII GEN model ... 65

8.1.9 RMII MON model .. 66

8.1.10 RMII GEN model .. 66

8.1.11 AHB HOST model ... 67

8.2 Implementation of the Validation Methodology .. 68

8.2.1 Test Procedure Synchronization ... 68

8.2.2 Test Procedure Freedom from Interference ... 69

8.2.3 Test Procedure Security .. 69

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 6 of 71

Table of Figures

Figure 1 Sketch of the Fault Injector Deployment .. 13

Figure 2 Sketch for masquerading fault .. 15

Figure 3 ChipScope capture of Idle Operation .. 16

Figure 4 ChipScope capture of Byte Modification .. 17

Figure 5 ChipScope capture of Frame Delay ... 17

Figure 6 ChipScope capture of Frame Loss ... 18

Figure 7 Graphical User Interface (GUI) .. 19

Figure 8 Validation setup .. 21

Figure 9 Byte Modification (BM) fault .. 22

Figure 10 Frame Delay (FD) fault .. 23

Figure 11 Frame Loss (FL) fault ... 24

Figure 12 Evaluation of the Real-time Fault-Injection Framework in the wind power demonstrator 25

Figure 13 Fault Injection Framework .. 28

Figure 14 SCEMI API .. 30

Figure 15 Emulation Platform ... 30

Figure 16 STNOC DREAMS instance .. 31

Figure 17: DREAMS Chip Co-Simulation Virtual Platform ... 35

Figure 18: OVPSim contents tree .. 36

Figure 19: Xtratum platform configuration .. 37

Figure 20: Gem5 Execution Command Including Generic Configurations .. 38

Figure 21: Synthetic Use Case Design and Configuration ... 39

Figure 22: Beginning of the Gem5 simulation output .. 39

Figure 23: OVPSim simulation output ... 40

Figure 24: use case termination statistics (Gem5 side) .. 40

Figure 27: Packet Discarder with Attributes ... 41

Figure 28 : Link Configuration with Attributes .. 42

Figure 29: Failure Recovery with Attributes ... 42

Figure 30: Avionic Use-Case Topology .. 44

Figure 31: FMS .. 45

Figure 32: Structure of virtual platform configuration file set ... 48

Figure 33: Context menu for generating the configuration files for the virtual platform 49

Figure 34: Specifying the duration of message injection. ... 49

Figure 35: Persisting the generated configuration model .. 50

Figure 36: Switching to the "Resource Navigator" ... 50

Figure 37: Visualizing the generated configuration model ... 50

Figure 38: Visualization of configuration model items ... 51

Figure 39": “Run Configuration Generation Framework” menu entry ... 52

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 7 of 71

Figure 40: Selection of the configuration files to generate. ... 53

Figure 41: Example of a switch configuration file. .. 53

Figure 42: Example of the configuration file for nodes without NoC. .. 54

Figure 43: Example of the on-chip/off-chip gateway configuration file for RC virtual links. 54

Figure 44: Example of the on-chip/off-chip gateway configuration file for TT virtual links. 54

Figure 45: Example of the port configuration file. .. 55

Figure 46: Example of the serialization unit configuration file. .. 55

Figure 47: Example of the message injection configuration file. .. 56

Figure 48: Frame drop events ... 57

Figure 49: Export of system description for trace analysis. .. 58

Figure 50: Visualization of frame drop statistics. .. 59

Figure 51: Overall Validation Strategy .. 61

Figure 52: Overview of the basic Verification Concept ... 62

Figure 53: Simulation models and interaction with DUT .. 63

Figure 54 Network topology and data flow in DUT .. 68

Figure 55: Simulated network topology and data flow for synchronisation validation 69

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 8 of 71

Executive Summary

This deliverable presents the fault injection and validation framework of DREAMS. The fault injection
framework serves for verifying the DREAMS architecture using hardware fault injection and simulations.
The fault injection comprises two dimensions, namely cluster level fault injection and chip level fault
injection.

 Hardware fault injection at cluster level: The hardware fault injector at the cluster level aims at
testing the proper operation of a safety communication layer. The fault injector has been
developed using a ZedBoard, which includes programmable logic (programmed using VHDL
language) and an ARM processor (programmed using C language). Moreover, an expansion FMC
board with two Ethernet ports to access the medium has been added. The whole system is
controlled by a PC (with a C# application) that commands the fault injector through the
ZedBoard’s ARM via its Ethernet port.

 Fault injection in simulation at cluster level: The fault injection at cluster level in the simulation
was developed to simulate the system behaviour under the effects of design faults and
operational faults. Thereby, the simulation framework supports the quantitative evaluation of the
reliability of a DREAMS system with subsystems of different criticality.

Moreover, the validation framework has been developed based on the low-level simulation of the
communication between different DREAMS nodes to perform logic simulation. These low-level
simulation models aim at finding potential errors in the implementation of protocols and
standards in hardware.

 Hardware fault injection and simulation at chip level: The hardware fault injection at the chip
level was implemented to check failures according to the SoC under test specification, which gives
the ability to increase the failure robustness for Functional Safety. Additionally, a novel definition
of a framework that introduces the fault injection mechanisms in the current emulation flow is
given in this deliverable.

The fault injection and validation framework is configured using the model-based configuration tools from
WP4. Tool support is also provided for the visualization and analysis of the trace analysis results.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 9 of 71

1 Introduction

This deliverable is dedicated to the implementation of the fault injection framework. The fault injection
framework has been implemented at different levels, i.e. hardware fault injection at the cluster level and
chip level as well as fault injection in simulations. To validate the reliability of the DREAMS architectures,
different use-cases have been used.

In order to seamlessly integrate the virtual platform into the DREAMS tool chain, a model-driven
configuration file generator has been implemented. Its goal is the automatic creation of simulator
configuration files from a given system description in order to avoid error-prone manual editing.
Furthermore, to ease the analysis of simulation results, high-level properties such as end-to-end delays
have been synthesized out of simulation traces.

Furthermore, a formal validation framework has been implemented for mapping of simulation results to
hardware to provide an end-to-end simulation environment that detects errors that cannot be found by
simulating only the components.

1.1 Relationship to other DREAMS Deliverables

The hardware building blocks that have been implemented within WP2 and WP3 were the main input for
the fault injection to validate and test different hardware building blocks such as STNoC and EtherCAT
components. The virtual platform that was implemented in T5.2 served as the primary input for the fault
injection in simulations. The fault injection framework will be used in different use-cases from WP6 and
WP7.

The meta-model (T1.4 & T1.6) was the main input for the model-driven configuration of the simulation
building blocks. This was developed in cooperation with WP4.

The validation framework is used to evaluate the functionality of the hardware components that are
implemented within WP3 such as the gateway and the switch.

1.2 Positioning of the Deliverable in the Project

The goal of task T5.2 “Simulation, verification and fault-injection framework” is to provide a framework
for simulating and verifying the behavior of a mixed-criticality system based on the DREAMS architecture.
To achieve this goal, task T5.2 is divided into three deliverables: D5.2.1, D5.2.2 and D5.2.3.

D5.2.1 Specification of simulation framework

D5.2.2 Prototype implementation of simulation framework for DREAMS architecture

D5.2.3 Fault injection framework

This document is the final deliverable of task T5.2. The dissemination level of this deliverable is public (PU)
i.e. once approved by the European Commission (EC), it will be freely available for download through the
DREAMS project website (http://dreams-project.eu).

1.3 Structure of the deliverable

The remainder of this deliverable is structured in three parts. Part A introduces the implementation of the
hardware fault injection. The implementation of the real-time fault injection framework at cluster level is

http://dreams-project.eu/

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 10 of 71

given in section 2, while the implementation details for the on chip fault injection framework are
explained in section 3.

Part B covers the evaluation and validation for the DREAMS simulation environment. The co-simulation
of the DREAMS chip with the execution environment is given in section 4. Section 5 describes the
implementation of the fault injection in the simulation framework. The detailed specification of the virtual
platform configuration file generator is provided in Section 6. The description focuses on the mapping
between the DREAMS meta-model entities and the configuration file entities. Section 7 describes the
functionalities implemented for the visualization of simulation traces and delay statistics derived from the
traces for verification purposes.

Part C provides the description of the validation framework for DREAMS with a new methodology for
evaluating the functionality of the hardware components.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 11 of 71

Part A: Hardware Fault Injection

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 12 of 71

2 Real-Time Fault-Injection Framework

2.1 Introduction

When end-to-end communication takes place, several faults might occur during communication such as
transmission errors, repetitions, deletion, delay, etc. An SCL (Safety Communication Layer) has been
developed (in WP3) with the intent of considering the communication channel as a black channel and
leaving all detection mechanisms in charge of this layer that will isolate the end application from the
communication channel faults. The SCL will be stressed in the evaluation plan by means of the real time
fault injection framework. The design and development of this Fault-Injector is the topic of this section.

2.2 Fault Injector Requirements

The main objective of this activity is to develop an FPGA-based system able to inject faults in a
communication between two devices by placing it between them. Ideally, the system has to be able to
perform an idle state (i.e. the injector forwards the frames received without introducing any perturbation)
and start injecting faults when it is commanded to do so via software. At this point, it has to be raised that
just one fault can be injected per iteration (an iteration is defined as a complete sequence of frames
exchanged by the two devices). Thus, users have to introduce, via software, which type of fault is injected
in a specific iteration. In addition, the Fault Injector has to be bidirectional, that is, being able to inject
faults in both directions of the communication.

It will be used to test the Safety Communication Layer’s (SCL) behavior, which implements the safety
measures (techniques) defined by IEC 61784-3-3 to avoid the communication errors listed below and
further detailed in deliverable D3.3.1 section 7.1.1.1:

 Corruption: Messages may be corrupted due to errors within communication channel participant,
due to errors on the transmission medium, or due to message interference.

 Unintended repetition: Due to an error, fault or interference, old not updated messages are
repeated at an incorrect point in time.

 Incorrect sequence: Due to an error, fault or interference, the predefined sequence (for example
natural numbers, time references) associated with messages from a particular source is incorrect.

 Loss: Due to an error, fault or interference, a message is not received or not acknowledged.

 Unacceptable delay: Messages may be delayed beyond their permitted arrival time window, for
example due to errors in the transmission medium, congested transmission lines, interference, or
due to communication channel participants sending messages in such a manner that services are
delayed or denied (for example FIFOs in switches, bridges, routers).

 Insertion: Due to a fault or interference, a message is inserted that relates to an unexpected or
unknown source entity.

 Masquerading: Due to a fault or interference, a message is inserted that relates to an apparently
valid source entity, so a non safety relevant message may be received by a safety relevant
participant, which then treats it as safety relevant.

 Addressing: Due to a fault or interference, a safety relevant message is sent to the wrong safety
relevant participant, which then treats the reception as correct.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 13 of 71

2.3 Fault Injector Implementation

2.3.1 Hardware platform and overall solution

The system has been developed in a ZedBoard1, which uses a Network Board (connected via FMC) to
access the medium. In Figure 1, a sketch of the system is shown.

