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1 Introduction 

Individual products or systems are not often designed and developed independently. They belong to 
a product family so called product line. Products from the same product line are similar in many 
respects, but remain different enough to require specific development activities. This deliverable aims 
to describe the state of the art of certification of these systems, where it is attempted to achieve 
optimal certification of products that suffer some update or change, and it also pretends to expose 
how certification of one product can affect to the certification of other product of same product-line.  

This deliverable is part of FP7 DREAMS project which aims to develop an cross-domain architecture 
and design tools for mixed criticality networked complex systems. It is based on results from DREAMS 
work packages WP1 "Architectural Style", WP2 "Languages" and WP4 "Tool Support". This review of 
the state of the art of modular certification for mixed criticality systems lays the foundations for novel 
product-line certification methods, which are one of the final innovations targeted by the DREAMS 
project. 

1.1 What is a Mixed Criticality System?  

The architecture of embedded systems in multiple domains follows a federated architecture 
paradigm, where the system is composed of interconnected subsystems that provide a well-defined 
functionality. The ever increasing demand for additional functionalities leads to a considerable 
complexity growth that, in some cases, limits the scalability of this approach. For example, a modern 
off-shore wind turbine control system manages up to three thousand inputs / outputs, several 
hundreds of functions are distributed over several hundred nodes grouped into eight subsystems 
interconnected with a fieldbus and the distributed software contains several hundred thousand lines 
of code. The integration of additional functionalities also leads to an increase in the number of 
subsystems, connectors and wires increasing the overall cost-size-weight and reducing the overall 
reliability of the system. For example, in the automotive domain, field data has shown that between 
30-60 % of electrical failures are attributed to connector problems [1, 2]. 

The integration of applications of different criticality (safety, security, real-time and non-real time) in 
a single embedded system is referred as mixed criticality system [1]. This integration is further 
complicated by the recent advent of multi-core systems providing more computational power but 
requiring specific operating systems and software [3]. Yet, this integrated approach can improve 
scalability, increase reliability reducing the amount of systems-wires-connectors and reduce the 
overall cost-size-weight factor. However, safety certification according to industrial standards 
becomes a challenge because sufficient evidence must be provided to demonstrate that the resulting 
system is safe for its purpose [1, 2]. 

1.2 What is Certification? 

Certification is a third party assurance of a product, system, subsystem or element establishing that 
the system is compliant with defined requirements. Certification is a process based on evidences for 
compliance with requirements, where evidences shall be established by documentation reviews, 
audits or testing activities (see Section 2.1.1). The certification of a product usually has a limited period 
of validity and has to be renewed after a certain period of time (see Section 2.1.2). 

IEC 61508 [4-6] is a generic international safety standard from which different domain specific 
standards have been derived. Safety Integrity Level (SIL) is a discrete level corresponding to a range of 
safety integrity values where 4 is the highest level and 1 is the lowest. As a rule of thumb, the higher 
the SIL, the higher the certification cost [1, 2]. 

IEC 61508 [4-6] safety standard does not directly support nor restrict the certification of mixed 
criticality systems. Whenever a system integrates safety functions of different criticality, sufficient 
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independence of implementation must be shown among these functions. In case there is not sufficient 
evidence, all integrated functions will need to meet the highest integrity level. Sufficient 
independence of implementation is established showing that the probability of a dependent failure 
between the higher and lower integrity parts is sufficiently low in comparison to the highest safety 
integrity level [1, 2]. 

1.3 Similar Systems and Product Lines 

System design is often guided by two very general, yet opposite heuristics: namely the top-down and 
the bottom-up approaches.  

 The top-down approach encourages designs driven by the primary function of the system, and 
recursively divided into sub functions until they become concrete enough to be implemented. 
This leads to highly specialized functions/components, with low reusability as their usefulness 
is limited to the inherent system's decomposition.  

 By contrast, the bottom-up approach advocates assembling general purpose functions into a 
whole that fits the purpose of the system. The bottom-up approach often leads to challenging 
integrations between components which have not been initially designed to interoperate. 

Product lines engineering (PLE) acknowledges the limitations of both heuristics and seeks to make the 
most of both ideas. PLE recognizes the importance of a set of core functions, which together define a 
framework where reusability is worth considering. PLE thus captures the set of commonalities (and 
discrepancies, respectively) between products of a same "family" or "line" and permits to capitalize 
on well-accepted practices and standards in the application domain of interest. By fostering reuse 
within specific contexts, PLE has shown significant effort reduction in design, development, time to 
market and maintenance [7].  

An intuitive example of product lines is the catalogue of wind turbines developed by Alstom, one of 
the DREAMS project case-studies. In order to accommodate different environmental conditions 
(temperatures, humidity, wind speed, etc.), wind turbines vary in many respects such as height, rotor 
diameter, power, etc. Yet, all wind turbines installed by Alstom share a common structure. The early 
identification of commonalities among turbines enables the reuse of large segments of the production 
chains as well as the development of large catalogues of closely related products. 

Software Product Lines (SPL) are product lines where products are software systems. Among others, 
example of large scale SPLs includes the Linux Kernel, which is made of a set of carefully selected 
modules, or the Eclipse IDE that can be tailored to specific tasks (e.g., C/C++ or Java development, 
testing, modelling) by adding (resp. removing) some of the underlying plugins.  

In the DREAMS context, we intend to model the variability inherent to mixed criticality platforms (e.g., 
hardware, hypervisor, scheduler configurations) and applications (e.g., fault-tolerance mechanisms). 
The objective is to investigate how SPL reduces the development cost of such platforms and to foster 
their certification by mixing modular certification and SPL testing technologies. 

2 Certification  
 

2.1 Certification of a Single System 

2.1.1 Certification is a Cooperative Process 

The certification of a system is a process that contains different steps that must be followed to obtain 
the final certificate (certification). As shown in Figure 1, a basic IEC-61508 compliant certification 
process of a system consists of four steps. As shown in Figure 2, a generic safety product development 
and certification starts from an idea. Then the company develops the safety embedded product and 
associated documentation using a safety life-cycle (FSM, Functional Safety Management) with the 
assessment of an external certification authority that provides the certificate. 
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Figure 1: Example basic IEC-61508 certification process [8]. 

 

Figure 2: Example IEC-61508 certification process [8]. 

2.1.2 The Need for Re-certification 

The need of re-certification of a system may result from improvements of system requirements and 
design. These updates can be given also by changes on system's requirements or standards updates. 
Whenever a change or update is required, impact analysis must be carried out and may possibly 
require a complete or partial re-certification of the system. 

This re-certification process can be highly expensive if modularity was not taken in consideration in 
the system safety concept and detailed design. As explained in Section 2.3, modularity becomes a key 
element for certification and re-certification of systems, because it potentially reduces the impact of 
changes and reduces the impact in system recertification. 
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2.2 Certification Standards 

A large number of standards have already been established by different organizations like ISO or IEC. 
These standards are being constantly updated to accommodate for daily needs. As shown in Figure 3, 
ISO/IEC Guide 51 classifies standards by type, allowing them to be applied to most actual systems.  

 
Figure 3: Hierarchical structure of Safety Standards. 

IEC 61508 is an international basic standard that deals with functional safety-related systems, where 
reliability is defined by the Safety Integrity Level (SIL). The IEC 61508 is concerned with electrical, 
electronic and programmable safety-related systems where a failure will affect people or 
environment. The term safety-related describes every programmed system, whose failure may lead 
to damage or death of humans or catastrophic environmental destruction or degradation.  

