
D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 1 of 81

Distributed Real-time Architecture for
Mixed Criticality Systems

Cross Domain Mixed-Criticality Pattern

D 5.3.1

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date 05/07/2016 Deliverable No. [D 5.3.1]

Contact Person Imanol Martinez Organisation IK4-IKERLAN

Phone +34 943712400 E-Mail imartinez@ikerlan.es

mailto:imartinez@ikerlan.es

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 2 of 81

Version History

Version No. Date Change Author(s)

0.0 09.11.2015 First review and Draft. IKL, TUV

0.1 22.01.2016 Extended definition of patterns IKL, UPV, FENTISS

0.2 04.06.2016
Implementations and results of patterns are
included

IKL, UPV, FENTISS

0.3 30.06.2016 Reviewed and improved version.
IKL, TUV, UPV,
FENTISS

1.0 13/07/2016
Feedbacks of deliverable’s internal revision.
Minor modifications.

IKL

Contributors

Name Partner Part Affected Date

Martínez, Imanol IKL All.

Larrucea, Asier IKL All.

Geven, Arjan TTT All.

Steiner, Wilfried TTT All.

Zwirchmayr, Jakob TTT All.

Haugen, Øystein SINTEF All.

Trapman, Ton ALSTOM All.

Crespo, Alfons UPV 4.1.1 and 4.1.2

Simó, José UPV 4.1.1 and 4.1.2

Brocal, Vicent FENTISS 4.1.1 and 4.1.2

Coronel, Javier FENTISS 4.1.1 and 4.1.2

Heinen, Robert TUV All.

Klaes, Gernot TUV All.

Bouwer, Gebhard TUV All.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 3 of 81

Index

Version History .. 2

Contributors .. 2

1 Executive Summary ... 5

2 Introduction .. 6

2.1 Mixed-Criticality .. 6

2.2 Virtualization ... 6

2.3 COTS devices ... 6

2.4 Mixed-Criticality Networks ... 7

2.5 Certification Standards ... 7

2.6 Cross-Domain Patterns ... 8

2.6.1 Cross Domain Pattern Representation ... 8

3 System Architecture .. 11

3.1 COTS Multi-Core devices ... 13

3.1.1 Shared Memory .. 14

3.1.2 Coherency Management Unit ... 14

3.1.3 Interconnection Management Unit .. 15

3.1.4 Interrupt Controller ... 15

3.1.5 Programmable Logic ... 16

3.2 Hypervisor ... 16

3.3 Mixed-Criticality Network ... 17

4 Cross-Domain Mixed Criticality Patterns .. 18

4.1 Hypervisor ... 19

4.1.1 NoC Accessible Critical Memory Area Diagnosis Pattern ... 19

4.1.2 Critical Partition Diagnosis Pattern ... 21

4.1.3 Digital I/O Server Pattern .. 27

4.1.4 Communication I/O Server Pattern .. 32

4.2 COTS processor ... 35

4.2.1 Shared Memory Diagnosis Pattern ... 35

4.2.2 Cache Coherency Management Unit Diagnosis Pattern ... 45

4.2.3 Inter-Connection Management Unit Diagnosis Pattern ... 54

4.2.4 Interrupt Controller Diagnosis Pattern ... 57

4.3 Mixed-criticality Network ... 59

4.3.1 NoC Pattern ... 59

5 Conclusions ... 64

6 List of Open Points (LOP) .. 65

Abbreviated terms .. 75

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 4 of 81

Bibliography .. 77

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 5 of 81

1 Executive Summary

This document includes the definition and implementation of cross-domain mixed-criticality
patterns. These patterns aim to guide and support engineers towards solutions that solve commonly
occurring problems in the development of mixed-criticality products, from design to verification and
validation. The cross-domain patterns which are defined in this deliverable have been identified as
the result of the analysis of the IEC 61508 safety-related standard and its application for today’s
mixed-criticality systems. The identified cross-domain patterns are selected based on previous
projects such as GENESYS [1], results from European FP7 TERESA project [2], the expertise of
industrial partners and tasks of FP7 DREAMS project, including the state-of-the-art in the validation,
verification and certification of mixed-criticality systems [3], the modular safety cases (MSCs) from
T5.1 [4-6], the requirements of DREAMS case studies (WP6, WP7 and WP8) and the deliverables of
WP1 [7]. On the other hand, the cross-domain patterns defined in this deliverable applicable to the
wind-turbine, avionic and healthcare demonstrators of WP6, WP7 and WP8. Figure 1 shows the
inputs and outputs of this deliverable regarding to European FP7 DREAMS project.

WP6

Wind Turbine

demonstrator

WP7

Avionic demonstrator

WP8

Healthcare

demonstrator

D5.3.1

Cross-Domain

Patterns

WP1 Architecture

D5.5.1 State of the Art of Piecewise Certification of

Mixed-Criticality Systems

D5.1.1 A Modular Safety Case for an IEC 61508

compliant Hypervisor & Partition

D5.1.2 A Modular Safety Case for an IEC 61508

compliant COTS device

D5.1.3 A Modular Safety Case for an IEC 61508

compliant Mixed-Criticality Network

Figure 1: Linkage of DREAMS technologies.

Section 2 sets out to introduce the basic concepts mentioned throughout this deliverable. Section 3
defines the system architecture on which this deliverable is based. Section 4 defines the most
remarkable cross-domain patterns that are currently the goal for many embedded system
developers. Section 6 contains the results of the functional safety assessment (e.g., List of Open
Points (LOP)).

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 6 of 81

2 Introduction

This section defines the basic concepts mentioned throughout this deliverable.

2.1 Mixed-Criticality

The architecture of embedded systems in multiple domains commonly follows a federated
architecture paradigm where a system is composed of interconnected subsystems with well-defined
functionalities. The ever increasing demand for additional functionalities is a growing trend in
several domains such as transportation and industrial control. For example, the control systems of
the modern off-shore wind turbines manage up to three thousand inputs / outputs and several
hundred functions. The integration of additional functionalities with different criticality also leads to
the increase in the number of subsystems, connectors and wires, increasing the overall cost-size-
weight factor and reducing the overall reliability of the system. For example, in automotive domain,
between 30 - 60 % of electrical failures are attributed to connector problems.

A mixed-criticality system is referred as the integration of the HW (HW), operating system,
middleware services and application software (SW) with different levels of criticality into the same
embedded computing platform [8]. The integrated approach improves scalability and reliability by
reducing the amount of systems-wires-connectors, which in turn reduces the overall cost-size-
weight factor. However, safety certification according to industrial standards poses many challenges
as provide sufficient evidences to demonstrate that the resulting system is safe for its purpose [8, 9].

2.2 Virtualization

A virtual machine (VM) is a SW implementation of a machine (computer) that executes
programs like a real machine. Hypervisor (also known as virtual machine monitor (VMM)) is
a layer of SW or a combination of SW and HW that allows running several independent
execution environments in a single computer platform. Several terms are used as synonym
of independent execution environments: guest operating system, virtual machine, partition
or domain. The key difference between hypervisor technology and other kind of virtualizations
(such as Java virtual machine or software emulation) is the performance.

In real-time embedded applications, the predictability and efficiency are requirements to be
considered. The virtualization techniques such as hypervisor can be used to achieve the
temporal and spatial isolation jointly with real-time constraints require strict design
methods and efficient solutions to guarantee the system behavior. Hypervisor technology is
a promising solution for the development and certification of safety critical embedded
systems. For example, XtratuM [10] is a virtualization solution based on hypervisor technology. It
runs directly over the HW and abstracts it creating several runtime environments, also called
partitions, where applications with different criticality level can be executed (e.g., Safety Integrity
Level (SIL) 1 – 4 in accordance with the IEC 61508 safety standard).

2.3 COTS devices

The use of multi-core Commercial Off-The-Shelf (COTS) processors is gaining popularity
among different embedded systems domains driven by the demand of low cost, increased
complexity solutions and shortened time to market, which in turn is driven by the physical
limits of single-core architectures [11-14]. However, the implementation of COTS devices in
safety critical and mixed-criticality systems is hindered by numerous drawbacks that can
compromise the safety feature. E.g., shared resources, limited service history or hidden properties.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 7 of 81

One of the main reasons for that is that multi-core COTS devices usually are designed for offering
maximum average performance by increasing the complexity of the underlying architecture [11, 14].
E.g., P4080 [15], ZYNQ [16] , Hercules [17] or MPC5643L [18]. This is somehow in conflict with the
common practice in safety critical systems that aim to employ simple, predictable and proven-in-use
processors. Consequently, the integration of applications with different criticality (such as safety,
real-time or security) into COTS multi-core processors leads to several challenges related with their
certification (e.g., the assurance of the temporal independence).

2.4 Mixed-Criticality Networks

In distributed systems, processing and data are spread out over multiple systems (e.g., multi-core
processors) over communication networks (e.g., TTEthernet). The broad trend of the integration of
functionalities with different criticality on a single embedded computing platform requires the usage
of communication media systems with different criticality. These communication systems, which are
also called as mixed-criticality networks, shall be capable of supporting a safe and a predictable
message exchange between distribution application subsystems (DAS) with different criticality.
Mixed-criticality networks are targeted as the natural replacement of traditional legacy buses due to
the increasing amount of data that is required to be exchanged, the decrease of cost factor, the
higher speed and the integration with existing network infrastructures. They can be divided into off-
chip and on-chip networks with real-time and non-real time features. Off-chip networks are used to
connect different devices that may be located far away (physically) from each other. On the other
hand, on-chip networks provide communication between the elements of the device (e.g., cores,
memories and peripherals). For example, EtherCAT is a real-time industrial Ethernet on-chip
network. The use of internal network-on-chip systems shifts the problems associated with traditional
networks into the chip.

However, the shift towards mixed-criticality networks poses many challenges related to increasing
demand for real-time, safety and security features in different application domains such as
automotive and railway. To cope with those challenges white channel and black channel network
approaches are defined by the IEC 61508-2 safety standard [19]. White channel shall be designed,
implemented and validated according to the IEC 61508-2-3 [19, 20] and IEC 61784-3 [21] or
IEC 62280 [22] safety-related standards. Instead, in the case of the black channel it is assumed that
not all parts of the communication channel are designed and validated according to the IEC 61508
safety standard. In that case, the safety-related subsystems or elements that compose the
communication channel shall implement IEC 61784-3 [21] or IEC 62280 [22] compliant measures and
diagnostic techniques to ensure the failure performance of the communication process.

2.5 Certification Standards

Certification is the process that ensures the compliance of a product, system, subsystem or element
with respect to a specific standard (e.g., IEC 61508 or ISO 26262). In safety domain, the certification
process assess that a product, system or element is safe enough for its purpose, with a given
confidence level and in a given environment.

IEC 61508 [19, 20, 23] is an international standard for Electrical, Electronic and Programmable
Electronic (E/E/PE) safety-related systems. This safety standard is used as the reference standard by
multiple domain specific standards such as machinery, industry process, automotive and railway.
IEC 61508 [19, 20, 23] defines the concept of Safety Integrity Level (SIL) as a discrete risk reduction
level provided by a safety-related system with values in range between 1 and 4, where 4 is the
highest level and 1 the lowest. As a rule of thumb, higher SIL level means higher certification cost.

IEC 61508 does not directly support nor restrict the certification of mixed-criticality systems.
Whenever a system integrates safety functions of different criticality, sufficient independence of
implementation must be shown among the functions, otherwise all integrated functions will need to

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 8 of 81

meet the highest integrity level. Sufficient independence of implementation is established when the
probability of a dependent failure between the higher and lower integrity parts is sufficiently low in
comparison with the highest SIL [8, 9].

2.6 Cross-Domain Patterns

Cross-domain patterns are widely used universal approaches for describing and documenting
recurring solutions for design problems of systems, subsystems and elements. They are used to
guide and support engineers towards solutions that solve commonly occurring problems in the
development of mixed-criticality products (from design to verification & validation).

2.6.1 Cross Domain Pattern Representation

This section presents the cross-domain pattern representation approaches, including traditional,
commonly used and our custom pattern representation.

Traditional pattern representation is derived from the definition of design patterns. In general, the
traditional pattern representation consists of four essential elements:

- Name: A meaningful name for the pattern.

- Context: Describes the preconditions or the situation in which the pattern can be used to
solve the problem.

- Problem: Describes the problem that is indented to solve by the pattern.

- Solution: Defines the solution to the problem.

Commonly used patterns [24-28], which are based on traditional patterns, differ from those last
ones in terms of different element naming or additional elements. For instance, Context element is
called Applicability or Preconditions in some common pattern representation.

On the other hand, patterns for mixed-criticality systems increase some levels of safety on pattern
representation. Most popular works are defined in [29, 30]. In addition, in [31] a SW architecture
design method for safety-related systems is presented.

In order to represent the cross-domain patterns described throughout this deliverable, a pattern

representation based on elements of traditional pattern approach (grey elements) and custom

elements (black elements) is used.

- Pattern ID: A collection of characters to identify the pattern PAT-AAAA-XX.

o AAAA – Pattern ID.

o XX – Pattern version.

- Pattern Name: A meaningful name to describe the pattern.

- Related patterns: The closely related design patterns to this pattern.

- Type: Gives the classification of the design pattern into:

o HW: when the pattern contains HW.

o SW: when the pattern contains SW.

o Combination of HW and SW: other cases.

- Context: The general situation in which the design pattern can be applied.

- Problem: This part gives a summary of the problem which is addressed and solved by this
pattern.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 9 of 81

- Solution under consideration: A short description of the solution to be implemented.

- Board Name: The board/processor/system where the pattern is implemented.

- Implementation: This part gives the aspects, hints and techniques that should be taken
into consideration when implementing the pattern.

- Results: Includes results of implementation.

- Additional Consideration: Includes additional considerations that are relevant for the
pattern that is implemented (e.g., linkage to a modular safety case (MSC)).

- References: Bibliographical references.

Pattern ID:

Pattern Name:

Related pattern:

Type:

Context:

Problem:

Solution under consideration:

Board Name:

Implementation:

Results:

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 10 of 81

Additional Considerations:

References:

Table 1: Customized cross-domain pattern - Overview.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 11 of 81

3 System Architecture

Embedded systems have commonly followed a federated architecture paradigm in which each
Distributed Application Subsystem (DAS) is implemented on its own stand-alone distributed HW
base with a well-defined functionality. The soaring demand for high performance and increasing
functionality jeopardizes the viability of this approach, leading to the trend of moving towards
integrated architectures [32]. As a consequence, applications with different criticality level can be
integrated on a single embedded computing system. The trend towards multi-core processors has
further contributed to this tendency. Multi-core devices provide benefits in terms of cost, size and
weight reduction as well as improved scalability by reducing the amount of wires and connectors.
Commercial Off-The-Shelf (COTS) multi-core processors are designed to offer maximum average
performance at the cost of increasing complexity. The use of these processors is gaining popularity in
different embedded systems domains (e.g., railway, automotive and elevation). However, the shift
towards multi-core processors is hindered by numerous drawbacks (e.g., shared resources) that can
compromise the safety of the mixed-criticality systems. One of the main reasons for that is that
multi-core COTS devices are designed with the objective of offering maximum average performance
that is usually achieved by increasing the complexity of the underlying architecture. E.g., P4080 [15],
ZYNQ [16], Hercules [17], MPC5643L [18].

To tackle challenges described before, partitioning mechanisms such as hypervisors are commonly
used solutions to limit the impact of changes to reduced areas (partitions) of the system, enabling in
turn the reusability of those areas and reducing the system’s complexity. The resultant partitions can
be designed, developed and certified individually with different level of criticality (e.g., SIL 1 to 4
according to the IEC 61508 safety standard).

In distributed systems, processing and data are spread out over multiple systems (e.g., multi-core
processors) over networks (e.g., TTEthernet). The broad trend of the integration of functionalities of
different criticality on a single embedded computing platform requires the use of communication
media systems with different criticality. These communication media systems, also called to as
mixed-criticality networks, support safe and predictable message exchanges between DAS of
different criticality. Mixed-criticality networks are targeted as the natural replacement of legacy
fieldbuses due to the increasing amount of data required to be exchanged, the decrease of cost
factor, the higher speed and the integration with existing network infrastructures. However, the shift
towards mixed-criticality networks poses many challenges related to increasing demand for real-
time, safety and security in different application domains (e.g., automotive or railway). The use of
network on-chip systems brings the problems associated with traditional networks into the chip.
These networks are not only used to connect the processing cores but also to interconnect all the
sub-modules, peripherals, memories, interrupt controllers, cache controllers and others.

Figure 2 presents the system architecture that is used as a pillar in this deliverable for identifying,
describing and implementing the remarkable mixed-criticality cross-domain patterns. This system
architecture is based on a COTS multi-core device that contains a dual-core processing system (PS)
and a programmable logic (PL) where a single or multiple soft-core processors may be implemented.
In addition, this architecture provides, among others, private cache memories for each ARM
processor, a shared cache memory, memories such as the on-chip memory (OCM) and DDR, a
memory coherency and interconnection management unit (SCU) and a generic interrupt controller
(GIC) with different levels of priority and two levels of security (secure or none secure). In addition,
as shown in Figure 3, the multi-core device is partitioned by means of XtratuM hypervisor [10], thus
enabling the implementation of a wide set [0:N] of functionalities with different criticality (e.g., SIL1
to SIL4 according to the IEC 61508 safety standard. On the other hand, in order to provide a safe
communication interface among partitions and avoid as much as possible the interferences which
may be caused by the shared resources of the multi-core COTS device, a black channel network
approach is implemented. The black channel network is based on the STMicroelectronics network-

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 12 of 81

on-chip (STNoC) where on top of it a safety communication layer (SCL) is implemented. The SCL
implements the safety-related functionalities of the communication system and measures and
diagnoses the STNoC network.

Clock

Reset

Coherency Management Unit

L2 Cache

DMA

PROCESSING SYSTEM (PS)

PROGRAMMABLE LOGIC (PL)

Interrupt Controller

I/O Peripherals

USB

GigE

SD SDIO

GPIO

UART

CAN

I2C

SPI

CPU0

L1 Cache

CPU1

L1 Cache

PL - PS Interconnect

USB

GigE

SD SDIO

GPIO

UART

Flash

Memory

RAM

External Memory

Memory Interfaces

Soft-Core

Processor

Memory

Soft-Core

Processor

Memory

Soft-Core

Processor

Memory

Soft-Core

Processor

Memory

Figure 2: System Architecture - Overview.

Safety

Partition

Non-Safety

Partition

PS - CPU0

Black-channel network Black-channel network Black-channel network

Non-Safety

Partition

PS - CPU1

Safety

Partition

PL - CPU0

Safety

Partition

Safety

Partition

Non-Safety

Partition

PL – CPU1

Non-Safety

Partition

PL – CPU2

Non-Safety

Partition

Figure 3: System Partitioning & Communication - Example.

In previous deliverables D5.1.1, D5.1.2 and D5.1.3 the MSCs for an IEC 61508 compliant hypervisor,
partition, COTS device and mixed-criticality network are defined. Those MSCs and the analysis of the
IEC 61508 compliant safety standard have given rise to the identification of common sources of
issues related to the mixed-criticality system architectures and its components (e.g., COTS device,
hypervisor, partitions and mixed-criticality network). In the following subsections the identified
issues for mixed-criticality systems are analysed. Section 3.1 analyses the challenges related to COTS
multi-core devices. Section 3.2 analyses the issue of hypervisor based virtualization mechanisms,
instead, Section 3.3 analyses the issues related to the mixed-criticality networks implemented on
today’s mixed-criticality systems.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 13 of 81

3.1 COTS Multi-Core devices

COTS multi-core devices are low cost and complex solutions with short time-to-market. They are
commonly used devices in real-time embedded computing systems. These devices contain
components which may cause drawbacks and may jeopardize the safety of the system (e.g.,
simultaneous running of tasks or/and the sharing of the resources between more than one
component). Figure 4 and Figure 5 show the remarkable challenging components (highlighted in
grey) of the ZYNQ 7000 and P4080 multi-core devices, including the shared memory (L2 cache), the
interrupt controller (GIC), the interconnection management unit, the coherency management unit
(SCU, CoreNet) and the direct memory access (DMA).

Clock

Generation
Reset

Central

Interconnect

CoreSight

Components

Programmable Logic to Memory

Interconnect

M
IO

USB

USB

GigE

GigE

SD SDIO

SD SDIO

GPIO

UART

UART

CAN

CAN

I2C

I2C

SPI

SPI

I/O Peripherals

SRAM /

NOR
ONFI 1.0

NAND

Q-SPI

CTRL

Memory

Interfaces

......

