

Distributed Real-time Architecture for
Mixed Criticality Systems

State of the Art of Piecewise Certification of Mixed
Criticality Systems

D 5.5.1

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version R 1.0 Date 2014-11-28 Deliverable No. D 5.5.1

Contact Person Øystein Haugen Organisation SINTEF ICT

Phone (+47) 913 90 914 E-Mail oystein.haugen@sintef.no

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 2 of 39

Contributors

Name Partner

Øystein Haugen SINTEF

Franck Chauvel SINTEF

Asier Larrucea IKERLAN

Jon Perez IKERLAN

Salvador Trujillo IKERLAN

Vicent Brocal FENTISS

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 3 of 39

Table of Contents

Version History .. Fehler! Textmarke nicht definiert.

Contributors .. 2

1 Introduction .. 5

1.1 What is a Mixed Criticality System? .. 5

1.2 What is Certification? .. 5

1.3 Similar Systems and Product Lines ... 6

2 Certification ... 6

2.1 Certification of a Single System .. 6

2.1.1 Certification is a Cooperative Process ... 6

2.1.2 The Need for Re-certification .. 7

2.2 Certification Standards ... 8

2.2.1 IEC 61508 on Safety Certification.. 9

2.3 Modular Certification .. 10

2.3.1 IEC 61508 .. 11

2.3.2 ISO 26262 (Road Vehicle) .. 13

2.3.3 EN 50129 (Railway) ... 15

2.3.4 DO 178 + IMA (Avionic) ... 18

2.4 IMA, Certification and Hypervisors ... 20

2.4.1 Hypervisor Technology.. 20

2.4.2 IMA in Space Applications ... 21

2.5 Certification and Testing ... 21

3 Families of Systems – Product Lines ... 21

3.1 A Brief Introduction to Variability Modelling .. 21

3.1.1 Capturing Similarity and Variability .. 22

3.1.2 The BVR Model .. 22

3.1.3 Exploiting Variability ... 23

3.2 The Benefit of Product Lines ... 23

3.2.1 The Organizational Aspect of Product Lines ... 23

3.2.2 Configuring Products ... 24

3.2.3 Dynamic Product Lines .. 24

3.3 Product Lines and Modularity ... 25

4 Piecewise Certification .. 26

4.1 What is a "Piece"? ... 26

4.1.1 Pieces Defined by Input and Output Parameters ... 26

4.1.2 The Assume/Guarantee Paradigm .. 26

4.2 Piecewise Verification and Piecewise Testing... 27

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 4 of 39

4.2.1 Formal Contract-based Verification .. 27

4.2.2 Testing of Product Lines .. 27

4.3 What do Standards Say about Piecewise Certification? ... 29

4.4 Tool Certification and its Relationship to Piecewise Certification .. 30

4.5 Piecewise Certification and Product Lines .. 31

5 Conclusion ... 32

Glossary ... 33

List of Figures .. 35

Bibliography .. 36

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 5 of 39

1 Introduction

Individual products or systems are not often designed and developed independently. They belong to
a product family so called product line. Products from the same product line are similar in many
respects, but remain different enough to require specific development activities. This deliverable aims
to describe the state of the art of certification of these systems, where it is attempted to achieve
optimal certification of products that suffer some update or change, and it also pretends to expose
how certification of one product can affect to the certification of other product of same product-line.

This deliverable is part of FP7 DREAMS project which aims to develop an cross-domain architecture
and design tools for mixed criticality networked complex systems. It is based on results from DREAMS
work packages WP1 "Architectural Style", WP2 "Languages" and WP4 "Tool Support". This review of
the state of the art of modular certification for mixed criticality systems lays the foundations for novel
product-line certification methods, which are one of the final innovations targeted by the DREAMS
project.

1.1 What is a Mixed Criticality System?

The architecture of embedded systems in multiple domains follows a federated architecture
paradigm, where the system is composed of interconnected subsystems that provide a well-defined
functionality. The ever increasing demand for additional functionalities leads to a considerable
complexity growth that, in some cases, limits the scalability of this approach. For example, a modern
off-shore wind turbine control system manages up to three thousand inputs / outputs, several
hundreds of functions are distributed over several hundred nodes grouped into eight subsystems
interconnected with a fieldbus and the distributed software contains several hundred thousand lines
of code. The integration of additional functionalities also leads to an increase in the number of
subsystems, connectors and wires increasing the overall cost-size-weight and reducing the overall
reliability of the system. For example, in the automotive domain, field data has shown that between
30-60 % of electrical failures are attributed to connector problems [1, 2].

The integration of applications of different criticality (safety, security, real-time and non-real time) in
a single embedded system is referred as mixed criticality system [1]. This integration is further
complicated by the recent advent of multi-core systems providing more computational power but
requiring specific operating systems and software [3]. Yet, this integrated approach can improve
scalability, increase reliability reducing the amount of systems-wires-connectors and reduce the
overall cost-size-weight factor. However, safety certification according to industrial standards
becomes a challenge because sufficient evidence must be provided to demonstrate that the resulting
system is safe for its purpose [1, 2].

1.2 What is Certification?

Certification is a third party assurance of a product, system, subsystem or element establishing that
the system is compliant with defined requirements. Certification is a process based on evidences for
compliance with requirements, where evidences shall be established by documentation reviews,
audits or testing activities (see Section 2.1.1). The certification of a product usually has a limited period
of validity and has to be renewed after a certain period of time (see Section 2.1.2).

IEC 61508 [4-6] is a generic international safety standard from which different domain specific
standards have been derived. Safety Integrity Level (SIL) is a discrete level corresponding to a range of
safety integrity values where 4 is the highest level and 1 is the lowest. As a rule of thumb, the higher
the SIL, the higher the certification cost [1, 2].

IEC 61508 [4-6] safety standard does not directly support nor restrict the certification of mixed
criticality systems. Whenever a system integrates safety functions of different criticality, sufficient

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 6 of 39

independence of implementation must be shown among these functions. In case there is not sufficient
evidence, all integrated functions will need to meet the highest integrity level. Sufficient
independence of implementation is established showing that the probability of a dependent failure
between the higher and lower integrity parts is sufficiently low in comparison to the highest safety
integrity level [1, 2].

1.3 Similar Systems and Product Lines

System design is often guided by two very general, yet opposite heuristics: namely the top-down and
the bottom-up approaches.

 The top-down approach encourages designs driven by the primary function of the system, and
recursively divided into sub functions until they become concrete enough to be implemented.
This leads to highly specialized functions/components, with low reusability as their usefulness
is limited to the inherent system's decomposition.

 By contrast, the bottom-up approach advocates assembling general purpose functions into a
whole that fits the purpose of the system. The bottom-up approach often leads to challenging
integrations between components which have not been initially designed to interoperate.

Product lines engineering (PLE) acknowledges the limitations of both heuristics and seeks to make the
most of both ideas. PLE recognizes the importance of a set of core functions, which together define a
framework where reusability is worth considering. PLE thus captures the set of commonalities (and
discrepancies, respectively) between products of a same "family" or "line" and permits to capitalize
on well-accepted practices and standards in the application domain of interest. By fostering reuse
within specific contexts, PLE has shown significant effort reduction in design, development, time to
market and maintenance [7].

An intuitive example of product lines is the catalogue of wind turbines developed by Alstom, one of
the DREAMS project case-studies. In order to accommodate different environmental conditions
(temperatures, humidity, wind speed, etc.), wind turbines vary in many respects such as height, rotor
diameter, power, etc. Yet, all wind turbines installed by Alstom share a common structure. The early
identification of commonalities among turbines enables the reuse of large segments of the production
chains as well as the development of large catalogues of closely related products.

Software Product Lines (SPL) are product lines where products are software systems. Among others,
example of large scale SPLs includes the Linux Kernel, which is made of a set of carefully selected
modules, or the Eclipse IDE that can be tailored to specific tasks (e.g., C/C++ or Java development,
testing, modelling) by adding (resp. removing) some of the underlying plugins.

In the DREAMS context, we intend to model the variability inherent to mixed criticality platforms (e.g.,
hardware, hypervisor, scheduler configurations) and applications (e.g., fault-tolerance mechanisms).
The objective is to investigate how SPL reduces the development cost of such platforms and to foster
their certification by mixing modular certification and SPL testing technologies.

2 Certification

2.1 Certification of a Single System

2.1.1 Certification is a Cooperative Process

The certification of a system is a process that contains different steps that must be followed to obtain
the final certificate (certification). As shown in Figure 1, a basic IEC-61508 compliant certification
process of a system consists of four steps. As shown in Figure 2, a generic safety product development
and certification starts from an idea. Then the company develops the safety embedded product and
associated documentation using a safety life-cycle (FSM, Functional Safety Management) with the
assessment of an external certification authority that provides the certificate.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 7 of 39

Figure 1: Example basic IEC-61508 certification process [8].

Figure 2: Example IEC-61508 certification process [8].

2.1.2 The Need for Re-certification

The need of re-certification of a system may result from improvements of system requirements and
design. These updates can be given also by changes on system's requirements or standards updates.
Whenever a change or update is required, impact analysis must be carried out and may possibly
require a complete or partial re-certification of the system.

This re-certification process can be highly expensive if modularity was not taken in consideration in
the system safety concept and detailed design. As explained in Section 2.3, modularity becomes a key
element for certification and re-certification of systems, because it potentially reduces the impact of
changes and reduces the impact in system recertification.