Figure 1 Sketch of the Fault Injector Deployment

The VHDL language has been used for the hardware programming (using Vivado software2), and the C
language for the software programming and the integration with the hardware part (using SDK software3).
Additionally, a Graphical User Interface (GUI) has been developed in C# (using Visual Studio Express4), in
order to provide users with a graphical interface to control the Fault Injector.

In order to fulfill the requirements, three faults have been identified and implemented, which are:

- Byte Modification (BM): The Fault Injector changes a byte of the original frame. By changing a

byte, communication errors such as data corruption and corruption of the sender/receiver

addresses are emulated.

- Frame Delay (FD): The Fault Injector retains a frame and releases it after a certain delay. By

delaying frames, it is possible to address the communication error of data packages outside

temporal constraints.

- Frame Loss (FL): The Fault Injector does not forward one of the frames. With this fault, the

communication error of a wrong sequence of packages is addressed, as every frame has been

generated with its own sequence number.

1 http://zedboard.org/
2 http://www.xilinx.com/products/design-tools/vivado.html
3 http://www.xilinx.com/tools/sdk.htm
4 https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

http://zedboard.org/
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/tools/sdk.htm
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 14 of 71

With these three faults the Fault Injector is capable of reproducing most of the errors listed in section 2.2

as it is shown in the table below.

 Fault techniques

 Implemented Not implemented

Error
Can it be

reproduced?
Byte

Modification
Frame Delay

Frame
Loss

Unintended
repetition

Masquerading Addressing

Corruption Yes x

Unintended
repetition

No x

Incorrect sequence Yes x

Loss Yes x

Unacceptable delay Yes x

Insertion No - x x

Masquerading No x

Addressing No x

- Corruption: This fault can be recreated using the fault “Byte Modification” in which the user is

allowed to change a packet’s byte.

- Unintended repetition: Not implemented.

- Incorrect sequence: It can be reproduced using the “Frame Delay” fault, retaining the message

and after a certain time (enough for the subsequent frame to be sent), releasing it.

- Loss: It can be emulated by the “Frame Loss” fault.

- Unacceptable delay: It can be recreated by using the “Frame Delay” fault.

- Insertion: It can be reproduced by changing a byte of the source direction using the “Byte

Modification” fault, but the CRC will be wrong and the destination will discard the packet.

- Masquerading: By using the “Byte Modification” fault, a byte of the source direction can be

modified. However, with this modification, the CRC computed at SCL level will be automatically

wrong and the SCL layer at the destination will discard this packet.

- Addressing: As in the previous case, the destination direction can be changed using “Byte

Modification”. But, again, the SCL at destination will discard the packet due to a CRC error.

The currently implemented Fault Injector would need some modifications in order to fulfil all the

requirements. The pending techniques, which will not be addressed in the current version of the Fault

Injector, could be developed in the following way:

- Unintended repetition: when the ‘Unintended repetition’ fault is chosen, as in the case of the

‘Frame Delay’ fault, the received packed will be stored in memory and will be transmitted after a

given amount of time. Unlike the ‘Frame Delay’ fault, the received packet has to be forwarded.

The retransmission time has to be provided by the user.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 15 of 71

- Masquerading: consider the scenario shown in Figure 1. When the ‘Masquerading’ fault is chosen,

instead of forwarding the packet received from ‘Device 1’ to ‘Device 2’, the Fault Injector will

generate a ‘non-safety’ packet with the 0x03 valid source direction.

Figure 2 Sketch for masquerading fault

- Addressing: when the ‘Addressing’ fault is selected, the Fault Injector will change the original

destination address of the received packet by another of an existing device and will also

recalculate the CRC. For that purpose a switch will be required in the network as the Fault Injector

has just two Ethernet ports.

- Insertion: The Insertion fault will be a combination of ‘Unintended repetition’ and the

‘Masquerading’ faults where the source address of the packet stored in memory is changed and

the CRC is recalculated.

The implementation of these new techniques in future developments will depend on the needs

encountered in the implementation of the SCL and the Fault Injector in the wind power demonstrator,

which are not clear yet.

Regarding the control of the Fault Injector, the following signals have been defined:

- Inyectar_falta: this signal is a flag that indicates when a fault has to be injected.

- Tipo_falta: used to select the type of the fault: BM, FD or FL.

- Offset: used when BM is selected. Indicates the offset of the byte to be changed.

- Mask_Mod_byte: used when BM is selected. The byte modified by BM is the result of the logical

xor operation between the original byte and the Mask_Mod_byte.

- Delay: used when FD is selected. Specify the amount of time that the frame is retained.

Essentially, the implementation of the Fault Injector has consisted in three main parts, which are: idle
operation, fault injection and software control.

2.3.2 Idle operation

As it has been already stated, when no fault is required to be injected, the Fault Injector behavior must
be transparent for the communication, that is, the frames received must be automatically forwarded.
Thus, the first step in the design has been the access of the medium, which allows the system to receive
and transmit frames. Therefore, Medium Access Control (MAC) was required and to that purpose, the

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 16 of 71

“Tri-Mode Ethernet MAC v8.0” (TMAC)5 Intellectual Property (IP) core has been instantiated. By properly
configuring the TMAC, both reception (to the FPGA) and transmission (from the FPGA) are available; thus,
four (two for each direction) simple machine states, one for reception and the other for transmission,
have been implemented in order to forward the received frames. Those machine states consist of,
basically, the required commands to manage the access to a shared memory. In order to avoid any loss as
a result of an arrival of frames faster than expected, a circular memory (rather than a fixed one) has been
used. This circular memory has been configured to be able to store two frames, which allows the system
to store a second frame while the first one is being transmitted.

In Figure 3, it is shown a capture of ChipScope where it can be observed that the data received by the
TMAC (‘rx_axis_mac_tdata[7:0]’) is stored in the circular memory (‘dina[7:0]’) and, once the frame has
been stored (‘packet_stored’) it triggers the transmission state machine (‘flag_to_init_tx’), so the frame
is forwarded from the memory (‘doutb[7:0]’) to the TMAC (‘tx_axis_mac_tdata_eth2[7:0]’). For this
specific scenario, the frames are made up of 61 bytes; thus, with such conditions, the delay introduced by
the Fault Injector (i.e. from the time it receives the first byte till it releases the first byte) is approximately
7 μs. It has to be noted that the delay is proportional to the frame length. Thus, each additional byte adds
a delay of 80 ns.

Figure 3 ChipScope capture of Idle Operation

2.3.3 Faults injection

Once the basic part (the idle operation) was built up, the next step was to add the required actions to
perform the injection of faults. Indeed, each kind of fault requires specific actions that will shape the Fault
Injector.

- Byte Modification (BM): When BM is the selected fault, the frame reception works just as in the

case of idle operation; so, the major changes have been included in the transmission. Thus, when

the byte to be transmitted is in the position indicated by the Offset control signal, instead of

transmitting the original byte, the result of the logical xor operation between the original byte

and the Mask_Mod_byte is sent. In the capture of ChipScope in Figure 4 it can be observed that

when ‘Inyectar_falta = 1’, ‘Tipo_falta = 1’ and ‘counter_tx[11:0] = Offset[11:0]’, what is forwarded

to the TMAC is not what is stored in memory (x”21”) but the result of what is in memory xor

‘mask_mod_byte[7:0]’ => x”21” xor x”DD” = x”FC”.

5 http://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v8_2/pg051-tri-
mode-eth-mac.pdf

http://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v8_2/pg051-tri-mode-eth-mac.pdf
http://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v8_2/pg051-tri-mode-eth-mac.pdf

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 17 of 71

Figure 4 ChipScope capture of Byte Modification

- Frame Delay (FD): In case of selecting the FD fault, the received frame is not stored in the circular

memory but in a parallel memory and, in addition, a timer is triggered. Once the timer reaches

the value indicated by the Delay control signal, a flag is raised in order to transmit the delayed

frame. Figure 5 shows two captures of ChipScope where it can be observed that when

‘Inyectar_falta = 1’ and ‘Tipo_falta = 2’ the data received by the TMAC is not stored in the regular

memory but in another one specifically used for delayed frames (‘dina_delay[7:0]’), and that a

timer is triggered. When this timer equals the ‘Delay[23:0]’ signal, the transmission of the delayed

frame is triggered (‘tx_delayed_packet’1); thus, the frame forwarded to the TMAC comes from

the memory used to store delayed frames (‘doutb_delay[7:0]’).

Figure 5 ChipScope capture of Frame Delay

- Frame Loss (FL): when the FL fault is selected, the reception works just like in the case of idle

operation, but the flag to indicate that the frame is ready to be forwarded is never raised. Hence,

the stored frame will be overwritten by new frames and will not be transmitted. Figure 6 shows a

capture of ChipScope where it can be observed that when ‘Inyectar_falta = 1’ and ‘Tipo_falta = 3’,

the data received by the TMAC is stored in memory, but the flag to start the transmission

(‘flag_to_init_tx’) is never raised, hence, the frame is never transmitted.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 18 of 71

Figure 6 ChipScope capture of Frame Loss

2.3.4 Software Control

In order to allow users to steer the Fault Injector to their convenience, the control signals are controlled
via software. For this purpose, ten “AXI GPIO” IP cores (one for each control signal and for both directions)
have been instantiated. Thus, a simple application can be created using SDK in order to initialize and
modify the control signals of the Fault Injector. Therefore, the software control part consists of two main
parts: Graphical User Interface (GUI) and control data acquisition.

2.3.4.1 Graphical User Interface (GUI)

The main purpose of the GUI is to allow users to change the parameters that control the Fault Injector. It
has been developed using C#, and its main functionalities are detailed below with a capture (Figure 7) of
the implementation as a guide.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 19 of 71

Figure 7 Graphical User Interface (GUI)

The parameters that have to be configured in the GUI are the following ones:

- Fault Type Selection: the three faults implemented (BM, FD and FL) are available for users to select

one of them.

- Offset: Offset for the BM fault.

- Delay: the Delay (in nanoseconds) for the FD fault.

- Mask for byte modification: the Mask_Mod_byte for the BM fault.

- Fault Injection: at this point users select if the configured fault has to be injected or not. In order

to reset the Fault Injector, after one fault has been injected users have to select No (Reset) and

push the ‘Update Data button’.

- Direction: selection of the communication direction where the fault is to be injected.

- Network Interface: by pushing the ‘List’ button, the available network interfaces are listed, so the

most suitable one can be selected.

- Console: used by the system to show informative messages.

- Update Data (button): when the update data button is pressed the configured fault is sent, via

socket, to the control data acquisition program.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 20 of 71

2.3.4.2 Control data acquisition

The Control data acquisition is a C++ based program that has been developed using the SDK platform. It
is in charge of receiving the configured fault from the GUI and updating the Fault Injector control signals
accordingly. Essentially, this program initializes the communication interfaces (from the GUI and to the
PL), and remains permanently waiting for any change in the fault configuration. On one hand, the
communication between the GUI and the C++ based program is managed through the ZedBoard Ethernet
Port. On the other hand, the control signals in the PL are updated through the use of the “AXI GPIO” bus.