 

Figure 4 Overview of functional safety relevant standards in different areas (examples from VARIES [9]) 

As shown in Figure 4, all areas in blue are directly referred to Functional Safety and are all derived 
from the basic safety standard IEC 61508 (e.g., ISO 26262, EN 50139, DO 178B). Areas in orange are 
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standards, where IEC 61508 is not explicitly taken as basis, but they use similar approaches to address 
the safety of Electric/Electronic/Programmable Electronic (E/E/PE) systems. 

2.2.1 IEC 61508 on Safety Certification 

A safety life cycle is a series of phases covering the initiation and specification of safety requirements, 
the development of safety features for safety-critical systems, and ending with the decommissioning 
of that system. The IEC 61508 standard covers safety-related systems where a system incorporates 
electrical/electronic/programmable electronic devices. The standard covers possible hazards caused 
by failures of the safety functions of E/E/PE safety related systems. The detection of a potentially 
dangerous condition that results in the action of a protective or corrective mechanism to prevent 
hazardous events is defined as functional safety. IEC 61508 is concerned with the E/E/PE safety-related 
systems whose failure could have an impact on the safety of persons and/or environment.  

The standard has two fundamental points: the safety life cycle and the safety integrity levels. The 
safety life cycle is defined as a process that includes all necessary steps to achieve the required 
functional safety.  

Fehler! Verweisquelle konnte nicht gefunden werden. shows the safety life cycle defined by IEC 
61508 [10], also called Functional Safety Management (FSM).  

 
Figure 5 Safety lifecycle from IEC 61508 [8] 

The FSM is divided in 16 phases grouped as follows: 

 Analysis: Phases 1 and 2 entail the considerations of the safety implications of the equipment 
under control (EUC) and the control systems, at the system level. In Phase 3, first two phases’ 
risk identification and analysis, assessed against tolerable criteria, are done. In phase 4, the 
risk-reduction measures of safety requirements are specified, and in phase 5 these are 
translated into the design of safety functions. 

 Planning: Overall system planning for operation, validation and installation are provided in 
phases 6, 7 and 8 respectively. 

ANALYSIS

PLANNING REALIZATION

INSTALLATION & 
VALIDATION

OPERATION
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 Realization: The system safety requirements specification is performed in phase 5 and it is 
realized according a V model in phase 10. 

 Installation & validation: In Phase 12, the system must be installed and commissioned and in 
Phase 13, the system is checked to verify that all the safety related requirements have been 
identified and handled during building and installation. 

Operation: Then the system may be put into operation, where there are safety and maintenance 
activities. It is also foreseen that the system can be modified during operations and therefore, 
incorporation of some modifications will be needed. The final phase, phase 16, is related with the 
disposal of the system (e.g., separations of the battery or the toxic elements to dispose them 
separately).According to the IEC 61508, safety refers to a system that has to be safe enough, regarding 
to protection of health and environment. IEC 61508 is used for the development of E/E/PE systems 
that carry out safety functions. 

Furthermore, IEC 61508 determines that safety integrity level (SIL) of a system is determined by 
software failures (systematic failures) and hardware failures (systematic and random failures). SIL is 
the parameter that is used by IEC 61508 to categorize the required integrity of safety. It is defined as 
the probability that a dangerous failure of the safety related system may occur per unit of time. Table 
1 shows the target failure measure for a safety function operating in one of three defined demand 
modes by IEC 61508 (see subsection 7.6.2.9 of IEC 61508-1). 

Safety Integrity Level 
(SIL) 

Average frequency of dangerous failure of 
the safety function [h-1] 

(PFH) 

4 ≥ 10-9 to < 10-8 

3 ≥ 10-8 to < 10-7 

2 ≥ 10-7 to < 10-6 

1 ≥ 10-6 to < 10-5 

Table 1: Safety integrity levels - target failure measures for a safety function operating in high demand mode of 
operation or continuous mode of operation (Table 3 of IEC 61508-1) 

Systematic and random failures are handled by techniques/measures defined by IEC 61508 for the 
diagnosis, control and avoidance of failures, and they are used for defining the diagnostic coverage of 
the system. See Annexes A, B, C, and E of IEC 61508-2 for hardware failures and Annexes A, B and C of 
IEC 61508-3 for software failures. 

2.3 Modular Certification 

Different terms are used by different safety standards to refer to the concept of modular certification 
used in academia. Some basic definitions to be considered are: 

 A safety case "represents an argument supporting the claim that the system is safe for a given 
application in a given environment" [11] 

 Modularity is an approach that subdivides a system into smaller parts (modules) which are 
independently generated and used by different systems to drive functionality. The names of 
decomposed structure of system can vary from one developer to another, but the meaning is 
the same. 

 Modular Safety Cases allow assurance of the safety of a system that has been composed from 
modules. 

Systems and software have been designed according to modularity since many years ago. The safety 
cases are important to reduce safety and commercial risks. The motivation for a safety case is to: (i) 
provide arguments to demonstrate that safety properties are satisfied and risk has been mitigated (ii) 
provide a mechanism for review and (iii) provide interworking of different standards. Some progress 
towards the road to certification has been achieved in the MultiPARTES project. A safety concept for 
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mixed criticality systems based on multicore hypervisor has been defined. Most important, this safety 
concept has been assessed positively by TÜV Rheinland providing a compliance statement according 
to IEC 61508. Modelling tools for the consistency checking of mixed criticality designs have been 
developed as well to enable design and early validation of safety properties. In this context, a 
consistently designed and partitioned safety case limits the impact of changes to a reduced area of 
the safety case. 

The modular approach is used in automotive or avionic domains for instance, where the diverse 
number of options and variants makes the design, and in turn the certification, extremely complex. It 
reduces cost of the re-certification of changed systems, because it provides a system composed from 
design modules, which ideally can be replaceable, such as jigsaw pieces (see Figure 6), without 
affecting the safety-related properties of the system. 

+ =

Original certified 

System, Sub-system or 

element

System, sub-system or 

element increment
New System, sub-

system or element 

+ =

Original certified 

System, Sub-system or 

element

System, sub-system or 

element change

New System, sub-

system or element 

 
Figure 6: Modularity approach. 

This section aims to expose the modularity requirements varieties among different domain standards 
(e.g., IEC 61508, ISO 26262, EN 50129 and DO-178 + IMA). 

2.3.1 IEC 61508 

Modular certification provides arguments by which already certified or qualified components or parts 
of the system that have been designed with safety life-cycles (even if they are not certified) can be 
applied in activities of the mixed-critical design.  

The product families are a different use case of modular certification. If a product is built with modular 
safety cases and then the product suffers a modification, the reproducibility of the certification 
according to IEC 61508 can be less costly, since modular safety cases can be re-used and the problem 
solving pattern has been already provided. Modular certification implies that the used modules are 
pre-certified according to IEC 61508 to achieve a certain SIL Claim Level (CL). Therefore, all hardware 
and software components shall be developed and certified according to IEC 61508 to fulfil with the 
required Safety Integrity Level (SIL). 

Modular Safety Cases shall cover the following aspects:  

 Analysis of the system regarding safety needs; 

 Strategies adopted to achieve the desirable SIL (Safety Integrity Level); 

 Techniques and measures to control random faults; 

 Demonstration that selected techniques are sufficient to fulfil safety needs.  
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The architecture of the system must be well defined and preferably divided into subsystems, where 
some of those subsystems can form Modular Safety Cases (e.g., Input/output Modules, Memory Units, 
On/Off chip communications, Safety/Non-Safety interactions, etc.) as shown in Figure 7. 