Phase 2
Main Inspection

Inspection and Extensive
Technical Safety Report

Phase 3
Certification

Certification of
Inspected Elements

Phase 1
Concept Review

Requirements Specification
Validated and Authorized

Phase 0
Kick-Off meeting

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 8 of 39

2.2 Certification Standards

A large number of standards have already been established by different organizations like ISO or IEC.
These standards are being constantly updated to accommodate for daily needs. As shown in Figure 3,
ISO/IEC Guide 51 classifies standards by type, allowing them to be applied to most actual systems.

Figure 3: Hierarchical structure of Safety Standards.

IEC 61508 is an international basic standard that deals with functional safety-related systems, where
reliability is defined by the Safety Integrity Level (SIL). The IEC 61508 is concerned with electrical,
electronic and programmable safety-related systems where a failure will affect people or
environment. The term safety-related describes every programmed system, whose failure may lead
to damage or death of humans or catastrophic environmental destruction or degradation.

Figure 4 Overview of functional safety relevant standards in different areas (examples from VARIES [9])

As shown in Figure 4, all areas in blue are directly referred to Functional Safety and are all derived
from the basic safety standard IEC 61508 (e.g., ISO 26262, EN 50139, DO 178B). Areas in orange are

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 9 of 39

standards, where IEC 61508 is not explicitly taken as basis, but they use similar approaches to address
the safety of Electric/Electronic/Programmable Electronic (E/E/PE) systems.

2.2.1 IEC 61508 on Safety Certification

A safety life cycle is a series of phases covering the initiation and specification of safety requirements,
the development of safety features for safety-critical systems, and ending with the decommissioning
of that system. The IEC 61508 standard covers safety-related systems where a system incorporates
electrical/electronic/programmable electronic devices. The standard covers possible hazards caused
by failures of the safety functions of E/E/PE safety related systems. The detection of a potentially
dangerous condition that results in the action of a protective or corrective mechanism to prevent
hazardous events is defined as functional safety. IEC 61508 is concerned with the E/E/PE safety-related
systems whose failure could have an impact on the safety of persons and/or environment.

The standard has two fundamental points: the safety life cycle and the safety integrity levels. The
safety life cycle is defined as a process that includes all necessary steps to achieve the required
functional safety.

Fehler! Verweisquelle konnte nicht gefunden werden. shows the safety life cycle defined by IEC
61508 [10], also called Functional Safety Management (FSM).

Figure 5 Safety lifecycle from IEC 61508 [8]

The FSM is divided in 16 phases grouped as follows:

 Analysis: Phases 1 and 2 entail the considerations of the safety implications of the equipment
under control (EUC) and the control systems, at the system level. In Phase 3, first two phases’
risk identification and analysis, assessed against tolerable criteria, are done. In phase 4, the
risk-reduction measures of safety requirements are specified, and in phase 5 these are
translated into the design of safety functions.

 Planning: Overall system planning for operation, validation and installation are provided in
phases 6, 7 and 8 respectively.

ANALYSIS

PLANNING REALIZATION

INSTALLATION &
VALIDATION

OPERATION

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 10 of 39

 Realization: The system safety requirements specification is performed in phase 5 and it is
realized according a V model in phase 10.

 Installation & validation: In Phase 12, the system must be installed and commissioned and in
Phase 13, the system is checked to verify that all the safety related requirements have been
identified and handled during building and installation.

Operation: Then the system may be put into operation, where there are safety and maintenance
activities. It is also foreseen that the system can be modified during operations and therefore,
incorporation of some modifications will be needed. The final phase, phase 16, is related with the
disposal of the system (e.g., separations of the battery or the toxic elements to dispose them
separately).According to the IEC 61508, safety refers to a system that has to be safe enough, regarding
to protection of health and environment. IEC 61508 is used for the development of E/E/PE systems
that carry out safety functions.

Furthermore, IEC 61508 determines that safety integrity level (SIL) of a system is determined by
software failures (systematic failures) and hardware failures (systematic and random failures). SIL is
the parameter that is used by IEC 61508 to categorize the required integrity of safety. It is defined as
the probability that a dangerous failure of the safety related system may occur per unit of time. Table
1 shows the target failure measure for a safety function operating in one of three defined demand
modes by IEC 61508 (see subsection 7.6.2.9 of IEC 61508-1).

Safety Integrity Level
(SIL)

Average frequency of dangerous failure of
the safety function [h-1]

(PFH)

4 ≥ 10-9 to < 10-8

3 ≥ 10-8 to < 10-7

2 ≥ 10-7 to < 10-6

1 ≥ 10-6 to < 10-5

Table 1: Safety integrity levels - target failure measures for a safety function operating in high demand mode of
operation or continuous mode of operation (Table 3 of IEC 61508-1)

Systematic and random failures are handled by techniques/measures defined by IEC 61508 for the
diagnosis, control and avoidance of failures, and they are used for defining the diagnostic coverage of
the system. See Annexes A, B, C, and E of IEC 61508-2 for hardware failures and Annexes A, B and C of
IEC 61508-3 for software failures.

2.3 Modular Certification

Different terms are used by different safety standards to refer to the concept of modular certification
used in academia. Some basic definitions to be considered are:

 A safety case "represents an argument supporting the claim that the system is safe for a given
application in a given environment" [11]

 Modularity is an approach that subdivides a system into smaller parts (modules) which are
independently generated and used by different systems to drive functionality. The names of
decomposed structure of system can vary from one developer to another, but the meaning is
the same.

 Modular Safety Cases allow assurance of the safety of a system that has been composed from
modules.

Systems and software have been designed according to modularity since many years ago. The safety
cases are important to reduce safety and commercial risks. The motivation for a safety case is to: (i)
provide arguments to demonstrate that safety properties are satisfied and risk has been mitigated (ii)
provide a mechanism for review and (iii) provide interworking of different standards. Some progress
towards the road to certification has been achieved in the MultiPARTES project. A safety concept for

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 11 of 39

mixed criticality systems based on multicore hypervisor has been defined. Most important, this safety
concept has been assessed positively by TÜV Rheinland providing a compliance statement according
to IEC 61508. Modelling tools for the consistency checking of mixed criticality designs have been
developed as well to enable design and early validation of safety properties. In this context, a
consistently designed and partitioned safety case limits the impact of changes to a reduced area of
the safety case.

The modular approach is used in automotive or avionic domains for instance, where the diverse
number of options and variants makes the design, and in turn the certification, extremely complex. It
reduces cost of the re-certification of changed systems, because it provides a system composed from
design modules, which ideally can be replaceable, such as jigsaw pieces (see Figure 6), without
affecting the safety-related properties of the system.

+ =

Original certified

System, Sub-system or

element

System, sub-system or

element increment
New System, sub-

system or element

+ =

Original certified

System, Sub-system or

element

System, sub-system or

element change

New System, sub-

system or element

Figure 6: Modularity approach.

This section aims to expose the modularity requirements varieties among different domain standards
(e.g., IEC 61508, ISO 26262, EN 50129 and DO-178 + IMA).

2.3.1 IEC 61508

Modular certification provides arguments by which already certified or qualified components or parts
of the system that have been designed with safety life-cycles (even if they are not certified) can be
applied in activities of the mixed-critical design.

The product families are a different use case of modular certification. If a product is built with modular
safety cases and then the product suffers a modification, the reproducibility of the certification
according to IEC 61508 can be less costly, since modular safety cases can be re-used and the problem
solving pattern has been already provided. Modular certification implies that the used modules are
pre-certified according to IEC 61508 to achieve a certain SIL Claim Level (CL). Therefore, all hardware
and software components shall be developed and certified according to IEC 61508 to fulfil with the
required Safety Integrity Level (SIL).

Modular Safety Cases shall cover the following aspects:

 Analysis of the system regarding safety needs;

 Strategies adopted to achieve the desirable SIL (Safety Integrity Level);

 Techniques and measures to control random faults;

 Demonstration that selected techniques are sufficient to fulfil safety needs.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 12 of 39

The architecture of the system must be well defined and preferably divided into subsystems, where
some of those subsystems can form Modular Safety Cases (e.g., Input/output Modules, Memory Units,
On/Off chip communications, Safety/Non-Safety interactions, etc.) as shown in Figure 7.

Figure 7: System structure based on sub-systems and elements. (IEC 61508-4, Figure 3) [12]

IEC 61508 is designed to be flexible enough to accommodate emerging technologies without breaking
the fundamental concepts (IEC 61508-1). Fundamental concepts of IEC 61508 are applicable to COTS-
based systems. IEC 61508-2 defines that whenever an existing verified subsystem shall be
implemented, the total mapping of the subsystem shall be carried out for selection of required specific
implementation functions or performances.

IEC 61508-3 defines that when a software design incorporates pre-existing reusable software, which
may have been developed without taking into account the systems requirements, the software safety
requirements specifications must be satisfied. These safety requirements specify that a pre-existing
reusable software element shall meet the following requirements for systematic safety integrity:

a) meet the requirements of one of the compliance routes

- Route 1S: Compliant Development
Compliance with the requirements of IEC 61508 for the avoidance and control of
systematic faults in software

- Route 2S: Proven in use
Provide evidence that the element is proven in use, taking into account that the relevant
iterations of hardware and software shall be identified, evaluated and documented.