To summarize, and gathering all the pieces, the Fault Injector operates as follows: the user configures the
control parameters through the GUI (which is running in a PC); and therefore the GUI forwards the data
to the control program running in the ARM, which updates the PL transferring the control parameters
through the GPIOs.

2.4 Evaluation

2.4.1 Set-up

Different tools have been used in order to evaluate the behavior of the Faults Injector. On one hand,
Ostinato6 has been used to generate the traffic that passes through the Fault Injector. On the other hand,
Wireshark7 has been used at the end point in order to gather the traffic that goes through the Fault
Injector. In Figure 8 the setup used for the validation is shown. As it can be observed, the setup is made
of a PC generating packets with Ostinato, a second PC where users interact with the GUI and a third PC
running the Wireshark tool to analyze the packets forwarded by the Fault Injector.

6 http://ostinato.org/
7 https://www.wireshark.org/

http://ostinato.org/
https://www.wireshark.org/

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 21 of 71

Figure 8 Validation setup

2.4.2 Test results

The three types of faults (BM, FD and FL) have been injected so the Fault Injector behavior is checked
under all the conditions.

2.4.2.1 BM fault injection

In Figure 9 a BM fault is injected. The Ostinato tool generates 10000 ECAT packets that pass through the
Fault Injector and, afterwards, they are gathered in a Wireshark capture. The Fault Injector has been
configured with an Offset of 8 and a Mask_Mod_byte of 221. It can be observed that the 10000 packets
reach the end point and that one of them has a different source direction (Figure 9) as a result of the BM
fault.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 22 of 71

Figure 9 Byte Modification (BM) fault

2.4.2.2 FD fault injection

For this fault, the Ostinato tool is configured to deliver 40 ECAT packets with a rate of 100 ms and the
Fault Injector is commanded to introduce a 9.5 ms delay. By taking a look at the time tag of the packets
in Figure 10, it is clearly observed that the one marked in blue breaks the pattern by approximately 10ms,
which validates the delay introduced by the Fault Injector.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 23 of 71

Figure 10 Frame Delay (FD) fault

2.4.2.3 FL fault injection

In this case, Ostinato is configured to deliver 10000 ECAT packets as in the case of the BM fault. In Figure
11, it is shown that just 9999 packets reach the end point, which validates the injected fault.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 24 of 71

Figure 11 Frame Loss (FL) fault

2.4.3 Real-Time Fault-Injection Framework in the wind power demonstrator

The wind power demonstrator is a powerful tool to evaluate DREAMS technologies and the fulfilment of
the project objectives. The wind turbine case study integrates a subset of the DREAMS technologies and
among them, the SCL, which is used to transport safety related input/output data between EtherCAT
slaves and the safety protection system deployed in the harmonized platform. The demonstrator is
comprised of mixed-criticality partitions/applications, where the safety protection system is the most
critical piece of software. The verification plan will include tests to validate that faults occurring in other
partitions/applications do not compromise the safety level of the protection system (but possibly the
availability). The Ethernet fault injector will be used as a tool to validate the impact of different faults in
the off-chip communication bus.

Figure 12 shows the proposed implementation of the SCL and the Fault Injector in the wind power
demonstrator. The SCL is implemented in both ends of the communication channel (only in the slave that
manages safety input and output signals) and the Fault Injector in between. Only safety datagrams will be
corrupted.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 25 of 71

Figure 12 Evaluation of the Real-time Fault-Injection Framework in the wind power demonstrator

The delay introduced by the fault-injection system has been measured in section 2.3.2 and is
approximately 7 μs (from the time it receives the first byte till it releases the first byte), which is OK for
the EtherCAT communication implemented within the wind power demonstrator that has a cycle of 3 ms.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 26 of 71

3 On-chip Fault-Injection Framework

3.1 Fault injection Emulation Platform

Hardware emulation is the next step after simulation. Without emulation, there is no way from the
simulation point of view to run concurrently hardware and software. Hardware emulation is the only
technology enabling to run applications in an acceptable time. Today there are two different technologies
called FPGA-based emulator and emulators based on custom silicon. In the first class, the core element is
a custom FGPA designed for emulation applications, while the second class, the core element is an array
of simple Boolean processors that execute a design data structure stored in large memories. Regarding
the underlying emulation technology used ST has developed a framework to extend the current hardware
emulation flow toward the fault injection support. Fault injection is important to evaluate the
dependability (the study of failures and errors) of a System on Chip. The dependability of a system is the
study of the detection and isolation of failures and errors as well as the reconfiguration and recovery
capabilities.

Often during the design phase the dependability of SoC is evaluated using simulation based fault injection
which assumes that errors or failures occur according to a predetermined statistical distribution. The main
drawback is the difficulty to provide accurate input parameters that can reflect the reality especially in
the case of mixed criticality systems where the timing is critical. On the other side, testing a prototype will
allow us to evaluate the system without any assumption yielding more accurate results. In fact, in a
prototype-based fault injection methodology, faults are injected using random inputs enabling a better
understanding of the effectiveness of fault tolerance mechanisms as well as concrete numbers of the
coverage related to error detection and recovery mechanisms. Last but not least, implementing the fault
injection using emulation it is possible to speed up and cover the huge number of faults that need to be
checked.

The injection of faults can be done at hardware level and /or software level. In the first case we consider
logical or electrical faults while in the second case we consider code or data corruption. Using the
emulation based fault injection is a step further in this direction since instead of considering a prototype
we consider a fully operational SoC. Therefore fault injection provides information about the real-life
failures. Injecting random faults while running real software provides a way to validate the SoC against
the actual errors and failures. However the only blocking point using emulation based fault injection is the
amount of software/workloads that we are able to run.

3.2 The Fault Model

In this section we describe a new methodology to validate the functionalities and the robustness against
soft errors of DREAMS chip instances. As described in Wikipedia, register-transfer level (RTL) is a design
abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between
hardware registers, and the logical operations performed on those signals. The register-transfer-level
abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level
representations of a circuit, from which a lower-level representations and ultimately actual wiring can be
generated. Design at the RTL level is typical practice in modern digital design. Considering the amount of
details, RTL simulations are very slow implying the impossibility to simulate chip instances such as

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 27 of 71

DREAMS ones. In order to solve this problem emulation has been introduced enabling the complete
verification of the system. Testing of digital circuits has traditionally been done using fault models:

 SEU: Single Event Upset

o flip the value of a flip-flop (01, 10)
o value remains corrupted until next write in register

 STUCK-AT 0/1 (STK)
o stuck value of a flip-flop to 0/1 permanently

 MBU: Multiple Bit Upset

 flip the value of several flip-flops (1n)

 similar behavior to SEU for each individual corrupted flip-flop

 MCU: Multiple Cell Upset

 flip content of 1 to 6 memory cells according to the content stored in adjacent cells

 values in cells remains corrupted until next write in memory cell

 simulate physical propagation of error

3.3 The DREAMS Fault Injection Emulation Platform

As mentioned, soft errors, also referred to as Single-Event Upsets (SEUs), are transient faults caused by
various types of radiation and interferences in the flip flops. Neutrons originated by cosmic rays, alpha
particles originated by the natural emission of the molding composing of the packages of electronic
devices, electro-magnetic interference and electrical noise can abruptly flip the stored state of a system
and cause a wrong functionality. This liability is becoming more and more probable with the technology
scaling and micro architectural trends. This creates system reliability concerns, especially for chips used
in mixed-criticality systems such as automotive, healthcare, networking industries, and generally on
electronics systems where functional safety is a requirement.

Figure 13 shows a fault injection environment which typically consists of the Device Under Test (DUT) (aka
SoC) plus a fault injection library, a workload generator, workload library, controller, monitor, data
collector and data analyzer.

The main component is the fault injection which injects faults into the emulated DUT and executes the
software from the workload generator (baseline software with applications). It considers as a sampled
space the possible combination of the word formed by the concatenation of the 44k injected flipflops of

the DUT. This state space has a cardinality of 244𝑘, however almost all of these combinations are
unreachable in a normal behavior. We perform statistical sampling of this state space by injecting faults
in flip-flops, and observe the behavior of the device under this fault. Effects of the fault are classified into
4 classes:

 Undiscovered not Propagating (Safe Undetected, i.e. Masking effect): the fault is inserted, but
neither the Fault monitor nor the Application are affected (fault --> no error --> no failure)

 Undetected Propagating (Dangerous Undetected): the fault is inserted, the Fault Monitor is not
affected, the Application fails (fault --> error -->failure) (unsafe condition)

 Detected not Propagating (Dangerous Detected): the fault is inserted, the Fault Monitor reacts
and resets the device (critical fault detected), which goes in Safe mode; the Application stops
(fault > error--> safe mode)

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 28 of 71

 Detected Propagating (Safe Detected): the fault is inserted, the Fault Monitor and the Application
react and manages the error (non critical fault detected), the Application continues and it
manages any fault.

Another component of the framework is the monitor that tracks the execution while the data collector
tracks data at runtime. The data analyzer performs the data analysis. Since the fault space is then
composed of a <flip-flop, cycle> tuple, we use a uniform sampling over both the flip-flop and cycle
dimension to cover the fault space. If a state (set of states) occurs more frequently in the test (such as
executing a loop), then the uniform sampling will also reflect the fact that the processor is more frequently
in these states and the measured Soft Error Resilience (SER) will reflect it. In this way, the result of a fault
injection campaign will reflect the real life observed SER of the device.

The controller is a piece of software that runs on a separate computer and controls the overall framework.
For this reason it is often denoted as the software controller or software host controller.

Figure 13 Fault Injection Framework

The fault injection emulation framework developed in DREAMS is composed of several DREAMS hardware
blocks (synthesized on the hardware emulator platform) and a fault injection environment that runs on a
host platform which allows for greater flexibility and portability.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 29 of 71

The hardware emulation platform is based on Mentor Veloce technology which accelerates block and full
SoC RTL simulations during all phases of the design process. Veloce2 enables pre-silicon testing and
debugging at hardware speeds, using real-world data, while both hardware and software designs are still
fluid. The key features are

 Scalable verification platforms with capacities from 16 million to 2 billion gates

 Common configuration and debug software across the Veloce family

 Simulator-like debug environment

 100% internal DUT visibility

 Network accessible, multi-user systems.

The technology is based on custom silicon using a highly optimized SoC chip technology. The Veloce SoC,
while FPGA-like in its computation resources, has a different kind of network for interconnecting the
computation resources that is optimized specifically for faster compile time. The constraint in designing
programmable logic cores is not to build the most optimized commercial FPGA, but to optimize the logic
for emulation applications using a distinctive interconnect network. Veloce SoC supports a capability to
independently compile the logic part of the design from the communication part; these are unique steps
that use distinct, system-level resources for predictable compiles.