 

Figure 7: System structure based on sub-systems and elements. (IEC 61508-4, Figure 3) [12] 

IEC 61508 is designed to be flexible enough to accommodate emerging technologies without breaking 
the fundamental concepts (IEC 61508-1). Fundamental concepts of IEC 61508 are applicable to COTS-
based systems. IEC 61508-2 defines that whenever an existing verified subsystem shall be 
implemented, the total mapping of the subsystem shall be carried out for selection of required specific 
implementation functions or performances. 

IEC 61508-3 defines that when a software design incorporates pre-existing reusable software, which 
may have been developed without taking into account the systems requirements, the software safety 
requirements specifications must be satisfied. These safety requirements specify that a pre-existing 
reusable software element shall meet the following requirements for systematic safety integrity: 

a)  meet the requirements of one of the compliance routes 

- Route 1S: Compliant Development 
Compliance with the requirements of IEC 61508 for the avoidance and control of 
systematic faults in software 

- Route 2S: Proven in use 
Provide evidence that the element is proven in use, taking into account that the relevant 
iterations of hardware and software shall be identified, evaluated and documented. 

- Route 3S: Assessment of non-compliant development (not applicable). 

b) Provide a safety manual for compliant items (see Annex D of IEC 61508-2 and Annex D of IEC 
61508-3) 

According to IEC 61508, ”a compliant item is any item (e.g., an element) on which a claim is being 
made respect the clauses of IEC 61508” [13]. This standard defines two kinds of compliant items: 
hardware (microcontrollers, ASICs, FPGAs, etc.) and software (RTOS, communication protocol stack, 
etc.). These two types of compliant items shall provide a safety manual, where shall be specified their 
functions, that are required to ensure that the system meets with the IEC 61508 requirements. The 
safety manual enables the integration of the compliant item into a safety related system, sub-system 
or element. 

In case of third party components, all relevant claims of compliance items made by the supplier and 
other parties shall be included in the functional safety assessment. In case that the compliant item 
was assessed as a part of a larger system, precise identification of system should be documented. 
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 Hardware Compliant Items 

In case of hardware compliant items, it will be necessary that the supplier of a compliant item 
makes available the information of the safety related system (see IEC 61508-2, Section 7.4.9.3) 
to the designer; providing it in the safety manual. The requirements of this safety manual are 
provided by Annex D of IEC 61508-2 (Compliant item in general). 

One example of a hardware compliant item is a mixed criticality network, which involves the 
transfer of the information between different locations. According to IEC 61508-2, there exist two 
transmission systems or channels (white and black channel). In this case, modularity approach 
makes possible that a modular safety case of a mixed criticality network contains a safety 
communication layer, which can be re-used as a compliant item for different developments of 
products, systems or sub-systems. 

 Software Compliant Items 

As in case of hardware compliant items, it will also be necessary to make a safety manual of 
software compliant items. In the safety manual will be documented the information related with 
the compliant items. This information is required to enable the integration of the compliant 
item(s) into the safety related system, subsystem or element. For this reason Annex D of IEC 
61508-3 shall be followed. This annex specifies the contents that shall be contained by the safety 
manual. Additionally, in case of software compliant items, it will be necessary to dispose of the 
hardware system information required by IEC 61508-2. 

For example, in case of a hypervisor, this is considered as a compliant item. In the same way, the 
safety partitions generated by the hypervisor are also considered as compliant items, so, they 
must follow IEC 61508-3 Annex D. The partitions, which are not related to the safety functions, 
are not considered as a compliant item. In case of hypervisor, one shall also provide the non-
interference (spatial and temporal) between partitions following the techniques that are defined 
in IEC 61508 Annex F. 

2.3.2 ISO 26262 (Road Vehicle) 

ISO 26262 provides its own component model, where an item can be seen as the system or the 
systems under consideration. As shown in Figure 8, a system can be hierarchically structured and 
consists of a set of functions.  

1

n

1

n

Function System

Item

ElementComponent

Part/Unit

m n

1

n

n

1

 

Figure 8: Relationship of system, item, element, and hardware part and software unit. [14] 

Each system is composed by a set of components that can be hierarchically structured as well. Systems 
are elements or are composed by elements [15]. A component is a non-system level element that is 
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logically and technologically separable and is comprised of more than one hardware part1 or of more 
software units2.  

ISO 26262 furthermore supports modular construction of items, including levels of abstraction for the 
elements, as shown in Fehler! Verweisquelle konnte nicht gefunden werden.  

System of 
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Figure 9: Items, Elements in ISO 26262 [14]. 

ISO 26262 defines term of Safety Element out of Context (SEooC). SEooC is a safety element for which 
an item does not exist at the time of the development. A SEooC can be a subsystem, a software 
component, or a hardware component. 

The development of sub-system or hardware component out of context implies that the prerequisite 
work products are replaced by assumptions on ASIL capabilities. In this case, the system design 
specification (ISO 26262-4, Clause 7) and the technical safety concept (ISO 26262-4, Clause 6) are 
replaced by assumptions. 

The development of software component out of context (see Figure 10), implies that the prerequisite 
work products are replaced by assumptions on ASIL capabilities. In this case, the system design 
specification (ISO 26262-4, Clause 7) and the technical safety concept (ISO 26262-4, Clause 6) are 
replaced by assumptions. However, the software development out of context can also start with either 
the software architectural design (ISO 26262-6, Clause 6) or with the software unit design and 
implementation (ISO 26262-6, Clause 8). So, the software safety requirements (ISO 26262-6, Clause 6) 
and the architectural design specification (ISO 26262-6, Clause 7), can be replaced by assumptions. 

                                                           
1 Hardware which cannot be subdivided 

2 Atomic level of software component of the software architecture that can be subjected to standalone testing 
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Figure 10: ISO 26262 Safety Element out of Context (SEooC). [14] 

2.3.3 EN 50129 (Railway) 

This standard is applicable to safety-related electronic systems (including sub-systems and 
equipment) for railway signalling applications [16]. This standard defines the conditions that shall be 
satisfied in order that a safety-related electronic railway system/subsystem/equipment can be 
accepted as adequately safe for its intended application. 

 Evidence of quality management. 

 Evidence of safety management. 

 Evidence of functional and technical safety. 

The documentary evidence that these conditions have been satisfied shall be included in a structured 
safety justification document, known as safety case. The safety case shall contain the documented 
safety evidence for system/sub-system/equipment, before the safety related system can be accepted 
as adequately safe. The safety case document structure shall be the following: 

I) Definition of system/sub-system/equipment 
II) Quality Management Report 
III) Safety Management Report 
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IV) Technical Safety Report 
V) Related Safety Cases 
VI) Conclusions 

2.3.3.1 Evidence of Quality Management 

The first condition for safety acceptance implies that the quality of the system, sub-system or 
equipment has been, and shall be controlled by a quality management system (see EN 50126) during 
its life-time. Evidence to demonstrate this shall be recovered in the Quality Management Report, 
which forms part of the safety case document structure (II). 
The purpose of the quality management system is to minimize the incident of human errors at each 
stage in the life-cycle, and thus to reduce the risk of systematic faults in the system, sub-system or 
equipment. 

2.3.3.2 Evidence of Safety Management 

The second condition for safety acceptance, which shall be satisfied, is that the safety of the system, 
subsystem or equipment has been, and shall continue to be, managed by RAMS management process 
described in EN 50126. The use of Safety Management process is mandatory for Safety Integrity Levels 
1 to 4 inclusive. Documentary evidence to demonstrate compliance with the safety management 
process throughput the life cycle shall be provided in the Safety Management Report, which forms 
part of the Safety Case (III). 