- Route 3S: Assessment of non-compliant development (not applicable).

b) Provide a safety manual for compliant items (see Annex D of IEC 61508-2 and Annex D of IEC
61508-3)

According to IEC 61508, ”a compliant item is any item (e.g., an element) on which a claim is being
made respect the clauses of IEC 61508” [13]. This standard defines two kinds of compliant items:
hardware (microcontrollers, ASICs, FPGAs, etc.) and software (RTOS, communication protocol stack,
etc.). These two types of compliant items shall provide a safety manual, where shall be specified their
functions, that are required to ensure that the system meets with the IEC 61508 requirements. The
safety manual enables the integration of the compliant item into a safety related system, sub-system
or element.

In case of third party components, all relevant claims of compliance items made by the supplier and
other parties shall be included in the functional safety assessment. In case that the compliant item
was assessed as a part of a larger system, precise identification of system should be documented.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 13 of 39

 Hardware Compliant Items

In case of hardware compliant items, it will be necessary that the supplier of a compliant item
makes available the information of the safety related system (see IEC 61508-2, Section 7.4.9.3)
to the designer; providing it in the safety manual. The requirements of this safety manual are
provided by Annex D of IEC 61508-2 (Compliant item in general).

One example of a hardware compliant item is a mixed criticality network, which involves the
transfer of the information between different locations. According to IEC 61508-2, there exist two
transmission systems or channels (white and black channel). In this case, modularity approach
makes possible that a modular safety case of a mixed criticality network contains a safety
communication layer, which can be re-used as a compliant item for different developments of
products, systems or sub-systems.

 Software Compliant Items

As in case of hardware compliant items, it will also be necessary to make a safety manual of
software compliant items. In the safety manual will be documented the information related with
the compliant items. This information is required to enable the integration of the compliant
item(s) into the safety related system, subsystem or element. For this reason Annex D of IEC
61508-3 shall be followed. This annex specifies the contents that shall be contained by the safety
manual. Additionally, in case of software compliant items, it will be necessary to dispose of the
hardware system information required by IEC 61508-2.

For example, in case of a hypervisor, this is considered as a compliant item. In the same way, the
safety partitions generated by the hypervisor are also considered as compliant items, so, they
must follow IEC 61508-3 Annex D. The partitions, which are not related to the safety functions,
are not considered as a compliant item. In case of hypervisor, one shall also provide the non-
interference (spatial and temporal) between partitions following the techniques that are defined
in IEC 61508 Annex F.

2.3.2 ISO 26262 (Road Vehicle)

ISO 26262 provides its own component model, where an item can be seen as the system or the
systems under consideration. As shown in Figure 8, a system can be hierarchically structured and
consists of a set of functions.

1

n

1

n

Function System

Item

ElementComponent

Part/Unit

m n

1

n

n

1

Figure 8: Relationship of system, item, element, and hardware part and software unit. [14]

Each system is composed by a set of components that can be hierarchically structured as well. Systems
are elements or are composed by elements [15]. A component is a non-system level element that is

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 14 of 39

logically and technologically separable and is comprised of more than one hardware part1 or of more
software units2.

ISO 26262 furthermore supports modular construction of items, including levels of abstraction for the
elements, as shown in Fehler! Verweisquelle konnte nicht gefunden werden.

System of

System

System

E/E Components

Hardware

Components

...

Hardware

Parts

Sensor

Communications
Other technology

components

Controller Actuator

Hardware Software

Software

Components

Software

Units

Hardware

Components

Hardware

Parts

Hardware Software

Software

Components

Software

Units

Hardware

Components

Hardware

Parts

Hardware Software

Software

Components

Software

Units

Item

Element

Figure 9: Items, Elements in ISO 26262 [14].

ISO 26262 defines term of Safety Element out of Context (SEooC). SEooC is a safety element for which
an item does not exist at the time of the development. A SEooC can be a subsystem, a software
component, or a hardware component.

The development of sub-system or hardware component out of context implies that the prerequisite
work products are replaced by assumptions on ASIL capabilities. In this case, the system design
specification (ISO 26262-4, Clause 7) and the technical safety concept (ISO 26262-4, Clause 6) are
replaced by assumptions.

The development of software component out of context (see Figure 10), implies that the prerequisite
work products are replaced by assumptions on ASIL capabilities. In this case, the system design
specification (ISO 26262-4, Clause 7) and the technical safety concept (ISO 26262-4, Clause 6) are
replaced by assumptions. However, the software development out of context can also start with either
the software architectural design (ISO 26262-6, Clause 6) or with the software unit design and
implementation (ISO 26262-6, Clause 8). So, the software safety requirements (ISO 26262-6, Clause 6)
and the architectural design specification (ISO 26262-6, Clause 7), can be replaced by assumptions.

1 Hardware which cannot be subdivided

2 Atomic level of software component of the software architecture that can be subjected to standalone testing

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 15 of 39

3-7 Hazard analysis and risk

assessment

Hazard analysis and risk

assessment

3-7 Hazard analysis and risk

assessment

Specification of safety goals

3-8 Functional safety concept

Specification of functional

safety requirements

ASIL Capability

Assumptions on safety goals

(ASIL Safety Element out of

Context Capability per system

failure

Assumptions on functional

safety concept

Assumptions on functional

safety requirements

4-6 Specification of

technical safety concept

Specification of technical

safety requirements

4-7 System Design

System design specification

5-6 Specification of HW

safety requirements

Hardware safety

requirements

6-6 Specification of SW

safety requirements

Software safety

requirements

C
o

n
c

e
p

t
p

h
a

s
e

P
ro

d
u

c
t

d
e

v
e

lo
p

m
e

n
t

A
ft

e
r

S
O

P

O
v

e
ra

ll
 m

a
n

a
g

e
m

e
n

t
o

f
s

a
fe

ty
 r

e
q

u
ir

e
m

e
n

ts

8
-6

 O
v

e
ra

ll
 m

a
n

a
g

e
m

e
n

t
o

f
s

a
fe

ty
 r

e
q

u
ir

e
m

e
n

ts

Item Development

SEooC Development

Figure 10: ISO 26262 Safety Element out of Context (SEooC). [14]

2.3.3 EN 50129 (Railway)

This standard is applicable to safety-related electronic systems (including sub-systems and
equipment) for railway signalling applications [16]. This standard defines the conditions that shall be
satisfied in order that a safety-related electronic railway system/subsystem/equipment can be
accepted as adequately safe for its intended application.

 Evidence of quality management.

 Evidence of safety management.

 Evidence of functional and technical safety.

The documentary evidence that these conditions have been satisfied shall be included in a structured
safety justification document, known as safety case. The safety case shall contain the documented
safety evidence for system/sub-system/equipment, before the safety related system can be accepted
as adequately safe. The safety case document structure shall be the following:

I) Definition of system/sub-system/equipment
II) Quality Management Report
III) Safety Management Report

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 16 of 39

IV) Technical Safety Report
V) Related Safety Cases
VI) Conclusions

2.3.3.1 Evidence of Quality Management

The first condition for safety acceptance implies that the quality of the system, sub-system or
equipment has been, and shall be controlled by a quality management system (see EN 50126) during
its life-time. Evidence to demonstrate this shall be recovered in the Quality Management Report,
which forms part of the safety case document structure (II).
The purpose of the quality management system is to minimize the incident of human errors at each
stage in the life-cycle, and thus to reduce the risk of systematic faults in the system, sub-system or
equipment.

2.3.3.2 Evidence of Safety Management

The second condition for safety acceptance, which shall be satisfied, is that the safety of the system,
subsystem or equipment has been, and shall continue to be, managed by RAMS management process
described in EN 50126. The use of Safety Management process is mandatory for Safety Integrity Levels
1 to 4 inclusive. Documentary evidence to demonstrate compliance with the safety management
process throughput the life cycle shall be provided in the Safety Management Report, which forms
part of the Safety Case (III).

2.3.3.3 Evidence of Functional and Technical Safety

In addition to the evidence of quality and safety management, a technical evidence for the safety
design shall be documented in the Technical Safety Report. This document forms the part IV of the
Safety Case for the system/sub-system/equipment. This document is mandatory for safety integrity
level 1 to 4. In case of safety integrity level 0, it falls outside the scope of this safety standard. Technical
safety report headings are the following:

I) Introduction
II) Assurance of correct functional operation
III) Effects and Faults
IV) Operation with external influences
V) Safety-related application conditions
VI) Safety Qualification Test

2.3.3.4 Safety Assurance and Approval

This sub-clause defines the safety acceptance and approval process for safety-related electronic
system/sub-system/equipment.

Three categories of Safety Case can be considered (See Fehler! Verweisquelle konnte nicht gefunden
werden.):

 Generic Product (GP) Safety Case: A generic product that can be re-used for different
independent applications (e.g., be an American Windows, running on a PC) (the platform).

 Generic Application (GA) Safety Case: A generic application can be re-used for a class/type of
applications with common functions (the type).

 Specific Application (SA) Safety Case: A specific application is used for only one particular
installation (installed product).