Using the Veloce emulators the synthetized DREAMS Hardware blocks are enhanced with so called flip-
flop saboteurs. These flip-flops provide the injection method of the faults. For examples, each register in
the DUT is enhanced with extra logic (called flip-flop saboteurs) that emulates a particular fault model by
changing the flip flop value. The flip flop saboteurs are used to emulate the different fault models
previously described. The flip-flop saboteurs introduce faults into the DUT and they are controlled by the
software host controller. The software controller controls the different design-under-test instances and
receives/sends fault data/fault results to the software host controller through the so called SCEMI-API
interface. Thanks to the SCEMI interface, the software controller can be executed in a separate computer.

The SCEMI-API interface allows system co-emulation between an untimed software test bench linked to
a design-under-test (DUT) which is for example mapped into an emulation platform through some
communication channels as shown in Figure 14. In addition, it enables an easy integration of new and
heterogeneous hardware emulator technology that supports this API. Currently, Cadence Palladium, EVE
Zebu and Mentor Veloce are seamlessly integrated in the platform.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 30 of 71

Figure 14 SCEMI API

In order to speed up the fault injection coverage an extra hardware controller is added to the DUT as
shown in Figure 15. This hardware component, still controlled by the software controller enables to run
in parallel different scenarios of fault injections reducing the time to reach the target level of fault
coverage.

Figure 15 Emulation Platform

In fact the hardware control block enables to handle multiple parallel instances of the same DUT (SoC). It
continuously monitors the state of the different instances of the DUT and starts a new fault injection as
soon as a previous one is completed. The software controller is multithreaded and is able to control
several hardware emulators in parallel.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 31 of 71

3.4 Evaluation

3.4.1 Set-up

Figure 16 STNOC DREAMS instance

An example of a DUT that we have considered for the fault injection framework is the architecture of the
STNoC as defined in DREAMS (see Figure 16) for the harmonized platform. This STNoC architecture was
extended with the concept of Sphere of Replication (SoR) which refers to a set of replicated components
that in this specific case are all the STNOC components and a Fault Monitor. A systematic check is
performed at the output of the target network interfaces (NIs) by the RCCUs (Redundancy Control
Checking Units). It is a simple comparator that combines the transactions coming from the 2 NIs to ensure
that the same operations or transactions are executed on a clock per clock basis in both STNoC SoRs
working in a Lock Step Mode of operation. During the execution, a SEU is injected in one of the STNoC SoR
that is monitored by the RCCU modules

Using the fault injection flow we aim to detect faults as they leave the STNoC SoR. In fact, as long as a
fault remains confined within the SoR, and therefore does not generate an action visible outside the SoR
or influences the effective operability of the periphery, it shall not be considered as a dangerous fault.

The presence of RCCUs at the outputs of the STNoC SoR represents a minimum guarantee that non-
common cause faults are detected when the two redundant channels are merged into a single actuator
or recipient and the action is being performed. A programmable Fault Collection and Control Unit (FCCU)
monitors the integrity status of the DUT and provides the SoC with flexible safe state control. A fault on
the monitored components is being signaled by the RCCU to the FCCU. Having the test running
automatically and logging the results allows a massive fault insertion, which in turn allows checking the
RCCU-FCCU effectiveness. The FCCU constitutes an independent hardware channel to collect errors and
to control the device to a safe state when a failure is present. No CPU intervention is requested for
collection and control operation.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 32 of 71

3.4.2 Test description

The test Application developed to exercise the fault-detection capability consists on a memory to memory
data transfer: data contained in memory bank A is transferred through a DMA channel into the bank B,
then transferred back to bank A; after this a checksum is calculated on the data, and compared with a
reference signature. During the execution, a SEU is injected in one of the interconnect components
monitored by the RCCU modules. This procedure is repeated 4000 times to ensure a high confidence
interval and low error margin on the result.

The transfer-check test application exercises most of the STNoC components monitored by the RCCU. A
fault on the monitored components is being signaled by the RCCU to the FCCU. Having the test running
automatically and logging the results allows a massive fault insertion, which in turn allows checking the
RCCU-FCCU effectiveness.

The main procedure of the fault injection framework is described hereafter

1. Workstation starts the test (send a power-on reset)
2. When the DUT is ready to receive the fault it notifies the workstation
3. Workstation logs time-stamp (a free running counter) and FCCU status registers.
4. Workstation injects one fault. The fault and the time-stamp are logged in the log-file.

a. If FCCU is affected by the injected fault, it will notify to the workstation and the
workstation logs the time stamp plus the FCCU status registers, then gives a power-on
reset and starts a new test.

b. If it is not affected, the DUT notifies the workstation that it is not anymore ready to
receive faults. In addition the DUT sets the safety report variable (containing information
on the application checksum integrity) and notifies the workstation about the normal
termination of the test. Then, the workstation logs the time-stamp, the safety_report and
the FCCU status registers.

5. Go to point #1

In order to measure the RCCU and Sphere of Replication effectiveness, the same test with injected faults
is being run with the FCCU disabled. The result comparison of the two test sets (with and without the
FCCU activated) will indicate how frequently dangerous faults are detected and neutralized by the RCCU-
FCCU mechanism.

Since, by design, it is not possible to completely disable the FCCU, this is done modifying the design on
Palladium, simply removing the FCCU connection.

For each component where faults are injected, the number of injected faults is chosen to 4000 to ensure
a high confidence interval and low error margin on the result. Using this number of faults, a confidence
interval of 98.86% at a ±1% error margin (98.96% at ±1% using continuity correction) is achieved and
results can be considered as safe for the considered test application. Considering the length of the test
(199282 cycles), the number of injected faults (4000) and the smallest unit of injected size there is no
need to apply any Cochran correction on the number of injected faults. Therefore, a result X (percentage
taken from the 4 class classifications) can be interpreted as follow: there is a 98.86% chance that the real
value (which is unknown to us) lies in the range [X-1%, X+1%] of the measured value X. However, care
must be taken when X is close to 0 or 1 (0% or 100%) as the estimator used to draw this conclusion (normal
distribution) leads to growing imprecision as we get close to 0 or 1.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 33 of 71

3.4.3 Test results

STNoC
SoR

Nr
Tests

FCCU

(enabled
/
disabled)

Undetected
Not
Propagating

Detected
Not
Propagating

UndetectedPropagating

TOTAL

Undetecte
Propagating
Wrong
Results

Undetecte
Propagating
Delayed
Results

Undetected
Propagating

Application
Time Out

STNOC 0 4000 on 3896 104 0 0 0 0

STNOC 0 4000 off 3975 0 43 8 18 17

STNOC 1 4000 on 3897 103 0 0 0 0

STNOC 1 4000 off 3998 0 1 0 0 1

Figure 17 Tests results

As expected, with the FCCU enabled no fault is propagated to the application and the fault is either
masked, or intercepted by the RCCU-FCCU mechanism. This reflects the 99% coverage figure claimed for
the SoR (where the missing 1% coverage takes into account the common causes of failures, not modelled
on Palladium). This gives evidence of the RCCU-FCCU mechanism verification.

The comparison of those results with the corresponding results with the FCCU disabled shows the
effectiveness of the mechanism: while the "Application Time-out" and the "Delayed" results could be
intercepted by a timer watchdog (and therefore could be moved to the Detected-Propagating column
with a proper modification of the application), the wrong results can be detected only by a redundant
architecture. The test therefore shows how many failures would be undetected on the implemented
application without this architecture.

3.5 Conclusions

We have considered the STNoC architecture used in DREAMS enhanced with two redundant SoRs in order
to improve safety and to be able to validate the fault injection framework. The focus of this work is mainly
on the methodology to measure the effectiveness against soft errors, which are becoming an actual
concern on current CMOS logic circuits. The fault injection framework implies the usage of different
emulator platforms (Palladium, Zebu, Veloce) with a minimal RTL instrumentation overhead, and a
statistical model which allows to achieve sample measurement results.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 34 of 71

Part B: Simulation Environment and Fault
Injection

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 35 of 71

4 Validation of the DREAMS Chip Simulation Framework

This chapter provides the final status update of the virtual platform simulation framework for the DREAMS
architecture including the chip simulation and the hypervisor. Additionally, the final version of the
simulation framework is evaluated using two use cases, a synthetic use case and an avionic use case. The
avionic use case is based on the WP6 demonstrator, as described later in this chapter.

4.1 DREAMS Chip Co-Simulation Virtual Platform

The simulation framework uses two simulation tools to establish the desired DREAMS chip-level
behaviour. Gem5 is used to simulate the on-chip network interconnect and a set of soft-core tiles of the
DREAMS chip. Each tile has its own network interface with the support of the Local Resource Scheduler
(LRS). Tiles run user defined trace-based applications, which are based on the exchange of messages with
a priori defined setup and communication configurations. On the other hand, OVPSim is used to provide
the simulation environment of the XtratuM hypervisor. The number of the partitions and their
applications are configurable based on the use case as it will be illustrated.

The combination of these two simulators required the definition of a co-simulation strategy to guarantee
the accuracy and integrity of the simulation. Therefore, a tick-based interleaving approach was
introduced, in which the simulator tools are allowed to execute one at a time for a defined simulation
step. This simulation step is defined based on the minimum execution step of the OVPSim simulator which
is the bottle neck for defining the required execution step.

OVPSim

Hypervisor

P1

Execution
controll

OVPSim LCP2 P3

Gem5

NoC

T #1 T #0

T #N T #2

T #N

o o o i

Gem5 LC

Ethernet

NI/LRS

Figure 17: DREAMS Chip Co-Simulation Virtual Platform

This framework uses two simulation controllers, one for each of the simulation tools. These controllers
are responsible for alternating the simulation step between the simulation tools by controlling the
simulator calendar. Furthermore, they are liable for exchanging collected data and control messages. At
Gem5 level, incoming and outgoing messages from and to the local controller are redirected to the
corresponding destination based on the port mapping configuration. For instance, consider a message
sent from application A1 from Partition P1 at the hypervisor tile destined to tile T2. The message has to

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 36 of 71

be redirected at the Gem5 local controller to the corresponding output port destined to T2, and vice versa.
Further details about the simulation tools and the co-simulation approach are available in D5.2.2
“Prototype implementation of simulation framework for DREAMS architecture” and D4.2.1 “Specification
and first implementation of a platform configuration files generator”.

4.1.1.1 OVPSim Configuration and Execution Instructions

OVPSim is responsible for simulating the execution of the processing system. To this end we have
implemented a platform representing the different elements of the physical platform: memory, bus,
processors and some devices. Furthermore, the platform contains the necessary elements to
communicate with the Gem5 simulator.

4.1.1.2 OVPSim Virtual Platform Deployment.

The platform is supplied in a precompiled manner containing the directory structure shown in the
following image. The platform directory contains the source files that make up the platform as well as the
binary result of compiling these files.