2.3.3.3 Evidence of Functional and Technical Safety 

In addition to the evidence of quality and safety management, a technical evidence for the safety 
design shall be documented in the Technical Safety Report. This document forms the part IV of the 
Safety Case for the system/sub-system/equipment. This document is mandatory for safety integrity 
level 1 to 4. In case of safety integrity level 0, it falls outside the scope of this safety standard. Technical 
safety report headings are the following: 

I) Introduction 
II) Assurance of correct functional operation 
III) Effects and Faults 
IV) Operation with external influences 
V) Safety-related application conditions 
VI) Safety Qualification Test 

2.3.3.4 Safety Assurance and Approval 

This sub-clause defines the safety acceptance and approval process for safety-related electronic 
system/sub-system/equipment.  

Three categories of Safety Case can be considered (See Fehler! Verweisquelle konnte nicht gefunden 
werden.): 

 Generic Product (GP) Safety Case: A generic product that can be re-used for different 
independent applications (e.g., be an American Windows, running on a PC) (the platform). 

 Generic Application (GA) Safety Case: A generic application can be re-used for a class/type of 
applications with common functions (the type). 

 Specific Application (SA) Safety Case: A specific application is used for only one particular 
installation (installed product). 
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Figure 11: Dependencies between safety case and safety approval. [16] 

Figure 12 shows the structure of each safety case categories and the procedure to obtaining the safety 
approval for each one. Although the procedures for obtaining the safety approval are basically the 
same, separate safety approval is needed for the application design of the system and for its physical 
implementation. The safety case for specific application is subdivided into two portions: I) the 
application design safety case that contains the safety evidence for the theoretical design of the 
specific application, and II) the physical implementation, which shall contain the safety evidence for 
the physical implementation of the specific application.  
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Figure 12: Safety acceptance and approval process. [16] 

2.3.4 DO 178 + IMA (Avionic) 

DO 178 defines a component as ”a self-contained part, combination of parts, sub-assemblies or units, 
which performs a distinct function of a system” [17]. It defines also two types of components: 
modifiable and not modifiable components. A modifiable component is part of the software that is 
intended to be changed by the user, whereas a non-modifiable component is not intended to be 
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changed by the user. The non-modifiable component should be protected from the modifiable 
component to prevent interference in the safe operation of the non-modifiable component. This 
protection can be achieved by hardware or by software (e.g., software partitioning). 

In case of some airborne systems, an equipment may include optional functions which may be selected 
by software options rather than be selected by hardware and which are not intended to be used in 
every application. In Section 5.4.3 of DO 178 are defined the considerations for deactivated code. This 
document also specifies that COTS software that can be included in airborne systems or equipment 
should satisfy the objectives of this document. 

R - D - C - I

R - I

R - C - I

R - C - I - C - I - R - D - C - I

Software 

Product

System Requirements 

Allocated to Software

Component W …...

Component X …...

Component Y …...

Component Z …...

R = Requirements

D = Design

C = Coding

I = Integration
 

Figure 13: Component based Software Incremental Development Process. [17] 

Figure 13 illustrates the software development process sequence, defined by DO-178, for components 
of a single software product with different software lifecycles. Component W implement and develops 
a set of system requirements to define a software design, which will be coded into source code, to 
finally integrate it into the hardware. Component X shows the use of Component W, and the 
integration of its requirements into the last component, this way, resulting in a new component. 

Component Y illustrates the use of a simple, partitioned function that can be coded directly from the 
software requirements.  

Component Z illustrates the use of a prototyping strategy. The goals of prototyping are to better 
understand the software requirements and to mitigate development and technical risks, through the 
continuous evaluation and continuous refinement of the software project requirements. 

Some avionic companies (e.g., Boeing and Airbus) are using Integrated Modular Avionic (IMA) as their 
architecture for present and future product developments. IMA is a flexible distributed real-time 
network airborne system, which is capable of supporting numerous mixed criticality applications. The 
IMA concept provides an integrated modular architecture, where application software can be ported 
across common components (e.g., hardware, OS, middleware). It also provides, many potential 
benefits, including reduction of the number of platforms, which decreases the cost, performance gain 
due to latency reductions, simplified software updates (changes), allowing integration of new 
applications without hardware changes. In the other hand, although IMA provides significant benefits 
to the aircraft, it can present certification challenges.  
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2.4 IMA, Certification and Hypervisors 

One of the key ideas of the Integrated Modular Avionics (IMA) is the integration in the same module 
of several software functions that share the same hardware resources. For this integration to be 
reliable and safe, these software functions are isolated into partitions in terms of space and time: a 
partition can only access its own memory address space and is allowed to execute only during pre-
allocated time windows. This isolation principle, widely known as Time and Spatial Partitioning (TSP), 
is directly applicable when integrating functions of different levels of criticality.  

The specific frame for the certification of IMA-based systems in the commercial aircraft industry, 
accepted by both the Federal Aviation Administration (FAA) and European Aviation Safety Agency 
(EASA) certification bodies, is the DO-297/ED-124 standard, which "contains guidance for Integrated 
Modular Avionics (IMA) developers, application developers, integrators, certification applicants, and 
those involved in the approval and continued airworthiness of IMA systems in civil certification 
projects. It is focused on IMA-specific aspects of design assurance." [18]. 

A key component of the IMA architecture is the partitioning kernel, which is the software component 
providing the isolation capabilities among all software components operating on the same computer. 
The ARINC 653 [19, 20] standard defines the behaviour, properties and interface provided by IMA 
partitioning kernels. Certification of the software components of an airborne system is regulated by 
DO 178C/ED-12 for the civil aviation industry, thus including the partitioning kernel and the partitions 
(isolated software components). The previous section 2.3.4 provides further details on DO 178C. 

While there are many technologies suitable to implement partitioning kernels in the IMA style, there 
has been a renewed interest in the hypervisor technology for such concern. 

2.4.1 Hypervisor Technology 

Hypervisor (also known as virtual machine monitor VMM) is a layer of software (or a combination of 
software/hardware) that allows running several independent execution environments in a single 
computer. Although the basic idea of virtualizing is widely understood: any way to recreate an 
execution environment, which is not the original (native) one; there are substantial differences 
between the alternative technological approaches used to achieve this goal. 

The key differences between hypervisor technology and other kind of virtualization (such as Java 
virtual machine or software emulation) are performance and complexity. When targeted to 
embedded applications, bare-metal hypervisor are designed to virtualize only the critical hardware 
devices necessary to create the isolated partitions. This allows to limit the complexity of the software 
and to guarantee real-time performances.  

Following the lead of IMA, TSP and virtualisation, hypervisors are a promising technology [2, 21] for 
modular certification and the development of product families even outside the avionics domain. The 
isolation of the software components allows increasing the confidence in that safety and reliable 
functions can be independently developed and assessed, and later on integrated with other functions 
without adverse effects. 

XtratuM [21] is a bare-metal hypervisor designed to provide TSP for safety critical applications. Its 
main features are: 

 Memory management: XtratuM uses the hardware mechanisms to guarantee the isolation 
of the memory spaces of the partitions.  

 Scheduling: Partitions are scheduled according to a cyclic scheduling policy, enforcing their 
temporal isolation. 