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 17 of 39

System 1 System 2

Subsystem 1 Subsystem 2

Subsystem 4

Subsystem 3

Equipment 1 Equipment 2 Equipment 3
GENERIC

PRODUCTS

GENERIC

APPLICATIONS

SPECIFIC

APPLICATIONS

Figure 11: Dependencies between safety case and safety approval. [16]

Figure 12 shows the structure of each safety case categories and the procedure to obtaining the safety
approval for each one. Although the procedures for obtaining the safety approval are basically the
same, separate safety approval is needed for the application design of the system and for its physical
implementation. The safety case for specific application is subdivided into two portions: I) the
application design safety case that contains the safety evidence for the theoretical design of the
specific application, and II) the physical implementation, which shall contain the safety evidence for
the physical implementation of the specific application.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 18 of 39

System, Sub-System,

Equipment

Requirements

Specification

Part 1…

Part 2…

Part 3…

Part 4…

Part 5…

Part 6…

Safety Requirements

Specification

Generic Product

Safety Case

System, Sub-System,

Equipment

Requirements

Specification

Part 1…

Part 2…

Part 3…

Part 4…

Part 5…

Part 6…

Safety Requirements

Specification

Generic Application

Safety Case

System, Sub-System,

Equipment

Requirements

Specification

Part 1…

Part 2…

Part 3…

Part 4…

Part 5…

Part 6…

Safety Requirements

Specification

Application

Design

Safety Assessment

Report

Product Safety

Approval

Product Safety

Acceptance

Cross-Acceptance

Safety Assessment

Report

Application Safety

Approval

Application Safety

Acceptance

Cross-Acceptance

Overall Safety Acceptance

Part 1…

Part 2…

Part 3…

Part 4…

Part 5…

Part 6…

Physical

Implementation

Specific Application Safety Case

Safety

Assessment

Report

Application

Safety

Approval

Safety

Assessment

Report

Application

Safety

Approval

GENERIC

PRODUCT

GENERIC

APPLICATION

SPECIFIC

APPLICATION

Figure 12: Safety acceptance and approval process. [16]

2.3.4 DO 178 + IMA (Avionic)

DO 178 defines a component as ”a self-contained part, combination of parts, sub-assemblies or units,
which performs a distinct function of a system” [17]. It defines also two types of components:
modifiable and not modifiable components. A modifiable component is part of the software that is
intended to be changed by the user, whereas a non-modifiable component is not intended to be

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 19 of 39

changed by the user. The non-modifiable component should be protected from the modifiable
component to prevent interference in the safe operation of the non-modifiable component. This
protection can be achieved by hardware or by software (e.g., software partitioning).

In case of some airborne systems, an equipment may include optional functions which may be selected
by software options rather than be selected by hardware and which are not intended to be used in
every application. In Section 5.4.3 of DO 178 are defined the considerations for deactivated code. This
document also specifies that COTS software that can be included in airborne systems or equipment
should satisfy the objectives of this document.

R - D - C - I

R - I

R - C - I

R - C - I - C - I - R - D - C - I

Software

Product

System Requirements

Allocated to Software

Component W …...

Component X …...

Component Y …...

Component Z …...

R = Requirements

D = Design

C = Coding

I = Integration

Figure 13: Component based Software Incremental Development Process. [17]

Figure 13 illustrates the software development process sequence, defined by DO-178, for components
of a single software product with different software lifecycles. Component W implement and develops
a set of system requirements to define a software design, which will be coded into source code, to
finally integrate it into the hardware. Component X shows the use of Component W, and the
integration of its requirements into the last component, this way, resulting in a new component.

Component Y illustrates the use of a simple, partitioned function that can be coded directly from the
software requirements.

Component Z illustrates the use of a prototyping strategy. The goals of prototyping are to better
understand the software requirements and to mitigate development and technical risks, through the
continuous evaluation and continuous refinement of the software project requirements.

Some avionic companies (e.g., Boeing and Airbus) are using Integrated Modular Avionic (IMA) as their
architecture for present and future product developments. IMA is a flexible distributed real-time
network airborne system, which is capable of supporting numerous mixed criticality applications. The
IMA concept provides an integrated modular architecture, where application software can be ported
across common components (e.g., hardware, OS, middleware). It also provides, many potential
benefits, including reduction of the number of platforms, which decreases the cost, performance gain
due to latency reductions, simplified software updates (changes), allowing integration of new
applications without hardware changes. In the other hand, although IMA provides significant benefits
to the aircraft, it can present certification challenges.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 20 of 39

2.4 IMA, Certification and Hypervisors

One of the key ideas of the Integrated Modular Avionics (IMA) is the integration in the same module
of several software functions that share the same hardware resources. For this integration to be
reliable and safe, these software functions are isolated into partitions in terms of space and time: a
partition can only access its own memory address space and is allowed to execute only during pre-
allocated time windows. This isolation principle, widely known as Time and Spatial Partitioning (TSP),
is directly applicable when integrating functions of different levels of criticality.

The specific frame for the certification of IMA-based systems in the commercial aircraft industry,
accepted by both the Federal Aviation Administration (FAA) and European Aviation Safety Agency
(EASA) certification bodies, is the DO-297/ED-124 standard, which "contains guidance for Integrated
Modular Avionics (IMA) developers, application developers, integrators, certification applicants, and
those involved in the approval and continued airworthiness of IMA systems in civil certification
projects. It is focused on IMA-specific aspects of design assurance." [18].

A key component of the IMA architecture is the partitioning kernel, which is the software component
providing the isolation capabilities among all software components operating on the same computer.
The ARINC 653 [19, 20] standard defines the behaviour, properties and interface provided by IMA
partitioning kernels. Certification of the software components of an airborne system is regulated by
DO 178C/ED-12 for the civil aviation industry, thus including the partitioning kernel and the partitions
(isolated software components). The previous section 2.3.4 provides further details on DO 178C.

While there are many technologies suitable to implement partitioning kernels in the IMA style, there
has been a renewed interest in the hypervisor technology for such concern.

2.4.1 Hypervisor Technology

Hypervisor (also known as virtual machine monitor VMM) is a layer of software (or a combination of
software/hardware) that allows running several independent execution environments in a single
computer. Although the basic idea of virtualizing is widely understood: any way to recreate an
execution environment, which is not the original (native) one; there are substantial differences
between the alternative technological approaches used to achieve this goal.

The key differences between hypervisor technology and other kind of virtualization (such as Java
virtual machine or software emulation) are performance and complexity. When targeted to
embedded applications, bare-metal hypervisor are designed to virtualize only the critical hardware
devices necessary to create the isolated partitions. This allows to limit the complexity of the software
and to guarantee real-time performances.

Following the lead of IMA, TSP and virtualisation, hypervisors are a promising technology [2, 21] for
modular certification and the development of product families even outside the avionics domain. The
isolation of the software components allows increasing the confidence in that safety and reliable
functions can be independently developed and assessed, and later on integrated with other functions
without adverse effects.

XtratuM [21] is a bare-metal hypervisor designed to provide TSP for safety critical applications. Its
main features are:

 Memory management: XtratuM uses the hardware mechanisms to guarantee the isolation
of the memory spaces of the partitions.

 Scheduling: Partitions are scheduled according to a cyclic scheduling policy, enforcing their
temporal isolation.

 Health monitor (HM): It is the part of XtratuM that detects and reacts to anomalous events
or states. The purpose of the HM is to discover errors at an early stage and try to recover or
confine the faulting subsystem in order to avoid or reduce the possible consequences.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 21 of 39

2.4.2 IMA in Space Applications

In the recent year, the interest for the Integrated Modular Architecture (IMA) has reached the space
domain. The European Space Agency (ESA) is currently undertaking activities, by means of the SAVOIR-
IMA workgroup, for the definition of a reference avionics architecture based on the IMA concept [22]:
"The group analyses the impact of the concept of IMA on the overall current reference architecture
(hardware, software and communication). Modifications to the hardware architecture are identified
to improve compatibility with time and space partitioning, primarily taking into account the computer
architecture [...]". The topic also has recently received attention from the NASA [23].

2.5 Certification and Testing

Certification and testing are two different activities, which although related, shall not be confused. As
explained above, certification denotes the activities carried out to confirm that a product exhibits
certain characteristics. The resulting certificate confirms that enough evidence supporting the claim
of interest was available. Product certification mainly targets safety and quality characteristics. By
contrast, testing is the activity of assessing (or measuring) specific capabilities of a given product.
Software testing for instance may cover correctness, performance, security or usability to name a few.
While certification is about making a decision based on collected evidences, testing is a means of
obtaining such evidences.

Both certification and testing are subject to obsolescence when the product of interest changes. For
software, automation has been the key to better cope with the impact that changes have on testing.
Automated testing, where tests are automatically run as soon as the product is changed, turned
testing into a key activity supporting the overall development process: detecting defects, regression,
and deviation from the requirements. By contrast, certification is less prone to automation due to its
human-based nature. Yet, as certification consumes the evidence produced by testing activities,
automated testing may certainly contribute to faster re-certification.

Building software product lines challenges both testing and certification activities. Testing a software
product line as a whole requires assessing the abilities (e.g., correctness) of every single product which
can be derived from it. Similarly, certifying a product line requires collecting and scrutinizing evidences
given for every single product. In the following sections, we review techniques from the product line
engineering field, which could help move towards certification of product lines, especially through
testing.