Figure 18: OVPSim contents tree

4.1.1.3 OVPSim Virtual Platform Configuration.

The simulation is configured using an XML file “platform.config.xml”. This file is placed in the “platform”
directory. The contents of the xml file looks are illustrated in Figure 19 and described below:

4.1.1.3.1 Platform Description (platform)

This xml block describes the elements included in the platform. This block should not be modified since
the platform is static. The shown configuration includes:

 2 Processors corresponding with the ARM cores.

 8 Memory areas OCMRAM, OCMROM and DDR representing the memory areas available in the
board. The PhX memory areas have been added to fulfil the memory map.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 37 of 71

Figure 19: Xtratum platform configuration

4.1.1.3.2 OVPSim Local Controller (OLC)

This XML block describes the configuration parameters needed to configure the Local Controller that
interconnects OVPSim and Gem5. The controller requires the following attributes:

 @olc_comms_mode: This attribute indicates the connection role. In this case it is always
“olc_commsMode_Client”.

 @host: This attribute indicates the IP address where the Gem5 server is placed to establish the
connection.

 @port: This attribute indicates the port to establish the connection.

4.1.1.3.3 Programming Logic Virtual Device (PLVD)

This XML block describes the configuration parameters needed to configure the Programming Logic
Virtual Device. This attribute describes where the Programming Logic is placed in the Memory Map. Only
the memory rage used by the DRNoC ports is needed to be declared here. The description of each
attribute is detailed here:

 @PL_start_Address: This attribute indicates the start address where the Programming Logic is
placed in the Memory Map.

 @PL_size: This attribute indicates the Programming Logic Size in bytes.

4.1.1.4 OVPSim Virtual Platform Execution.

In order to run the OVPSim virtual platform the user should navigate into the root directory and launch
the executable indicating the application file as show in the next image:

Note: Since the Gem5 simulator acts as a server, it must be launched before the OVPSim virtual platform.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 38 of 71

4.1.2 Gem5 Configuration and Execution Instructions

The simulation framework for the tiles and their interconnect implemented in Gem5 provides a
configurable and fully adaptable framework. The configurations are defined based on the simulated use
case. Configurations of the Gem5 simulation tool are divided in two major parts: generic framework
configurations and DREAMS extension configurations. Generic configurations are related to the overall
setup of the use case, and are defined at execution time. This includes the microarchitecture to be used
(e.g. ARM, ALPHA), the number of tiles, caches size, topology (e.g. mesh) and the number of simulation
cycles. The following figure illustrates the configuration/execution command of the Gem5 generic
parameters.

Figure 20: Gem5 Execution Command Including Generic Configurations

In this example, we are running ARM based tiles for 20M cycles in a mesh topology for a fixed garnet
network. Debug flags are used to trace the simulation progress. For DREAMS purposes additional flags
were added to collect simulation results, to trace the extended network interface and the co-simulation
execution (e.g., USiegenStats, USiegenTimeStamp, USiegenMsgTrace).

Configurations related to the DREAMS extensions define the hardware topology, ports, virtual links and
configuration parameters. In addition to the time-triggered schedule for both egress bridging unit (EBU)
and serialization unit. The simulation framework has a trace-based simulation execution, which means
that the trace file configuration has to be defined based on each use case. This also includes the exchange
of message configuration parameters.

Configuration files have the format of CSV files with one dedicated file for each configuration set. To define
the above mentioned configuration parameters, files located in “/src/mem/ruby/network/garnet/fixed-
pipeline/ConfigurationManager/” have to be modified accordingly.

4.2 Synthetic Use Case Validation

A synthetic use case is introduced in this section to validate the on-chip DREAMS virtual platform. This use
case consists of four tiles as shown in Figure 21, each tile name consists of three digits: chip ID, partition
ID and tile ID. In this use case we are demonstrating a single DREAMS chip with four tiles each with a single
partition. Tile “0.0.3” is connected to the OVPSim simulator that will run the hypervisor. Three periodic
applications will be running on the hypervisor tile that has a unique input port for receiving data input as
a rate constrained data flow from tile “0.0.1”. Moreover, ports of each tile are defined in the
HL_PortConfig.csv file. This includes the port, core and partition IDs indicating the physical and logical
addresses of the port. Finally, port types are defined in addition to the dedicated virtual link IDs that will
be connected to this port. Virtual links are defined based on the type (i.e. TT, RC, or BE) of the virtual link.
Periods are given in case of time-triggered VLs, while in case of rate constrained ones the MINT is defined.
Additionally, the physical name of the resource and destination ports are given.

A simulation period of five microseconds is defined for this use case. Periodic messages are sent from tile
3 at an offset of 4100, 4500 and 4900 microseconds at ports 0, 1 and 2 accordingly. Based on this use case,
messages received at tile “0.0.3” are processed and sent later to tile “0.0.1” as rate constrained messages.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 39 of 71

0.0.0

0

0.0.1

02

1 1

0.0.3

2

0

1

0.0.2

0

3

TT - 2

RC - 3

R
C

 - 4 T
T

 -
 1

4100 4500 4800

4005 4900

Timely block
Period:

5µs

Figure 21: Synthetic Use Case Design and Configuration

The execution results of the use case are illustrated in the following figure.

 rec. core | msgID | td | ts | PQU | t NI | core

Figure 22: Beginning of the Gem5 simulation output

The simulation framework results are demonstrated at both Gem5 and OVPSim sides. Gem5 provides the
status and statistics of the exchanged messages, and OVPSim shows the received and sent messages
from/to the hypervisor partitions.

The simulation results of the synthetic use case are illustrated in Figure 22. The first column represents
the destination core at which the message has arrived. The second column shows the message id. The
third column represents the total delay (td) of the message, from the transmission of the message by the

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 40 of 71

sending core to the arrival of the message at the destination core. The forth column (ts) represents the
tick at which the message left the sender core. The next column represents the tick at which the message
arrived at the destination core. The next two columns (fifth and sixth) represent the enqueue and dequeue
time in the Priority Queues Unit. Finally, the seventh and eighth column represent the time at which the
message is delivered and the time at which the last flit leaves the network interface.

It can be noticed that at some instances the message “NON” occurs. This kind of message is printed in
case that the Gem5 simulation tool has an empty buffer, which means that there are no messages
received from the OVPSim simulation tool at this instant. This is due to the interleaving process of the
simulation, and depends on the execution progress.

Figure 23: OVPSim simulation output

In Figure 23, messages buffered at the OVPSim local controller in both directions are tracked. The message
format is based on the message format of the DREAMS physical platform as described in the previous
deliverable D5.2.2.

Figure 24: use case termination statistics (Gem5 side)

The synthetic use case executed and terminated correctly for 490 thousand cycles (cf. Figure 24).

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 41 of 71

5 Simulation Fault-Injection Framework

Fault injection (FI) is a widely used technique, to test fault-tolerant systems or components. In DREAMS,
the simulation building blocks for fault injection allow to investigate the system behavior in the presence
of component failures. Generic fault injectors can be instantiated and configured to inject specific
message failures (e.g., babbling idiot, masquerading failure ...). The fault will be injected and observed in
specified time intervals, and it is possible to inject the same fault several times. The fault type is defied
based on following criteria:

 Emulate real world fault behaviour

 Emulate faults within the fault hypothesis (assuming single fault hypothesis, i.e., one fault can
occur in one time interval). Further details about this assumption are in deliverable D1.2.1, section
2.

5.1 Fault Injector Implementation

The fault injection simulation building blocks are implemented using the OPNET modeler.

5.1.1 Omission Failure

These failures simulate the case where a sender is not able to generate a frame and/or a receiver is not
able to receive a frame. The ”Packet discarder” provided by OPNET is used to implement the omission
failure (see Figure 25).

Figure 25: Packet Discarder with Attributes

The parameters for this module are the start time, the end time and the discard count. In addition, the
place of this module must be defined, i.e., between which devices it is located.

This fault can be injected several times by using multiples “Rows” with every row having these parameters
(Start time, End time and Discard count).

5.1.2 Corruption

This failure emulates errors during transmission (e.g., emulation of EMI disturbances), which introduce
unintended changes to the original data. This type of failure can be applied to any link. The focus in the
analysis of the corruption failure is to analyze its effects on the communication services.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 42 of 71

In order to emulate this failure, OPNET provides the capability of modifying the link configuration module.
The Bit Error Rate (BER) can be set for a specific link and with a specific start time (see Figure 26).

Figure 26 : Link Configuration with Attributes

The parameters for this module are the name of the link and the BER. In addition, the start and the end
time define the intervals of the corruption failure.

5.1.3 Link Failure

The goal is to emulate transient crash faults of links for a specific time interval relative to the start of the
simulation. The focus in this case is on testing the redundancy mechanisms of the different technologies.
These failures are emulated by using the “Failure Recovery” provided by OPNET (see Figure 27). This
involves the following attributes of this module: name of the link, time and status. The status parameter
can be set to fail or recovery condition. Additionally, multiple injections of this failure can be initiated in
this module by adding the corresponding rows.

Figure 27: Failure Recovery with Attributes

5.1.4 Crash Failure

These failures simulate the crash failure of a device, i.e., the device shows no functionality by not
generating output and by not receiving any input. Depending on the chosen fault injection time interval,
this fault emulates the case when a device suffers a permanent fault or is being reset (transient fault).
This failure type can be applied to different devices. A major system effect typically occurs, if this fault is
injected at the switches.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 43 of 71

These failures are emulated by using the “Failure/ Recovery” module for a detected device. In this module,
we can define the time, the component or link, and the status.

5.1.5 Delay Failure

A faulty node or switch delays the start of the transmission of a frame (for all traffic types). At the node
this failure will occur after the shaper layer. The following effects will be experienced in the different
traffic types:

 Time-triggered frames: the frame will be dropped by the switch

 Rate-constrained and best-effort frames: frames exhibit longer end-to-end delays

These failures are emulated with the “Delay Failure” module. The parameters that control the delay failure

are the start/end time and the delay time that is usually a constant.

All incoming frames to this module between the start and end time will be delayed by using the OPNET
function “op_pk_send_delayed()”. Outside the fault injection interval the incoming frame will pass this
module without any side effects.

5.1.6 Babbling idiot Failures

Babbling idiot failures occur when a node or a switch starts sending untimely frames or even generates
additional frames, thereby causing more traffic load. In the simulation model, this behavior is
implemented by activating a specific traffic generation pattern at a specific time interval.

These failures are emulated with the “Babbling Idiot Failure” module. The parameters that control the

babbling idiot failure are the start and end time.

This module is a “queue process” module. This means that during the simulation, this module maintains
queues and creates copies of incoming frames to use them later in the emulation of the behavior of the
babbling idiot failure. When the interval for injecting the babbling idiot failure starts, the module starts to
track one random packet from the queue and copies it. Thereafter, the module returns one of the copies
to the queue and then continues sending to the other ones. This process is repeated until the fault interval
finishes. During the fault interval, the process discards all incoming frames.