SWDT

TTC

GIC Snoop Control Unit

FPU and NEON Engine

MMU
ARM Cortex

A9 CPU

32 KB

D-Cache

32 KB

I-Cache

FPU and NEON Engine

MMU
ARM Cortex

A9 CPU

32 KB

D-Cache

32 KB

I-Cache

System

Level

Control

Regs

512 KB L2 Cache & Controller

256K

SRAM

DMA 8

Chnanel

Application Processor Unit

DDR2/3,

LPDDR2

Controller

Memory

Interfaces

DAP

DevC

Select IO

Resources

XDAC

12-Bit ADC

Config

AES/

SHA

ACPEMIO General-Purpose

Ports

DMA

Sync
IRQ

High-Performance Ports

PROGRAMMABLE LOGIC

PROCESSING SYSTEM

IRQ

2x USB

2x GigE

2x SD

AXI 32-Bit/64-Bit, AXI 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom

PCIe

Gen2

OCM

Interconnect

Figure 4: ZYNQ 7000 – Sources of interference. (Source [16])

PAMU PAMU PAMU PAMU

Watchpoint

Cross

Trigger

Perf.

Monitor
Trace

Aurora

Real-Time Debug

CoreNet Coherency Fabric

2x DMA

PCIe PCIe PCIePCIe PCIe

18 Lanes, 5 GHz SerDes

Parse, Classify,

Distribute

10 G

Frame Manager

1 G 1 G

1 G 1 G

Parse, Classify,

Distribute

10 G

Frame Manager

1 G 1 G

1 G 1 G

SEC 4.0 Queue Mgr.

PME 2.0 Buffer Mgr.

Security Fuse Processor

Security Monitor

2x USB 2.0 w/ULPI

eLBC

Power Management

SD/MMC

2x DUART

4x I
2
C

4x I
2
C

128 KB Backside

L2 cache

Power Architecture

e500mc Core

32 KB

D-Cache

32 KB

I-Cache

1024 KB

CoreNet Platform Cache

1024 KB

CoreNet Platform Cache

64-bit

DDR2/3

Memory Controller with ECC

64-bit

DDR2/3

Memory Controller with ECC

Core Complex (CPU, L2 and Frontside CoreNet Platform Cache)

Accelerators and Memory Control Network Elements

P4080 and P4081 Only

P4080 and P4040 Only

Basic Peripherals and Interconnect

Figure 5: P4080 – Sources of interference. (Source [15])

In the following sections there are described and analysed the components of today’s multi-core
COTS devices which are identified such as challenging.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 14 of 81

3.1.1 Shared Memory

Modern multi-core devices contain different cache memories which can be applied for private use
(e.g., L1 cache) or can be shared between the components of the device (e.g., L2 cache). Secondary
cache or L2 cache memory is commonly used to improve the performance of the system when
significant data traffic is generated by the processor. The use of L2 cache assumes the presence of a
primary cache or L1 cache, which is usually coupled or internal to the processor (See Figure 3 and
Figure 5). However, the use of the secondary cache memory implies ever greater complexity of the
system and a new source of interferences which may lead to an undesirable behaviour of the
system. For example, two cores may access (write/read) to the same shared memory at the same
time, causing the blocking effect, which may cause the failure of the overall system.

In single-core architecture domain, the IEC 61508 safety standard covers the failures caused by
memory sharing such as the causal factors of the execution interference between elements of a
single computer platform (See Annex F of IEC 61508-3 [20] Techniques for achieving non-interference
between SW elements on a single computer). In addition, this safety standard recommends a set of
measures and diagnostic techniques to detect the random failures of both variable and invariable
memories. However, the measures and diagnostic techniques recommended by this standard are
focused on single-core architectures where a resource (e.g., memory region) cannot be shared by
more than one component at the same time. Instead, in multi-core architectures the sharing of a
resource between more than one component (e.g., two cores) is a usual task. Therefore the
measures and diagnostic techniques which are recommended by the IEC 61508 safety standard are
not directly applicable to multi-core architectures, but have to be extended according to the given
conditions.

Different research studies propose techniques to solve or reduce as much as possible the
interferences caused by the shared memories. For example, techniques to improve the performance
of the system by reducing the memory interferences of the applications [33-35] are proposed. These
techniques focus in scheduling policies which provide request prioritization and reduce the inter-
partition interferences. Other solutions aim to control the mapping of application’s data to memory
channels [36].

In short, the shared memories can be considered such as a recurrent source of interferences in
nowaday’s mixed-criticality systems based on multi-core devices. In this line of thought, the shared
memories and their failures must be deeply analyzed to provide new measures and diagnostic
techniques to detect their associated interferences and act in consequence. In Subsection 4.2.1 a
cross-domain pattern for detecting the failures of the shared memories is proposed.

3.1.2 Coherency Management Unit

The coherency management unit is responsible for notify all the cores, memories (e.g., L1 and L2
caches and the On-chip memory (OCM)), the programmable logic (PL) and others of changes to
shared values, ensuring that all copies of the data are consistent. For example, in multi-core
architectures coherency related issues usually arise with inconsistent data. For example, Core A (see
Figure 6) has a copy of a memory block from a previous read and Core B changes the memory block.
Therefore, Core A could be left with an invalid cache of memory, thus generating an inconsistency.

CA CB

Memory Resource

Coherency

Figure 6: Memory Coherency – Overview.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 15 of 81

Coherency mechanisms include the directory-based, snooping and snarfing techniques, although the
two most common techniques are directory-based and snooping. In directory-based technique, the
data to be shared is placed in a common directory that manages and maintains the coherency.
Instead, in snooping the memory is monitored by all the devices which require coherency. This
technique assumes that each processor has its own cache and that there is a shared main memory

Summarizing, the coherency management unit is required in today’s multi-core devices for
managing the coherency of the memory and the processors. Therefore, in the case that the
coherency fails and the data that is stored in the memory is changed, the updated data will not be
spread among the cores, leading to inconsistencies which may cause that the system behave
incorrectly. Subsection 4.2.2 presents a diagnostic technique to detect coherency faults in multi-core
architectures.

3.1.3 Interconnection Management Unit

The interconnection management unit is responsible for managing the interconnection between the
cores, peripherals, memories and the PL of the COTS multi-core devices. In multi-core architectures,
as shown in Figure 4 and Figure 5, the interconnection management unit is referred to as the SCU
and the CoreNet, respectively. These units manage the communication between the most
remarkable components of the devices, where a failure of these units may lead to the occurrence
that the data will not be spread over the device and its direct consequence, the possible failure of
the system. Subsection 4.2.3 presents a diagnostic technique to detect the failures in the
interconnection management unit.

3.1.4 Interrupt Controller

The interrupt controller is a key component that manages the prioritization of the tasks in today’s
COTS multi-core devices. Figure 7 presents the interrupt controller unit of the ZYNQ 7000 device.
This unit, which is also called such as the generic interrupt controller (GIC) [37] is composed of a
single distributed block and [1:N] core interface blocks. The number of the GIC’s distributed blocks is
dependent of the amount of the device’s cores.

Figure 7: Generic Interrupt Controller (GIC). (Source [37]).

The interrupt distributor centralizes the sources of interrupts before dispatching the one with the
highest priority level to an individual core. The interrupt controller ensures that an interrupt

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 16 of 81

targeted to several cores can only be taken by one core at a time. The sources of interrupts are
identified by a unique interrupt ID number, a configurable priority and a list of the cores which are
targeted. The interrupts that can be handled by the interrupt controller can be originated in cores
(private peripheral interrupts (PPIs)), the PL and the PS (Shared Peripheral Interrupts (SPIs)) and the
PS (SW Generated Interrupts (SGIs)). On the other hand, the core interfaces perform the interrupt
priority masking and preemption handling for the cores of the device. Each core interface block
provides an interface for each processor that operates within the GIC. In the case that the security
extension is implemented by the core interface, the IRQ (non-secure) and FIQ (secure) signals may
be used. In addition, the write protection lock mechanism is also provided by the GIC for preventing
unauthorized accesses to the critical configuration registers.

3.1.5 Programmable Logic

In Section 3 the major features of networked and partitioned multi-core system architecture are
presented. As shown in Figure 2, this system architecture is composed by a COTS device with a
processing system (PS) and a programmable logic (PL). In addition, this system architecture is
partitioned by a hypervisor to enable the implementation of a wide variety of functionalities with
different criticality on the same embedded computing platform. These partitions can be integrated
indistinctly in the PS or the PL. In the PS, the partitions may be implemented into the cores of the
device, whereas the PL supports the implementation of a single or multiple soft-core processors with
independent memory (e.g., BRAM). These soft-core processors and the PL itself can be vulnerable to
single event upsets (SEUs). SEUs are usually caused by the collision of cosmic particles and atoms
and they may result in the failure of the BRAM, the electronic devices or the PL. Xilinx provides a
solution to these failures, providing the soft error mitigation (SEM) IP core [38] for detecting and
correcting SEUs in configuration memory of Xilinx FPGAs. SEM IP does not prevent soft-errors;
however, it provides methods to manage their effects at system level.

3.2 Hypervisor

A hypervisor is a layer of SW or a combination of SW and HW that allows running several
independent execution environments, also called partitions, in a single embedded computing
platform. Partitions are logical divisions of memory with static or dynamic cycle and execution time.
They can have assigned one or more peripherals and can be developed for different level of
criticality (e.g., SIL1 to SIL4 according to the IEC 61508 safety standard). The implementation of a
hypervisor for partitioning the system can give rise to spatial independence, temporal independence
and real-time constraints.

The broad trend of partitioning the system into different execution environments where
functionalities with different criticality can be implemented requires from inter-partition
communication. In multi-core architectures, the partitions can communicate through shared
memories such as the L2 cache or by using network-on-chip (NoC) communication media systems.
The implementation of NoCs for communicating the partitions avoids the challenges caused by the
implementation of the shared memories. However, it increments the complexity of the system, and
implies several challenges which must be managed to achieve compliance with a safety-related
standard (e.g., IEC 61508).

On the other hand, the measures and diagnosis techniques recommended by the current safety-
related standards such as the IEC 61508 safety standard are not fully applicable to today’s mixed-
criticality systems that consist of multi-core architectures, hypervisors, partitions and mixed-
criticality networks. The major reason for that is that these standards are geared to single-core
architectures where a resource (e.g., memory) cannot be shared between more than one
component. Instead, in multi-core architectures a resource is usually shared between more than one
element. Therefore, during this deliverable it is assumed that there are some scenarios where the

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 17 of 81

recommendations, measures and diagnostic techniques of these standards are not applicable to
mixed-criticality systems that include COTS devices, virtualization mechanisms, mixed-criticality
networks and etc. For example, diagnose that a mixed-criticality network, which is implemented
over a partitioned mixed-criticality system, cannot access to the critical memory areas of the
partitions. Or diagnose that the memory areas of critical partitions are not accessed or cannot be
modified by non-safety-related partitions. In Subsection 4.1.1 it is defined a diagnostic technique to
detect whether the hypervisor or attached partitions access to the memory area of the mixed-
criticality network and Subsection 4.1.2 presents the critical partition diagnostic pattern.

On the other hand, in mixed-criticality systems there are resources which are implemented very
frequently to perform safety and non-safety-related activities. These resources can be managed by
safety and non-safety-related partitions to provide partition based centralized solutions which
enable reducing the implementation time and allows reusability. Section 4.1.3 defines the
centralized partition for digital I/Os (DIOS) while Section 4.1.4 defines the centralized partition for
I/O communication.

3.3 Mixed-Criticality Network

Mixed-criticality networks are commonly used bespoke solutions to the traditional legacy fieldbuses
due to their benefits in terms of low-cost, high-speed, higher bandwidth and easy integration within
network infrastructures. They provide communication between devices and communicate the
functionalities with different-criticality of mixed-criticality architectures. In the latter case, they
manage the traffic with different criticality levels such as the time-triggered (TT), rate-constrained
(RC) and the best-effort (BE) traffic. However, today’s mixed-criticality network does not support the
simultaneous use of the three traffic classes. For example, TTNoC network does not support the
transmission of RC and BE messages and AEthereal NoC does not support the transmission of RC
messages.

Section 4.3 defines a generic cross-domain pattern for managing traffic with different priority and
criticality levels and support mixed-criticality systems and hard real-time applications.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 18 of 81

4 Cross-Domain Mixed Criticality Patterns
This section contains the definition, implementation and results of remarkable cross-domain mixed-
criticality patterns which are identified in Section 3. These patterns are defined following the pattern
representation defined in Subsection 2.6 and they aim to provide solutions that solve commonly
occurring problems in the development of mixed-criticality systems based on virtualization
mechanisms, COTS devices, functionalities with different criticality level and mixed-criticality
networks.

The cross-domain patterns that are analysed, defined and implement (not all) during this section are
the following:

- Hypervisor

o NoC accessible critical memory area diagnosis (see Subsection 4.1.1). Implemented

o Critical partition diagnosis (see Subsection 4.1.2). Implemented

o Digital I/O Server (see Subsection 4.1.3). Implemented

o Communication Server (see Subsection 4.1.4).

- COTS device

o Shared memory diagnosis (see Subsection 4.2.1). Implemented

o Cache Coherency diagnosis (see Subsection 4.2.2). Implemented

o Inter-connection management unit diagnosis (see Subsection 0).

o Interrupt Controller diagnosis (see Subsection 0).

- Mixed-criticality network

o Priority based NoC (see Subsection 4.3.1). Implemented

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 19 of 81

4.1 Hypervisor

4.1.1 NoC Accessible Critical Memory Area Diagnosis Pattern

Pattern ID: PAT – NACMAD – 00

Pattern Name: NACMAD

Related pattern: PAT – CPD – 00

Type: HW / SW

Context:

The typical interconnection between two functionally independent systems inside a chip is usually done
through memory area registers. The registers are accessed to communicate or interchange data. By
construction, registers are portions of continuous memory that can be accessed and modified (write/read) by
any on-chip subsystem which is physically connected to the memory area. Critical memory areas shall be
protected in a way that non authorized agents could not read nor write data.

Problem:

In multi-core mixed criticality systems, network-on-chip (NoCs) are widely implemented communication
systems to avoid point-to-point (P2P) individual communication paths between the components of the
system and enable the creation of logic paths to interchange data. On-chip networks may access to critical
memory areas in use by the components that compose a system. Non authorized memory accesses of a NoC
may imply errors that could jeopardize the safety of the system. The most significant impact of the memory
access that can be performed by a NoC communication system is the breaking of the temporal isolation.
Furthermore, the temporal isolation can also be endangered in the case that the amount of traffic in the NoC
is so high that the incoming/outgoing data transfers among the components of the network (e.g., buffers,
I/Os, processing cores) are delayed.

Solution under consideration:

The solutions proposed below aim to provide robust measures and diagnosis techniques to detect failures in
the critical memory areas which are accessible by the NoC communication media systems. The following
design solutions can be considered depending on the hardware available.

 Provide complete hardware isolation of the NoC subsystem

This solution proposes the assignment of a dedicated memory to the NoC for incoming/outgoing
message buffers and for its internal operations. For that purpose, in order to achieve a complete
isolation from the processing cores, the NoC shall not be attached to the same bus as the processing
cores. This solution scheme can be implemented by means of a dual-port RAM memory, where one
port is accessible by the NoC and the other port is connected to the bus where the processing cores
are connected.

 I/O Memory Management Unit (MMU)

MMU controls the access of direct memory access (DMA) transfers programmed by the bus-master
capable I/O devices. Consequently, the DMA transfers do not overwrite or read from the restricted
memory addresses. In the case of safety critical systems, the memory addresses may contain the
code and data of safety critical tasks. An I/O MMU enforces the spatial isolation and avoids the
overwritten of the safety sensitive memory regions by the NoC.

 Additional monitoring mechanisms

Additional monitoring mechanisms are described in the next design pattern ‘PAT-CPD-00’.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 20 of 81

Board Name: ZYNQ zc706

Implementation:

 Provide complete hardware isolation of the NoC subsystem

The NoC communication networks are a passive element that waits for the processor to initiate the
data transfer. However, the NoC implementation of the harmonized platform does not wait for the
processor for transferring data and therefore, we cannot consider that isolation exists at hardware
level. In this particular case, due to limitations of the hardware, it is not possible to implement this
solution.

 I/O Memory Management Unit (MMU)

No I/O MMU is available in the current harmonized platform. Therefore the implementation of this
cross-domain pattern is not applicable. However, this solution pattern could be implemented in
other hardware architectures that support I/O MMU.

 Additional monitoring mechanisms

The implementation of the monitoring mechanisms discussed in the next cross-domain pattern (PAT-
CPD-00) can be also implemented for NoC-related diagnostic purposes as follows:

(a) The detection of temporal interference caused by the NoC when accessing the bus can be
considered as equivalent to the interference due to the contention of the bus access which is
caused by the competing cores (Limit the concurrency). In the case of NoC communication
systems, an estimation of the interference can be calculated based on the expected amount of
traffic.

(b) The detection of write access from the NoC to critical memory areas. They can be seen as
similar to failures in the spatial isolation due to errors in the hypervisor in the sense that the
perceived effect is the same.

Therefore, the implementation and results provided in the next pattern (PAT-CPD-00) are considered as
representative results of the current pattern.

Results:

See PAT- CPD- 00.

Additional Considerations:

This cross-domain pattern defines a diagnosis technique that it is related to the safety arguments of the
modular safety case for an IEC 61058 compliant generic mixed-criticality network [5] and hypervisor [6].

References:

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for
Mixed-Criticality Network," in D5.1.3, ed, 2015.

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for
Hypervisor," in D5.1.1, ed, 2015.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 21 of 81

4.1.2 Critical Partition Diagnosis Pattern

Pattern ID: PAT – CPD – 00

Pattern Name: CPD

Related pattern: N/A

Type: SW

Context:

Partitioned mixed-criticality architecture limits the impact of changes, provides reusability of their parts and
reduces the complexity of the system. Partitions can be designed, developed and certified individually with
different levels of criticality (e.g., SIL1 – SIL4 according to IEC 61508). If a partition contains a safety critical
function that it is considered critical by the system, it should be protected against interferences (temporal and
spatial) caused by other partitions.

Problem:

When dealing with partitioned systems with different criticality, failures caused by the interchange of
information are quite probable. The lower criticality functionalities can lead to interferences on the higher
criticality functionalities. Therefore, it must be guaranteed that partitions with different criticality level do not
influence each other. Two possible sources of interferences can be considered:

I) Temporal interferences generated by multiple accesses in parallel to the shared memory (e.g., by the
cores of a multi-core device). The concurrent accesses will compete for accessing to the shared
memory cache, which will lead to interferences in temporal domain.

II) Failures in the spatial isolation provided by the hypervisor. It is also found in mono-core
architectures.

Solution under consideration:

This pattern aims to provide a generic diagnosis pattern to detect interferences on critical partitions. It
provides a scalable set of measures and diagnosis techniques to detect and control failures of critical
partitions and guarantee the system’s temporal and spatial independences.

 Limit the concurrency

This cross-domain pattern proposes a solution to limit the amount of inter-core temporal
interferences. The basic idea is that critical tasks are executed without concurrency. Therefore, when
a critical task is running in a certain core the other cores do idle only for the duration of this task,
thus avoiding contention. The limitation of concurrency can be achieved by appropriately configuring
the partition execution windows for all the cores at design time.

The loss in performance can be leveraged by tuning the amount of time that a core (running a critical
task) executes without concurrency. The maximum amount of interference suffered by one core due
to accesses to shared memory and the bus bandwidth used by the other cores can be calculated by
means of off-line analyses. The concurrent execution can be guaranteed up to a certain safe time
limit based on the temporal constraints of the safety critical tasks and the maximum amount of
interferences.

 Assess the spatial and temporal isolation

The following solutions define a way to diagnose the spatial and temporal isolation.

o Spatial isolation

A monitoring mechanisms or a diagnosis partition can be implemented to periodically check the
data of the critical memory areas, including the hypervisor’s code and the code and data of

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 22 of 81

partitions. Checksum and similar mechanism recommended by the IEC 61508 safety standard
are perfect candidates to ensure that no accidental modification of code or data takes place.
These measures and diagnostic techniques can be individually implemented by the partitions
for checking their own code and data. However, the code of XtratuM shall be checked by at
least one partition to ensure that is not unexpectedly modified. It shall be taken into account
that the hypervisor takes advantage of memory management unit (MMU) hardware to enforce
the spatial isolation and that this proposed solution intends to diagnose errors in the
configuration of the MMU which can be caused by errors in the hypervisor or the hardware.

o Temporal isolation

The measures and techniques recommended by the IEC 61508 safety standard can also be
implemented to diagnose the temporal isolation. For instance, the “Program temporal
sequence monitoring” technique (see Section A.9 of IEC61508-7 [39]) can be implemented to
monitor the execution of safety critical tasks in terms of temporal response and to ensure that
the temporal isolation is not compromised due to a failure of the hypervisor. This proposed
solution aims to diagnose failures in the hypervisor or in the configuration of the partition
execution windows that may jeopardise the temporal isolation of the partitions. Therefore, the
task/process scheduling inside the partitions is out of the scope of this solution.