3 Families of Systems – Product Lines

3.1 A Brief Introduction to Variability Modelling

Modelling is a core practice in science and engineering. In short, modelling aims at easing the
resolution of a particular problem while preserving our ability to gain hindsight about it. Regardless of
the approach, any modelling activity is always strongly coupled to the problem it aims at. Modelling is
inherently difficult because it requires striking the right balance between discarding enough of the
reality to tame its complexity and still retaining enough to maintain significance. This paradox ―
known in engineering as the principle of incompatibility [24] ― directly impedes our ability to reuse
models.

Modelling experts tackle complexity with to two main leverages: abstraction and separation of
concerns. Abstraction discards any aspect of the reality that is irrelevant to the problem of interest
whereas separation of concerns divides the problem into separate sub problems of smaller
complexity. When exploiting the resulting models, hindsight often comes from our ability to
distinguish between what varies and what remains. Mathematics and especially geometry, topology
and algebra produced many models where the hindsight comes from the duality between what

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 22 of 39

changes and what remains. Differential equations, to name only one, capture invariant relationships,
which permit to understand how complex dynamics varies.

From the modelling standpoint, PLE explicitly captures variability in order to maximize reuse
throughout the development and maintenance process, in order to improve productivity while
reducing risk and cost. PLE therefore distinguishes between what remains and what varies in a system.
The "things that remain" often reflect hard constraints in the application domain of interest whereas
parts opened to variations reflect potential areas for business and innovation. The main objective is
therefore to automate the derivation of a new product from the prescription of its features.

3.1.1 Capturing Similarity and Variability

Modelling the variability among a family of products relies on the notion of feature. A feature stands
for "a unit of functionality of a software system that satisfies a requirement, represents a design
decision, and provides a potential configuration option" [25]. Products are thus characterized by the
features they provide, and in turn, product lines are characterized by the union of all features provided
by their products.

The simplest way to capture the commonalties (resp. the variability) among a set of products is using
a feature table. The table relates the set of products with the set of possible features: specifying for
each product the features it provides. This approach is commonly used to provide customers with a
comparison of a range of products such as mobile phones, TVs, etc.

A better way to capture variability within a set of products is through a feature model [26, 27]. A
feature model gathers the commonalities within a product line into a tree of features, where some
features are mandatory (the commonalities) whereas other may be optional or exclusive (the
variability). Figure 14 illustrates the graphical notation associated with such feature models on a
subset of what could be the DREAMS platform. This simplified DREAMS platform encompasses
hardware components, hypervisors and operating systems (OS). The platform may or may not include
hypervisors, which are either based on OS virtualization or on hardware virtualization, or both. By
contrast the platform will always include an OS, which will be one of the three possible alternatives
listed in Figure 14.

Figure 14 A simplified feature model capturing the variability of hardware platforms

The proposed notation is not expressive enough to capture all the additional constraints that may
exist and restrict the set of products which can be derived from a given product lines. In our example,
it may be that some OS virtualization technologies are not available for all operating system, and the
choice of one (say VMWare) restricts the possible OS.

Orthogonal Variability models (OVM) [28] and its successor the common variability language (CVL)
[29, 30] attempted to overcome the inherent tight coupling between the product derivation
procedure and the underlying technologies. They resolve variation points and variants, not anymore
in the technological space, but on a domain-specific model. The resulting model of the product can
thus be finalized using the associated domain-specific tooling.

3.1.2 The BVR Model

BVR (Base Variability Resolution models) is a language built on CVL technology, but enhanced due to
needs of the industrial partners of the VARIES project (http://www.varies.eu), in particular Autronica.

http://www.varies.eu/

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 23 of 39

BVR is built on CVL, but CVL is not a subset of BVR. In BVR we have removed some of the mechanisms
of CVL that we are not using in our industrial demo cases that apply BVR. We have also made
improvements to what CVL had originally. For the purpose of DREAMS we may just say that BVR is a
continuation of the CVL language with associated tooling. Figure 15 below illustrates the variability
model of the simplified DREAMS platform in the BVR tool.

Figure 15 The variability model of the DREAMS platform modelled using the BVR tool

3.1.3 Exploiting Variability

As mentioned above, the major challenge of product lines engineering is to automate the construction
of new products from the sole prescription of their features. We review below the main approaches
proposed in the SPL literature, further detailed in [31].

The simplest solution is the use of pre-processor directives to disable irrelevant features in the code
base, before it is compiled and linked. This approach implies a direct mapping from features to some
syntactic programming constructs such as routines, modules, or classes. It also remains tightly coupled
to the underlying technology (i.e., the programming language) as the feature selection mechanism is
hardcoded in the source code.

A better solution is to rely on recent advances in middleware technologies such as components- or
service-based platforms. In such execution environments, one can configure (and reconfigure) a
running system, by deploying and "wiring" the needed components. Provided that features are
implemented by single components, the feature decomposition then lends itself naturally to the
underlying decomposition into components.

Features orthogonal to the breakdown into components or services (e.g., security, logging) can be
managed by tools such as BVR, which resolve variability in the domain model, rather than in the
technological space.

3.2 The Benefit of Product Lines

3.2.1 The Organizational Aspect of Product Lines

As mentioned above, the key benefits brought by PLE go far beyond the mere technicalities of
products' derivations: PLE implies a global shift from a technical to a strategic understanding of reuse.
By focusing on a family of products, PLE forces managers, analysts, designers, and other stakeholders
to consider their activity in the light of the complete market niche that is targeted and how the
products fit in. PLE forces to anticipate the boundaries of the application domain where reuse is worth
considering. As shown by Figure 16 below, it ideally permits to amortize and capitalize on any core
asset produced during the development process including for instance requirements,
documentations, test plans/cases and user support.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 24 of 39

Figure 16 The cost of Software Product line [32]

This systematic reuse significantly improves the overall development process. The reuse of artifacts
reduces the development effort as it avoids duplicating development effort. It also increases artefacts'
internal quality as the probability to find and correct defects increases with the reuse rate. Reuse
eventually ensures the internal spread and consolidation of the domain-specific knowledge
accumulated throughout successive products developments.

Market agility also significantly gains from PLE adoption. PLE enables faster responses to new
customers' needs and more generally to new market trends. Existing products can be quickly extended
with other features already available in other products and new products can be built from new and
yet unforeseen combinations of features requested by customers. PLE adoption may thus bring a
competitive edge as it empowers the user with the ability to build the product that fits her very needs.

3.2.2 Configuring Products

Automated product derivation is the most emphasized feature of software product lines. By giving the
user the possibility to select the features that she needs, it becomes possible to check the consistency
of the whole product line, check the consistency of a given feature prescription, and to assemble the
prescribed products.

Checking the consistency of a product line as a whole consists in ensuring that there exists at least one
single product that meets all the constraints embedded in the associated feature model. Interestingly
feature models (see Section 4.1.1) can be reduced to propositional logic formulae [33], and their
validation thus boils down to the satisfiability problem (SAT). Although SAT is well-known to be a NP-
Complete problem, recent advances in SPL [34] showed that industrial size SPLs form a very specific
subset of SAT instance, which existing SAT solver can address.

Checking the validity of a specific feature prescription ensures that the prescribed features meet the
constraints carried by the feature model. The prescription is valid if and only if the underlying variable
assignment satisfies the associated logical formulae. SPL thus permits to detect automatically invalid
configurations that will not work in practice.

Finally, assuming a given feature prescription is consistent with its enclosing SPL, it is possible to
automated ― possibly only partially ― the construction and the validation of the associated products.
This construction step is tightly coupled with the reuse capabilities of the underlying execution
platform.

3.2.3 Dynamic Product Lines

The extra flexibility to adjust products to customers' needs can also be leveraged at runtime. The
knowledge carried by product lines can be used to dynamically respond to changes in the system's
environment by activating (resp. passivating) selected features. As its environment evolves, the
system thus transitions from product to product in order to meet specific objectives, such as
performance or user satisfaction.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 25 of 39

The use of software product lines at runtime ― so called dynamic software product lines (DSPL) [35]
― provides a framework to ease and constrain future maintenance and evolution. It enables the
specification of a "safe" envelope within which, maintenance and evolution have been anticipated and
potentially validated. The DSPL framework also permits to automate these maintenance or evolution
activities, by plugging in a reasoning engine that autonomously decides which product best fits the
current environment. Such automated decisions range from the mere selection of the most suited
product among a set of predefined ones to the dynamic exploration of the product space by successive
feature activations (resp. passivation). Our ability to verify, validate and certify DSPL decreases with
the size of the product lines and the complexity of the associated decision procedure.

3.3 Product Lines and Modularity

Building highly reusable software pieces has been the major impetus for several breakthroughs in
Software Engineering: routines, modules, objects, components, services, aspects, etc. While
reusability lacks a precise and well accepted definition, it is worth to note the distinction that exists
between reused and reusable software: Reused components are not necessarily reusable per se (they
may be the only available alternative) and reusable components are not necessarily reused (poor
visibility, wrong timeline, etc.). Yet, the technologies successively proposed to develop reusable
software pieces shed some lights on their key characteristics: effectiveness, generality, cohesion,
substitutability and visibility, to name only a few.

 Effectiveness is the sine qua none condition for reusability: software that fails doing what they
are supposed to do will certainly not be reused as is.

 Generality reflects the extent to which the problem solved by the software is common and
directly impacts its reusability. The use of software pieces that only solve linear differential
equations is for instance restricted to linear mathematical models.