5.1.7 Masquerading Failure

A masquerading failure occurs if an erroneous node assumes the identity of another node. In the case of
Time-Triggered Ethernet, a faulty node will send frames with incorrect VL-ID values for time-triggered and
rate-constrained traffic. In case of best-effort traffic, the node will send frames with incorrect MAC
addresses.

5.2 Evaluation

In this section we will introduce a simulation scenario of an avionic use-case based on an example of the
DREAMS architecture (from WP6). To evaluate the safety aspects of the DREAMS architecture, we inject
faults according to the fault assumptions.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 44 of 71

TTE switch TTE switch

DMS
(TTE End
system)

SDP
(TTE End
system)

Panel
Camera
(TTE End
system)

Panel 1

Camera
(TTE End
system)

FMS
(DREAMS

Chip)

Navigation
database

server

Auto Pilot

Figure 28: Avionic Use-Case Topology

5.2.1 Simulation Framework in the avionic demonstrator

Figure 28 depicts the topology of the simulated avionic use-case. The off-chip topology is composed of
eight nodes, namely a navigation database server, sensor data provider (SDP), display management
system (DMS), flight management system (FMS), auto pilot, panel and two cameras, interconnected by
two time-triggered switches in a star topology. The FMS is composed of five interconnected tiles, each of
which containing a single or more cores. Tiles are connected by a 2*2 mesh topology as shown in Figure
29. Each tile contains one or more cores that run tasks as listed in Table 1. As shown in Table 2 the data
exchange of the applications is performed using periodic time-triggered messages, sporadic rate-
constrained communication, and aperiodic messages.

Tile ID Core ID Description of the applications

Tile#0

Core#0 It presents different pilot actions corresponding to the management of the
flight plan.

Core#1 It has different tasks describing the pilot actions with respect to the localization
tasks.

Tile#1

Core#0 It is a guidance task that is responsible for computing the parameters required
to guide the aircraft.

Core#1 Responsible for trajectory tasks

Core#2 Nearest airports task builds during the flight a list of the nearest airports.

Tile#2 Core#0 It describes the different pilot actions that are translated into inputs for the
sensor task.

Tile#3 Core#0 This task is responsible for gathering every sensor output to be passed to the
localization task.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 45 of 71

Core#1 Different sensors used to manage and generate the most probable position of
the aircraft.

Table 1: Applications Description

FSM

Tile # 1

Tile # 2Tile #3

Core #1

SENS
_A1

SENS
_A2

SENS
_A3

SENS
_A4

Core #1

TRAJ
R3

TRAJ
R2

TRAJ
R1

Core #0

GUID_
C1

Core # 2

NEAR_P1

Gateway

Tile #4

LOC_
A1

LOC_
A2

LOC_
A3

LOC c1
LOC
c3

LOC
c4

LOC
c2

SENSC1

Figure 29: FMS

MSG.
ID

Sender Receiver/s Type time meg size

1 SENS_A1 SENS_c1 Aperiodic (0-0.2)s 72

2 SENS_A2 SENS_c1 Aperiodic (0-0.2)s 72

3 SENS_A3 SENS_c1 Aperiodic (0-0.2)s 72

4 SENS_A4 SENS_c1 Aperiodic (0-0.2)s 72

7 LOC_A1 LOC_c1 Aperiodic (0-0.2)s 72

8 LOC_c2 Trajectory, nearest Airport Periodic 1.6 s 72

11 LOC_A2 LOC_c3 Aperiodic (0-0.2)s 72

12 LOC_A3 LOC_c4 Aperiodic (0-0.2)s 72

13 LOC_C4 DSM Periodic 1 s 72

14 NAVi. F plan Aperiodic (0-2)s 72

15 Temporary F plan DSM Periodic 0.3s 72

16 secondary F plan DSM Periodic 0.3 s 72

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 46 of 71

17 Active F plan Trajectory Periodic 0.2 s 72

18 Active profile DSM Periodic 0.2 s 72

19 Temporary profile DSM Periodic 0.3s 72

20 secondary profile DSM Periodic 0.3 s 72

21 NEAR _p1 DSM Periodic 1 s 72

22 GUID_c1 Auto pilot Periodic 0.2s 72

23 SPD DMS Periodic 200 ms 72

24 Panel DMS Sporadic (0-.2)s 72

25 SDP SENS_A1 Periodic 0.1s 72

26 DMS Panel Periodic 0.2 s 72
Table 2: Message Exchange in the Avionic Use-Case

Table 3 lists the simulation results for the evaluation of the avionic use-case. We observed significant
discrepancies of the end-to-end jitter for different traffic types, i.e., the difference between the
maximum and minimum end-to-end latency between the applications.

Msg. ID Latency Jitter

1 389 ns 87 ns

2 346 ns 60 ns

3 374 ns 76 ns

4 320 ns 55 ns

7 419 ns 81 ns

8 249 µs 0

11 453 ns 85 ns

12 519 ns 93 ns

13 231 µs 0

14 348 µs 83 µs

15 215 ns 0

16 240 ns 0

17 179 ns 0

18 238 µs 0

19 221 µs 0

20 247 µs 0

21 273 µs 0

22 236 µs 0

23 145 µs 0

24 283 µs 105 µs

25 162 µs 0

26 136 µs 0

Table 3: Simulation Results

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 47 of 71

6 Implementation of Model-Driven Configuration for the
Simulation Framework

In Section 6.1 we show how the generation of the configuration files for the virtual platform can concretely
be executed, whereas in Sections 6.2 and 6.3, we explain the changes and extensions that have been
performed at the level of the format and contents of the configuration files.

6.1 How to Configure and Execute the Generation

6.1.1 Description

The configuration tool is implemented as a plugin of Autofocus. It allows exporting the scheduling
parameters defined in Autofocus for the on-chip and off-chip communication, as a set of configuration
files in textual format (CSV) defined in Section 6.2 and 6.3 of D5.2.2 [1], in addition to the following
subsections of the deliverable. These CSV files are parsed by the corresponding simulator components
during initialization.

6.1.2 Relations and dependencies with other tools

The inputs required by the tools must have been created before, manually with the help of model editors
or through dedicated tools, see D4.4.1 [2].

6.1.3 Inputs

The generated configuration parameters are drawn from the following system description items:

 Logical architecture consisting of applications (top level components) and tasks (leaf-level
components) that exchange data.

 Technical architecture, that describes the available processing and communication resources

 System software

 Deployment, which describes the virtual links

 System schedule, which contains the actual scheduling parameters

Since a “System Schedule” has direct and indirect references to all other require inputs, this schedule is
the only parameter that needs to be directly passed to the timing analysis tool.

6.1.4 Outputs

The output is a set of textual configuration files. As can be seen in Figure 30, the produced folder contains
the configuration files for the message injection and two subfolders are generated, one for the off-chip
network and one for the on-chip network.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 48 of 71

Figure 30: Structure of virtual platform configuration file set

6.1.5 Running the generator

The generation of the configuration files is a two-step process:

1. Generation of the “Configuration Model”, based on the system model
2. Generation of the configuration files, based on the configuration model

The configuration model is defined in D1.6.1 [3] (Section 4.3 for on-chip communication and Section 4.4
for the off-chip communication).

In order to generate the configuration model, right -click on System Schedule node that contains the on-
chip communication scheduling parameters, and select the “Generate ‘Virtual Platform …’” entry:

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 49 of 71

Figure 31: Context menu for generating the configuration files for the virtual platform

As a result, a dialog is shown for entering the length of the time interval in seconds, for which the
injection of messages (MsgInjection.csv) is automatically generated:

Figure 32: Specifying the duration of message injection.

The injection time of the first instance is randomly chosen between 0 and the period or the MINT of the
virtual link. The following instances are injected after a time equal to

 the period of time-triggered virtual links

 the MINT + random fraction of the MINT (up to up to 10%) in order to create some drift in the
injections and different scenarios on the bus.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 50 of 71

Finally the “Configuration Model” corresponding to the system model is created or updated in the
“Storage view”. In order to make the configuration model visible or to make the updates effective, you
must first apply “Save” to the system model:

Figure 33: Persisting the generated configuration model

Then, switch to the “Resource Navigator” view, by clicking on the tab besides the “Model Navigator”:

Figure 34: Switching to the "Resource Navigator"

Finally, double click on the corresponding “Configuration Model” node:

Figure 35: Visualizing the generated configuration model

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 51 of 71

 Below the “VirtualPlatformConfiguration” nodes are accessible in all sub-configurations. Some of the
properties may be set or modified in the properties view:

Figure 36: Visualization of configuration model items

In order to perform the last step, select the “Run Configuration Generation Framework” entry from the
context menu of the model:

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 52 of 71

Figure 37": “Run Configuration Generation Framework” menu entry

As a result, the configuration menu is opened:

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 53 of 71

Figure 38: Selection of the configuration files to generate.

Select the “Virtual Platform Configurations” group and click next, in order to select the folder where the
“cfg” folder (see Section 6.1.4) with all configuration files will be created; finally click “Finish” to perform
the generation.

6.2 Configuration Files for the Cluster Level

6.2.1 Specification of Configuration File Formats with Examples

An additional parameter for queue lengths has been added to all configuration files at cluster level, at the
end of the lines:

 Queue length: maximal number of messages that can be stored.

A corresponding getter method has been added to all concerned configuration meta-model entities.
Examples of the concerned configuration files are shown in the following sections.

6.2.1.1 Simulated TTEthernet Switch

switch_R.csv:

Figure 39: Example of a switch configuration file.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 54 of 71

6.2.1.2 Simulated Node with a Core

nodes-without-noc.csv:

Figure 40: Example of the configuration file for nodes without NoC.

6.2.1.3 Simulated On-chip/Off-chip Gateway: Time-Triggered Virtual Links

gateway-TT.csv:

Figure 41: Example of the on-chip/off-chip gateway configuration file for RC virtual links.

6.2.1.4 Simulated On-chip/Off-chip Gateway: Rate-Constrained Virtual Links

gateway-RC.csv:

Figure 42: Example of the on-chip/off-chip gateway configuration file for TT virtual links.

6.3 Configuration Files for the Chip Level

6.3.1 Specification of Configuration File Formats

An additional parameter for queue lengths has been added to all configuration files at the cluster level, at
the end of the lines:

 Queue length: maximal number of messages that can be stored.

A corresponding getter method has been added to all concerned configuration meta-model entities.
Examples of the concerned configuration files are shown in the following sections. Furthermore, since
the configuration file for the “TT schedule for the serialization unit” has been slightly changed and since
the automatic generation of the contents of the “Message injection” has been added, the corresponding
sections are also shown.

6.3.1.1 Ports configuration parameters

HL_PortConfig.csv:

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 55 of 71

Figure 43: Example of the port configuration file.

6.3.1.2 TT Schedule for the Serialization Unit

The configuration with the global parameters of the time triggered communication of the on-chip
network has been slightly changed: the timely blocking option is now a global parameter.