On the other hand, in deliverables D2.2.2 [40] and D2.3.4 [41] the deadline overrun and QoS services are
defined. These services improve the isolation execution of critical applications by introducing internal
deadline monitoring and interrupt best effort applications and they are applicable for mixed-criticality
systems with partitioning.

Board Name: N/A

Implementation:

This section presents the implementation of the solutions defined before in the XtratuM hypervisor.

 Limit the concurrency

This implementation aims to determine the worst-case conditions that a partitioned system can
suffer. For that purpose, this implementation scenario implements the model of inter-core
interferences when partitions in different cores access shared memory (e.g., DDR). This model is
available in [40].

The worst case scenarios that can be considered are:

‐ Two partitions access simultaneously to the shared DDR memory from different cores.

‐ The shared DDR memory regions are configured as non-cacheable.

‐ The percentage of overlapping between the partition slots is 100%.

In the above worst case scenario, the measured performance decreases to a 69% [40]. This overhead
is defined as the maximum temporal interference that can suffer any partition, including any critical
partition. Therefore, overhead values below 69% are detected as unsafe.

On the other hand, when the counting performance decreases below the 69% threshold, which
means that it goes from the nominal value of 391618 counts per 100ms with no concurrent access to
the DDR memory and down to 270216 per 100ms when there is complete concurrent access to the
DDR memory, a safety action is executed, issuing a warning message.

 Assess the spatial and temporal isolation

o Spatial isolation

This partition diagnosis pattern implements memory checksum technique (IEC61508-7 [42]) to
detect modifications of the critical memory regions of the system. This implementation defines
non-cacheable critical memory regions where the contents of these memory areas cannot be

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 23 of 81

modified during the system execution. For demonstration purposes, this implementation
selects the text code sections of XtratuM hypervisor and critical partitions as the critical
memory areas which are protected by means of a checksum.

I) The hypervisor’s text code is contained between [_sdata, _spdata] symbols of the XtratuM
hypervisor’s executable and linkable format (.ELF) and corresponds to physical addresses
[0x20000000, 0x2001d3b8]. Since the memory area where the hypervisor resides is
protected from partitions by means of the MMU, the diagnosis partition that computes
the checksum shall have system management rights in the XtratuM configuration file
(XMCF) to have to read-only access to the hypervisor’s text code and to compute the
checksum technique.

II) The critical partition’s text code is contained between [_sguest, _sdata] symbols of the
partition ELF and corresponds to physical addresses [0x10100000, 0x101036c8]. Since the
critical partition memory can reside in a separate partition, the diagnosis partition shall
have read-only access to the critical partition memory configured in the XMCF.

The critical memory regions defined above are protected by means of a Cyclic Redundancy
Check (CRC32) checksum IEEE 802.3. The CRC32 is periodically checked each 1000ms, at the
start of each critical partition temporal slot. The frequency of the check is configured through
the partition scheduling period, which is defined in the XtratuM Configuration File (XMCF).

Note that the selection of the CRC32 algorithm has been performed for demonstration
purposes. In operational systems the checksum algorithm shall be determined depending on
the size of memory that is required to be protected and the expected error rate value of the
operational hardware.

o Temporal isolation

The partition diagnosis pattern implements the temporal sequence monitoring technique
(IEC61508-7 [42]) to detect temporal errors. This technique is implemented by XtratuM
hypervisor. Specifically, the critical partition configures a virtual interrupt (extended interrupt in
the XtratuM terminology) that is triggered at the beginning of the execution slot of each
partition (XM_VT_EXT_CYCLIC_SLOT_START) and executes the following measures and
diagnoses [41].

- Check that the partition slot starts according to the scheduling plan

This diagnosis partition check is implemented evaluating the invariant

|currentSlotStart – expectedSlotStart| < CFG_SCHEDDRIFT_THRESHOLD

where

o currentSlotStart is the measured time when the slot started by issuing an
XM_get_time(XM_HW_CLOCK, ¤tSlotStart).

o expectedSlotStart is the expected time when the partition slot should start. This value
is defined off-line at system design time and it is used to configure the partition
execution windows in the XMCF.

o CFG_SCHEDDRIFT_THRESHOLD is the maximum scheduling drift that is considered
safe under nominal operation conditions. For demonstration purposes, this value is
set to 100us. Therefore, if a value above 100us is detected, it is considered that a
temporal interference occurs, which leads to the execution of a safety action that
consists in emitting a warning of the scheduling drift.

- Check that the partition slot period is according to the scheduling plan

This diagnosis partition check is implemented evaluating the invariant

|currentPeriod - expectedPeriod| < CFG_SCHEDDRIFT_THRESHOLD

where

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 24 of 81

o currentPeriod is the measured period of partitions that is computed as the difference
between the current and the previous slot start times.

o expectedPeriod is the expected period of partitions that is computed from the
partition scheduling plan defined off-line in the XMCF.

o CFG_SCHEDDRIFT_THRESHOLD is the maximum scheduling drift (100us).

Results:

 Limit the concurrency

o Temporal interference

The detection capabilities of the concurrency monitoring implementation are validated on-line by
means of a scenario where a faulty partition progressively causes an increasing amount of temporal
interferences. Validation refers to the fact that it is ensured by means of test cases that the
interference is indeed detected, thus generating the following exception:

«[P0-readerPSM.c:45] DetectMulticoreInterference counter 270414 below 270216 threshold»

These interferences are sourced by accessing the shared un-cached DDR memory area. The amount
of interference is controlled by means of different scheduling plans which cause an increasing
percentage of temporal overlapping between the critical partition (P0) and the fault partition (P2).
The temporal overlapping percentage takes the values: 0%, 20%, 40%, 60%, 80%, and 100%.

This diagnosis scenario is setup according to the worst case scenarios defined in the implementation
section, where two partitions accesses to a matrix located in the non-cacheable shared DDR memory
[40]. However, it does not define how to avoid the impairment of the safety function. For that
purpose, the partition developer can make use of the services provided by the hypervisor such as to
stopping the interfering partition. This service can be achieved by using the hypervisor’s
XM_suspend_partition() hypercall.

Trace of the execution of the critical partition :

Plan 0: Overlap 0

Counter: 391532 391359

Plan 1: Overlap 20

Counter: 367537 367373

Plan 2: Overlap 40

Counter: 343291 343103

Plan 3: Overlap 60

Counter: 319001 318837

Plan 4: Overlap 80

Counter: 294698 294539

Plan 5: Overlap 100

Counter: 270414 270407

[P0-readerPSM.c:45] DetectMulticoreInterference counter 270414 below 270216 threshold

First, the two partitions execute according to the scheduling plan 0 that has 0% temporal
overlapping, in this case the counter values take their maximum nominal value. Next, the plan is
changed to scheduling plan 1 that causes a 20% temporal overlap that causes small performance
degradation where performance drops from 100% to 94%. When the two partitions are executed
according to the scheduling plan 5, then temporal slots overlap completely as shown in the code
listing (line Plan 5: Overlap 100) then the critical partition (P0) detects that the access times to the
shared DDR memory have increased above the maximum threshold defined in the model and issues

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 25 of 81

a safety warning message.

 Assess the spatial and temporal isolation

o Spatial isolation

The detection capabilities of the memory checksum implementation are validated at run-time
by means of a scenario where a faulty partition randomly injects memory errors in the critical
memory sections. These errors are injected at random instants in time and are randomly
distributed over the whole critical memory regions. This diagnosis ensures by means of test
cases that the breach in spatial isolation is indeed detected, thus generating the following
exception.

«[P0-critical.c:49] ChecksumDetect mismatch computed 204014F expected FCA9BE35»

This diagnosis pattern does not define how to avoid the impairment of the hypervisor’s safety
functions. For such purpose, the partition developer can make use of the services provided by
the hypervisor such as redundant partitions to detect the corruption in the partition, bring the
system to a safe state and restart the complete system by means of the XM_reset_hypervisor ()
hypercall.

P2 Faulty partition pseudo code:

 loop

 randTime = select random instant to start injecting memory errors

 if (currentTime == randTime)

 error_addr = select random address from critical memory region

 *error_addr = random 32-bit word

 endif

 endloop

Execution trace:

[P0-critical.c:98] ChecksumInit partition 0x10100000 CRC32 0xFCA9BE35

[P0-critical.c:Execut99] ChecksumInit hypervisor 0x20000000 CRC32 0xE5B846AC

[P2-faulty.c:19] TriggerPartitionCorruption at 0x1010000D = 0

[P0-critical.c:49] ChecksumDetect mismatch computed 204014F expected FCA9BE35

[P2-faulty.c:19] TriggerPartitionCorruption at 10100013 = EA

[P0-critical.c:49] ChecksumDetect mismatch computed 26C06CDF expected FCA9BE35

The above listing depicts the execution trace of partitions’ spatial isolation assessment scenario,
where, first, the critical partition (P0) computes the initial CRC32 checksum during the
initialization phase.

- The first ChecksumInit computes the CRC32 checksum of the critical partition memory
region starting at 0x10100000.

- The second ChecksumInit computes the CRC32 checksum of the hypervisor memory region
starting at 0x20000000.

Then, the faulty partition (P2) starts its execution and issues a TriggerPartitionCorruption() at a
random address 0x1010000D in the operation phase. Hereafter, line shows the critical partition
issues the periodic checksum verification and issues the ChecksumDetect() function that detects
the mismatch between the current checksum and the initial checksum, and issues a warning
that alerts that the memory region has been modified.

o Temporal isolation

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 26 of 81

The detection capabilities of this solution are validated on-line by means of a scenario where a
faulty partition causes random temporal interferences to the critical partition. Validation refers
to the fact that we guarantee by means of test cases that the interference is indeed detected,
thus generating the following exception:

«[P0-critical.c:45] SlotStart drift detected SlotStart 2000607 expected 2000000»

A faulty partition (P2) is used to simulate a failure in the spatial isolation provided by the
hypervisor. This approach waits to the end of the faulty partition slot and issues a long XtratuM
hypercall that is not completed in the remaining slot time. This event forces the time
consumption of the next partition by the hypercall (XtratuM hypercalls are not pre-emptive and
therefore XtratuM cannot perform a partition context switch until the hypercall has finished).
However, this diagnosis pattern does not define how to avoid that the impairment of the safety
function. For such purpose, the partition developer can make use of the services provided by
the hypervisor, like for example stopping the interfering partition using the hypervisor’s
XM_suspend_partition() hypercall.

P2 Faulty partition pseudo code

 loop

 randTime = select random instant to start injecting memory errors

 if (currentTime == randTime)

 wait for the end of the current partition slot

 issue a long hypercall to interfere with next slot

 endif

 endloop

Execution trace

[P0-critical.c:65] WatchdogInit

[P2-faulty.c:58] TriggerTemporalInterference 2000000

[P0-critical.c:45] SlotStart drift detected slotStart 2000607 expected 2000000

[P2-faulty.c:58] TriggerTemporalInterference 4000000

[P0-critical.c:45] SlotStart drift detected slotStart 4000607 expected 4000000

First, during the initialisation phase, the critical partition issues a call to the WatchdogInit()
service that sets up an extended interrupt to be received at the start of each partition slot as
detailed in the implementation section. Then, the faulty partition (P2) issues a
TriggerTemporalInterference call. This call waits for the end of the current slot and issues a long
hypercall. As a result, the start of the slot of the critical partition is delayed by 607 us. When the
critical partition starts executing, it measures the current slotStart time and checks if it differs
from the expected slotStart computed from the XMCF. Since the expected slotStart is
2000000us and the measures slotStart is 20000607us, a 607us difference is detected which is
greater than the 100us (CFG_SCHEDDRIFT_THRESHOLD) defined in the implementation section,
and causes the critical partition to emit a warning that a scheduling drift has been detected.

Additional Considerations:

This cross-domain pattern defines a diagnosis technique that it is related to the safety arguments of the
modular safety case for an IEC 61058 compliant generic hypervisor and partition [6].

References:

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 27 of 81

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for
Hypervisor," in D5.1.1, ed, 2015.

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - Hypervisor adaptation and drivers

for local resource manager," in D2.3.4, ed, 2016, p. 56.

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - Report on monitoring, local
resource scheduling and re-configuration services for mixed criticality and security with implementation
(source code) of low- and high-level monitors, scheduling, security and re-configuration services supporting

mixed criticality and adaptation," in D2.2.2, ed, 2015, p. 46.

4.1.3 Digital I/O Server Pattern

Pattern ID: PAT –DIOS – 00

Pattern Name: DIOS

Related pattern: N/A

Type: HW/SW

Context:

Digital I/Os are widely used among different system architectures for communication purposes. They can be
managed by partitions with different criticality (e.g., safety, non-safety and real-time) but not at the same
time. The simultaneous access to a digital I/O by more than one partition usually leads to an error that
jeopardizes the system.

Problem:

Partitions with different criticality level usually require commanding digital I/Os. This is a common requirement
among different system architectures, where a digital I/O can be requested by more than one partition at the
same time, thus causing a conflict that could lead to an error. The DIOs may be corrupted physically or in a
register level which could cause a failure in safety-related subsystem. As a general rule, a digital I/O cannot be
assigned to more than one component, unless a voting mechanisms or equivalent is used. On the other hand,
from a product line perspective, the number DIOs which may be requested by a product might change, leading
to scalability problems.

Solution under consideration:

The proposed solution in this section is based on the implementation of a Digital I/O server partition, which
manages the digital I/Os of the mixed-criticality system. The Digital I/O Server (DIOS) is a consistent concurrent
manager of digital I/Os that is abstracted from platform and hypervisor details to assure reusability, enabling
its integration on different system architectures without major changes, simplifying the system design. In
addition, it includes a set of measures and diagnostic techniques to assess random and systematic failures.
Figure 8 shows an example of the digital I/O server cross-domain pattern which is integrated on a partitioned
multi-core architecture and manages the requests for digital I/Os from partitions with different criticality level
(e.g., safety and non-safety).

Communication
Server

Safety Partition

Non-Safety
Partition

Safety Partition

Non-Safety
Partition

CPU 0 CPU 1Digital
I/Os

Figure 8: DIOS cross-domain pattern - Example.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 28 of 81

The digital I/O server periodically updates the values of the inputs to refresh the information of the partitions
where the inputs are required. Afterwards, the diagnostic techniques explained in the following paragraphs
are executed, so that, if a failure is detected, the outputs will be refreshed with the safe value instead of with
the value provided by the partitions. In the case that different partitions try to update the same output with
different values, the partitions will be moved to a safe state and the outputs will be updated with their default
value.

The conditions, measures and diagnosis techniques which are implemented by the digital I/O server partition
to assess that the digital I/Os controlled by safety-related partitions don´t cause a failure that can affect to
other partitions are the following:

(a) The safety-related outputs have associated inputs with the same or opposite values. The values vary
depending on the configuration.

(b) The cyclic redundancy codes (CRCs) of the values of the registers associated to the digital inputs and
outputs are periodically compared against the values already stored by the digital I/O server. The
comparison period is determined by the minimum refreshing period of the digital outputs.

(c) Check that the partitions in charge for updating the digital outputs refresh the values of DIOS
partition. For that purpose, this solution implements a token that is updated every time that the
communication is refreshed, always agreeing with the expected values in DIOS. This solution may also
be applied in the remaining partitions, but with the inputs to assure that the communication among
partitions and DIOS keeps working.

(d) Every time that the values of the digital outputs change, shall be checked that the register values
match with the values supported by the DIO Server.

(e) Each digital input shall be checked to detect whether their values are able to be changed. These
checks shall be executed under a pre-configured timeout. If the timeout value is not specified, the
default value will be used (a month) and the developer will be forced to integrate an output to change
the values of the inputs in a controlled non-safety way for testing purposes.

In safety-related applications, the configuration of the digital inputs and outputs of the server like the
configuration of partitions shall be established by means of off-line qualified tools. This pattern relies on the
safety-related arguments (e.g., resource virtualization, exclusive access to peripherals) defined in the modular
safety case (MSC) for an IEC 61508 compliant generic hypervisor [6] and the safe communication between
partitions provided by a IEC-61508 compliant hypervisor.

Board Name: XILINX ZYNQ-7000 zc702

Implementation:

In order to test the proposed solution pattern , the use case shown in Figure 9 composed of two safety-related
partitions (both of them execute the same code), two non-safety related partitions and a digital I/O server
partition is implemented. The digital I/O server implements three inputs and two outputs (one of them safety)
for communicating purposes.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 29 of 81

Figure 9: DIOS - Implementation architecture.

The first step of the implementation is to define the configuration file. The configuration file enables managing
a configurable number of digital I/Os, thus assuring the scalability of the system. In addition, during this

section it is assumed that the digital I/Os shall include the following set of variables for diagnosis purpose.

‐ Digital Inputs (DI)

o Name: Identification of the digital input.

For continuous mode inputs, where the state is changed frequently (similar like frequency or
like a hard-beat):

o Change Frequency: This parameter describes how often the inputs have to change.

o Timeout: The timeout before considering that an input is faulty will be defined with
this parameter and depends on its application.

o Configuration Unique ID: This is an identification to associate in the HAL each input to a
concrete hardware input.

o Partition and sampling frequency: The identification of the partitions that requires that input
and the frequency with what they need the updated value.

High demand and low demand inputs are tested using test-pulses generated by a test-pulse
generator. The diagnostic circuit sends a test-pulse to the test-pulse generator reads the
test-pulse via the input and checks whether the test-pulse has been detected in the right
time.

o Test-pulse period: This parameter defines the period of testing the input e.g. once a hour.

o Test-pulse duration: This parameter defines the width of the test-pulse. The width depends
on load assignment of the wiring.

‐ Digital Outputs (DO)

o Name: Identification of the digital output.

o Configuration Unique ID: This is an identification to associate in the hardware abstraction
layer (HAL) each output to a concrete hardware output.

o Safety Value: The value to which the output should be updated when the system has to go to
the safe state.

o Safety Input: This parameter identifies if the output has an input associated to check that the
actual value of the output is the correct one.

o Safety Input Logic: This parameter identifies if the safety input associated to a safety output
has the same or opposite value of the actual output.

o Safety Input timeout: This parameter identifies the maximum time required by the safety
input to update its value when the output changes. E.g., 8-10ms.

o Partition and sampling frequency: The identification of the partitions which require an
update an output and the update’s frequency value.

The configuration of this solution is collected in the xml file (xm_cf.arm.xml) of XtratuM hypervisor that aims
to configure the partitions of the hypervisor. This configuration file is checked by means of the
IOServerGenerator T3 off-line qualified tool (see IEC 61508-3) that is also responsible for developing the I/O
database required by the I/O Server pattern. Figure 10 shows the verification procedure executed in this
implementation.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 30 of 81

Figure 10: Configuration file - Verification process.

The current implementation of this pattern is based on the concept of associate the digital inputs and outputs
to communication ports which may be accessed by the safety-related partitions. Therefore, when defining the
configuration file, apart from defining the digital inputs and outputs; their associated ports shall also be
defined. In application domain, if the hypervisor’s abstraction layer (DRAL) is used, the digital inputs and
outputs will be used as ports. The following class diagrams (Figure 11 and Figure 12) show the main blocks that
compose the system architecture implemented in this section and the content of the digital I/O server.

Figure 11: DIOS System architecture - Overview.

Figure 12: Digital I/O Server - Overview.

The following diagram presents the interfaces which are used for implementing the digital I/O serve.

 class xmddioparser

Init

ExtractFromXMLInputsOutputs

(from DiagramElements)

CheckDataAv ailabilityCorrection

(from DiagramElements)

FileExistanceRev ision

(from DiagramElements)

XMLFormatRev ision

(from DiagramElements)

ChekNumberInputsInRange

(from DiagramElements)

GenerateIOServ erPartitionCode

(from DiagramElements)

CheckNumberOutputsRange

(from DiagramElements)

CheckInputExistanceofSafetyInput

(from DiagramElements)

CheckSafetyInputDefinitionforSafetyOutputs

(from DiagramElements)

End

 class Architecture

DIOS

DRAL_HealthMonitorManagement
DRAL_PartitionManagement

DRAL_TimeManagement

IHAL_DigitalInputOutput

DRAL_PartitionCommunication

DigitalIOServ er

DigitalIOServer

DRAL_HealthMonitorManagement
DRAL_PartitionManagement

DRAL_TimeManagement

IHAL_DigitalInputOutput

DRAL_PartitionCommunication

DRAL_XTRATUM

DRAL_HealthMonitorManagement

DRAL_PartitionCommunication

DRAL_PartitionManagement

DRAL_TimeManagement

DigitalIOServer

DigitalIOPartition

DigitalIOServer

HAL

IHAL_DigitalInputOutput

DRAL_PartitionCommunication

DIOSUserPartiions

DRAL_PartitionCommunication

 class DigitalIOServ er

DigitialIOServ erCore

DigitalIOServer DRAL_HealthMonitorManagement

DRAL_PartitionCommunication DRAL_PartitionManagement

DRAL_TimeManagement

ParserToHyperv isor

DRAL_HealthMonitorManagement

DRAL_PartitionCommunication DRAL_PartitionManagement

DRAL_TimeManagement

HypervisorManagement

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 31 of 81

Figure 13: DIOS Interfaces - Overview.