 Cohesion characterizes pieces of software that have a single and well-defined responsibility.
Cohesion requires some level modularity, in order for different concerns to be isolated into
different units (i.e., modules). The resulting highly cohesive units are more easily understood,
and in turn, more easily reused. Object-oriented technologies significantly contribute to the
definition of general and cohesive abstractions.

 Substitutability calls for the presence of explicit and well defined interfaces, which enable the
(dynamic) replacement of individual software pieces. Substitutability was a limitation of
classical object-oriented technologies and motivates the development of components-based
technologies.

 Visibility reflects the ability for a software piece to be identified and reused on the spot.
Service-oriented architecture and the underlying publish-discover-invoke scheme directly
promote higher visibility.

By contrast with the technologies mentioned above, a software product line is a framework which
helps eventually deliver products made out of a set of reusable software pieces. To be effective, a
software product line has to build upon an associated reusable technology: The more reusable are the
available components, the more effective the product line will be. SPL contribute to realize the
potential existing within an existing set of application specific and reusable software pieces.

In addition, a software product line defines a bounded context, within which reuse if worth
considering. In practice, this context becomes delineated by the associated software architecture,
which reduces the need for reusability. Software components only need to meet the reusability
requirements within this architecture, and need not be generally reusable. Assumptions regard for
instance communication protocols, middleware technologies, data encoding, etc. Building a software
product line is thus tightly coupled to key architectural choices and eases the identification and
development of the missing reusable software components.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 26 of 39

Finally, as mentioned previously, reuse as understood in SPL goes beyond the sole underlying
technology. SPL aims at reusing as much as possible any assets produced during the development
cycle: requirements, analysis, tests, and possibly certification evidences.

4 Piecewise Certification

As product line technologies build upon the reusability of the underlying software technologies (e.g.,
objects, components, services), they form a promising approach to reduce the cost of certification and
recertification, by maximizing reuse of certified units, here-after called "pieces". Yet, reuse is always
challenging as it is difficult to ensure that third-party components will perform correctly in an
environment for which they were not explicitly designed. Among others, the $ 500 million crash of
Ariane 5 in 1996 [36], remains a strong evidence of the opposition between reuse and verification and
in turn, certification. We review below the key techniques available to verify reusable piece of
software and we discuss how they could be extended to certification.

4.1 What is a "Piece"?

4.1.1 Pieces Defined by Input and Output Parameters

As mentioned before, various software units of reuse have been proposed in the literature ranging
from simple routines to high level services. From the standpoint of certification and recertification, a
key aspect is the substitutability of a part: the ability to replace a unit by another one, while still
guaranteeing that the whole is operational (e.g., safe, correct). The need for substitution of individual
parts drove the development of component-based system, where "a software component is a unit of
composition with contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to third-party composition" [37]. This general
definition encompasses any piece whose dependencies with its environment are well specified so as
to enable its substitution by an equivalent.

4.1.2 The Assume/Guarantee Paradigm

By analogy with the way relationships between people are specified by contracts constraining the
rights and duties of each party, relationships between software pieces follow contracts specifying the
assumption a piece makes and the guarantees it provides. Ultimately, this so called assume/guarantee
paradigm aims at building the specification of a complete system in a bottom-up manner: by
assembling the individual specifications of its parts.

A textbook example of contract characterizes the reuse of a square root function, called "sqrt". As
described below, this contract expresses under which conditions one can calculate the square root of
a real number.

sqrt(in x: Real, out r: Real)

assume: 𝑥 ≥ 0

guarantee: 𝑥 = 𝑟2

It is worth to note that the contract is completely disconnected from the algorithm actually used to
compute the square root. The assume/guarantee paradigm is indeed strongly linked with information
hiding as it requires pieces to expose the necessary and sufficient information to enable reuse. Ideally,
this contract could also include extra-functional concerns, such as memory consumption, energy
consumption or execution time, although such extensions are generally difficult to leverage for formal
verification.

Design by contract [38] is a direct application of the assume/guarantee ideas in Software Engineering
practices. Following ideas of the Floyd-Hoare logic [39], each routine is equipped with pre and post
conditions capturing its semantics. Pre-conditions explicit the assumptions made by the routine to
perform correctly, whereas the post-conditions specify the properties guaranteed after completion.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 27 of 39

Such contracts are fragments of specification embedded at runtime into assertions in order to detect
discrepancies between the specification and the actual behaviour of the routines. Coupled with testing
techniques, contracts have shown to be an effective verification and diagnostic tool. As we shall see
in the next section, contracts can also be used to verify various types of properties on software
assemblies. Contracts are actively researched as a means to capture various software interactions,
especially synchronization and quality of service [40].

4.2 Piecewise Verification and Piecewise Testing

Verification in Software Engineering is driven by two main approaches: automated testing and formal
verification. Testing takes products at the end of development iterations and checks their adherence
to specification (correctness, performance, usability, etc.) By contrast, formal verification builds
mathematical models of systems and proves their correctness, performance, usability, etc. We review
below the main characteristics of the two approaches.

4.2.1 Formal Contract-based Verification

A variety of assume/guarantee specifications and other contract-based specification have been
developed as a means to compose (resp. decompose) formal system specifications. We shall restrict
ourselves to an overview of the main ideas, but interested readers may found a comprehensive review
of contract-based models in [41]. As explained assume/guarantee specification are couples (𝐴, 𝐺)
where 𝐴 models the assumption a component has on its own environment, and 𝐺 models the
guaranties it offers to its environment. 𝐴 and 𝐺 are generally formal processes, whose composition
may be subject to safety and liveness issues. The composition of such processes is yet not as
straightforward as it may seems: mutually dependent components lead to circular reasoning which
must handle carefully. To this end, various composition operators, often denoted by ∥, have been
developed for specific models. Communicating sequential processes (CSP) [42], the temporal logic of
actions (TLA) [43, 44], Focus [45] or BIP [46] to name a few are examples of formalisms using such
composition rule.

More recently, there has been an attempt to combine such formal verification techniques with
architectural description languages (ADL). Wright [47] for instance pioneered the formalization of
components and their assemblies into well-defined software architectures. Various ADLs have been
then proposed such as ACME, ArchJava, UML 2.x [48, 49], SysML [50] or Modelica [51].

4.2.2 Testing of Product Lines

The idea of automated testing is to invoke a piece of software with specific inputs for which the
expected outputs are known a priori in order to detect discrepancies with actual outputs. We review
below the main techniques developed to test product lines technologies. Interested readers may find
a more comprehensive treatment in [52, 53]. We highlight two main techniques, namely the 150 %
model and the coverage array techniques, jointly developed by SINTEF and University of Oslo.

Testing mainly varies depending on the scope of the system under test (SUT). At the finer scale, single
routines are tested independently by so called unit-tests. At a medium scale, the interaction between
two or more components is performed by integration tests. Finally the complete systems or product
have to be tested by the end-to-end tests, checking specific usage scenarios. Execution time,
complexity and cost of maintenance all grow as scale does. Unit, integration and system tests
represent different activities in the development process: end-to-end tests relate to general
requirement, integration tests to general design and unit tests to detailed design. Testing is a resource
intensive activity so a "brute force" to SPL testing requiring to explicitly and separately test all possible
products in not feasible. Testing SPL requires each activity be reconsidered under variability: The "W"
development model, presented below, is an attempt to adapt the well accepted V-model to variability.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 28 of 39

Figure 17 The "W model" [52]: an attempt to formalize the underlying testing in the context of SPL

The W-model distinguishes between domain-testing (i.e., product-line) and application (i.e., product)
testing. Domain-centric activities result in test artefacts (test-cases, test plan, etc.) which shall be
reused across product from the family, whereas application-centric activities result in artefacts
tailored for a single specific product. It is worth to note the importance of having system tests for each
possible product. Having a set of well tested components, each passing a separate large suite of tests,
cannot detect issues occurring when two or more components interact. This problem, known as the
feature interaction problem is one of the major challenges in SPL testing. We discuss below three main
techniques addressing SPL testing: model-based testing, incremental testing and combinatorial
testing. Interested reader may refer to [31] for additional details.

In model-based testing (MBT), models are used to capture the desired behaviour of the SUT, the
testing strategies of interest, or both. For instance, one can describe the system as a finite state
machine, capturing the set legal inputs and the set of associated outputs. It is thus possible to generate
a test suite (a set of test cases) to reach a specific coverage criterion. In the context of SPL, Cichos et
al. [54] proposed to build for instance a 150 % model as a single state machine aggregating the
behaviour of all possible products. This 150 % model can thus be scoped down to generate tests
covering any product resulting from the product line.

An alternative to minimize the cost of testing SPL is the use of incremental testing strategies. New test
cases are generated based on the difference between the SUT and other products that have already
been tested. Incremental testing exploits the relationship that binds SPL testing to regression testing:
as regression testing aims at retesting a software piece that has changed, it can be used to test a new
product, which conceived as an extension of an existing one.

Another promising approach to SPL testing is the use of combinatorial interaction testing. The idea is
to select a small subset of products, whose executions are likely to trigger feature interaction
problems. As shown by Kuhn et al [55], SPL follows some sort of 80/20 rule: most bugs are related to
a few parameters configurations. SINTEF developed a technique to automatically select a minimal
subset of products that maximizes the number of interaction exercised during testing [34], and in turn,
the likelihood of detecting a feature interaction issue.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 29 of 39

Figure 18 The ICPL tool to efficiently test product lines [31]

The associated too, called ICPL foster testing software product lines. The main contributions of this
tool are summarized in Figure 18, testing SPL requires three main inputs:

 A software system and its implementation artefacts

 The feature model capture the inherent variability, and in turn the set of possible variants,
which can be derived from the given software artefacts.