6.3.1.2.1 Definition of required configuration parameters

On-chip global parameter:

 Timely block/shuffling: activation of timely block in the entire chip. In case of non activation, i.e.
activation of shuffling, the information given for the guarding window will be ignored
(1 activated, 0 deactivated)

Guarding window parameters

 Tile id : numerical identifier (integer) of a tile

 Period: period of the guarding window, expressed in ticks (integer)

 Opening phase: Starting phase of the guarding window, expressed in ticks (integer)

 Closing phase: Closing phase of the guarding window, expressed in ticks (integer)

6.3.1.2.2 CSV File Format

The first cell of the first line contains the parameter “Timely block/shuffling”. The following lines of the
CSV file correspond each to a guarding window. The cells contain the values of the parameters in the order
in which they are described in the previous section.

6.3.1.2.3 Sample file

TTSchedule_SU.csv:

Figure 44: Example of the serialization unit configuration file.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 56 of 71

6.3.1.3 Message Injection Configuration File

One configuration file is used to specify the times when message instances are injected into the partition
ports. The generation of these injection times for a certain time horizon has been integrated into the
configuration file generator.

MsgInjection.csv:

Figure 45: Example of the message injection configuration file.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 57 of 71

7 Analysis of Simulation Traces

In this section we describe the extensions related to fault injection, implemented in the RTaW-Timing tool
for the analysis and visualization of communication traces produced by the DREAMS simulation tools.

7.1 Trace Files

In this subsection we describe the extensions of the trace file format related to frame drops, where two
different reasons are considered.

7.1.1 Off-chip Network Related Events

In the off-chip network domain, frame drops are considered in the on-chip/off-chip gateways and in the
routers.

<TIME> FrameDropped <DROP_CAUSE> Gateway <GATEWAY_ID> <FRAME_ID> <FRAME_INST_ID>

<TIME> FrameDropped <DROP_CAUSE> Router <ROUTER_PORT_ID> <FRAME_ID> <FRAME_INST_ID>

Two causes are considered:

1. Lack of memory: there was no free slot in the frame queue for emission
2. Frame Check Sequence Error: at reception some bits have been detected to be altered

Depending on the cause of the drop and the concerned entity, the frame drop event may replace a
different nominal event:

Drop cause Entity Replaced event

LackOfMemory Gateway FrameQueued event, since the frame
is not queued in case of insufficient
memory.

Router FrameTx event in router ports, since
the queuing event is not considered
and the frame will never be emitted if
dropped.

FCSError Gateway FrameRx event, since the FCS error is
detected at the reception.

Router

Figure 46: Frame drop events

7.1.2 On-chip network related events

In the off-chip network domain, only frame drops due to lack of memory and only the network interfaces
are considered. For instance the wormhole routing does only forward flits if buffers are free.

<TIME> MessageDropped < DROP_CAUSE> OutPort <PORT_ID> <MESSAGE_ID> <MSG_INST_ID>

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 58 of 71

The “FrameDropped” event replaces the MessageQueued, since the packet is not queued in case of
insufficient memory.

7.2 Export of DREAMS System Description to RTaW-Timing Tool

In this section we describe how to export the description of a DREAMS model to the RTaW-Timing tool,
so that the tool acquired the necessary knowledge of the system under study. The screen-shots are based
on the “Virtual-Platform Scenario”, described in Section 6.1 of [1].

To be able to perform the import and analysis of DREAMS simulation traces, the description of the
simulated system needs first to be exported into the RTaW-Timing tool. For this purpose, an Autofocus
plugin has been developed in T4.4 as part of the tool-chain (see D4.4.1), which performs the export and
launches the RTaW-Timing tool.

To perform the export, right-click on the “System Schedule” entity of the system model and select the
"Export 'System Description' for 'Trace Analysis'" entry.

Figure 47: Export of system description for trace analysis.

As a result, an RTaW-Timing window pops up, showing the exported system description. From this point
on, you just need follow the instruction on how to import the trace files, provided in D5.2.2.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 59 of 71

7.3 Visualization of Trace Analysis Results

In this section we describe the views that have been added to the RTaW-Timing tool for visualizing frame
drop statistics.

7.3.1 Frame Drop Tables

The “FrameDrops” tab of the topology panes of the on-chip and the off-chip network displays the frame
drop counters:

Figure 48: Visualization of frame drop statistics.

If not done so automatically, make sure to select the “simulation” corresponding to the imported trace
and a “Sample Time” (= end of the trace).

One line of the table corresponds to a “link” identified by the emitting router or on-chip/off-chip gateway
port. The columns display the essential information such as the concerned virtual link and the drop
percentage but also the absolute numbers of frames.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 60 of 71

Part C
Validation Framework

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 61 of 71

8 Validation Framework

This section introduces the overall validation framework based on the low-level simulation of the
communication between different DREAMS nodes utilizing a mixed-criticality network on the basis of
TTEthernet.

The simulation environment helps to evaluate the functionality of the hardware components before their
actual implementation in hardware and reduces the need for the setup of an extensive hardware testing
environment for various use cases as these tests can be executed in the simulation. Based on the correct
behaviour of the simulated components, a more efficient hardware test environment can be created in
order to verify the consistency between the simulation and real-world tests.

For the simulation we make use of Bus Functional Models for the simulation of the Design Under Test
(DUT), not only on the device level but particularly also at the level of the system, in order to evaluate the
performance of the device interactions (e.g. multiple end systems connected to one or multiple switches).

The section is consisting of these parts:

 Validation Methodology

 Implementation of the Validation Methodology

 Validation Results

8.1 Validation Methodology

8.1.1 Hardware Testing Strategy

Figure 49 depicts the overall validation strategy as a single process consisting of several steps.

Figure 49: Overall Validation Strategy

Design

Configuration
Constraints

Test bench and
models

Test case and
procedures

(Test)

Simulation
Requirements

Simulation

Logs

Stimuli +
Response

Network
Requirements

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 62 of 71

A generic test bench, including models of the interfaces, is connected to the DUT (VHDL design of the
TTTech switch and two end-system controllers). The models are simulated interfaces, which provide
procedures and functions to be used in a test case, thus enabling the test bench to apply stimuli on the
DUT. Within the VHDL simulation of the DUT, these stimuli are processed and the output is recorded.
The test case itself is checking the output of the simulation (response) against the pass/fail criteria and
the result is logged by the simulator (transcripts file). For example, a PCI model implements a ”read” and
a ”write” function and converts calls to these functions to PCI bus access signals. A monitor checks if all
signals are asserted and de-asserted correctly and checks for a correct response on the bus, if present.

8.1.2 Test Bench Concept

The process of device-level testing is intended to show that the final device is compliant to all defined
requirements. This is done by applying requirement-based tests to the DUT. To write more complex and
repetitive tests, it is necessary to design a suitable test bench environment. The test bench can be
divided into three parts (see Figure 50):

 Input Generator: Creates stimulus to the DUT.

 DUT: The Device Under Test (IP model of the switch and end system modules).

 Responses Checker: Checks for correct DUT responses.

Inputs
Generator

DUT
Responses

Checker

Figure 50: Overview of the basic Verification Concept

The basic concept of the test bench, as described in the previous section, is also used in this
implementation. Components that drive stimuli and components that verify the DUT responses are
integrated into one component. These components represent the outside connection of the DUT.
Commands to the model are coming from procedures of the test.

8.1.3 Modeling Concept

The chosen method of setting up the test bench incorporates the use of bus functional models to apply
stimuli and verify functional results from a Device Under Test. It is possible to use models with reduced
implementation, i.e., the models do not need to represent the full functionality of components but have
to imitate the required signal characteristics. This type of modeling the outside connections to the DUT
allows creating more complex functional tests, enables faster runtime of simulations and allows using all
the syntax/semantic power of VHDL for test creation. This is depicted in Figure 51.

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 63 of 71

Design Under Test
(DUT)

Clock
Model

RMII TX
Model

RMII RX
Model

MDIO
Model

PCI
Model

SPI
Model

UART
Model

Reset
Model

DIO
Model

Procedural based
test code

Test &
Testbench
constants

Test &
Testbench

utilities

Report utilities

Stimulus and
response
checking

Model
commands

and
responses

Figure 51: Simulation models and interaction with DUT

There are several models that represent different activities around the DUT. Among them there are:

 CLK model Generates the clock.

 RMII TX model Writes packets to Ethernet ports.

 RMII RX model Monitors the outputs on the Ethernet ports.

 MDIO model Interfaces the MDIO serial management interface for the Ethernet transceivers.

 PCI model Interfaces the PCI bus.

 SPI model Interfaces the SPI/QSPI ports.

 UART model Interfaces the UART via RS485.

 Reset model Generates resets to the DUT logic.

 DIO model Monitors DUT output pins and drives input pins.

Test procedure call methods of the models stimulate and verify the DUT. Moreover the test bench also
contains globally accessible packages that contain constants, frequently used procedures (init, reset, ...)
and higher level abstraction procedure calls. Several modules used in the ASIC, e.g. Pin Config or
Interrupt Controller do not have models, hence they do not have directly associated test cases. Given
that their functionality is mandatory for the other modules, their correctness is evaluated by performing
the test cases of the other modules. For example, if all test cases pass, Pin Config has to be correct.
Otherwise, at least one of the test cases would have failed due to the fact that the execution of all test
cases covers the complete pin multiplexing behavior.

8.1.4 CLK model

Clock Generator model: Generates the clock with the specified parameters.

The generics of this model are listed in Table 4 . The ports are listed in Table 5.

Parameter Default value; Description

G_INST_NAME
G_HANDLE_NO
G_PERIOD
G_DUTY_CYCLE

“CLOCK_BFM”; instance name
0; natural number that provides the identification of instances
8 ns; clock period
0.5; clock duty cycle

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 64 of 71

Table 4: CLK model Generics

Parameter Default value; Description

[in] tb_stop
[out] clk

test bench global stop
generated clock

Table 5: CLK model Ports

8.1.5 RESET model

Reset Generator model: Generates reset.

The generics of this model are listed in Table 6. The ports are listed in Table 7.

Parameter Default value; Description

G_INST_NAME
G_HANDLE_NO

“RESET_BFM”; instance name
0; natural number that provides the identification of instances

Table 6: RESET model Generics

Parameter Default value; Description

[in] tb_stop
[in] clk
[out] reset

test bench global stop
input clock to which reset is synchronized
generated reset

Table 7: RESET model Ports

8.1.6 DIO model

DIO model: Drive/read discrete input/output signals.

The generics of this model are listed in Table 8. The ports are listed in Table 9.

Parameter Default value; Description

G_INST_NAME
G_HANDLE_NO

Instance name
Natural number that provides the identification of instances
Table 8:DIO model Generics

Parameter Default value; Description

[in] CLK
[in] DIO_IN
[out] DIO_OUT
[in] TBSTOP

Input clock
Pins that are monitored by DIO
Pins that are driven by DIO
Test bench global stop

Table 9: DIO model Ports

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 65 of 71

8.1.7 GMII MON model

GMII Monitor GFM: The GMII Monitor model is not directly connected to the DUT’s output signals. It is
instantiated by the RMII Monitor model to monitor GMII based Ethernet traffic, provided by the RMII
Monitor model.