The digital I/O server (DIOS) and the digital I/O partitions defined in this pattern are generic solutions which
may be implemented in different system architectures without major changes. The DigitalInputOutput class
shall be updated according the characteristics of the HW platform and/or hypervisor where this solution is
implemented.

Figure 14: Development process of DIOS - Overview.

Results:

The following screenshots summarize the satisfactory results of this pattern’s implementation. The test cases
which are executed to validate this use case consider that everything works correctly. In addition, further test
cases are executed to check the fault adaptability of DIOS, where if a fault is detected the digital outputs go to
safe state.

 class ApplicationGeneral

«interface»

DRAL_XRATUM_CORE::DRAL_HealthMonitorManagement

+ DRAL_GET_ERROR_STATUS() :void

+ DRAL_RAISE_APPLICATION_ERROR() :void

«interface»

DRAL_XRATUM_CORE::DRAL_PartitionCommunication

+ DRAL_CREATE_QUEUING_PORT() :void

+ DRAL_CREATE_SAMPLING_PORT() :void

+ DRAL_GET_QUEUING_PORT_ID() :void

+ DRAL_GET_QUEUING_PORT_STATUS() :void

+ DRAL_GET_SAMPLING_PORT_CURRENT_STATUS() :void

+ DRAL_GET_SAMPLING_PORT_ID() :void

+ DRAL_GET_SAMPLING_PORT_STATUS() :void

+ DRAL_READ_SAMPLING_MESSAGE() :void

+ DRAL_READ_SAMPLING_MESSAGE_CONDITIONAL() :void

+ DRAL_READ_UPDATED_SAMPLING_MESSAGE() :void

+ DRAL_RECEIVE_QUEUING_MESSAGE() :void

+ DRAL_SEND_QUEUING_MESSAGE() :void

+ DRAL_WRITE_SAMPLING_MESSAGE() :void

«interface»

DRAL_XRATUM_CORE::DRAL_PartitionManagement

+ DRAL SIGNAL ACTIVITY COMPLETION() :void

+ DRAL_GET_PARTITION_STATUS() :void

+ DRAL_SET_A_PARTITION_MODE() :void

«interface»

DRAL_XRATUM_CORE::DRAL_TimeManagement

+ DRAL_GET_TIME() :void

+ DRAL_SET_TIMER() :void

«interface»

DigitalIOServ er::DigitalIOServ er

+ DIGIOSERV_CheckDigitalIOServerHealthStatus() :eDigitalIOServerStatus

+ DIGIOSERV_InitDigitalIOServer() :void

+ DIGIOSERV_PushDigitalInputs() :void

+ DIGIOSERV_PushDigitalOutputs() :void

+ DIGIOSERV_PushSafeDigitalOutputs() :void

+ DIGIOSERV_UpdateDigitalInputs() :void

+ DIGIOSERV_UpdateDigitalOutputs() :void

«interface»

DigitalIOServ er::Hyperv isorManagement

+ HYPMAN_IsPartitionStatusOk() :void

+ HYPMAN_InitPartition() :void

+ HYPMAN_SetTimer() :void

+ HYPMAN_CreateSamplingPort() :void

+ HYPMAN_CreateQueingPort() :void

+ HYPMAN_SendMessageQueingPort() :void

+ HYPMAN_SendMessageSamplingPort() :void

+ HYPMAN_ReadMessageQueingPort() :void

+ HYPMAN_UpdateMessageSamplingPort() :void

+ HYPMAN_GetPortStatus() :void

«struct»

DigitalIOServ er::sInput

- sId :char []

- u32UnicConfigId :int

- u32UpdateFreq :int

- u8Value :int

- u32UpdateToken :int

DigitalIOServ er::sOutput

- sId :char*

- u32UnicConfigId :int

- u32UpdateFreq :int

- u8Value :int

- u8DefaultValue :int

- bHasSafeInput :boolean

- bSafeInputLogicNeg :boolean

- u32UpdateToken :int

- u32SafeInputId :int

«enumeration»

DigitalIOServ er::eDigitalIOServ erStatus

 EDIGITALIOSERVERSTATUS_OK = 0

 EDIGITALIOSERVERSTATUS_ERROR = 1

«interface»

HAL::IHAL_DigitalInputOutput

+ IHAL_CheckDigitalOutputs(int, eDigitalOutput) :boolean

+ IHAL_GetDigitalInputs(int*, eDigitalInput) :void

+ IHAL_InitDigitalOutput(int, eDigitalOutput) :void

+ IHAL_InitDigitalInput(eDigitalInput) :void

+ IHAL_PushDigitalOutput(int, eDigitalOutput) :void

HAL::eDigitalInput

- EDIGITALINPUT_AXI0 :int = 0

- EDIGITALINPUT_EMIO8 :int = 2

- EDIGITALINPUT_MIO8 :int = 1

HAL::eDigitalOutput

- EDIGITALOUTPUT_AXI2 :int = 0

- EDIGITALOUTPUT_EMIO1 :int = 2

- EDIGITALOUTPUT_MIO3 :int = 1

- EDIGITALOUTPUT_AXI1 :int = 3

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 32 of 81

Additional Considerations:

This cross-domain pattern is related to the modular safety case for an IEC 61508 compliant partition [6].

References:

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for
Hypervisor," in D5.1.1, ed, 2015.

4.1.4 Communication I/O Server Pattern

Pattern ID: PAT – CIOS – 00

Pattern Name: CIOS

Related pattern: PAT – DIOS – 00

Type: HW/ SW

Context:

Safety and non-safety-related partitions of partitioned mixed-criticality systems usually require
communicating. For that purpose, multi-core architectures usually implement shared memories and
communication media systems. These communication interfaces have its pros and cons. For instance, shared
memories are common sources of interferences in architectures with more than one core. On the other hand,
in order to overcome issues related to the shared memories, the communication networks are a bespoke
solution to provide internal and external communication. In addition, it is assumed in product family domain,
that external communication networks may suffer modifications, or may be replaced owing to changes in the

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 33 of 81

safety-related requirements of the network. This gives rise to scalability issues. These external
communication systems are implemented over a specific architecture design.

Problem:

The communication between partitions with different criticality (e.g., SIL1 to SIL4 in accordance with the IEC
61508 safety standard) can be carried out through on-chip (e.g., STNoC) and off-chip mixed-criticality
networks (e.g., TTEthernet) with real-time capabilities or not. For example, EtherCAT is a real-time industrial
Ethernet off-chip network. Off-chip networks may be used to connect different devices that may be located
far away (physically) from each other. Instead, on-chip networks (NoC) may be implemented for
communicating the internal components of the system. For instance, as shown in Figure 15, on-chip networks
(NoC) can be implemented for communicating the CPUs of a multi-core mixed-criticality embedded
computing system.

CPU0 CPU1

CPU2

Network On-Chip

Platform 0

Network Off-Chip

CPU0 CPU1

CPU2

Network On-Chip

Platform 1

CPU0 CPU1

CPU2

Network On-Chip

Platform N

...

...

Figure 15: Network on-chip and off-chip.

The NoCs shifts the problems associated with traditional networks into the chip due to their low-cost, high-
speed and easy integration with existing networks infrastructures. However, although they provide benefits in
terms of spatial and temporal segregation, they lead to certification challenges (e.g., assure temporal
independence).

On the other hand, the number of functions of a mixed-criticality product which require to communicate
tends to raise, mixing the communication requirements of different criticality (e.g., safety, real-time and
security) and hampering the development and certification of mixed-criticality networks. As a result, the
underlying mixed-criticality communication media systems require an adaptation process or shall be modified
to cover new requirements, leading to higher engineering and certification cost.

Solution under consideration:

The proposed solution focuses on the development of a communication server that simplifies the system
design and development, and reduces the cost of certification. The communication server aims at managing
the communication between partitions and external elements of the system (see Figure 16).

In addition, it is assumed that this server is logically abstracted from the processor control of the
communication network (e.g., using partition ports) and that it manages the assignment of the peripherals to
the partitions, implementing the exclusive access to peripherals technique.

Communication Server

Safety Partition

CPU 0

Network
Off-Chip

Non-Safety Partition

Safety Partition

CPU 1

Non-Safety PartitionN
et

w
o

rk
-o

n
-C

h
ip

 (
N

o
C

)

Figure 16: Communication Server - Example.

This communication server shall be compliant to the IEC 61508 safety standard with a SIL up to SIL3and it
shall support black channel and white channel network approaches [19, 21]. In the case that the
communication server manages a white channel network, it should rely on the hypervisor's safety-related
functions.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 34 of 81

Board Name: N/A

Implementation:

N/A

Results:

N/A

Additional Considerations:

This pattern is related to the modular safety case for an IEC 61508 compliant generic Hypervisor [6] and
Mixed-Criticality Network [5].

References:

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for
Mixed-Criticality Network," in D5.1.3, ed, 2015.

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for
Hypervisor," in D5.1.1, ed, 2015.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 35 of 81

4.2 COTS processor

4.2.1 Shared Memory Diagnosis Pattern

Pattern ID: PAT –SMD – 00

Pattern Name: SMD

Related pattern:
PAT – CCMU – 00

PAT – ICMUD – 00

Type: HW/SW

Context:

The transition from conventional federated architectures to integrated architectures enables the integration
of functionalities with different levels of criticality (such as safety, security and real-time) on the same
embedded computing platform. This trend is supported by the transition from single-core to multi-core and
many-core architectures. Multi-core architectures provide benefits in terms of cost, size, weight reduction as
well as improved scalability. However, they imply certification challenges, among others; due on their shared
resources (e.g., memory and peripherals) which can lead to interferences in general that can influence the
behaviour of the safety-related (e.g., in temporal domain).

Problem:

The sharing of resources is a habitual implementation in today’s multi-core mixed devices for improving the
performance. These resources can be accessed at the same time from multiple components of the device
(e.g., cores and soft-core processors) through regular memory operations and requests. These accesses may
cause interferences in general that can imply deviations in the behaviour of the system. The IEC 61508 safety
standard recommends a set of measures and diagnostic techniques to detect the random failures of variable
and invariable memories (see Tables A.5 and A.6 of the IEC 61508-2 [19]). However, these measures and
diagnostic techniques are focused on single core architectures where, as a general rule, a resource cannot be
accesses by more than one component at the same time. Instead, in multi-core architectures, it is common
that a resource (e.g., memory or peripheral) can be accessed by two or more components (e.g., two CPUs) at
the same time, which may lead to the failure of the system.

In our particular case, the ZYNQ-7000 [16] and the P4080 [15] multi-core COTS devices implements a shared
memory as the secondary layer memory for providing communication between their components. For
example, as shown in Figure 17, the ZYNQ 7000 device implements the shared memory for communicating
the cores with the DDR memory, the PL and etc.

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

L2 cache

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

PL - CPU0 PL – CPU2

PL

PS

DDR

SCU

INTERCONNECT

PL – CPU1

Figure 17: Shared memory - Overview (ZYNQ-7000 device).

Solution under consideration:

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 36 of 81

This pattern aims to provide a generic diagnostic technique to detect failures in the shared memories of multi-
core devices. Although the terms used throughout this pattern are exclusive from the ZYNQ device (e.g., SCU
and GIC), they can be replaced by the terms used by any device, provided that they follow similar architecture
design (e.g., SCU (ZYNQ device) – CoreNet (P4080)). In this section, the following two possible solution
approaches to detect, evict and manage the failures of shared memories are defined.

 Limit the use of shared memories

Shared memories are implemented in today’s multi-core COTS devices for provide communication of
the components and improve the performance. However, the use of these memories may lead to
temporal and spatial independence issues. For that purpose, this solution proposes to limit as much
as possible the use of shared memories and in the case that they are implemented to control the
access to them to avoid parallel accesses.

For example, in the ZYNQ-7000 multi-core device, the shared memory can be disabled for avoiding
interferences. Instead, as shown in Figure 18, the shared memory can be replaced by a network-on-
chip (NoC) communication media system for communicating the components of the device and
avoiding interferences caused by the shared memory. NoC networks provide benefits in terms of
spatial and temporal segregation.

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

PL - CPU0 PL – CPU1 PL – CPU2

PL

NoCNoC NoC

PS

SCU

L2 cache

Figure 18: Shared memory diagnostic cross-domain pattern - Solution 1.

 Cyclic redundancy check with comparison

This solution implements a cyclic redundancy check (CRC) based diagnostic with comparison to
detect failures of the shared memory. The application data that is sent through the shared memory is
used to calculate a CRC which is stored in memory (e.g., DDR). In addition, a golden CRC of the data
that is sent is calculated and stored in the memory (e.g., OCM) by each core. This golden CRC is used
to perform the comparison with the CRC value of the data that is sent through the shared memory
and determine if the shared memory is source of failures. The calculation of the CRCs can be realized
at the beginning or at the end of the execution of the tasks. In the case that the CRCs are calculated
at the beginning, a synchronization mechanism may be required to synchronize the calculation and
comparison of the CRCs.

This technique assumes that:

- The cores and the soft-core processors of the multi-core COTS device are checked in advance.

- The programmable logic (PL) and its associated components are checked in advance (e.g.,
BRAM).

- The timers of the device are checked in advance.

- The interrupt controller is checked in advance (e.g., GIC).

- The coherency management unit is correctly configured and checked in advance (e.g., SCU).

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 37 of 81

- The interconnection management unit is checked in advance.

- The memories are checked in advance (e.g., DRAM and OCM).

This solution considers the following two implementation scenarios where the technique proposed in
this section may be implemented to diagnose the shared memory. The first scenario considers that
the multi-core COTS device is provided as it is by the device manufacturer. The term as it is, is
referred that the device provided without modifications that alter its properties (e.g., safety-related).
Instead, the second scenario considers that the COTS device is provided with changes that enable the
integration of a wide set of functionalities with different criticality (e.g., SIL1 to SIL4 according to the
IEC 61508 safety standard). Virtualization solutions such as hypervisors are bespoke solution for that
aim.

o Scenario 1: Non-partitioned system

In this scenario it is assumed that the multi-core COTS device is provided without modifications
(e.g., without partitioned), where each processor executes a single functionality that can be the
same or not. This opens up new considerations (sub-scenarios) where the proposed CRC and
comparison based diagnostic technique can be applied.

 Scenario 1.1: Non-partitioned system with diverse functionality

In this sub-scenario it is considered that the CPUs of the device execute different
functionalities and that the overall solution presented at the beginning of this section is
supported. All the necessary steps for implementing the proposed solution approach are
defined down below. Furthermore, Figure 19 presents the main blocks and the overall
scheme for implementing the proposed solution in this sub-scenario.

Step A) CPU0 and CPU1 execute different functionalities. Before sending data to the
memory, the gold CRC of the data is calculated and stored in the memory. The
gold CRC per each CPU is stored in different memory areas (Mem.1).

Step B) CPU0 and CPU1 write data in the memory (e.g., DDR). Each CPU has its own
memory region (grey and white).

Step C) The data stored in the memory is read each 50ms and it is calculated their CRC
(CRC32). The calculation of the CRCs can be performed at the beginning or at
the end of the task which is executed by each CPU.

Step D) The comparison of the gold CRC and new CRCs is executed. The comparator of
CPU0 reads the CPU0’s gold CRC which is stored in the memory1 and compares
it against the current CRC. If the CRCs matched, the execution continues.
Otherwise, a fault-tolerance technique or a safe-state is executed.

Step E) Once the CRCs are compared and it is checked that the data is not corrupted by
the shared memory, the current CRCs (one CRC per CPU) are stored in the
memory1 as the new gold CRCs.

CPU0 CPU1CRC CRC

ComparatorComparator

Mem.1 Mem.

Shared Memory

Figure 19: Shared memory diagnosis pattern - Solution2 - Scenario 1.1a: Non partitioned-system
with different functionality.

 Scenario 1.2: Non partitioned-system where each processor executes the same

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 38 of 81

functionality

This sub-scenario considers a device where the CPUs execute the same functionality and
where the overall solution which is presented at the beginning of this section is
implemented. In this scenario (see Figure 20), the proposed solution works as follows.

Step A) CPU0 and CPU1 write data to the memory. Each CPU has its own memory
region.

Step B) The data that is stored in the memory is read each 50 ms and the CRCs of the
data are calculated. The calculation of the CRCs can be performed at the
beginning or at the end of the task which is executed by each CPU.

‐ If the execution of the CPUs’ task is synchronous, steps c, d and f shall be
followed.

‐ Otherwise, if the execution of the tasks is asynchronous, synchronization
mechanisms shall be required to synchronize the execution of the tasks and
associated CRC calculations. In that case, once a synchronization mechanism
is implemented, steps e and f shall be followed.

CPU0 CPU1CRC CRC

ComparatorComparator

Mem.1 Mem.

Shared Memory

Figure 20: Shared memory diagnosis pattern - Solution 2 - Scenario 1.2a: Overview.

Step C) The CRCs of read data from the memory are calculated. During the calculating
process, the CRCs can be compared on the fly against the golden CRCs which are
stored in the memory1 (see Figure 21).

Step D) The CRCs of read data from the memory are calculated. During the calculating
process, the CRCs can be compared on the fly against the same golden CRC
which is stored in the memory 1. This is a particular case where it is assumed
that the golden CRCs of each CPU are the same because the functionalities and
data of the CPUs are the same and therefore, the resulting CRCs must be the
same (see Figure 21).

Sync

CPU0 CPU1CRC CRC

ComparatorComparator

Mem.1 Mem.

Shared Memory

Sync

On the fly On the fly

Figure 21: Shared memory diagnosis pattern - Solution 2 - Scenario 1.2b: On the fly comparison.

Step E) The comparison of the CRCs is executed. CPU0 reads the golden CRC that is
stored in the memory1 and it compares it against the current CRC. If the CRCs
matched, the execution continues. Otherwise, a fault-tolerance technique or a

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 39 of 81

safe-state should be executed. The same is applicable for CPU1.

Step F) Once the CRCs are compared and it is checked that the data has not being
corrupted, the current CRCs are stored in the mem.1 as the new golden CRCs.

‐ Scenario 1.3: Non partitioned-system where the functionalities are executed by a CPU and
a soft-core processor

In this third sub-scenario it is assumed that the device is composed of a processing system
(PS) and a programmable logic (PL) where [1:N] soft-core processors are implemented. The
diagnosis coverage provided by this architecture is better than the provided ones by the
other diagnosis scenarios because the PL can be considered as additional independent
hardware, where its failure modes, causes and effects differ from the ones of the PS. This
scenario considers that the functionalities which are implemented on the soft-core
processors may vary from the executed in the PS. Independently of the scenario, the steps
defined in the scenarios 1.1 and 1.2 shall be followed to diagnose the shared memory. The
major differences between these scenarios lie in the execution environments of the tasks
and in the access methods to memories (e.g., OCM and DDR) such as shown Figure 22 and
Figure 23.

CPU0 Soft-Core

CRC CRC

ComparatorComparator

Mem.1 Mem.

Shared Memory

PL

Figure 22: Shared memory diagnosis pattern - Solution 2 - Scenario 1.3a: PS-PL.

Soft-core

PL

Mem.1

Shared Memory

CRC Comparator

CPU0

Mem.

CRC Comparator

Figure 23: Shared memory diagnosis pattern - Solution 2 - Scenario 1.3b: PS-PL (direct access to
memory).

 Scenario 2: Partitioned system

Mixed-criticality systems implements virtualization mechanisms such as hypervisors (e.g.,
XtratuM) for partitioning the systems into different execution environments or partitions where
functionalities with different criticality can be implemented. This second scenario considers the
diagnosis of the shared memory in a realistic environment where the processors (CPUs) of the
device are partitioned, thus enabling the implementation of functionalities with different
criticality. From a safety perspective, the proposed diagnosis scenario can be improved if the
comparison is given between two partitions which are located in different cores (see Figure 28)
or if hardware redundancy is implemented.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 40 of 81

Nevertheless, during this scenario it is assumed that the partitions are scheduled by the
hypervisor, thus providing bounded execution time of the tasks. Partitions can be configured
with different schedules (see Figure 19) and executed by different CPUs.

C0.P0 C0.P0

C1.P0

CPU0

CPU1

t

t

Period (T)

C0.P1

C1.P1 C1.P2

Execution Time

Figure 24: Partition scheduling - Example.