 Health monitor (HM): It is the part of XtratuM that detects and reacts to anomalous events 
or states. The purpose of the HM is to discover errors at an early stage and try to recover or 
confine the faulting subsystem in order to avoid or reduce the possible consequences. 
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2.4.2 IMA in Space Applications 

In the recent year, the interest for the Integrated Modular Architecture (IMA) has reached the space 
domain. The European Space Agency (ESA) is currently undertaking activities, by means of the SAVOIR-
IMA workgroup, for the definition of a reference avionics architecture based on the IMA concept [22]: 
"The group analyses the impact of the concept of IMA on the overall current reference architecture 
(hardware, software and communication). Modifications to the hardware architecture are identified 
to improve compatibility with time and space partitioning, primarily taking into account the computer 
architecture [...]". The topic also has recently received attention from the NASA [23]. 

2.5 Certification and Testing  

Certification and testing are two different activities, which although related, shall not be confused. As 
explained above, certification denotes the activities carried out to confirm that a product exhibits 
certain characteristics. The resulting certificate confirms that enough evidence supporting the claim 
of interest was available. Product certification mainly targets safety and quality characteristics. By 
contrast, testing is the activity of assessing (or measuring) specific capabilities of a given product. 
Software testing for instance may cover correctness, performance, security or usability to name a few. 
While certification is about making a decision based on collected evidences, testing is a means of 
obtaining such evidences.  

Both certification and testing are subject to obsolescence when the product of interest changes. For 
software, automation has been the key to better cope with the impact that changes have on testing. 
Automated testing, where tests are automatically run as soon as the product is changed, turned 
testing into a key activity supporting the overall development process: detecting defects, regression, 
and deviation from the requirements. By contrast, certification is less prone to automation due to its 
human-based nature. Yet, as certification consumes the evidence produced by testing activities, 
automated testing may certainly contribute to faster re-certification. 

Building software product lines challenges both testing and certification activities. Testing a software 
product line as a whole requires assessing the abilities (e.g., correctness) of every single product which 
can be derived from it. Similarly, certifying a product line requires collecting and scrutinizing evidences 
given for every single product. In the following sections, we review techniques from the product line 
engineering field, which could help move towards certification of product lines, especially through 
testing. 

3 Families of Systems – Product Lines  
 

3.1 A Brief Introduction to Variability Modelling 

Modelling is a core practice in science and engineering. In short, modelling aims at easing the 
resolution of a particular problem while preserving our ability to gain hindsight about it. Regardless of 
the approach, any modelling activity is always strongly coupled to the problem it aims at. Modelling is 
inherently difficult because it requires striking the right balance between discarding enough of the 
reality to tame its complexity and still retaining enough to maintain significance. This paradox ― 
known in engineering as the principle of incompatibility [24] ― directly impedes our ability to reuse 
models.  

Modelling experts tackle complexity with to two main leverages: abstraction and separation of 
concerns. Abstraction discards any aspect of the reality that is irrelevant to the problem of interest 
whereas separation of concerns divides the problem into separate sub problems of smaller 
complexity. When exploiting the resulting models, hindsight often comes from our ability to 
distinguish between what varies and what remains. Mathematics and especially geometry, topology 
and algebra produced many models where the hindsight comes from the duality between what 
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changes and what remains. Differential equations, to name only one, capture invariant relationships, 
which permit to understand how complex dynamics varies. 

From the modelling standpoint, PLE explicitly captures variability in order to maximize reuse 
throughout the development and maintenance process, in order to improve productivity while 
reducing risk and cost. PLE therefore distinguishes between what remains and what varies in a system. 
The "things that remain" often reflect hard constraints in the application domain of interest whereas 
parts opened to variations reflect potential areas for business and innovation. The main objective is 
therefore to automate the derivation of a new product from the prescription of its features. 

3.1.1 Capturing Similarity and Variability 

Modelling the variability among a family of products relies on the notion of feature. A feature stands 
for "a unit of functionality of a software system that satisfies a requirement, represents a design 
decision, and provides a potential configuration option" [25]. Products are thus characterized by the 
features they provide, and in turn, product lines are characterized by the union of all features provided 
by their products. 

The simplest way to capture the commonalties (resp. the variability) among a set of products is using 
a feature table. The table relates the set of products with the set of possible features: specifying for 
each product the features it provides. This approach is commonly used to provide customers with a 
comparison of a range of products such as mobile phones, TVs, etc. 

A better way to capture variability within a set of products is through a feature model [26, 27]. A 
feature model gathers the commonalities within a product line into a tree of features, where some 
features are mandatory (the commonalities) whereas other may be optional or exclusive (the 
variability). Figure 14 illustrates the graphical notation associated with such feature models on a 
subset of what could be the DREAMS platform. This simplified DREAMS platform encompasses 
hardware components, hypervisors and operating systems (OS). The platform may or may not include 
hypervisors, which are either based on OS virtualization or on hardware virtualization, or both. By 
contrast the platform will always include an OS, which will be one of the three possible alternatives 
listed in Figure 14. 

 
Figure 14 A simplified feature model capturing the variability of hardware platforms 

The proposed notation is not expressive enough to capture all the additional constraints that may 
exist and restrict the set of products which can be derived from a given product lines. In our example, 
it may be that some OS virtualization technologies are not available for all operating system, and the 
choice of one (say VMWare) restricts the possible OS. 

Orthogonal Variability models (OVM) [28] and its successor the common variability language (CVL) 
[29, 30] attempted to overcome the inherent tight coupling between the product derivation 
procedure and the underlying technologies. They resolve variation points and variants, not anymore 
in the technological space, but on a domain-specific model. The resulting model of the product can 
thus be finalized using the associated domain-specific tooling. 

3.1.2 The BVR Model 

BVR (Base Variability Resolution models) is a language built on CVL technology, but enhanced due to 
needs of the industrial partners of the VARIES project (http://www.varies.eu), in particular Autronica. 

http://www.varies.eu/
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BVR is built on CVL, but CVL is not a subset of BVR. In BVR we have removed some of the mechanisms 
of CVL that we are not using in our industrial demo cases that apply BVR. We have also made 
improvements to what CVL had originally. For the purpose of DREAMS we may just say that BVR is a 
continuation of the CVL language with associated tooling. Figure 15 below illustrates the variability 
model of the simplified DREAMS platform in the BVR tool.  

 
Figure 15 The variability model of the DREAMS platform modelled using the BVR tool 

3.1.3 Exploiting Variability 

As mentioned above, the major challenge of product lines engineering is to automate the construction 
of new products from the sole prescription of their features. We review below the main approaches 
proposed in the SPL literature, further detailed in [31]. 

The simplest solution is the use of pre-processor directives to disable irrelevant features in the code 
base, before it is compiled and linked. This approach implies a direct mapping from features to some 
syntactic programming constructs such as routines, modules, or classes. It also remains tightly coupled 
to the underlying technology (i.e., the programming language) as the feature selection mechanism is 
hardcoded in the source code. 

A better solution is to rely on recent advances in middleware technologies such as components- or 
service-based platforms. In such execution environments, one can configure (and reconfigure) a 
running system, by deploying and "wiring" the needed components. Provided that features are 
implemented by single components, the feature decomposition then lends itself naturally to the 
underlying decomposition into components. 

Features orthogonal to the breakdown into components or services (e.g., security, logging) can be 
managed by tools such as BVR, which resolve variability in the domain model, rather than in the 
technological space. 