 A set of test cases used to validate products derived from the systems.

The first step consists in sampling the space of possible products, in order to cover the possible t-wise
interactions between features (i.e., 1-wise ensures that all features are selected at least once, whereas
2-wise coverage ensures that each couple of feature is selected at least once). The resulting products
can thus be automatically built by assembling existing software artefacts, and tested using the
provided test cases.

4.3 What do Standards Say about Piecewise Certification?

Ideally, any changes in the product or in the related development process shall trigger the re-
certification of the newly derived products. As shown below by Figure 19, re-certification triggers
include changes in the product, changes in the process, but also changes in the associated standard
or in the legislations that apply to the product.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 30 of 39

Figure 19 Modification handling process according to IEC 61508

Certification and re-certification thus induce a significant increase of the development process costs.
Collected data [56] showed for instance that certification expenses with respect DO-178B increase by
a factor of 3 to 5, depending on the associated criticality level. Standards and especially safety
standards such as ISO 61508 or ISO 26262 recognize indeed the need for reuse in both system
development and certification (see Section 2.3).

By analogy with advances in software architecture which enhanced reusability, modular certification
aims at taming the high cost of certification by offering reusable certification pieces. If a system is
made out of independently certified, replacing a component should only trigger the re-certification of
that very component together with the overall assembly architecture. Recalling the techniques
surveyed in Section 4.2, modular certification should be able to leverage existing piecewise verification
techniques.

4.4 Tool Certification and its Relationship to Piecewise Certification

Certification is inherently about collecting evidence that a given product (in the case of safety) adhere
to some given requirements. Eventually, there is never any absolute guarantee that the requirement
hold and certification is only about consolidating the confidence one may have. Evidence can be
collected from the product (functional safety), but also from the development process that was used
to deliver the product. Knowledge about the process indirectly supports the product-based evidence,
as a sound and generally well-established development process is more likely to yield a well
understood product.

Although various software development processes are possible, a widely accepted one is the V-model
(see Section 4.2.2), which requires that every design step (i.e., requirement analysis, system design
and implementation) be secured by appropriate verification and validation (V&V) procedures.
Traceability is needed for certification purposes and all V&V activities shall be properly documented.

Process certification also covers the tools that are used throughout the development process such as
CASE tool, compiler, code generators, etc. For instance, the IEC 61508 distinguishes between three
categories of tools depending on their impact on the final product. Category T1 includes all tools that
do not directly impact the safety of the final product, such as text editors for instance. Category T2

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 31 of 39

includes tools contribute to improve safety, but which do not contribute to the running code such as
static code analyzers or model-checkers. Finally, Category T3 includes tools that directly contribute to
the running code of the product such code generators or compilers. While tools in the first category
need not fulfil any specific requirements, the risk induced by using tools from Category T2 and T3 shall
be assessed separately. In addition, tools from category T3 shall provide evidence that they meet their
specifications.

4.5 Piecewise Certification and Product Lines

Various techniques and challenges related to the certification of safety-critical software systems are
detailed in [57]. Product lines appeared as a promising approach for industries that produce families
of such systems. The literature also reports about several attempts to apply product line ideas to
safety critical systems in automotive or avionic, especially. Dordowsky et al. [58] described for instance
how they built the NH90 product line of medium weight multi-role military helicopters, which resulted
in 23 variants. While this work focused on using product lines to assemble software components,
certification of modular components (w.r.t. DO-178B & AC20-148) is not addressed but is clearly
identified as "a major cost block". Alternatively, Hutchesson and McDermid [59] showed how to
leverage recent advances in model-driven engineering and component-based systems to foster to
verification of high-integrity product lines. This approach contributes to provide the evidence needed
to achieve modular certification.

Habli [60] made a first attempt to apply product line techniques to safety analysis. He proposed a
specific meta-model to capture safety concerns in a product-line so that product-line safety and
development artefacts can be jointly reused in a traceable and justifiable manner. Braga et al. [61]
described a product line of unmanned aerial vehicles (UAV) named Tiriba. This work is a first attempt
to leverage feature models to foster certification, as they capture the impact that each feature has on
certification and thus can contribute to the impact analysis required when deriving new products (see
Figure 19). Conmy and Bate [62] discussed the challenges of using product line and component-based
design to ease the assembly of safety arguments.

Although product line engineering is perceived as a promising technique to do modular certification,
research is still in its infancy. As identified above, product lines are a potential enabler for impact
analysis, when products have to be re-certified. In practice re-certification will address the
modification itself as well as the supporting evidence. All not affected parts of the safety related
system as well as all affected evidence should be reused and need not to be re-certified. A second
potential is the ability to easily identified compliant component or solutions that could meet the
requirements of systems compliant with existing standards. Building blocks can be certified
independently and yet be available as components off the shelf (COTS), ready for assembling new
safety-critical systems. Only the resulting assemblies would therefore require certification.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 32 of 39

5 Conclusion

Mixed criticality systems are typically multi-core embedded systems that integrate applications or
software components of various criticality levels. Traditionally, certification is a key concern of safety-
critical systems, and it ensures that enough evidence is provided to support the required safety
integrity levels. When applied to mixed criticality systems, certification further complicated as it
requires evidence that non-critical functions do not interfere with the safety-critical ones. In addition,
as acknowledged by existing safety standards (e.g., ISO 61805, ISO 26262) one of the major costs in
certification is the need for re-certification. Any change in the product, the requirements, or the
standard triggers a new round of certification.
Product line engineering has been proposed as a way to maximize reuse across an organization
product's platform. By making the commonalities between products explicit, a product line permits to
maximize reuse of components, and in turn, to reduce cost and development efforts. Although in
practice, product line engineering primarily focus on the derivation of new products, any related
development activity such as documentation or certification can ̶ in principle – benefit from the PLE
approach.

From a process-oriented perspective, product line engineering is a promising approach to effectively
reduce the cost of certification/re-certification. The existing attempts to apply product line ideas to
mixed criticality systems primarily focus on reducing the development cost by maximizing reuse of
software components. The issue of certification in product-lines, especially in safety-critical systems,
is still in its infancy and has been mainly concerned with the construction of safety cases and with
specific types of safety analysis. In the DREAMS project we intend to move beyond the state of art by
combining recent advances in testing software product lines as a whole to foster the certification of
safety-critical product lines.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 33 of 39

Glossary

ADL Architectural Description Language

ASIC Application Specific Integrated Circuit

BIP Behaviour, Interaction, Priority

COTS Commercial-Off-The-Shelf

CSP Communicating Sequential Processes

CVL Common Variability Language

DREAMS Distributed REal-Time Architecture for Mixed Criticality Systems

DSPL Dynamic Software Product Lines

E/E/PE Electrical/Electronic/Programmable Electronic

EASA European Aviation Safety Agency

EN European Standard

EUC Equipment Under Control

FAA Federal Avionic Administration

FPGA Field Programmable Gate Arrays

FSM/QM Functional Safety Management / Quality Management

GA Generic Application

GP Generic Product

ICPL Isotope Coded Protein Labeling

IEC International Electrotechnical Commission

IMA Integrated Modular Avionic

ISO International Organization for Standardization

MBT Model Based Testing

MCS Mixed Criticality System

OS Operating System

OVM Orthogonal Variability Models

PL Product Line

PLE Product-Line Engineering

RAM Random Access Memory

RTOS Real Time Operating System

SA Specific Application

SAT Satisfability Problem

SEooC Safety Element out of Context

SIL Safety Integrity Level

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 34 of 39

SIL CL SIL Claim Level

SPL Software Product Line

SUT System Under Test

TLA Temporal Logic of Actions

UAV Unmanned Aerial Vehicles

V&V Verification and Validation

WP Work Package

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 35 of 39

List of Figures

FIGURE 1: EXAMPLE BASIC IEC-61508 CERTIFICATION PROCESS [8]. ... 7
FIGURE 2: EXAMPLE IEC-61508 CERTIFICATION PROCESS [8]. ... 7
FIGURE 3: HIERARCHICAL STRUCTURE OF SAFETY STANDARDS. ... 8
FIGURE 4 OVERVIEW OF FUNCTIONAL SAFETY RELEVANT STANDARDS IN DIFFERENT AREAS (EXAMPLES FROM VARIES [9]) 8
FIGURE 5 SAFETY LIFECYCLE FROM IEC 61508 [8] ... 9
FIGURE 6: MODULARITY APPROACH. ... 11
FIGURE 7: SYSTEM STRUCTURE BASED ON SUB-SYSTEMS AND ELEMENTS. (IEC 61508-4, FIGURE 3) [12] 12
FIGURE 8: RELATIONSHIP OF SYSTEM, ITEM, ELEMENT, AND HARDWARE PART AND SOFTWARE UNIT. [14] 13
FIGURE 9: ITEMS, ELEMENTS IN ISO 26262 [14]. ... 14
FIGURE 10: ISO 26262 SAFETY ELEMENT OUT OF CONTEXT (SEOOC). [14] .. 15
FIGURE 11: DEPENDENCIES BETWEEN SAFETY CASE AND SAFETY APPROVAL. [16] ... 17
FIGURE 12: SAFETY ACCEPTANCE AND APPROVAL PROCESS. [16] .. 18
FIGURE 13: COMPONENT BASED SOFTWARE INCREMENTAL DEVELOPMENT PROCESS. [17] ... 19
FIGURE 14 A SIMPLIFIED FEATURE MODEL CAPTURING THE VARIABILITY OF HARDWARE PLATFORMS ... 22
FIGURE 15 THE VARIABILITY MODEL OF THE DREAMS PLATFORM MODELLED USING THE BVR TOOL ... 23
FIGURE 16 THE COST OF SOFTWARE PRODUCT LINE [32] .. 24
FIGURE 17 THE "W MODEL" [52]: AN ATTEMPT TO FORMALIZE THE UNDERLYING TESTING IN THE CONTEXT OF SPL 28
FIGURE 18 THE ICPL TOOL TO EFFICIENTLY TEST PRODUCT LINES [31] .. 29
FIGURE 19 MODIFICATION HANDLING PROCESS ACCORDING TO IEC 61508 ... 30

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 36 of 39

Bibliography

[1] J. Perez, D. Gonzalez, S. Trujillo, A. Trapman, and J. M. Garate, "A safety concept for a wind
power mixed-criticality embedded system based on multicore partitioning," in Functional
Safety in Industry Application, 11th International TÜV Rheinland Symposium, Cologne,
Germany, 2014, p. 36.