 Scenario 2.1: Partitioned system where all safety-related partitions execute different
functionalities

In sub-scenario 1.1 the overall solution for a device where each CPU executes a different
functionality is presented. That solution can also be applied to partitioned multi-core
devices where functionalities of different criticality level are executed on the same CPU
(see Figure 25). This sub-scenario shall follow the steps stated in the sub-scenario 1.1,
taking into account that instead of having two CPUs, it is only available a single CPU.

SP0 SP1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Mem.

Mem.1

Shared Memory

Figure 25: Shared memory diagnosis pattern - Solution 2 - Scenario 2.1: Partitioned system with
different functionalities.

 Scenario 2.2: Partitioned system where some safety-related partitions execute the same
functionality

In sub-scenario 1.2 the overall solution for a device where two CPUs execute the same
functionally is presented. That solution can also be applied to the partitioned multi-core
device shown in Figure 26. This scenario shall follow the steps stated in sub-scenario 1.2,
taking into account that instead of having two CPUs, we have a single partitioned CPU.

SP0 SP1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Mem.

Mem.1

Shared Memory

Sync

On the flyOn the flySync

Figure 26: Shared memory diagnosis pattern - Solution 2 - Scenario 2.2: Partitioned system with

same functionality.

 Scenario 2.3: Partitioned-system where the partitions are executed on a CPU and a soft-
core processor.

In sub-scenario 1.3 the overall solution for a multi-core COTS device where a CPU and a
soft-core processor execute the same or different functionality is presented. That solution
can be also applied to a partitioned multi-core device such as shown in Figure 27. This
scenario shall follow the steps stated in the sub-scenario 1.2, taking into account that

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 41 of 81

instead of having two CPUs, we have a partitioned CPU and a soft-core processor.

SP0 SP1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Mem.

Mem.1

Shared Memory

Soft-core processor

PL

Figure 27: Shared memory diagnosis pattern - Solution 2 - Scenario 2.3: Partitioned system - PS-PL.

 Scenario 2.4: Additional considerations and scenarios

In the preceding scenarios, several solution approaches for shared memory diagnosis are
presented. In addition, as stated at the beginning of Scenario 2, these diagnosis scenarios
can be improvised in some cases. For example, as presented in
Figure 28, partition redundancy can be implemented to achieve this goal. In this case, the
comparison of the CRCs can carried out in different cores. On the other hand, Figure 29
presents an additional diagnosis scenario where it is implemented a redundant HW
architecture. This scenario provides the comparison of CRCs at partition level and at
system level. The comparison can be realized internally by a SW comparator or externally
by a HW comparator. In the case that a SW based comparator is implemented, a
communication network shall be required to spread of the resulting CRCs through the
entire system. This approach enables to detect whether the shared memory fails due to a
failure of some component of the device or the device itself.

SP0 SP1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Mem.

Mem.1

SP0 SP1

CRC calculation and

Comparator partition

CPU1

CRC calculation and

Comparator partition

Shared Memory

Figure 28: Shared memory diagnosis pattern - Solution 2 - Scenario 2.4a: Additional considerations and
solutions.

SP0 SP1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Mem.

Mem.1

SP0 SP1

CRC calculation and

Comparator partition

CPU1

CRC calculation and

Comparator partition

Shared Memory

SP0 SP1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Mem.

Mem.1

SP0 SP1

CRC calculation and

Comparator partition

CPU1

CRC calculation and

Comparator partition

Shared Memory

Device 0 Device 1

HW comparator / Comm. Netowork / etc.
Figure 29: Shared memory diagnosis pattern - Solution 2 - Scenario 2.4b: Additional considerations and solution.

Board Name: XILINX ZYNQ-7000 zc706

Implementation:

This section presents the implementation of the pattern proposed before for the ZYNQ-7000 ZC706 multi-
core device (See Section 3.1). More specifically, this section includes the implementation of the scenarios

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 42 of 81

described before 1.1 and 1.2. Sub-scenario 1.3 and Scenario 2.x are not implemented, although the proposed
solution is also applicable to them. Therefore, during the implementation of scenarios selected, the PS layer
of the ZYNQ device is used. The PL is not used due to we do not implemented the scenario 1.3. However,
indications to implement this scenario are included during this section.

Implementing scenarios 1.1 and 1.2:

The implementation of these scenarios follows the indications defined in the section before. For this purpose,
we use the OCM and DDR memory of the ZYNQ device. The DDR memory is used for writing and reading the
data of the CPUs. Instead, the OCM memory is used for storing the values of the CRCs which are calculated by
the CPUs. In addition, as shown in

Figure 30, the DDR memory of the ZYNQ device can be accessed by the CPUs through the snoop control unit

and the shared memory or L2 cache, while the OCM memory can be accessed through the SCU without going
through the L2 cache. The snoop control unit is analyzed in pattern PAT- CCMU –XX (see Section 4.2.2).

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 43 of 81

Figure 30: ZYNQ 7000 – Interconnecting the OCM and DDR memory and the CPUs (Source [16]).

This multi-core device is proprietary of Xilinx. Therefore, proprietary software tools such as Vivado and SDK
are used for implementing these two scenarios (see Figure 31). Vivado software is used for defining the
system architecture of the device, whereas the SDK software is used for implementing the application code. In
this case, we use the SDK software for implementing the application code in C for the two CPUs of the ZYNQ
device. The two CPUs implement the same functionality. The main difference is the CPU where the application
is executed.

CPU0 CPU1CRC CRC

ComparatorComparator

OCM DDR

Shared Memory

CPU0 CPU1CRC CRC

ComparatorComparator

OCM DDR

Shared Memory

Figure 31: Implementation of scenarios 1.1 and 1.2 for the ZYNQ-7000 device.

Implementing scenario 1.3:

This scenario is an extension of the scenarios 1.1 and 1.2 that implements the proposed CRC and comparator

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 44 of 81

based solution in both the processing layer and the programmable logic of a multi-core device. In our case,
the PS and the PL layers of the ZYNQ device are used for implementing this scenario. As defined before, the
steps defined in the scenarios 1.1 and 1.2 are followed by this scenario to diagnose the shared memory. The
major differences between these three scenarios lie in the execution environments of the applications and in
the access methods to memories.

Figure 32: ZYNQ 7000 – Interconnecting the OCM and the DDR memory, the CPUs and the PL (Source [16]).

In the case of the ZYNQ device, as shown in

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 45 of 81

Figure 32, the OCM memory can be accessed by the CPUs of the PS through the snoop control unit, while the

DDR memory can be accessed through the snoop control unit and the L2 cache. On the other hand, the PL can
access to the DRR directly through the AXI_HP and the AXI_GP buses or through the shared memory using the
AXI-ACP coherency bus. In the same vein, the OCM memory can be also accessed directly through the AXI_HP
bus or through the snoop control unit using the AXI_ACP bus. Therefore, as defined in section before, this
scenario can be implemented in different ways, depending on the intercommunication buses which are
selected to access to the OCM and the DDR memories.

Results:

The following sequences present the results from the execution of the diagnostic technique Scenario 1.1. The
right column defines the execution sequence followed by CPU0. Instead, the left column defines the sequence
followed by CPU1.

Disable cache on OCM

Disable cache on FSBL

Initialize the SCU Interrupt Distributed (ICD)

CPU0 – writing start address for CPU0

Golden CRC calculated and stored in memory

Disable cache on OCM

Disable cache on FSBL

Initialize the SCU Interrupt Distributed (ICD)

CPU1 – writing start address for CPU1

Golden CRC calculated and stored in memory

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 46 of 81

Write data to DDR

Read from DDR

Comparing...

Successful comparison

Writing new golden CRC to memory

Waiting...

CPU0 – Cycle 1

Disable cache on OCM

Disable cache on FSBL

Initialize the SCU Interrupt Distributed (ICD)

CPU0 – writing start address for CPU0

Golden CRC calculated and stored in memory

Write data to DDR

Read from DDR

Comparing...

Unsuccessful comparison

..........

Write data to DDR

Read from DDR

Comparing...

Successful comparison

Writing new golden CRC to memory

Waiting...

CPU1 – Cycle 1

Disable cache on OCM

Disable cache on FSBL

Initialize the SCU Interrupt Distributed (ICD)

CPU1 – writing start address for CPU1

Golden CRC calculated and stored in memory

Write data to DDR

Read from DDR

Comparing...

Successful comparison

..........

Additional Considerations:

This cross-domain pattern defines a diagnosis technique that it is related to the safety arguments of the
modular safety case for an IEC 61058 compliant generic COTS processor [4].

References:

IEC, "IEC 61508-2 Functional safety of electrical/electronic/programmable electronic safety-related systems -
Part 2: Requirements for electrical/electronic/programmable electronic safety-related systems," ed: IEC, 2010.

 F. Semiconductor, "P4080 Development System User's Guide," Freescale SemiconductorAugust 2010.

XILINX, "ZYNQ-7000 All Programmable SoC: Technical Reference Manual," September 2014.

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for COTS
device," in D5.1.2, ed, 2015.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 47 of 81

4.2.2 Cache Coherency Management Unit Diagnosis Pattern

Pattern ID: PAT – CCMU – 00

Pattern Name: CCMU

Related pattern:
PAT – ICMUD – 00

PAT – SMD – 00

Type: HW/SW

Context:

Cache coherency is the consistency of shared resource data that ends up stored in multiple local caches (e.g.,
L1 cache and L2 cache). For example, it stores the copies of data saved in several caches. When one copy of
data is modified, the other copy shall be changed, otherwise an inconsistency shall arise. Here is where this
cross domain pattern is focused, ensuring that changes of data are propagated through the device and if not,
detecting whether a coherency failure occurs. There are three main coherency mechanisms (Directory based,
Snooping and Snaffling) which are usually used to provide coherency of memories.

Problem:

In today’s mixed-criticality systems based on multi-core devices, the coherency management unit is
implemented for managing, among others, the coherency of the processors, the memory and the
programmable logic (PL). For example, as shown in Figure 33, the ZYNQ 7000 multi-core device implements
the snoop control unit (SCU) which manages the coherency by means of the snooping coherency technique.
In addition, this device considers that the accesses to the memory, the peripherals and etc., which are not
routed through the SCU, are non-coherent accesses. In those cases, it is assumed that the coherency and the
synchronization between the components of the device shall be handled by SW [16].

FPU and NEON Engine

MMU
ARM Cortex A9

CPU A

L1 I-Cache L1 D-Cache

FPU and NEON Engine

MMU
ARM Cortex A9

CPU B

L1 I-Cache L1 D-Cache

General

Interrupt

Controller
Cache to Cache

Transfer
ACP

S0

Global Timer
Tag

Conbtrol

Private Timer &

WDT

S1

Private Timer &

WDT

Snoop Filtering

M1M0

Snoop Control Unit

S

To/from PL

To/from L2 Cache

Cache Coherent

Transactions

To/from OCM

Cache Coherent

Transactions

Figure 33: ZYNQ device - Coherency block-diagram (Source [16]).

The bus sniffing or bus snooping technique assumes that each processor of the device has its own cache (e.g.,
L1 cache) and that a shared main memory is available (e.g., L2 cache). These cache memory architectures
usually lead to coherency inconsistency issues that may arise with inconsistent data (a common case in multi-
core architectures). For example, Core A of Figure 33 has a copy of a memory block from a previous read and
Core B changes the memory block. Consequently, in the case that the coherency management unit fails, the
data of Core A is not updated, leading to the inconsistency of data, which can cause the failure of the mixed-
criticality system. Therefore, although multi-core devices implement coherency management mechanisms,
coherency related failures may arise due to the failures analysed in the next section.

Solution under consideration:

This cross-domain pattern aims to provide a generic diagnosis technique that enabled the detection and
control of the coherency-related faults. This cross-domain pattern assumes that:

- The cores of the device are checked in advance.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 48 of 81

- The L1 and the L2 cache memory and the OCM memory are checked in advance.

- The interconnection management unit is checked in advance.

- The PL and its associated components (e.g., BRAM) are checked in advance.

- The timers of the device are checked in advance.

- The interrupt controller (e.g., GIC) is checked in advance.

This cross-domain pattern proposes the following three possible approaches where the coherency
management unit is analyzed from safety perspective.

 Check the configuration of the coherency management unit

The configuration of the coherency management unit shall be chosen in a reasonable manner for
providing minimum possible interferences between the resources (components) that are connected
to the coherency management unit. Wrong or incorrect configuration of the coherency management
unit may lead to the loss of coherency and the resultant failure of the system. Therefore, in this first
solution the periodic checking of the coherency management unit’s configuration is proposed,
comparing it with the expected configuration or the last valid configuration set. In addition, this
solution assumes that the chosen configuration shall be free of systematic faults, ensuring that it is
protected against unexpected configuration changes. The configuration-related failure modes are
defined in the FMEA and FMECA analyses defined in the deliverable D5.1.2 “A modular safety case
for COTS device” [4].

 Failures caused by unexpected behaviour of coherency management unit (Random faults)

 Software has the ability to manage the memory regions which are shared among certain sets of
coherent masters. In addition, it ensures that the shareability mappings between the types of
masters are consistent to avoid unexpected behaviours or inconsistencies. For instance, protection
mechanisms such as the Memory Management Unit (MMU) can be used to control the memory,
manage permissions to blocks of the memory and translate the virtual addresses to physical
addresses. Furthermore, this solution considers the following measures and diagnostic techniques to
detect and control the faults of the coherency management unit such as the wrong addressing,
partial update or single bit errors faults.

o A watchdog timer (WDT) can be implemented to detect message order violations in a fixed
communication network.

o A sequence number can be used to detect the correct reception of messages, where if a
message is not received it is considered that a fault occurs.

o CRC with comparison (see cross-domain pattern PAT-SM-00), ECC and/or parity bit
diagnostic technique can be implemented to detect data consistency violations, including
partial update or single bit error failures.

These faults and diagnostic techniques are defined in the FMEA analysis included in the deliverable
D5.1.2 “A modular safety case for COTS device” [4].

 Failures caused by external influences (Systematic faults)

The coherency management can be affected by systematic faults which can be caused by HW design,
environmental stress or influences or operational failures. This solution considers the
implementation of the measures and diagnostic techniques recommended in tables A.15 to A.17 of
IEC 61508-2 for detecting and controlling the systematic faults of the coherency management unit.
Furthermore, it is assumed that the selection of measures and diagnostic techniques depends on the
HW platform or the SW that is supported by the system architecture. Therefore, the selection of
measures and diagnostic techniques for this purpose may vary. Systematic faults of the coherency
management unit are analyses in DREAMS deliverable D5.1.2 “A modular safety case for COTS
processor” [4] by means of a FMECA analysis.

In addition, the following measures for fault avoidance and fault control in systems using cache coherency

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 49 of 81

may be included:

 Fault avoidance:

- Limit shared memory usage to an absolute minimum required for operation

- Limit the use of multiple threads and tasks for one safety function to a minimum required

- Make sure that per potential cache line there is only one task/process allowed to write and all
other may only read (only 1:N communication allowed). The assignment should be defined
statically.

 Fault control:

- Implement communication protocol with additional messaging between sender and receiver of
the information. For example:

o Order violation detection: Flags to indicate whether the information is updated and
received.

o Data consistency violations: Extra coding information (e.g., CRC/ECC or Parity Information)
in the same memory block as the updated information is stored. The flags must be
updated as last write action to the shared memory.

o It is safe to assume that a HW implemented ECC/Parity on caches may have bugs (e.g.,
ARM: 751475—Parity error may not be reported on full cache line access (eviction /
coherent data transfer / cp15 clean operations).

- Implement data structures that match the cache architecture (e.g., maximum size of one cache
line for optimal performance) and allow additional diagnostics:

- Cache memory ECC and scrubbing, if applicable.

- Implement timing expectations and error detection for the shared memory communication.

- Implement other typical communication error related measures (e.g., sequence number,
addressing (could be done by different CRC codes), coding and/or timing expectation).

- Automatic invalidation of cache lines after a defined period of time to ensure that caches are
flushed periodically.

Board Name: XILINX ZYNQ-7000 zc706

Implementation:

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 50 of 81

This section defines the implementation of the solutions defined before for detecting failures of the
coherency management unit. For that purpose, during this section the ZYNQ 7000 zc706 device is used as the
reference multi-core COTS device. This device implements the coherency between its components through
the snoop control unit (SCU). SCU implements the snooping coherency protocol for that purpose. In addition,

as shown in Figure 34, the SCU unit is the core for accessing any component through the ARM Cortex A9 core

and to access the shared memory or L2 cache from the PL using the AXI_ACP coherency bus.

Figure 34: ZYNQ 7000 - SCU Interconnect (Source [16]).

In the following paragraphs it is defined the implementation in the ZYNQ device of the solutions
defined before.

 Diagnostic of configuration errors

The coherency management unit of a multi-core COTS device shall be safely configured. This mean
that the configuration registers of the coherency management unit shall be actively diagnosed to
detect configuration errors. Table 2 shows the registers associated to the coherency management
unit of the ZYNQ device. These registers are periodically checked and compared against the values
expected to detect whether the configuration values change. For that purpose, we implement a
diagnostic application that reads the registers related to the coherency management unit and that
compare them against expected values (pre-defined values at design time). If the configuration
registers match, the device continues working, otherwise a fault is asserted and the device goes to
safe-state.

Control register bit assignment

Bit Name Description

[2] SCU RAMs Parity 1 = Parity on.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 51 of 81

Enable 0 = Parity off.

This bit is always zero.

Configuration register bit assignment

Bit Name Description

bit [7:4] CPUs SMP

Defines the Cortex A9 processors that are in SMP or AMP

0: in AMP mode not taking part in coherency or not present

1: in SMP mode taking part in coherency

bit [7]: CPU3

bit [6]: CPU2

bit [5]: CPU1

bit [4]: CPU0

SCU CPU Power Status Register bit assignment

Bit Name Description

bit[25:24] CPU status

Power Status of the Cortex A-9 processor

b00: Normal mode.

b01: Reserved

b10: the Cortex A9 process is about to enter (or is in) dormant
mode. No coherency request is sent to the Cortex A9 processor

b11: the Cortex A9 process is about to enter (or is in) powered-off
mode, or is non-present. No coherency request is sent to the
Cortex A9 processor

AXI USER attributes encodings

Bit Name Description

bit[0] ARUSERMx

 Shared bit

1 Coherent request

0 Non-coherent request

bit[0] AWUSERMx

 Shared bit

1 Coherent request

0 Non-coherent request

Table 2: SCU registers – Coherency (Source [42]).

As defined before, the coherency management unit or SCU is accessible from the PL through the ACP
AXI bus. AXI_ACP is a full AMBA 3 AXI slave coherency interface bus, with the exception of the
following transfers which are not supported:

 Coherent exclusive read and write transfers

 Coherent locked read and write transfers

 Optimized coherent read and write transfers when byte strobes are not all set.

In deliverable DREAMS D5.1.2 “A modular safety case for COTS processor” [4], the random and
systematic failures of the coherency management unit are analysed by means of a FMEA and a
FMECA.

 Diagnostic of random faults

The failures of the coherency management unit are diagnosed by means of the following measures
and diagnostic techniques:

 CRC with comparison:

This technique is defined and implemented in pattern below (PAT-SM-XX).

 Error Correcting Code (ECC):

The ZYNQ 7000 device supports ECC technique in half-bus width (16bit) data width
configuration. ECC provides single error correction and dual error detection. When ECC is
enabled, a write operation computes and stores an ECC code along with the data, and a read
operation reads and checks the data against the stored ECC code. It is therefore possible to
receive ECC errors when reading uninitialized memory locations. To avoid this problem, all
memory locations must be written before being read.

On the other hand, the errors detected by ECC based diagnosis can be classified into correctable

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 52 of 81

and uncorrectable errors. For correctable ECC errors, there is no error actively signalled via an
interrupt or AXI response. Instead, for uncorrectable ECC errors, the controller returns a signal
response back to the re-questing AXI bus master. In both cases, information regarding the error
(such as column, row and bank error address, error byte lane, etc.) is logged in the controller
register space. In the case that the controller detects a correctable ECC error

When the controller detects a correctable ECC error, it automatically corrects the error and
sends the correct data to the bus master. Instead, when the controller (e.g., DDRC) detects an
uncorrectable ECC error, it returns a signal response to the bus master with the uncorrectable
data. In that point, if the L2 cache or shared memory is disabled, the signal response is directly
received by the CPU, causing data abort. Otherwise, if the shared memory is enabled, the ECC
error is reported to the CPU by means of an interrupt caused by the shared memory.