3.2 The Benefit of Product Lines 

3.2.1 The Organizational Aspect of Product Lines 

As mentioned above, the key benefits brought by PLE go far beyond the mere technicalities of 
products' derivations: PLE implies a global shift from a technical to a strategic understanding of reuse. 
By focusing on a family of products, PLE forces managers, analysts, designers, and other stakeholders 
to consider their activity in the light of the complete market niche that is targeted and how the 
products fit in. PLE forces to anticipate the boundaries of the application domain where reuse is worth 
considering. As shown by Figure 16 below, it ideally permits to amortize and capitalize on any core 
asset produced during the development process including for instance requirements, 
documentations, test plans/cases and user support. 
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Figure 16 The cost of Software Product line [32] 

This systematic reuse significantly improves the overall development process. The reuse of artifacts 
reduces the development effort as it avoids duplicating development effort. It also increases artefacts' 
internal quality as the probability to find and correct defects increases with the reuse rate. Reuse 
eventually ensures the internal spread and consolidation of the domain-specific knowledge 
accumulated throughout successive products developments. 

Market agility also significantly gains from PLE adoption. PLE enables faster responses to new 
customers' needs and more generally to new market trends. Existing products can be quickly extended 
with other features already available in other products and new products can be built from new and 
yet unforeseen combinations of features requested by customers. PLE adoption may thus bring a 
competitive edge as it empowers the user with the ability to build the product that fits her very needs. 

3.2.2 Configuring Products 

Automated product derivation is the most emphasized feature of software product lines. By giving the 
user the possibility to select the features that she needs, it becomes possible to check the consistency 
of the whole product line, check the consistency of a given feature prescription, and to assemble the 
prescribed products.  

Checking the consistency of a product line as a whole consists in ensuring that there exists at least one 
single product that meets all the constraints embedded in the associated feature model. Interestingly 
feature models (see Section 4.1.1) can be reduced to propositional logic formulae [33], and their 
validation thus boils down to the satisfiability problem (SAT). Although SAT is well-known to be a NP-
Complete problem, recent advances in SPL [34] showed that industrial size SPLs form a very specific 
subset of SAT instance, which existing SAT solver can address. 

Checking the validity of a specific feature prescription ensures that the prescribed features meet the 
constraints carried by the feature model. The prescription is valid if and only if the underlying variable 
assignment satisfies the associated logical formulae. SPL thus permits to detect automatically invalid 
configurations that will not work in practice. 

Finally, assuming a given feature prescription is consistent with its enclosing SPL, it is possible to 
automated ― possibly only partially ― the construction and the validation of the associated products. 
This construction step is tightly coupled with the reuse capabilities of the underlying execution 
platform. 

3.2.3 Dynamic Product Lines 

The extra flexibility to adjust products to customers' needs can also be leveraged at runtime. The 
knowledge carried by product lines can be used to dynamically respond to changes in the system's 
environment by activating (resp. passivating) selected features. As its environment evolves, the 
system thus transitions from product to product in order to meet specific objectives, such as 
performance or user satisfaction. 
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The use of software product lines at runtime ― so called dynamic software product lines (DSPL) [35] 
― provides a framework to ease and constrain future maintenance and evolution. It enables the 
specification of a "safe" envelope within which, maintenance and evolution have been anticipated and 
potentially validated. The DSPL framework also permits to automate these maintenance or evolution 
activities, by plugging in a reasoning engine that autonomously decides which product best fits the 
current environment. Such automated decisions range from the mere selection of the most suited 
product among a set of predefined ones to the dynamic exploration of the product space by successive 
feature activations (resp. passivation). Our ability to verify, validate and certify DSPL decreases with 
the size of the product lines and the complexity of the associated decision procedure. 

3.3 Product Lines and Modularity 

Building highly reusable software pieces has been the major impetus for several breakthroughs in 
Software Engineering: routines, modules, objects, components, services, aspects, etc. While 
reusability lacks a precise and well accepted definition, it is worth to note the distinction that exists 
between reused and reusable software: Reused components are not necessarily reusable per se (they 
may be the only available alternative) and reusable components are not necessarily reused (poor 
visibility, wrong timeline, etc.). Yet, the technologies successively proposed to develop reusable 
software pieces shed some lights on their key characteristics: effectiveness, generality, cohesion, 
substitutability and visibility, to name only a few. 

 Effectiveness is the sine qua none condition for reusability: software that fails doing what they 
are supposed to do will certainly not be reused as is.  

 Generality reflects the extent to which the problem solved by the software is common and 
directly impacts its reusability. The use of software pieces that only solve linear differential 
equations is for instance restricted to linear mathematical models.  

 Cohesion characterizes pieces of software that have a single and well-defined responsibility. 
Cohesion requires some level modularity, in order for different concerns to be isolated into 
different units (i.e., modules). The resulting highly cohesive units are more easily understood, 
and in turn, more easily reused. Object-oriented technologies significantly contribute to the 
definition of general and cohesive abstractions. 

 Substitutability calls for the presence of explicit and well defined interfaces, which enable the 
(dynamic) replacement of individual software pieces. Substitutability was a limitation of 
classical object-oriented technologies and motivates the development of components-based 
technologies. 

 Visibility reflects the ability for a software piece to be identified and reused on the spot. 
Service-oriented architecture and the underlying publish-discover-invoke scheme directly 
promote higher visibility. 

By contrast with the technologies mentioned above, a software product line is a framework which 
helps eventually deliver products made out of a set of reusable software pieces. To be effective, a 
software product line has to build upon an associated reusable technology: The more reusable are the 
available components, the more effective the product line will be. SPL contribute to realize the 
potential existing within an existing set of application specific and reusable software pieces. 

In addition, a software product line defines a bounded context, within which reuse if worth 
considering. In practice, this context becomes delineated by the associated software architecture, 
which reduces the need for reusability. Software components only need to meet the reusability 
requirements within this architecture, and need not be generally reusable. Assumptions regard for 
instance communication protocols, middleware technologies, data encoding, etc. Building a software 
product line is thus tightly coupled to key architectural choices and eases the identification and 
development of the missing reusable software components. 
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Finally, as mentioned previously, reuse as understood in SPL goes beyond the sole underlying 
technology. SPL aims at reusing as much as possible any assets produced during the development 
cycle: requirements, analysis, tests, and possibly certification evidences. 

4 Piecewise Certification 

As product line technologies build upon the reusability of the underlying software technologies (e.g., 
objects, components, services), they form a promising approach to reduce the cost of certification and 
recertification, by maximizing reuse of certified units, here-after called "pieces". Yet, reuse is always 
challenging as it is difficult to ensure that third-party components will perform correctly in an 
environment for which they were not explicitly designed. Among others, the $ 500 million crash of 
Ariane 5 in 1996 [36], remains a strong evidence of the opposition between reuse and verification and 
in turn, certification. We review below the key techniques available to verify reusable piece of 
software and we discuss how they could be extended to certification. 

4.1 What is a "Piece"? 

4.1.1 Pieces Defined by Input and Output Parameters 

As mentioned before, various software units of reuse have been proposed in the literature ranging 
from simple routines to high level services. From the standpoint of certification and recertification, a 
key aspect is the substitutability of a part: the ability to replace a unit by another one, while still 
guaranteeing that the whole is operational (e.g., safe, correct). The need for substitution of individual 
parts drove the development of component-based system, where "a software component is a unit of 
composition with contractually specified interfaces and explicit context dependencies only. A software 
component can be deployed independently and is subject to third-party composition" [37]. This general 
definition encompasses any piece whose dependencies with its environment are well specified so as 
to enable its substitution by an equivalent.  