The generics of this model are listed in Table 10. The ports are listed in Table 11.

Parameter Default value; Description

G_INST_NAME
G_HANDLE_NO

Instance name
natural number that provides the identification of instances

Table 10: GMII MON model Generics

Parameter Default value; Description

[in] tb_stop
[in] clk
[in] port_speed
[in] rxd
[in] rxdv
[in] rxerr
[out] s_statistics

test bench global stop
GMII clock to be used
port speed (SP_1000, SP_100, SP_10)
receive data byte
receive data valid (for current byte)
receive error (for current byte)
statistics

Table 11: GMII MON model Ports

8.1.8 GMII GEN model

GMII Generator model: The GMII Generator model is not directly connected to the DUT’s input signals.
It is instantiated by the RMII Generator model to generate GMII based Ethernet traffic, further used by
the RMII Generator model.

The generics of this model are listed in Table 12. The ports are listed in Table 13.

Parameter Default value; Description

G_INST_NAME
G_HANDLE_NO

instance name
natural number that provides the identification of instances

Table 12: GMII GEN model Generics

Parameter Default value; Description

[in] clk
[in] port_speed
[out] speed
[out] bxm_en
[out] txd
[out] rxen
[out] txerr_align
[out] txnibbleodd
[out] txerr

GMII clock to be used
port speed (SP_1000, SP_100, SP_10)
current speed (SP_1000, SP_100, SP_10)
model enabled
transmit data byte
transmit data enable (for current byte)
insert alignment error
insert odd number of preamble nibbles
transmit error (for current byte)

Table 13: GMII GEN model Ports

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 66 of 71

8.1.9 RMII MON model

RMII Monitor model: Enables the monitoring of DUT transmitted RMII data. The monitored RMII data
stream is converted to GMII and forwarded to a GMII Monitor model, which provides enhanced
monitoring capabilities.

The generics of this model are listed in Table 14. The ports are listed in Table 15.

Parameter Default value; Description

G_INST_NAME
G_MAC_MODE
G_HANDLE_NO

instance name
true; MAC mode (true) / PHY mode (false)
natural number that provides the identification of instances

Table 14: RMII MON model Generics

Parameter Default value; Description

[in] tb_stop
[in] port_speed
[in] gmii_clk
[in] rmii_ref_clk
[in] rmii_tx_en
[in] rmii_tx_err
[in] rmii_txd

test bench global stop
port speed (SP_100 or SP_10)
GMII local clock
reference clock used during RMII transfer
data enable signal
data error signal
data received by the RMII model from the DUT

Table 15: RMII MON model Ports

8.1.10 RMII GEN model

RMII MUX Generator model: Enables Ethernet traffic generation based on RMII. A GMII Generator
model is used to generate GMII Ethernet traffic, further converted to a RMII data stream, which is finally
fed to the DUT’s RMII input pins.

The generics of this model are listed in Table 16. The ports are listed in Table 17.

Parameter Default value; Description

G_INST_NAME
G_MAC_MODE
G_HANDLE_NO

instance name
true; MAC mode (true) / PHY mode (false)
natural number that provides the identification of instances

Table 16: RMII GEN model Generics

Parameter Default value; Description

[in] tb_stop
[in] port_speed
[in] gmii_clk
[in] rmii_ref_clk

test bench global stop
port speed (SP_100 or SP_10)
GMII local clock
reference clock used during RMII transfer

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 67 of 71

[in] rmii_tx_en
[in] rmii_tx_err
[in] rmii_txd

data enable signal
data error signal
data received by the RMII model from the DUT

Table 17: RMII GEN model Ports

8.1.11 AHB HOST model

AHB Host model: Models AHM Master Interface

The generics of this model are listed in Table 18. The ports are listed in Table 19.

Parameter Default value; Description

G_INST_NAME
G_HANDLE_NO
G_AHB_CLK_DIV

“AHB_HOST_BFM”; Instance name
0; Natural number that provides the identification of instances
1; Clock divider

Table 18: AHB HOST model Generics

Parameter Default value; Description

[in] tb_stop
[in] clk
[in] reset
[out] activate_driver

[in] ahbi
[out] ahbo

test bench global stop
system clock
system reset to AHB slave
enables the modelsim’s signal_driver to take control over the
switch AHB interface
AHB slave-master signals
AHB master-slave signals

Table 19: AHB HOST model Ports

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 68 of 71

8.2 Implementation of the Validation Methodology

For the validation of the proposed solution, only the most basic network topology and data flow inside
of the DUT is used. This topology and data flow is described in Figure 52.

Figure 52 Network topology and data flow in DUT

The network topology consists of two End System modules and one Switch module. The End System
modules are identical (copies), which means that validation of the Transmission functionality in ES 0
implies that the Transmission functionality in ES 2 is validated too. The same implication can be also
applied to the Receiving functionality in the End System modules. Therefore it is sufficient that the
direction of the data flow is only in one direction, from ES 0 to the ES 1. All test procedures are using this
network topology and data flow implicitly.

8.2.1 Test Procedure Synchronization

This test procedure validates that synchronization is stable. The period of the fastest VL is between 500
us and 10 ms in order to validate the synchronisation procedure in different environments. The
integration cycle duration range tested ranges between 500 us and 10 ms. Transmission speeds range
between 100Mbit/s and 1Gb/s.

End System

Switch

End System

Frame Send

ES Transmit

ES Receive

Frame Response

SW Receive

SW Transmit

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 69 of 71

Figure 53: Simulated network topology and data flow for synchronisation validation

The test is passed when synchronisation is stable and the sync-loss counter doesn't increase during the
test-runs. The total number of test cases with the mentioned variations is 18 variations.

8.2.2 Test Procedure Freedom from Interference

In this test procedure the latency of TT-VLs on the bus with and without additional RC-traffic and BE-
traffic flooding is tested. These TPs also check for missing frames and whether the latency stays within
the expected limits (shuffling etc.). The following values are varied: period of fastest TT-VL, period of
fastest RC-VL, integration Cycle Duration, window shuffling, switching latency, payload size, transmission
speed, and frame-types used.

The test is passed if no frames are lost and the latency is bounded within expected limits. The total
number of test cases with the mentioned variations is 25 variations.

8.2.3 Test Procedure Security

8.2.3.1 TP_MACSEC_BE_1

This test procedure validates that the best effort (BE) frames are being processed correctly if the same
symmetric keys are used. This is done by sending one BE frame to the data flow and comparing the
original data with the output data of the End System 2. The frame data at the output of the End System
2 (Frame Response) are expected to be the same as the data that were put to input of the End System 1
(Frame Send).

8.2.3.2 TP_MACSEC_BE_2

This test procedure validates that the best effort (BE) frames are being processed incorrectly if different
symmetric keys are used. This is done by sending one BE frame to the data flow and comparing the
original data with the output data of the End System 2. The expected behavior is that either the received
data are changed (different) or the data are not received at all (dropped in the Switch module).

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 70 of 71

8.2.3.3 TP_MACSEC_BE_3

This test procedure validates that the best effort (BE) frames are being processed correctly if the same
symmetric keys are used for the communication between the End System 1 and Switch modules,
however the communication between the Switch and End System 2 modules is not using the MACsec
ports. This is done by sending one BE frame to the data flow and comparing the original data with the
output data of the End System 2. The frame data at the output of the End System 2 (Frame Response)
are expected to be the same as the data that were put to input of the End System 1 (Frame Send). This
test procedure ensures that the network communication can be also partially secured as not all ports
will probably support the MACsec functionality.

8.2.3.4 TP_MACSEC_TT_1

This test procedure validates that the time-triggered frames are being processed correctly if the same
symmetric keys are used. This is done by sending one TT frame to the data flow and comparing the
original data with the output data of the End System 2. The frame data at the output of the End System
2 (Frame Response) are expected to be the same as the data that were put to input of the End System 1
(Frame Send).

8.2.3.5 TP_MACSEC_TT_2

This test procedure validates that the time-triggered frames are being processed incorrectly if different
symmetric keys are used. This is done by sending one frame to the data flow and comparing the original
data with the output data of the End System 2. The expected behavior is that either the received data
are changed (different) or the data are not received at all (dropped in the Switch module).

8.2.3.6 TP_MACSEC_TT _3

This test procedure validates that the time-triggered frames are being processed correctly if the same
symmetric keys are used for the communication between the End System 1 and Switch modules,
however the communication between the Switch and End System 2 modules is not using the MACsec
ports. This is done by sending one frame to the data flow and comparing the original data with the
output data of the End System 2. The frame data at the output of the End System 2 (Frame Response)
are expected to be the same as the data that were put to input of the End System 1 (Frame Send).

8.2.3.7 TP_MACSEC_PCF_1

This test procedure validates that the protocol control frame (PCF) frames are being processed correctly
if the same symmetric keys are used. This is done by sending one PCF frame to the data flow and
comparing the original data with the output data of the End System 2. The frame data at the output of
the End System 2 (Frame Response) are expected to be the same as the data that were put to input of
the End System 1 (Frame Send).

8.2.3.8 TP_MACSEC_PCF_2

This test procedure validates that the protocol control frame (PCF) frames are being processed
incorrectly if different symmetric keys are used. This is done by sending one PCF frame to the data flow
and comparing the original data with the output data of the End System 2. The expected behavior is that
either the received data are changed (different) or the data are not received at all (dropped in the
Switch module).

[D 5.2.3] Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 71 of 71

8.2.3.9 TP_MACSEC_PCF_3

This test procedure validates that the protocol control frame (PCF) frames are being processed correctly
if the same symmetric keys are used for the communication between the End System 1 and Switch
modules, however the communication between the Switch and End System 2 modules is not using the
MACsec ports. This is done by sending one PCF frame to the data flow and comparing the original data
with the output data of the End System 2. The frame data at the output of the End System 2 (Frame
Response) are expected to be the same as the data that were put to input of the End System 1 (Frame
Send). This test procedure ensures that the network communication can be also partially secured as not
all ports will probably support the MACsec functionality.

8.2.3.10 TP_NOMACSEC_BE_1

This test procedure validates that the best effort (BE) frames are being processed correctly by using
standard (NOT MACsec) frames for MACsec ports. This is done by sending one BE frame to the data flow
and comparing the original data with the output data of the End System 2. The frame data at the output
of the End System 2 (Frame Response) are expected to be the same as the data that were put to input of
the End System 1 (Frame Send).

8.2.3.11 TP_NOMACSEC_PCF_1

This test procedure validates that the protocol control frame (PCF) frames are being processed correctly
by using standard (NOT MACsec) frames for MACsec ports. This is done by sending one PCF frame to the
data flow and comparing the original data with the output data of the End System 2. The frame data at
the output of the End System 2 (Frame Response) are expected to be the same as the data that were
put to input of the End System 1 (Frame Send).