The ECC based diagnostic technique which is implemented in this section implements the
following order of execution:

a) Disable the cache

b) Read ECC registers

c) Initialize data on DDR memory

d) Disable the ECC

e) Depending on the errors which are required to be detected, this pattern injects
uncorrectable or correctable errors on the DDR.

f) Enable the ECC

g) Read ECC resisters

h) If the cache memory shall be implemented, enable the cache, set up an interrupt for
reporting the ECC errors to the CPU and read data from DDR.

i) If uncorrectable ECC errors are detected, an interrupt is generated by the cache memory
to report the ECC errors to the CPU.

j) Otherwise, the ECC error is directly transmitted to the CPU.

This solution considers the following four scenarios that depend on the ECC error detection
requirements (e.g., detection of correctable or uncorrectable errors) and the availability of the
shared cache memory.

- Correctable error detection with shared memory enable

- Correctable error detection with shared memory disable

- Uncorrectable error detection with shared memory enable

- Uncorrectable error detection with shared memory disable

 Parity bit:

In the case of the ZYNQ device this technique is supported by almost all memories implemented
by the multi-core device.

- DDR memory:

The DDR memory controller of the ZYNQ device supports parity detection. It can be
enabled or disabled through the configuration of the registers of the DDR controller
(Register ddrc ECC_scrub [4:0] with relative resolution address 0x000000F4 and absolute
address 0xF80060F4, bit [2:0] in “010”.

- L1 and L2 caches: The parity bit of the L2 cache can be enabled by configuring the registers
of the shared memory. By default the parity bit of the L2 cache is disabled. In our case, we
implement a testing environment to detect parity bit error of the L2 cache. For that
purpose it is defined a testing scenario where a parity bit error is generated, providing a

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 53 of 81

data abort exception and an interrupt. This software implements the following steps:

a) Disable L2 cache

b) Disable the parity

c) Enable L2 cache

d) Write data

e) Disable L2 cache

f) Enable parity

g) Enable L2 cache

h) Read data

- SCU controller register:

See Table 2.

- OCM memory:

OCM memory supports both single and multiple bit parity bit errors. In the event that a
parity error is detected, an interrupt is asserted and the parity bit error of the OCM
memory is returned or provided.

a) Disable D cache of L1 and L2 cache memories.

b) Disable I cache of L1 and L2 cache memories.

c) Configure the OCM_PARITY_CTRL register to enable the AXI read and the use of
interrupts for reporting the parity error to the CPU.

d) Write data to OCM to generate a parity error

e) Read data from OCM.

 Diagnostic of systematic faults

In this section we assume that the other components of the ZYNQ device have been diagnosed in
advance to detect and control systematic faults.

 Fault avoidance

During the implementation of this pattern it is indented to minimize the use of the shared memory
to an absolute minimum required for operation. For that purpose, during the diagnosis of the cache
coherency unit the shared memory of the ZYNQ device has been disabled.

 Fault control:

On the other hand, in order to control faults that can occur in the cache coherency unit, several
measures and diagnostic techniques such as the ECC, Parity and CRC with comparison have been
implemented, thus detecting and controlling data consistency violations.

Although the terms used throughout this pattern are exclusive from the ZYNQ device (e.g., SCU and GIC), they
may be replaced by the terms used by any device, provided that they follow similar architecture (e.g., SCU
(ZYNQ device) – CoreNet (P4080)).

Results:

This cross-domain diagnostic pattern implements a set of measures and diagnostic techniques to detect faults
related to the coherency management unit. The execution of these measures and diagnostic techniques
result on the following results which evidence the implementation and applicability of the proposed solutions.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 54 of 81

 Diagnostic of configuration errors

As defined before, this diagnostic solution read the configuration registers of the coherency
management unit and compares them against expected register values (by default values). If the
registers match, this diagnostic is executed each 50ms. Otherwise an exception is triggered and the
system goes to a safe-state.

Checking configuration errors

Reading registers of SCU Controller....

10001000001101111000000001011010

Checking if read values match with the expected configuration values

Successful Comparison

Summary of SCU controller’s registers:

SMP mode activated for CPU0

AMP mode activated for CPU1
AMP mode activated for CPU2

AMP mode activated for CPU3

Reading registers of the SCU CPU power status....

00000000000000001101001000011101

Checking if read values match with the expected configuration values

Unsatisfactory Comparison

Restarting...

 Diagnostic of random faults

 CRC with comparison

See PAT-SM-00.

 Parity Bit

The parity bit error diagnostic technique is implemented and executed to check parity bit error
in the OCM and L2 cache memories. As shown below, this pattern’s execution results on the
following execution sequence where an error is inserted for checking the application.

OCM parity error Test

An exception processed

IRQ No.35 OCM interrupt processed

OCM parity error test is run successfully run

In the same vein, the parity bit error for L2 cache results in the following execution sequence.

L2 cache parity error Test

An exception processed

IRQ No.34 L2 cache interrupt processed

L2 cache parity error test is run successfully run

 ECC

The sequence that is defined below presents the result from the execution of the ECC
diagnostic technique.

Disable L1 and L2 Cache

Read ECC registers

DDRC.CHE_CORR_ECC_LOG_REG_OFFSET:00000000 (No Correctable Error)

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 55 of 81

DDRC.CHE_UNCORR_ECC_LOG_REG_OFFSET:00000000 (No Uncorrectable Error)

DDRC.CHE_ECC_STATS_REG_OFFSET:00000000 (0 Correctable Error(s), 0 Uncorrectable Error(s))

Initialize Data on DDR3

00100000: 00000000

00100004: 00000000

00100008: 00000000

0010000C: 00000000

00100010: 00000000

00100014: 00000000

00100018: 00000000

0010001C: 00000000

Disable ECC

ADDR: 0x000000F4 W: 0x04

Insert Correctable Errors (1bit error) on DDR3

00100000: 00000001

00100004: 00000000

00100008: 00000000

0010000C: 00000000

00100010: 00000000

00100014: 00000000

00100018: 00000000

0010001C: 00000000

Enable ECC

ADDR: 0x000000F4 W:0x04, ADDR:0x000000C4 W:0x03, W:0x00

Read ECC registers

DDRC.CHE_CORR_ECC_LOG_REG_OFFSET:00000000 (No Correctable Error)

DDRC.CHE_UNCORR_ECC_LOG_REG_OFFSET:00000000 (No Uncorrectable Error)

DDRC.CHE_ECC_STATS_REG_OFFSET:00000000 (0 Correctable Error(s), 0 Uncorrectable Error(s))

Enable Cache

Enable D-Cache (L1 & L2)

Enable I-Cache (L1 & L2)

Set Up Interrupt

Read Data from DDR3 again

00100000: 00000000

Read ECC registers

DDRC.CHE_CORR_ECC_LOG_REG_OFFSET:00000007 (Correctable Error Detected)

DDRC.CHE_CORR_ECC_ADDR_REG_OFFSET:00040000 (Correctable Error: Bank=0x0, Row=0x40,

Column=0x0)

DDRC.CHE_UNCORR_ECC_LOG_REG_OFFSET:00000000 (No Uncorrectable Error)

DDRC.CHE_ECC_STATS_REG_OFFSET:00000100 (1 Correctable Error(s), 0 Uncorrectable Error(s))

Additional Considerations:

This cross-domain pattern defines a diagnosis technique that it is related to the safety arguments of the
modular safety case for an IEC 61058 compliant generic COTS processor [4].

References:

 F. Semiconductor, "P4080 Development System User's Guide," Freescale SemiconductorAugust 2010.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 56 of 81

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for COTS
device," in D5.1.2, ed, 2015.

4.2.3 Inter-Connection Management Unit Diagnosis Pattern

Pattern ID: PAT – ICMUD – 00

Pattern Name: ICMUD

Related pattern: N/A

Type: HW/SW

Context:

Multi-core processor architectures implement interconnection management units for managing the
transactions between their components. These units are prone to failures and uncertainties related to their
expected behaviour (e.g., lack of information). In the event that the interconnection management unit fails,
the interconnections, the arbitrations and the communications among the subsystems and elements of the
device will fail, leading to a general failure of the system.

Problem:

COTS multi-core devices include a wide variety of components which usually require for communicating. For
that purpose interconnection buses are usually implemented. The interconnection buses switch the traffic
through different components of the device. For example, the ZYNQ 7000 device implements an
interconnection manager that is composed of a set of interconnect blocks or switches that manages, among
others, the communication among the cores, the memories, the peripherals and the PL. Figure 35 shows the
block-diagram of the interconnections inside the ZYNQ device.

SCU

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

L2 cacheOCM

Processing

System Master

Processing

System Slave

I/
O

 P
e

ri
p

h
e

ra
ls

NAN, NOR/

SRAM, QSPI

Controllers

IOP Slave

IOP Master
Central

Interconnect

DMA

Memory

Interconnect

DDR

Controller AXI_HP ACP

M_AXI_GP

S_AXI_GP

PL

PL

Figure 35: ZYNQ device - Interconnect.

The interconnect blocks or switches which are implemented by the ZYNQ device are the following:

- Interconnect master (ACP, AXI_HP, AXI_GP, DMA, IOP, etc.).

- Snoop Control Unit (SCU).

- Central interconnect – is the core of the interconnect switches.

- Master interconnect – switches the low and medium speed traffic from the central interconnect to

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 57 of 81

M_AXI_GP ports, IOP and etc.

- Slave interconnect – switches the low and medium speed traffic from S_AXI_GP ports to the central
interconnect.

- Memory interconnect – switches high speed traffic from the AXI_HP ports to DDR DRAM and on-chip
RAM (OCM) through another interconnect.

- OCM interconnect – switches high speed traffic from the central interconnect and the memory
interconnect.

The communication between the components of the ZYNQ device such as the CortexA9 processors, the
peripherals (IOP), the memory and the PL is carried out through bus switches. In the event that a switch or
interconnection block fails, the communication might fail, which may lead to an unexpected behaviour of the
device. For example, imagine that the CortexA9 processors (PS) require communicating with the soft-core
processor of the PL. In that event, as shown in Figure 36, the PL could be accessed by the PS through AXI_HP
ports and/or AXI_GP ports, going through several interconnect blocks such as the central interconnect, OCM,
SCU, memory interconnect, IOP and others. Therefore, in the case that the interconnect unit fails or an
unexpected fault is provided in this unit, the communication of the system may fail or may influence on the
safety-related behavior of the system. In addition, there are also common the interferences between the
traffic from the CPUs (through L2 cache), the DMA and IOP masters and the traffic from the PL.

SCU

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

FPU and NEON Engine

MMU
ARM Cortex A9

CPU

L1 I-Cache L1 D-Cache

L2 cacheOCM

Processing

System Master

Processing

System Slave

I/
O

 P
e

ri
p

h
e

ra
ls

65

NAN, NOR/

SRAM, QSPI

Controllers

IOP Slave

IOP Master
Central

Interconnect

DMA

Memory

Interconnect

DDR

Controller AXI_HP ACP

M_AXI_GP

S_AXI_GP

PL

PL

Figure 36: Interconnect - Example.

Solution under consideration:

The interconnection scheme of each COTS device is unique. For instance, the P4080 and ZYNQ 7000 devices
implement different interconnection management units. This cross-domain pattern aims to define a generic
solution or set of solutions for measuring and detecting the faults of interconnection management units of
multi-core devices. This cross-domain pattern assumes that:

- The cores of the device are checked in advance.

- The L1 and L2 cache memories and the OCM memory are checked in advance.

- The PL and associated components (memories, etc.) are checked in advance.

- The timers of the device are checked in advance.

- The interrupt controller is checked in advance.

The proposed solution considers the following three solution approaches for testing the interconnection
management unit.

 Check the configuration of the interconnect management unit

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 58 of 81

The interconnect management unit shall be configured in a reasonable manner to provide minimum
possible interferences. The components or blocks that compose the interconnect manager are
configured by means of registers. The configuration of their registers will be used to manage their
behaviour, thus leading in an erroneous or partial behavior. Therefore, in order to detect whether the
configuration of the interconnection management unit changes, this solution proposes the
implementation of periodic readback check with comparison of the interconnect manager’s
configuration registers.

 Failures caused by unexpected behaviour of the interconnection management unit (Random
Failures)

In the case that a maximum latency is required by the implemented system, the quality of service
(QoS) modules can be used to ensure expected throughput and latency in the system design. The
modules regulate the masters that do not guarantee maximum latency (e.g., CPU, DMA and IOP). In
addition they can be used to resolve issues related to contention by means of two-level arbitration
abstraction scheme. The first scheme is based on priority indicated by the QoS register. The highest
QoS value has the highest priority. The second scheme is based on a least recently granted scheme
and is used when multiple request are pending with the same QoS signal value.

In addition, the interconnect manager shall provide the following set of measures and diagnostic
techniques to detect random faults. Among other, this unit shall consider measures and diagnostic
techniques for typical faults such as wrong addressing or wrong data forwarding, including partial
transmissions or single bit error. For that purpose, this solution considers the following measures and
diagnostic techniques:

o A watchdog timer (WDT) can be implemented to detect temporal deviations.

o CRC with comparison (see cross-domain pattern PAT-SM-00), ECC and/or parity bit diagnostic
technique can be implemented to detect data consistency violations, including partial update
or single bit error failures.

These faults and diagnostic techniques are defined in the FMEA analysis included in the deliverable
D5.1.2 “A modular safety case for COTS device” [4].

 Failures caused by external influences (Systematic Failures)

The interconnect manager can be affected by systematic faults which can be caused by the HW
design, environmental stress or influences or operational failures. This solution considers the
implementation of the measures and diagnostic techniques recommended in tables A.15 to A.17 of
IEC 61508-2 for detecting and controlling the systematic faults of the interconnection management
unit. Furthermore, it is assumed that the selection of measures and diagnostic techniques depends on
the HW platform or the SW that is supported by the system architecture. Therefore, the selection of
measures and diagnostic techniques for this purpose may vary. On the other hand, the possibility of
systematic errors in the configuration of the interconnection management unit shall be addressed by
these techniques. Table 24 of DREAMS deliverable D5.1.2 [4] analyses the possible systematic failures
in the configuration process by means of an FMCA analysis. In addition, Chapter 4.2.11.2.2 (Tables 41
and 43) of DREAMS deliverable D5.1.2 “A modular safety case for COTS processor” [4] analyses the
systematic faults of the coherency management unit by means of FMECA analyses.

Board Name: XILINX ZYNQ-7000 zc706

Implementation:

N/A

Results:

N/A

Additional Considerations:

This cross-domain pattern defines a diagnosis technique that it is related to the safety arguments of the

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 59 of 81

modular safety case for an IEC 61058 compliant generic COTS processor [4].

References:

 F. Semiconductor, "P4080 Development System User's Guide," Freescale SemiconductorAugust 2010.

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for COTS
device," in D5.1.2, ed, 2015.

4.2.4 Interrupt Controller Diagnosis Pattern

Pattern ID: PAT – ICD – 00

Pattern Name: ICD

Related pattern: N/A

Type: HW/SW

Context:

The interrupt controller is an integral part of today’s multi-core COTS devices that is implemented to manage
the events of the device. An interrupt is a signal that causes the stop of the ongoing task and figures what to
do next. For example, in operating systems the use of interrupt handlers is usual procedure to prioritize the
interrupts.

Problem:

The interrupt controllers manage the execution of the tasks of the cores of multi-core devices. Therefore, at
the event that the interrupt controller fails or that the request for an interrupt or the assignment of an
interrupts fails, the execution of the processor’s shall be affected. In addition, in multi-core mixed-criticality
systems where applications with different criticality level are integrated into the same device, the interrupt
controller shall guarantee and manage the execution of the functionalities with different criticality level. For
that purpose, the interrupt controller shall manage interrupts with different criticality level. In Table A.1 of IEC
61508-2 [19] there are defined the requirements for faults that shall be detected and measured in order to
guarantee the safety of the interrupt handling. However, this standard is focused by single-core architectures
where a resource cannot be shared between more than one component, and therefore, the measures and
diagnostic techniques recommended by this standard are not at all applicable to interrupt controllers which
are shared or used for managing the execution of functionalities with different criticality.

Solution under consideration:

The interrupt controller or interrupt manager is commonly used unit for controlling the execution of tasks in
multi-core device. These units can be differently called and can be composed of different functionalities,
depending on the multi-core device. For example, the interrupt controller of the ZYNQ 7000 device
implements an interrupt controller called “Generic Interrupt Controller (GIC)” for managing the execution of
the processors’ tasks. In this section it is assumed that:

- The cores of the device are checked in advance.

- The L1 and L2 cache memories and the OCM memory are checked in advance.

- The PL and associated components (memories, etc.) are checked in advance.

- The timers of the device are checked in advance.

- The interconnection management unit is checked in advance.

- The coherency management unit is correctly configured and checked in advance.

The proposed solution in this section considers the following three solution approaches for testing the

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 60 of 81

interrupt controller.

 Check the configuration of the interrupt controller unit

In Section 3.1.4 the architecture overview of an interrupt controller is presented, where it composes
of a distributor and one or more CPU interfaces. These components can be configured independently
by means of registers. The configuration registers of these components which are listed in document
“ARM Generic Interrupt Controller – Architecture Specification” [37], shall be periodically checked to
detect whether the configuration of the interrupt controller is modified. Therefore, this solution
defines a periodic checking of the configuration registers of the interrupt controller, which are
analyzed by means of a FMEA analysis in DREAMS D5.1.2 deliverable [43].

 Failures caused by unexpected behaviour of the interrupt controller (Random failures)

The interrupt controller component can be the subject of unexpected internal failures which can be
caused by direct-current (DC) faults, drift and oscillations and reset-related faults. In Table A.1 of IEC
61508-2 techniques and measures for diagnostics and recommended maximum levels of diagnostic
coverage for an interrupt controller are defined.

 Failures caused by external influences (Systematic failures)

Tables A.15 to A.17 of IEC 61508-2 [19] recommend techniques and measures for controlling
systematic failures, including techniques and measures to control systematic failures caused by HW
design, environmental stress or influences or operational failures. These techniques shall be
implemented to detect systematic faults that can occur in the GIC. For example, the possibility of
systematic errors in the configuration of the interconnection management unit shall be addressed by
means of these techniques. Table 24 of DREAMS deliverable D5.1.2 [4] analyses the possible
systematic failures in the configuration process by means of an FMCA analysis. In addition, in
Chapter 4.2.11.2.4 (Table 46) of DREAMS deliverable D5.1.2 [4] the systematic failures of the
interrupt controller are analyzed by means of FMECAs.

Board Name: N/A

Implementation:

N/A

Results:

N/A

Additional Considerations:

This cross-domain pattern defines a diagnosis technique that it is related to the safety arguments of the
modular safety case for an IEC 61058 compliant generic COTS processor [4].

References:

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for COTS
device," in D5.1.2, ed, 2015.

IEC, "IEC 61508-2 Functional safety of electrical/electronic/programmable electronic safety-related systems -
Part 2: Requirements for electrical/electronic/programmable electronic safety-related systems," ed: IEC,
2010.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 61 of 81

4.3 Mixed-criticality Network

4.3.1 NoC Pattern

Pattern ID: PAT –PNoC – 00

Pattern Name: PNoC

Related pattern: N/A

Type: SW

Context:

Mixed-criticality networks supports communication between the subsystems and elements of the systems. In
domains such as avionics, railway, automotive, industrial control and medical systems, where functions of
different criticality are integrated on a single embedded distributed computing platform, mixed-criticality
networks are used for communication purposes. Protection mechanisms are a prerequisite for the integration
of subsystems and elements with different criticality, thus avoiding interferences in spatial and the temporal
domains. Furthermore, the communication among subsystems, elements and functionalities with different
criticality level usually leads to issues related to interferences. For instance, a non-safety communication may
cause interferences on safety-related communication.

Problem:

A mixed-criticality system can integrate functionalities with different criticality levels which may require
communicating. Furthermore, the integration of functionalities with different criticality level can lead to issue
interferences in general. For example, a non-safety subsystem can lead to a failure in a safety related
subsystem.

Different NoCs are suitable for safety-critical applications, providing support of TT, RC or BE traffic. The shift
towards the use of NoC communication subsystems for mixed-criticality systems leads to recurrent challenges
related to supporting of multiple types of communication as well as supporting applications with different
criticality level. For instance, TTNoC networks do not support the transmission of event-triggered messages,
whereas AEtheral NoC does not support the transmission of RC messages.

Solution under consideration:

This pattern aims to manage the prioritization of different criticality subsystem communication that performs
scheduling, routing, traffic shaping and error detection. Figure 37 shows the integration of this pattern on a
multi-core device, where it is located on top of a NoC.