4.1.2 The Assume/Guarantee Paradigm 

By analogy with the way relationships between people are specified by contracts constraining the 
rights and duties of each party, relationships between software pieces follow contracts specifying the 
assumption a piece makes and the guarantees it provides. Ultimately, this so called assume/guarantee 
paradigm aims at building the specification of a complete system in a bottom-up manner: by 
assembling the individual specifications of its parts.  

A textbook example of contract characterizes the reuse of a square root function, called "sqrt". As 
described below, this contract expresses under which conditions one can calculate the square root of 
a real number. 

sqrt(in x: Real, out r: Real) 

assume: 𝑥 ≥ 0 

guarantee: 𝑥 = 𝑟2 

It is worth to note that the contract is completely disconnected from the algorithm actually used to 
compute the square root. The assume/guarantee paradigm is indeed strongly linked with information 
hiding as it requires pieces to expose the necessary and sufficient information to enable reuse. Ideally, 
this contract could also include extra-functional concerns, such as memory consumption, energy 
consumption or execution time, although such extensions are generally difficult to leverage for formal 
verification. 

Design by contract [38] is a direct application of the assume/guarantee ideas in Software Engineering 
practices. Following ideas of the Floyd-Hoare logic [39], each routine is equipped with pre and post 
conditions capturing its semantics. Pre-conditions explicit the assumptions made by the routine to 
perform correctly, whereas the post-conditions specify the properties guaranteed after completion. 
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Such contracts are fragments of specification embedded at runtime into assertions in order to detect 
discrepancies between the specification and the actual behaviour of the routines. Coupled with testing 
techniques, contracts have shown to be an effective verification and diagnostic tool. As we shall see 
in the next section, contracts can also be used to verify various types of properties on software 
assemblies. Contracts are actively researched as a means to capture various software interactions, 
especially synchronization and quality of service [40]. 

4.2 Piecewise Verification and Piecewise Testing 

Verification in Software Engineering is driven by two main approaches: automated testing and formal 
verification. Testing takes products at the end of development iterations and checks their adherence 
to specification (correctness, performance, usability, etc.) By contrast, formal verification builds 
mathematical models of systems and proves their correctness, performance, usability, etc. We review 
below the main characteristics of the two approaches. 

4.2.1 Formal Contract-based Verification 

A variety of assume/guarantee specifications and other contract-based specification have been 
developed as a means to compose (resp. decompose) formal system specifications. We shall restrict 
ourselves to an overview of the main ideas, but interested readers may found a comprehensive review 
of contract-based models in [41]. As explained assume/guarantee specification are couples (𝐴, 𝐺) 
where 𝐴 models the assumption a component has on its own environment, and 𝐺 models the 
guaranties it offers to its environment. 𝐴 and 𝐺 are generally formal processes, whose composition 
may be subject to safety and liveness issues. The composition of such processes is yet not as 
straightforward as it may seems: mutually dependent components lead to circular reasoning which 
must handle carefully. To this end, various composition operators, often denoted by ∥, have been 
developed for specific models. Communicating sequential processes (CSP) [42], the temporal logic of 
actions (TLA) [43, 44], Focus [45] or BIP [46] to name a few are examples of formalisms using such 
composition rule. 

More recently, there has been an attempt to combine such formal verification techniques with 
architectural description languages (ADL). Wright [47] for instance pioneered the formalization of 
components and their assemblies into well-defined software architectures. Various ADLs have been 
then proposed such as ACME, ArchJava, UML 2.x [48, 49], SysML [50] or Modelica [51]. 

4.2.2 Testing of Product Lines 

The idea of automated testing is to invoke a piece of software with specific inputs for which the 
expected outputs are known a priori in order to detect discrepancies with actual outputs. We review 
below the main techniques developed to test product lines technologies. Interested readers may find 
a more comprehensive treatment in [52, 53]. We highlight two main techniques, namely the 150 % 
model and the coverage array techniques, jointly developed by SINTEF and University of Oslo. 

Testing mainly varies depending on the scope of the system under test (SUT). At the finer scale, single 
routines are tested independently by so called unit-tests. At a medium scale, the interaction between 
two or more components is performed by integration tests. Finally the complete systems or product 
have to be tested by the end-to-end tests, checking specific usage scenarios. Execution time, 
complexity and cost of maintenance all grow as scale does. Unit, integration and system tests 
represent different activities in the development process: end-to-end tests relate to general 
requirement, integration tests to general design and unit tests to detailed design. Testing is a resource 
intensive activity so a "brute force" to SPL testing requiring to explicitly and separately test all possible 
products in not feasible. Testing SPL requires each activity be reconsidered under variability: The "W" 
development model, presented below, is an attempt to adapt the well accepted V-model to variability. 
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Figure 17 The "W model" [52]: an attempt to formalize the underlying testing in the context of SPL 

The W-model distinguishes between domain-testing (i.e., product-line) and application (i.e., product) 
testing. Domain-centric activities result in test artefacts (test-cases, test plan, etc.) which shall be 
reused across product from the family, whereas application-centric activities result in artefacts 
tailored for a single specific product. It is worth to note the importance of having system tests for each 
possible product. Having a set of well tested components, each passing a separate large suite of tests, 
cannot detect issues occurring when two or more components interact. This problem, known as the 
feature interaction problem is one of the major challenges in SPL testing. We discuss below three main 
techniques addressing SPL testing: model-based testing, incremental testing and combinatorial 
testing. Interested reader may refer to [31] for additional details. 

In model-based testing (MBT), models are used to capture the desired behaviour of the SUT, the 
testing strategies of interest, or both. For instance, one can describe the system as a finite state 
machine, capturing the set legal inputs and the set of associated outputs. It is thus possible to generate 
a test suite (a set of test cases) to reach a specific coverage criterion. In the context of SPL, Cichos et 
al. [54] proposed to build for instance a 150 % model as a single state machine aggregating the 
behaviour of all possible products. This 150 % model can thus be scoped down to generate tests 
covering any product resulting from the product line. 

An alternative to minimize the cost of testing SPL is the use of incremental testing strategies. New test 
cases are generated based on the difference between the SUT and other products that have already 
been tested. Incremental testing exploits the relationship that binds SPL testing to regression testing: 
as regression testing aims at retesting a software piece that has changed, it can be used to test a new 
product, which conceived as an extension of an existing one.  

Another promising approach to SPL testing is the use of combinatorial interaction testing. The idea is 
to select a small subset of products, whose executions are likely to trigger feature interaction 
problems. As shown by Kuhn et al [55], SPL follows some sort of 80/20 rule: most bugs are related to 
a few parameters configurations. SINTEF developed a technique to automatically select a minimal 
subset of products that maximizes the number of interaction exercised during testing [34], and in turn, 
the likelihood of detecting a feature interaction issue.  
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Figure 18 The ICPL tool to efficiently test product lines [31] 

The associated too, called ICPL foster testing software product lines. The main contributions of this 
tool are summarized in Figure 18, testing SPL requires three main inputs:  

 A software system and its implementation artefacts 

 The feature model capture the inherent variability, and in turn the set of possible variants, 
which can be derived from the given software artefacts.  

 A set of test cases used to validate products derived from the systems. 

The first step consists in sampling the space of possible products, in order to cover the possible t-wise 
interactions between features (i.e., 1-wise ensures that all features are selected at least once, whereas 
2-wise coverage ensures that each couple of feature is selected at least once). The resulting products 
can thus be automatically built by assembling existing software artefacts, and tested using the 
provided test cases. 