P
a

rt
it
io

n
 1

S
a

fe
ty

P
a

rt
it
io

n
 2

N
o

n
-S

a
fe

ty

P
a

rt
it
io

n
 3

N
o

n
-S

a
fe

ty

Hypervisor

Processor

Core 0

Processor

Core 1

Local On-Chip

Memory

PNoC

Network Interface

Figure 37: PNoC integration in a partitioned mixed-critical device. (Source [44])

In accordance with the IEC 61508 safety standard, this pattern can be taken as a SCL network which is
implemented on top of a black channel network. Therefore, it is assumed that parts of the communication
channel (NoC) cannot be designed, implemented and validated according to a safety standard. Instead, the
PNoC (SCL) shall be compliant to a safety standard (e.g., IEC 61508 and IEC 61784-3). It must fulfil the safety

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 62 of 81

requirements which are defined in the MSC for an IEC 61508 (IEC 61784-3) compliant generic mixed-criticality
network [5].

The priority based NoC pattern shall provide the following requirements in order to schedule, route, shape
traffic and detect errors:

I) Multiple traffic types: TT and ET (BE and RC) traffic types shall be supported by this pattern.

- Periodic transmission of TT messages offers predictable timing with minimal latency and no jitter.

- BE messages do not have timing restrictions and fulfil requirements of non-safety applications.

- RC messages offer a reasonable trade-off between resource reservation and latency.

II) Compatibility to a wide range of NoCs: This pattern shall be integrable on a wide range of NoCs, enabling
the system to support TT and ET communications, despite only event triggered (ET) transmission are
supported by the underlying network.

III) Support of hard-real time applications: This pattern shall ensure that messages of the system meet the
pre-specified deadlines in all situations defined in [45]. For this purpose, this pattern shall provide a
scheduler that enables to achieve deterministic communication.

IV) Support of mixed-criticality system: The communication of applications with different criticality level that
interact and coexist on a shared computing platform requires protection mechanisms that establish
chip-wide segregation. The use of partitioning mechanisms such as hypervisors is not enough because
non-safety partitions can influence to safety-related ones. Therefore, this approach shall provide rigid
temporal and spatial partitioning by establishing a chip-wide partitioning.

In addition, a set of diagnosis techniques in compliance with IEC 61508-2 and IEC 61784-3 shall be provided
in order to assure that all safety-related failures are detected and controlled. The safety-related
requirements and diagnosis for a mixed-criticality network are defined in DREAMS D5.1.3 deliverable “A
modular safety case for an IEC 61508 compliant generic mixed-criticality network” [5].

Board Name: XILINX ZYNQ-7000 zc706

Implementation:

This pattern is implemented as additional HW layer on a networked and partitioned mixed-criticality multi-
core device. The multi-core device is partitioned by means of XtratuM hypervisor [10], though other
hypervisors can be used for the same purpose (e.g., PikeOS or Wind-River Hypervisor). The partitions
generated by XtratuM (e.g., safety and non-safety) are integrated among the cores of the device. As stated in

Section 3, the HW architecture used during this deliverable is based on a harmonized platform composed of a

processing system (PS) and a programmable logic (PL). The PS is composed of two ARM Cortex A9 processors;
instead the PL can be composed of a single or multiple soft-core processors. In addition, as stated in Section
4.2.1, the communication among partitions may be carried out through a shared memory, although in order
to evict issues related to those memories (e.g., interferences), the STNoC is implemented. Figure 38 shows
the implementation of the PNoC on the partitioned multi-core ZYNQ device.

Processing System (PS)

Safety Partition

ARM Cortex A9 CPU 0

Soft-Core Processor 1

Supervision
SupervisionNon-Safety

Partition

Safety Partition

Soft-Core Processor 0

Programmable Logic (PL)

Non-Safety

Partition

ARM Cortex A9 CPU 1

Non-Safety

Partition

L1Cache
L1Cache

STNoC

BRAM BRAM

PAT-PNoC-00PAT-PNoC-00

PAT-PNoC-00PAT-PNoC-00

ZYNQ device

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 63 of 81

Figure 38: PNoC implementation on the ZYNQ device.

The PNoC which is implemented in the ZYNQ device makes use of AXI interfaces to communicate with the
cores of the PL and the PL. In addition, it contains several clock domains which are used for the AXI
transactions, to operate in different clock domains and synchronize the communication activities. Figure 39
shows the main building blocks of this pattern that are required to provide the requirements stated in
previous section ‘Proposed solution’.

Core

Interface

Egress Bridging Unit

Reconfiguration and

Monitoring Interface

Ingress Bridging Unit

A
X

I_
S

A
X

I_
M

A
X

I_
S

Figure 39: Block diagram of PAT-PNoC-00. (Source [46])

 Core Interface:

The primary purpose of the core interface is to provide buffers for storing the messages in both
directions using I/O ports. Ports are self-contained I/O units which include on-chip memory (e.g. BRAM
in the FPGA-based implementation) for storing the messages, registers for the configuration and status
values, and a control unit for the operation of the port.

Moreover, the core interface plays an important role for managing the ET messages to be injected to
the NoC, in order to simplify operation of the egress bridging unit. It contains priority queues and the
configuration parameters which are useful to map the ports to the queues. For instance, one an RC or
BE port signals the arrival of a new message, this unit reserves memory for the core within the
respective priority queue. Thereafter, when an ET message is allowed to interleave between TT
messages, the core interface checks the queues and triggers a dequeued signal of the port belonging
to the highest priority. In this way the core interface guarantees the lowest delay for the ET messages
of higher priority.

 Egress Bridging Unit (EBU):

The egress bridging unit assures the timely injection of TT messages into the NoC and facilitates
interleaving of ET messages between TT messages. The EBU is composed of a TT scheduler and an ET
interleaver. The TT scheduler controls the injection of TT messages by triggering the respective ports at
predefined instants. In case of ET messages, they use the same priority as for the TT. The ET interleaver
manages the interleaving of those messages in such a way that no TT message is affected by the ET
messages. As shown in Figure 38, the STNoC that is employed as an underlying NoC on the DREAMS
ZYNQ platform supports two prioritized virtual networks and guarantees bounded impact of low
priority messages on high priority ones. Moreover, each priority owns its own PAT-PNoC-00 and NoC
and uses separate AXI interfaces.

 Reconfiguration and Monitoring Interface (RMI)

The reconfiguration and monitoring interface is responsible for (re-) configuring the priority based NoC
and act as the interface for reading the status of the pattern. The reconfiguration can be given at
runtime.

 Ingress Bridging Unit (IBU)

The ingress bridging unit dispatches the incoming messages to the corresponding ports once a new
message arrives at the AXI_S at the NoC side. The operation of the IBU is the same as the operation of
the port selector within the core interface. The IBU employs a look-up table which maps the AXI write
addresses with the port IDs.

Despite the STNoC is used for communicating safety and non-safety-related components, this cross-domain
pattern can be used in conjunction with different NoCs, provided that the requirements stated before are

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 64 of 81

fulfilled.

Results:

Figure 40 shows the integration of the NoC cross-domain pattern in a partitioned multi-core mixed-criticality
system, where this pattern is implemented by each processor core (ARM CPUs and micro-blaze processors)
for enabling the communication of partitions with different criticality level through time-triggered and event-
triggered messages.

Figure 40: PNoC cross-domain pattern - Implementation system architecture.

During this implementation, PNoC 0to PNoC 3communicate through TT messages with a period of 976us. The
remaining PNoCs are communicated through ET messages. These safety-related networks are configured as
follows:

PNoC0

Port ID Type Direction of the port Destination PNoC ID Destination port ID

0 TT OUT 1 2

1 TT OUT 7 2

2 TT IN 1 0

3 TT IN 7 0

PNoC1

Port ID Type Direction of the port Destination PNoC ID Destination port ID

0 TT OUT 0 2

1 TT OUT 2 2

2 TT IN 0 0

3 TT IN 1 0

PNoC2

Port ID Type Direction of the port Destination PNoC ID Destination port ID

0 TT OUT 1 3

1 TT OUT 7 3

2 TT IN 1 1

3 TT IN 7 1

PNoC3

Port ID Type Direction of the port Destination PNoC ID Destination port ID

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 65 of 81

0 TT OUT 0 3

1 TT OUT 2 3

2 TT IN 0 1

3 TT IN 0 1

PNoC4

Port ID Type Direction of the port Destination PNoC ID Destination port ID

0 RC OUT 0 3

1 RC OUT 0 4

2 BE OUT 0 5

3 RC IN 0 0

4 RC IN 0 1

5 BE IN 0 2

PNoC5

Port ID Type Direction of the port Destination PNoC ID Destination port ID

0 RC OUT 8 3

1 RC OUT 8 4

2 BE OUT 8 5

3 RC IN 8 0

4 RC IN 8 1

5 BE IN 8 2

Figure 41: Configuration of PNoCs.

Additional Considerations:

This pattern is related to the modular safety case for an IEC 61508 compliant generic Mixed-Criticality
Network [5] and D2.1.2 [46] and D2.1.3 [47] deliverables of DREAMS.

References:

DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular Safety Case for
Mixed-Criticality Network," in D5.1.3, ed, 2015.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 66 of 81

5 Conclusions

Today’s mixed-criticality systems based on multi-core architecture are composed of a wide variety of
complex components that lead to an increase in their development and certification. On the other
hand, today’s safety-related standards such as the IEC 61508 standard do not consider measures and
diagnostic techniques for these kinds of systems where functionalities with different criticality levels
can be integrated into the same system.

The objective of this deliverable is to provide generic reusable solutions, measures and diagnostic
techniques that ease the development and certification of multi-core mixed-criticality systems
composed of virtualization mechanisms like hypervisors, COTS multi-core devices and mixed-
criticality networks. Due to time limitations, we have only implemented some of the patterns
defined in this deliverable. These patterns will be integrated in the wind-turbine demonstrator of
WP7.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 67 of 81

6 List of Open Points (LOP)

LOP –
No.

Item

Title of document /
Document Name /

Version No. / Author /
Date of issue / Index of

Changes
Description

inserted
(date)

brought up
by

Sta-
tus

Comments by Customer Comments by TUV

File A D5 3 1 Cross Domain Mixed-Criticality Patterns_v0_0.docx, Version 0.0 dated 2015-11-09

A1
chapter 3, page

12

"This chapter identifies
common source of
certification challenges
in the development …"
Suggestion: "...…
challenges among
others in the
development…"

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A2
chapter 3.1,

page 13

"… interconnection
coherency management
units…"
Is this the generic
expression for SCU /
CoreNet? If so, please
use it continuous within
this document.

30/11/2015 TUV-kg 3
02/12/2015 al: Ok.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A3
chapter 3.1.1,

page 14

"… , which are not
applicable to multi-core
systems…."
Better: “…, which are
not directly applicable
to multi-core systems,
but have to be
extended according to
the given conditions.”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A4
chapter 3.1.2,

page 14

"… the memory
coherency between
CPUs, L1 cache
memories and L2
shared memories."
Better: “…the data
memory coherency
between cores, L1
cache, L2 cache and
(external) shared
memories.

Suggestion: We should
use the word “core”
instead of “CPU”, just to
use the same word for
the same item.

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A5
chapter 3.1.5,

page 15

"...which may be
diagnosed…"
Better: "...which must
be diagnosed…"

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A6 chapter 3.2.2
Typo: underplaying =>
underlaying

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A7 chapter 3.3,

"...network in order to
correct and continue
running."
Suggestion: Delete “in
order to correct and
continue running”,
because this may be
one option. Another

30/11/2015 TUV-kg 3 02/12/2015 al: Ok. Deleted.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 68 of 81

option is in safety
applications to shut-
down the network.

A8 chapter 4.1.1,

"Critical memory areas
should be protected…"
Better: "Critical
memory areas must be
protected…"

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A9 chapter 4.1.1

"This solution aims to
avoid the issues related
to the memory
sharing…"
It is not the intension of
this pattern to avoid
shared memory, but to
provide “robust
measures” and
“diagnosis techniques”
to detect any
unauthorized access.
Please remove “avoid
the issues related to the
memory sharing “.

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A10 chapter 4.1.2

Typo: "...for critical
partitions, with could…"
=> "...for critical
partitions, which
could…"

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK

A11 chapter 4.1.2

"This pattern aims to
provide ...non-critical
partitions."
Suggestion to rephrase:
“This pattern aims to
provide a generic
diagnosis pattern to
detect interferences on
criticality partitions that
might be caused by
non-critical partitions.”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK

A12 chapter 4.1.3

"The DIOs can be
accessed by several
partitions at the same
time, leading to errors."
Suggestion to rephrase:
“Several partitions may
have access to DIOs at
the same time, which
can lead to errors.”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A13 chapter 4.1.3

"The I/O server
partition manages
...diagnosis, etc."
Suggestion to rephrase:
“The I/O server
partition manages a
configurable number of
DIOs, each of them shall
be commanded by one
communication port. In
safety applications the
I/O server partition
shall provide
diagnostics according to
the requested fault
model, e.g. table A.1
IEC 61508-2.”
Only this way there is a
real benefit of
implementing the DIO
Server as a generic
pattern.

30/11/2015 TUV-kg/bo 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A14 chapter 4.1.4 "… into account that 30/11/2015 TUV-kg 3 02/12/2015 al: OK. 2016-06-07 TUV-kg

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 69 of 81

the communication
networks…"
-> the external
communication

Modified. Ok, added in v0.2

A15 chapter 4.1.4

"The communication of
safety-related…"
=> "The communication
between safety-
related…"

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A16 chapter 4.1.4

"This leads to
association failures,
because…."
Suggestion to rephrase:
“This may lead to
communication
errors,…”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A17 chapter 4.1.4

"… the underlying
communication
network of…" => "… the
underlying
communication layer
of…"

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A18 chapter 4.1.4

"… abstracted from the
underlying platform
architecture ."
=> "… abstracted from
the underlying
communication layer ."

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A19 chapter 4.1.4

"… network approaches
(see IEC 61508)."
Better: "...network
approaches (see IEC
61508 and IEC 61784-3
)."

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A20 chapter 4.2

"… which is normally
coupled or internal to
the…"
Suggested rephrase: “…
is normally coupled to
the …”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A21 chapter 4.2

"Therefore, two or
more cores of a
multicore processor…"

This is exactly the
reason why e.g. SCU is
implemented. It seems
that the described
problem is already
solved!

30/11/2015 TUV-kg

3

02/12/2015 al: OK.
Modified.

2016-06-07 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A22 chapter 4.2.1

"… shared memory is
free of interferences,
new measure and
diagnosis techniques
are required."

As mentioned before
measures are already
implemented to control
/mitigate exactly this
fault scenario (SCU).
But the question is:
How can we be sure
that the SCU works as
expected? Which
diagnostic techniques
have to be
implemented to cover a
DC of 60, 90, 99%?

30/11/2015 TUV-kg 3

02/12/2015 al: OK. We have
to think about it.
27/06/2016 al: Yes. You are
right. All the references to
the DC have been deleted.
On the other hand, in
relation to the diagnosis of
the SCU, this pattern
assumes that the SCU was
checked in advance (PAT-
CCMU-00 and PAT-ICMUD).

2016-06-07 TUV-
heikg
Clause deleted in
v0.2.
However, an answer
is still open.
2016-06-24 TUV-
boheikg:
Basically the
achieved DC is not
documented in any
of the pattern. From
our point of view the
corresponding
evidences can be
generated anyhow
only based on a real
implementation and
should be exported
to the system

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 70 of 81

architect. This way
this item may be
closed.

A23 chapter 4.2.2

"...many copies of any
one instruction operand
saved in several
caches."
Suggested rephrase: “…
to have many copies of
data saved in several
caches.”

Reason: To my
knowledge, cache
coherency will be only
supported for data and
not for instructions.

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-08 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A24 chapter 4.2.3

"… , the interconnection
management unit…"
Is “interconnection
management” the same
as “CoreNet Coherency
Fabric” stated in figure
4? If so, please use the
same name.

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-08 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A25 chapter 4.2.4

"…measures and
techniques listed in IEC
61508 are…"
Better: “… listed in
IEC61508-2, table A.4…”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-08 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A26 chapter 4.3.1

"...could lead to issues
related to temporal and
spatial interferences"
Suggestion to rephrase:
“…could lead to issue
interferences in
general.”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-08 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A27 chapter 4.3.1

"...in order to avoid
unintended
interferences in both
temporal and spatial
domains"
Suggestion to rephrase:
“… in order to ensure
that the right data will
be received by the right
participant right in
time.”

30/11/2015 TUV-kg 3
02/12/2015 al: OK.
Modified.

2016-06-08 TUV-Hei
OK, completely
modified. The whole
document has to be
re-reviewed.

A28
Abbreviated

terms

Missing terms. Please
add the following
terms:
BRAM, SEU, AXI, SEM

01/12/2015 TUV-bo 3 02/12/2015 al: Ok. Added.
2016-06-08 TUV-Hei
OK

A29

chapter 4.2.2 -
suggested fault

avoidance
measures

Example list of
measures for fault
avoidance in systems
using cache coherence
systems which may be
included:
- Limit shared memory
usage to an absolute
minimum required for
operation
o Limit the use of the
use of multiple threads
and tasks for one safety
function to a minimum
required
o
- Make sure that per
potential cache line
there is only one

01/12/2015 TUV-bo 3

02/12/2015 al: Ok. Included.
27/06/2016 al: OK. The
fault-avoidance and fault-
control techniques are
included in Section 4.2.2. In
addition, the techniques
which are implemented by
this pattern have been
identified in Section
"implementation".

2016-06-24 Bo:
NOK: I do not see
the fault avoidance
measures listed in
the section. I believe
it is cruicial for
safety applications
to keep the use of
shared memories to
a minimum and to
be very clear on the
used in the
corresponding
documentation of
the project. Only
where the
complexity of the
"problem" or
limitation of

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 71 of 81

task/process allowed to
write and all other may
only read (only 1:n
communication
allowed). The
assignment should be
defined statically.

computing resources
require the use of
shared
resources/memories
this should be
allowed to be used.

A30

chapter 4.2.2 -
suggested fault

control
measures

Example list of
measures for fault
control in systems using
cache coherence
systems which may be
included (DCs to be
discussed):
- Implement
communication
protocol with additional
messaging between
sender and receiver of
the information (e.g.
o Order violation
detection: Flags to
show indicate updated
information, and Flags
to indicate that this
information was
received.,
o Data consistency
violations: additional
coding information like
CRC/ECC or Parity
Information in the same
memory block where
the actual updated
information is stored.
The flags must be
updated as last write
action to the shared
memory).
(It is safe to assume
that also a HW
implemented
ECC/Parity on caches
may have bugs (e.g.
ARM: 751475—Parity
error may not be
reported on full cache
line access (eviction /
coherent data transfer /
cp15 clean operations)))
- Implement data
structures that match
the cache architecture
(e.g. have max. size of
one cache line - for
optimal performance)
and allow additional
diagnostics (see above
and below).
- Facilitate Cache
memory ECC and
facilitate cache
scrubbing, if applicable.
- Implement timing
expectations and error
detection for the
shared memory
communication
- Implement Other
typical communication
error related measures

01/12/2015 TUV-bo 3

02/12/2015 al: OK. Included.
27/06/2016 al: OK. The
fault-control techniques are
included in Section 4.2.2.I27

2016-06-24 Bo: NOK.
I do see the items
only partially
included in the
"solution under
consideration". I
believe this section
should be
independant of the
actual Hardware
used and thus
should list all
possible solutions. In
the
"Implementation"
section not all items
may be required
since there are other
measures provided
which already
provide the
corresponding
diagnostics.

In the v0.2 of the
document
previously added
text of the
document version
from mid of march is
missing. Please add
this again. The
section is starting
with "In addition,
the following
measures for fault
avoidance and fault
control in systems
using cache
coherency may be
included:"

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 72 of 81

like: Sequence number,
Addressing (could be
done by different CRC
codes as well), coding,
timing expectation
- Automatic invalidation
of cache lines after a
defined period of time
in order to make sure
the caches are flushed
periodically.

A31 chapter 4.1.1,

The naming of the
pattern seems very
DREAMS specific.
Actually as far as I can
see this chapter is
talking about some kind
of Memory server
which is accessible via a
safety communication
protocol.
It seems a good idea to
have this
chapter/pattern to be
renamed in a more
generic manner.

01/12/2015 TUV-bo 3

02/12/2015 al: OK. Changed,
STNoC accessible memory
area diagnosis pattern -->
NoC accessible critical area
diagnosis pattern

.

3

 File A1 D5 3 1 Cross Domain Mixed-Criticality Patterns_v0_2.docx, Version 0.2 dated 2016-06-07

A1_1

Chapter 4.1.2,
Critical

Partition
Diagnosis
Pattern,

Temporal
interference

The detection
capabilities of the
concurrency monitoring
implementation are
validated by means of a
scenario where a faulty
partition progressively
causes an increasing
amount of temporal
interferences.

When will the
valdidation take place?
At development time?
Or is this also a
diagnosis of the
diagnosis during run-
time? How is assured
that the actual safety
function is not
impaired?