4.3 What do Standards Say about Piecewise Certification? 

Ideally, any changes in the product or in the related development process shall trigger the re-
certification of the newly derived products. As shown below by Figure 19, re-certification triggers 
include changes in the product, changes in the process, but also changes in the associated standard 
or in the legislations that apply to the product.  
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Figure 19 Modification handling process according to IEC 61508 

Certification and re-certification thus induce a significant increase of the development process costs. 
Collected data [56] showed for instance that certification expenses with respect DO-178B increase by 
a factor of 3 to 5, depending on the associated criticality level. Standards and especially safety 
standards such as ISO 61508 or ISO 26262 recognize indeed the need for reuse in both system 
development and certification (see Section 2.3).  

By analogy with advances in software architecture which enhanced reusability, modular certification 
aims at taming the high cost of certification by offering reusable certification pieces. If a system is 
made out of independently certified, replacing a component should only trigger the re-certification of 
that very component together with the overall assembly architecture. Recalling the techniques 
surveyed in Section 4.2, modular certification should be able to leverage existing piecewise verification 
techniques. 

4.4 Tool Certification and its Relationship to Piecewise Certification 

Certification is inherently about collecting evidence that a given product (in the case of safety) adhere 
to some given requirements. Eventually, there is never any absolute guarantee that the requirement 
hold and certification is only about consolidating the confidence one may have. Evidence can be 
collected from the product (functional safety), but also from the development process that was used 
to deliver the product. Knowledge about the process indirectly supports the product-based evidence, 
as a sound and generally well-established development process is more likely to yield a well 
understood product. 

Although various software development processes are possible, a widely accepted one is the V-model 
(see Section 4.2.2), which requires that every design step (i.e., requirement analysis, system design 
and implementation) be secured by appropriate verification and validation (V&V) procedures. 
Traceability is needed for certification purposes and all V&V activities shall be properly documented. 

Process certification also covers the tools that are used throughout the development process such as 
CASE tool, compiler, code generators, etc. For instance, the IEC 61508 distinguishes between three 
categories of tools depending on their impact on the final product. Category T1 includes all tools that 
do not directly impact the safety of the final product, such as text editors for instance. Category T2 
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includes tools contribute to improve safety, but which do not contribute to the running code such as 
static code analyzers or model-checkers. Finally, Category T3 includes tools that directly contribute to 
the running code of the product such code generators or compilers. While tools in the first category 
need not fulfil any specific requirements, the risk induced by using tools from Category T2 and T3 shall 
be assessed separately. In addition, tools from category T3 shall provide evidence that they meet their 
specifications. 

4.5 Piecewise Certification and Product Lines 

Various techniques and challenges related to the certification of safety-critical software systems are 
detailed in [57]. Product lines appeared as a promising approach for industries that produce families 
of such systems. The literature also reports about several attempts to apply product line ideas to 
safety critical systems in automotive or avionic, especially. Dordowsky et al. [58] described for instance 
how they built the NH90 product line of medium weight multi-role military helicopters, which resulted 
in 23 variants. While this work focused on using product lines to assemble software components, 
certification of modular components (w.r.t. DO-178B & AC20-148) is not addressed but is clearly 
identified as "a major cost block". Alternatively, Hutchesson and McDermid [59] showed how to 
leverage recent advances in model-driven engineering and component-based systems to foster to 
verification of high-integrity product lines. This approach contributes to provide the evidence needed 
to achieve modular certification. 

Habli [60] made a first attempt to apply product line techniques to safety analysis. He proposed a 
specific meta-model to capture safety concerns in a product-line so that product-line safety and 
development artefacts can be jointly reused in a traceable and justifiable manner. Braga et al. [61] 
described a product line of unmanned aerial vehicles (UAV) named Tiriba. This work is a first attempt 
to leverage feature models to foster certification, as they capture the impact that each feature has on 
certification and thus can contribute to the impact analysis required when deriving new products (see 
Figure 19). Conmy and Bate [62] discussed the challenges of using product line and component-based 
design to ease the assembly of safety arguments. 

Although product line engineering is perceived as a promising technique to do modular certification, 
research is still in its infancy. As identified above, product lines are a potential enabler for impact 
analysis, when products have to be re-certified. In practice re-certification will address the 
modification itself as well as the supporting evidence. All not affected parts of the safety related 
system as well as all affected evidence should be reused and need not to be re-certified. A second 
potential is the ability to easily identified compliant component or solutions that could meet the 
requirements of systems compliant with existing standards. Building blocks can be certified 
independently and yet be available as components off the shelf (COTS), ready for assembling new 
safety-critical systems. Only the resulting assemblies would therefore require certification. 
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5 Conclusion 

Mixed criticality systems are typically multi-core embedded systems that integrate applications or 
software components of various criticality levels. Traditionally, certification is a key concern of safety-
critical systems, and it ensures that enough evidence is provided to support the required safety 
integrity levels. When applied to mixed criticality systems, certification further complicated as it 
requires evidence that non-critical functions do not interfere with the safety-critical ones. In addition, 
as acknowledged by existing safety standards (e.g., ISO 61805, ISO 26262) one of the major costs in 
certification is the need for re-certification. Any change in the product, the requirements, or the 
standard triggers a new round of certification.  
Product line engineering has been proposed as a way to maximize reuse across an organization 
product's platform. By making the commonalities between products explicit, a product line permits to 
maximize reuse of components, and in turn, to reduce cost and development efforts. Although in 
practice, product line engineering primarily focus on the derivation of new products, any related 
development activity such as documentation or certification can  ̶  in principle – benefit from the PLE 
approach.  

From a process-oriented perspective, product line engineering is a promising approach to effectively 
reduce the cost of certification/re-certification. The existing attempts to apply product line ideas to 
mixed criticality systems primarily focus on reducing the development cost by maximizing reuse of 
software components. The issue of certification in product-lines, especially in safety-critical systems, 
is still in its infancy and has been mainly concerned with the construction of safety cases and with 
specific types of safety analysis. In the DREAMS project we intend to move beyond the state of art by 
combining recent advances in testing software product lines as a whole to foster the certification of 
safety-critical product lines. 
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Glossary 

ADL Architectural Description Language 

ASIC Application Specific Integrated Circuit 

BIP Behaviour, Interaction, Priority 

COTS Commercial-Off-The-Shelf 

CSP Communicating Sequential Processes 

CVL Common Variability Language 

DREAMS Distributed REal-Time Architecture for Mixed Criticality Systems 

DSPL Dynamic Software Product Lines 

E/E/PE Electrical/Electronic/Programmable Electronic 

EASA European Aviation Safety Agency 

EN European Standard 

EUC Equipment Under Control 

FAA Federal Avionic Administration 

FPGA Field Programmable Gate Arrays 

FSM/QM Functional Safety Management / Quality Management 

GA Generic Application 

GP Generic Product 

ICPL Isotope Coded Protein Labeling 

IEC International Electrotechnical Commission 

IMA Integrated Modular Avionic 

ISO International Organization for Standardization 

MBT Model Based Testing 

MCS Mixed Criticality System 

OS Operating System 

OVM Orthogonal Variability Models 

PL Product Line 

PLE Product-Line Engineering 

RAM Random Access Memory 

RTOS Real Time Operating System 

SA Specific Application 

SAT Satisfability Problem 

SEooC Safety Element out of Context 

SIL Safety Integrity Level 
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SIL CL SIL Claim Level 

SPL Software Product Line 

SUT System Under Test 

TLA Temporal Logic of Actions 

UAV Unmanned Aerial Vehicles 

V&V Verification and Validation 

WP Work Package 
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