TUV-Hei 08/06/2016 3

27/06/2016 VB: The
detection of the temporal
interference is performed
on-line as a diagnosis
technique. «Validation»
refers to the fact that we
validated, by means of test
cases, that the interference
is indeed detected (a
message «[P0-
readerPSM.c:45]
DetectMulticoreInterference
counter 270414 below
270216 threshold» is
generated).

The diagnosis pattern does
not define how to avoid that
the safety function is
impaired. However, for such
purpose the partition
developer can make use of
the services provided by the
hypervisor, like for example
stopping the interfering
partition using the
XM_suspend_partition()
hypercall.

We can include the previous
paragraph as clarification.

A1_2

Chapter 4.1.2,
Critical

Partition
Diagnosis

Pattern, Spatial
isolation

The detection
capabilities of the
memory checksum
implementation are
validated by means of a
scenario where a faulty
partition randomly
injects memory errors
in the critical memory
sections.

When will the

TUV-Hei 08/06/2016 3

27/06/2016 VB: The
detection of a problem in
the spatial isolation is
performed on-line as a
diagnosis technique.
«Validation» refers to the
fact that we validated, by
means of test cases, that the
breach in spatial isolation is
indeed detected (a message
«[P0-critical.c:49]
ChecksumDetect mismatch

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 73 of 81

valdidation take place?
At development time?
Or is this also a
diagnosis of the
diagnosis during run-
time? How is assured
that the actual safety
function is not
impaired?

computed 204014F
expected FCA9BE35» is
generated).

The diagnosis pattern does
not define how to avoid that
the safety function is
impaired. However, for such
purpose the partition
developer can make use of
the services provided by the
hypervisor, like for example
having a redundant
partitions that detect the
corruption in the other one,
bring the system to a safe
state and then restart the
complete system by means
of the XM_reset_hypervisor
() hypercall.

We can include the previous
paragraph as clarification.

A1_3

Chapter 4.1.2,
Critical

Partition
Diagnosis
Pattern,

Temporal
isolation

The detection
capabilities of this
solution are validated
by means of a scenario
where a faulty partition
causes random
temporal interferences
to the critical partition.

When will the
valdidation take place?
At development time?
Or is this also a
diagnosis of the
diagnosis during run-
time? How is assured
that the actual safety
function is not
impaired?

TUV-Hei 08/06/2016 3

27/06/2016 VB: The
detection of the temporal
interference is performed
on-line as a diagnosis
technique. «Validation»
refers to the fact that we
validated, by means of test
cases, that the interference
is indeed detected (a
message «[P0-critical.c:45]
SlotStart drift detected
slotstart 2000607 expected
2000000» is generated).

The diagnosis pattern does
not define how to avoid that
the safety function is
impaired. However, for such
purpose the partition
developer can make use of
the services provided by the
hypervisor, like for example
stopping the interfering
partition using the
XM_suspend_partition()
hypercall.

We can include the previous
paragraph as clarification.

A1_4
Chapter 4.1.3,

Digital I/O
Server Pattern

Each digital input shall
be checked to detect
whether their values
change.

Each digital input shall
be checked to detect
whether their values are
able to be changed.
I assume that you are
not speaking about the
normal sampling of the
digitial inputs but about
the testing/diagnosis of
the digital inputs.

TUV-Hei 08/06/2016 3
27/06/2016 al: OK. The
sentence is corrected.

A1_5
Chapter 4.1.3,

Digital I/O
Server Pattern

Change Frequency:
Parameter that
describes how often the
input changes. The

TUV-Hei 08/06/2016 3

27/06/2016 al: OK. It is
specified that the change
frequency parameter is only
suitable in high or

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 74 of 81

timeout before
considering that an
input is faulty will be
four times the figure
associated to this
characteristic.

The definition "four
times the figure" is not
suitable in all cases. E.g.
an Emergency Stop has
no change frequency at
all because it is a low-
demand operation (and
not high demand or
continuous mode of
operation).

continuous mode of
operation and that it is not
suitable in low mode of
operation.

A1_6

Chapter 4.2.2,
4.2.2 Cache
Coherency

Management
Unit Diagnosis

Pattern,
"Solution under
Consideration"

It is not clear to me how
a watchdog timer can
detect message order
violations in general.
This may only be the
case if you have a fix
and defined
communication
schedule.. A simple
measure would be to
have a sequence
number implemented.

TUV-Bo 24/06/2016 3

27/06/2016 al: OK. It is
specified that the WDT can
only be used with fixed and
defined communication
schedule. In addition, we
have included the sequence
number technique that you
propose.

A1_7
Chapter 4.2.3,
Solution under
consideration

Beside others it is
assumed that:
"The coherency
management unit is
correctly configured
and checked in
advance."

Since the "coherency
management unit" is
part of SCU and SCU is
part of Inter-connection
units, it seems that the
condition "checked in
advance" is not correct,
because checking the
inter-connection units is
exactly subject of this
pattern chapter.

TUV-kg 10/06/2016 3
27/06/2016 al: Ok. This
statement has been deleted.

A1_8
Chapter 4.2.3,
Solution under
consideration

Check the configuration
of the interconnect
management unit

"… configuration of
their registers can be
used to manage …"
Better:
"… configuration of
their registers will be
used to manage …"

TUV-kg 10/06/2016 3
27/06/2016 al: OK. The
sentence is corrected.

A1_9
Chapter 4.2.3,
Solution under
consideration

Check the configuration
of the interconnect
management unit

A “inexpertly”
modification of
configuration registers
is a systematic aspect,
which is part of the
verification activities
during the
development.

TUV-kg 10/06/2016 3
27/06/2016 al: OK. The
sentence is corrected.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 75 of 81

Therefore please delete
“which may be
inexpertly modified”.

A1_10
Chapter 4.2.3,
Solution under
consideration

"Systematic faults of
the coherency
management unit are
analyses in DREAMS
deliverable D5.1.2 "A
modular safety case for
COTS processor" [4] by
means of a FMECA
analysis."

Which chapter in D5.1.2
is meant here? Please
add a reference
accordingly.

TUV-kg 10/06/2016 3

27/06/2016 al: OK. It is
included the chapter where
the FMECA analysis is
defined in DREAMS
deliverable D5.1.2.
" ...in Chapter 4.2.11.2.2
(Tables 41 and 43) of
DREAMS deliverable D5.1.2
“A modular safety case for
COTS processor” [4] by
means of a FMECA analysis"

A1_11
Chapter 4.2.3,
Solution under
consideration

The possibility of
systematic errors in the
configuration of the
interconnection
management unit
configuration should be
addressed.

A simple way would be
to add a precondition
("...pattern assumes
that:") like:
- The configuration of
the interconnection
management unit is
sufficiently free of
systematic faults due to
the used development
process.

TUV-bo 24/06/2016 3

27/06/2016 al: OK. The
possibility of systematic
errors in the configuration
of the interconnection
management unit is
included. In addition, a
reference to chapter 4.2.8.3
of deliverable D5.1.2 where
the FMECA analysis of the
configuration process is
included.

A1_12
Chapter 4.2.4,
Solution under
consideration

Which chapter in D5.1.2
is meant here? Please
add a reference
accordingly.
D5.2.1 covers in chapter
4.2.11.2.4.1, table 44
and 45 only random
faults.

TUV-kg 10/06/2016 3

27/06/2016 al: OK. It is
included the chapter where
the FMECA analysis is
defined in DREAMS
deliverable D5.1.2.
"...in Chapter 4.2.11.2.4
(Table 46) of DREAMS
deliverable D5.1.2 [4] by
means of FMECAs."

A1_13
Chapter 4.2.4,
Solution under
consideration

The possibility of
systematic errors in the
configuration of the
interconnection
management unit
configuration should be
addressed.

A simple way would be
to add a precondition
("...pattern assumes
that:") like:
- The configuration of
the interrupt controller
is sufficiently free of
systematic faults due to
the used development
process.

TUV-bo 24/06/2016 3

27/06/2016 al: The
possibility of systematic
errors in the configuration
of the interrupt controller
unit is included. In addition,
a reference to chapter
4.2.8.3 of deliverable D5.1.2
where the FMECA analysis
of the configuration process
is included.

A1_14
Chapter 4.3.1,
Solution under
consideration

"… (SCL) shall be
compliant to a safety
standard (e.g., IEC
61508). "

I recommend to
reference also the IEC
61784-3, chapter 5.3,

TUV-kg 10/06/2016 3
27/06/2016 al: OK. The
reference is included.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 76 of 81

which lists all
communication errors.

A1_15
Chapter 4.3.1,
Solution under
consideration

"… in compliance with
IEC 61508 and IEC
61784 shall…"

Better: "…. IEC 61508-2
and IEC 61784-3…"

TUV-kg 10/06/2016 3

27/06/2016 al: Ok. The
references re modified to
"IEC 61508-2 and IEC 61784-
3".

A1_16
Chapter 4.3.1,
Solution under
consideration

"It must fulfil the safety
requirements which are
defined in the MSC for
an IEC 61508
(IEC61784-3) compliant
generic mixed-criticality
network"
The communication
errors as listed in IEC
61508-2, 7.4.11 and IEC
61784-3, 5.3 are not
considered or
addressed in
Implementation or
Results.
Why they are not
addressed?

According to my
understanding
Implementation /
Results covers the
handling of TT and ET
messages, but again, do
not address the
communication error
scenarios.

TUV-kg 10/06/2016 3

27/06/2016 al: OK. The
communication errors listed
in IEC 61508-2 and IEC
61784-3 are theoretically
considered by this pattern.
However, they are not
implemented by the
pattern. This pattern is
under continuous
development process and
therefore, we expect that
the communication errors
listed in those standards will
be implemented in a
posterior version.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 77 of 81

Abbreviated terms

AHB Advanced High-performance Bus
APB Advanced Peripheral Bus
ASB Advanced System Bus
AXI Advanced eXtensible Interface
AXI_HP AXI High Performance
AXI_GP AXI General Purpose
AXI_ACP AXI Accelerator Coherency Port
BRAM Block RAM
BE Best-Effort
COTS Commercial Off-The-Shelf
CRC Cyclic Redundancy Check
DAS Distributed Application Subsystem
DC Direct Current
DIO Digital I/O
DIOS Digital I/O Server
DMA Direct Memory Access
DREAMS Distributed Real-time Architecture for Mixed Criticality Systems

E/E/PE Electrical/Electronic/Programmable Electronic

EBU Electronic Bridging Unit

ECC Error Correcting Code

ET Event Triggered

FIQ Fast Interrupt Request
FMEA Failure mode and effect analysis
FMECA Failure mode, effect and criticality analysis
FMEDA Failure mode, effect and diagnostic analysis
FPGA Field Programmable Gate Array
GENESYS GENeric Embedded SYStem Platform

GIC Generic Interrupt Controller
HM Health Monitoring
HW HW
I/O Input/Output
IBU Ingress Bridging Unit
IOP Input/Output Peripheral
IRQ Interrupt Request
LOP List of Open Points

MCS Mixed-Criticality System
MMU Memory Management Unit
NoC Network-on-Chip
OCM On-Chip Memory

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 78 of 81

PAT Pattern

PL Programmable System

PNoC Priority based Network-on-Chip

PPI Private Peripheral Interrupt
PS Processing System

RC Rate-Constrained

RMI Reconfiguration and Monitoring Interface

SCL Safety Communication Layer

SCU Snoop Control Unit
SEM Soft Error Mitigation
SEU Single Event Upset
SGI Software Generated Interrupt
SIL Safety Integrity Level
SPI Shared Peripheral Interrupt
SW Software
TERESA Trusted Computing Engineering for Resource constrained Embedded System

Applications

TT Time-Triggered

TTE Time-Triggered Ethernet

TTNoC Time-Triggered Network-on-Chip

VM Virtual Machine
VMM Virtual Machine Monitor
V&V Verification and Validation
WP Work Package

XM XtratuM
P2P Point to Point
XMCF XtratuM Configuration File
ELF Executable and Linkable Format
HAL Hardware Abstraction Layer

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 79 of 81

Bibliography

[1] GENESYS. (2008). GENeric Embedded SYStem. Available: http://www.genesys-
platform.eu/results.htm

[2] F. TERESA. (2011). Trusted Computing Engineering for Resource Constrained Embedded
System Applications. Available: http://www.teresa-project.org/

[3] DREAMS, "Distributed Real-time Architecture for Mixed Criticality Systems - State of the Art
of Piecewise Certification of Mixed Criticality Systems," in D5.5.1, ed, 2014.

[4] DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular
Safety Case for COTS device," in D5.1.2, ed, 2015.

[5] DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular
Safety Case for Mixed-Criticality Network," in D5.1.3, ed, 2015.

[6] DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems - A Modular
Safety Case for Hypervisor," in D5.1.1, ed, 2015.

[7] DREAMS, "Distributed Real-time Architecture for Mixed Criticality Systems: Architectural
Style of DREAMS D 1.2.1," July 2014.

[8] J. Perez, D. Gonzalez, S. Trujillo, A. Trapman, and J. M. Garate, "A safety concept for a wind
power mixed-criticality embedded system based on multicore partitioning," in Functional
Safety in Industry Application, 11th International TÜV Rheinland Symposium, Cologne,
Germany, 2014, p. 36.

[9] J. Perez, D. Gonzalez, C. F. Nicolas, T. Trapman, and J. M. Garate, "A safety certification
strategy for IEC-61508 compliant industrial mixed-criticality systems based on multicore
partitioning," Euromicro DSD/SEAA, vol. Verona, Italy, August 2014.

[10] FENTISS. (2014, February). Hypervisor. Available:
http://www.fentiss.com/en/products/hypervisor.html

[11] D. Dasari, B. Akesson, V. Nelis, M. A. Awan, and S. M. Petters, "Identifying the sources of
unpredictability in COTS-based multicore systems," in Industrial Embedded Systems (SIES),
2013 8th IEEE International Symposium on, Porto, Portugal, 2013, pp. 39-48.

[12] L. M. Kinnan, "Use of multicore processor in avionics systems and its potential impact on
implementation and certification," in Digital Avionics Systems Conference, 2009. DASC '09.
IEEE/AIAA 28th, Orlando, Florida, 2009, pp. 1.E.4-1 - 1.E.4-6.

[13] P. Radojkovic, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J. Cazorla, "On the
evaluation of the impact of shared resources in multithreaded COTS processors in time-
critical environments," CM Transactions on Architecture and Code Optimization (TACO) -
HIPEAC Papers, vol. 8, January 2012.

[14] J. Bin, S. Girbal, D. Gracia Perez, A. Grasset, and A. Merigot, "Studying co-running avionic
real-time applications on multi-core COTS architectures," presented at the Embedded Real
Time Software and Systems (ERTS), Conference on, Tolouse, France, 2014.

[15] F. Semiconductor, "P4080 Development System User's Guide," Freescale
SemiconductorAugust 2010.

[16] XILINX, "ZYNQ-7000 All Programmable SoC: Technical Reference Manual," September 2014.

[17] T. Instruments, "Safety Manual for TMS570LS31x and TMS570LS21x Hercules ARM Safety
Critical Microcontrollers - User Guide," April 2013.

[18] Freescale, "Safety Manual for Qorivva MPC5643L," April 2013.

[19] IEC, "IEC 61508-2 Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 2: Requirements for electrical/electronic/programmable electronic
safety-related systems," ed: IEC, 2010.

http://www.genesys-platform.eu/results.htm
http://www.genesys-platform.eu/results.htm
http://www.teresa-project.org/
http://www.fentiss.com/en/products/hypervisor.html

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 80 of 81

[20] IEC, "IEC 61508-3 Functional safety of electrical/electronical/programmable electronic
safety-related systems - Part 3: Software requirements," ed, 2010.

[21] IEC, "IEC 61784-3 Industrial communication networks – Profiles – Part 3: Functional safety
fieldbuses – General rules and profile definitions," ed, 2010, p. 132.

[22] IEC, "IEC 62280-1 Railway applications – Communication, signalling and processing systems –
Part 1: Safety-related communication in closed transmission systems," ed, 2002, p. 36.

[23] IEC, "IEC 61508-1 Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 1: General Requirements," ed: IEC, 2010.

[24] V. S. Alagar and R. Missaoui, "Object-Oriented Technology for Database and Software
Systems," ed, 1995, pp. 295-312.

[25] B. Rubel, "Patterns for generating a layered architecture," in Pattern languages of program
design, J. O. Coplien and D. C. Schmidt, Eds., ed: ACM Press/Addison-Wesley Publishing Co.,
1995, pp. 119-128.

[26] D. Riehle and H. Züllighoven, "A pattern language for tool construction and integration based
on the tools and materials metaphor," in Pattern languages of program design, J. O. Coplien
and D. C. Schmidt, Eds., ed: ACM Press/Addison-Wesley Publishing Co., 1995, pp. 9-42.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software.: Wesley, Addison, 1994.

[28] S. S. Adams, "Functionality ala carte," in Pattern languages of program design, O. C. James
and C. S. Douglas, Eds., ed: ACM Press/Addison-Wesley Publishing Co., 1995, pp. 7-8.

[29] B. P. Douglass, Doing hard time: developing real-time systems with UML, objects,
frameworks, and patterns: Addison-Wesley Longman Publishing Co., Inc., 1999.

[30] B. P. Douglass, Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems: Addison-Wesley Longman Publishing Co., Inc., 2002.

[31] W. Wu and T. Kelly, "Safety tactics for software architecture design," in Computer Software
and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual
International, 2014, pp. 368-375.

[32] R. Hammett, "Flight-Critical Distributed Systems - Design Considerations [avionics],"
Aerospace and Electronic System Magazine , IEEE, vol. 18, pp. 30-36, June 2003.

[33] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, "The M¨alardalen WCET benchmarks –
past, present and future," in Worst-Case Execution Time Analysis (WCET), International
Workshop on, Dagstuhl, Germany, 2010, pp. 136-146.

[34] M. Paolieri, E. Quiñones, F. J. Cazorla, and M. Valero, "An Analyzable Memory Controller for
Hard Real-Time CMPs," Embedded Systems Letters, IEEE, vol. 1, pp. 86-90, December 2009.

[35] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, "A scalable and high-performance
scheduling algorithm for multiple memory controllers," in High-Performance Computer
Architecture (HPCS), International Symposioum on, Bangalore, India, 2010, p. 12.

[36] H. Shah, K. Huang, and A. Knoll, "Timing Anomalies in Multi-core Architectures due to the
Interference on the Shared Resources," in Design Automation (ASP-DAC), Asia and South
Pacific Conference on, Singapore, 2014, pp. 708-713.

[37] ARM, "ARM Generic Interrupt Controller (GIC): Architecture Specification v1.0," September
2008.

[38] J. Hussein and G. Swift, "Mitigating Single-Event Upsets," in WP395, ed, 2012, p. 10.

[39] IEC, "IEC 61508-7 Functional safety of electrical/electronic/programmable electronic safety-
related systems – Part 7: Overview of techniques and measures," ed: IEC, 2010.

D5.3.1 Version 1.0 Confidentiality Level: PU

29.07.2016 DREAMS Page 81 of 81

[40] DREAMS, "Distributed Real-Time Architecture for Mixed-Criticality Systems -Preliminary
Assessment Report Related to Improving or Calibrating the Technological Results," in D7.3.1,
ed, 2014.

[41] FENTISS, "XtratuM Hypervisor for ARM CORTEX-A9: Volume 2: User Manual," ed, 2016.

[42] ARM, "Cortex - A9 MPCore: Technical Reference Manual," 2.0 ed, 2009, p. 122.

[43] DREAMS, "Distributed Real-Time Architecture for Mixed-Critiality Systems: Modular Safety
Case for COTS processor," in D5.1.2, ed, 2015.

[44] H. Ahmadian and R. Obermaisser, "Time-triggered extension layer for on-chip network
interfaces in mixed-criticality systems," presented at the Digital System Design (DSD),
Euromicro Conference on, Madeira, Portugal, 2015.

[45] H. Kopetz, Real-Time Systems: Design principles for distributed embedded applications:
Springer, 2011.

[46] DREAMS, "Distributed Real-time Architecture for Mixed Criticality Systems System-level
executable specifications of a) virtualization and memory interleaving support of the
Spidergon STNoC backbone at the network interface layer and b) a bus-to-noc bridge macro-
architecture for seamlessly interconnecting Spidergon STNoC and network gateways from
WP3 D 2.1.2," in D2.1.2, R1-0 ed, 2015, p. 34.

[47] DREAMS, "Distributed Real-time Architecture for Mixed Criticality Systems RT-level design
specifications of a) virtualization and memory interleaving support of the Spidergon STNoC
backbone at the network interface layer and b) a bus-to-noc bridge for seamlessly
interconnecting STNoC to the network gateway from WP3 D 2.1.3," in D2.1.3, ed, 2015, p.
51.