[2] J. Perez, D. Gonzalez, C. F. Nicolas, T. Trapman, and J. M. Garate, "A safety certification strategy
for IEC-61508 compliant industrial mixed-criticality systems based on multicore partitioning,"
Euromicro DSD/SEAA, vol. Verona, Italy, August 2014.

[3] European Commission, "Mixed Criticality Systems - Report from the Workshop on Mixed
Criticality Systems," February. 2012

[4] IEC 61508-3: Functional safety of electrical/electronic/programmable electronic safety-related
systems – Part 3: Software requirements IEC 61508, 2010.

[5] IEC 61508-2: Functional safety of electrical/electronic/programmable electronic safety-related
systems – Part 2: Requirements for electrical / electronic / programmable electronic safety-
related systems, IEC 61508, 2010.

[6] IEC 61508-1: Functional safety of electrical/electronic/programmable electronic safety-related
systems – Part 1: General requirements, IEC 61508, 2010.

[7] P. Clements and L. Northrop, Software product lines: practices and patterns, 3rd ed.: Addison-
Wesley Professional, 2001.

[8] J. Perez, "Development and certification of dependable embedded systems based on IEC-
61508 - Introduction: Why, what and how - UPV/EHU seminar," IkerlanMay 2014.

[9] R. Von Hahn, C. Dirmeier, T. Jedelhauser, and M. Wagner, "D4.8 Challenges and Potentials of
Certifying Product Lines," VARIES Consortium D4.8, September 2014.

[10] IEC, "IEC 61508-1: General Requirements," in Requirements for electrical/ electronical /
programmable electronic safety-related systems, ed, 2010.

[11] U. M. o. Defence, "Safety Management Requirements for Defence Systems," in Defence
Standard 00-56 (Issue 4), ed, 2007.

[12] IEC, "IEC-61508-4: Definitions and Abbreviations," ed, 2010.

[13] IEC, "IEC 61508-3: Software requirements," 2010.

[14] ISO, "ISO 26262 -10," in Road Vehicles - Functional Safety - Part 10: Guideline, ed, 2009, p. 31.

[15] ISO, "ISO 26262-1," in Road Vehicle - Functional Safety - Part 1: Vocabulary, ed, 2011, p. 30.

[16] CENELEC, "EN 50129," in Railway applications - Communications, signalling and processing
systems - Safety related electronic systems for signalling, ed, 2003, p. 94.

[17] R. Inc., "DO-178B: Software Considerations in Airborne Systems and Equipment Certification,"
ed, 2011.

[18] RTCA, "DO-297 Integrated Modular Avionics (IMA) Development Guidance and Certification
Considerations," ed, 2005.

[19] Aeronautical Radio Inc., "ARINC 653-1 Avionics Application Software Standard Interface. Part
1, Required Services," ed: ARINC, 2006.

[20] Aeronautical Radio Inc., "ARINC specification 653-2 — Avionics application software standard
interface. Part 2 - Extended services," March 2006.

[21] A. Crespo, I. Ripoll, and M. Masmano, "Partitioned Embedded Architecture Based on
Hypervisor: The XtratuM Approach," in Dependable Computing Conference (EDCC), 2010
European, 2010, pp. 67-72.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 37 of 39

[22] SAVOIR/IMA Workgroup. (2012, Nov. 06). Space Avionics Open Interface Architecture
(SAVOIR). Available: http://savoir.estec.esa.int/SAVOIRIMA.htm

[23] R. L. Alena, J. P. Ossenfort, K. I. Laws, A. Goforth, and F. Figueroa, "Communications for
Integrated Modular Avionics," in Aerospace Conference, 2007 IEEE, 2007, pp. 1-18.

[24] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision
Processes," Systems, Man and Cybernetics, IEEE Transactions on, vol. SMC-3, pp. 28-44, 1973.

[25] S. Apel and C. Kästner, "An Overview of Feature-Oriented Software Development," Journal of
Object Technology, vol. 8, pp. 49-84, 2009.

[26] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, "Feature-Oriented Domain Analysis
(FODA) Feasibility Study," Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA Tech. Report CMU/SEI-90-TR-21, Nov., 1990.

[27] P. Schobbens, P. Heymans, and J. C. Trigaux, "Feature Diagrams: A Survey and a Formal
Semantics," in Requirements Engineering, 14th IEEE International Conference, 2006, pp. 139-
148.

[28] K. Pohl, G\, \#252, n. B\, \#246, ckle, et al., Software Product Line Engineering: Foundations,
Principles and Techniques: Springer-Verlag New York, Inc., 2005.

[29] O. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen, "Adding Standardized
Variability to Domain Specific Languages," presented at the SPLC 2008, Limerick, Ireland, 2008.

[30] O. Haugen, A. Wasowski, and K. Czarnecki, "CVL: common variability language," presented at
the Proceedings of the 17th International Software Product Line Conference, Tokyo, Japan,
2013.

[31] M. F. Johansen, "Testing Product Lines of Industrial Size: Advancements in Combinatorial
Interaction Testing," PhD, Department of Informatics, University of Oslo, Oslo, 2013.

[32] M. E. Janota, J. Kiniry, and G. Botterweck, "Formal methods in software product lines:
concepts, survey, and guidelines," Lero, University of Limerick TR-SPL-2008-02, 2008.

[33] D. Batory, "Feature models, grammars, and propositional formulas," presented at the
Proceedings of the 9th international conference on Software Product Lines, Rennes, France,
2005.

[34] M. F. Johansen, C. y. Haugen, and F. Fleurey, "Properties of Realistic Feature Models Make
Combinatorial Testing of Product Lines Feasible," in Model Driven Engineering Languages and
Systems, 14th International Conference, MODELS 2011, Wellington, New Zealand, October 16-
21, 2011. Proceedings, 2011, pp. 638-652.

[35] M. Hinchey, P. Sooyong, and K. Schmid, "Building Dynamic Software Product Lines," Computer,
vol. 45, pp. 22-26, 2012.

[36] J. M. Jezequel and B. Meyer, "Design by contract: the lessons of Ariane," Computer, vol. 30,
pp. 129-130, 1997.

[37] C. A. Szyperski, Component software - beyond object-oriented programming: Addison-Wesley-
Longman, 1998.

[38] B. Meyer, "Applying "Design by Contract"," Computer, vol. 25, pp. 40-51, 1992.

[39] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming," Commun. ACM, vol. 12, pp.
576-580, 1969.

[40] A. Beugnard, J.-M. Jézéquel, N. l. Plouzeau, and D. Watkins, "Making Components Contract
Aware," Computer, vol. 32, pp. 38-45, 1999.

[41] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, et al.,
"Contracts for System Design," INRIA, Research Report HAL-00757488, 2012.

[42] C. A. R. Hoare, "Communicating sequential processes," Commun. ACM, vol. 21, pp. 666-677,
1978.

http://savoir.estec.esa.int/SAVOIRIMA.htm

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 38 of 39

[43] M. Abadi and L. Lamport, "Composing Specifications," ACM Trans. Program. Lang. Syst., vol.
15, pp. 73-132, 1993.

[44] M. Abadi and L. Lamport, "Conjoining Specifications," ACM Trans. Program. Lang. Syst., vol.
17, pp. 507-535, 1995.

[45] M. Broy, K. St\, \#248, and len, Specification and development of interactive systems: focus on
streams, interfaces, and refinement: Springer-Verlag New York, Inc., 2001.

[46] A. Basu, M. Bozga, and J. Sifakis, "Modeling Heterogeneous Real-time Components in BIP,"
presented at the Proceedings of the Fourth IEEE International Conference on Software
Engineering and Formal Methods, 2006.

[47] R. J. Allen, "A Formal Approach To Software Architecture," PhD, Carnegie Mellon University,
1997.

[48] Object Management Group, "Unified Modeling Language (UML) v2.4.1 - Infrastructure
Specification," ed: Object Management Group, 2011.

[49] Object Management Group, "Unified Modeling Language (UML) v2.4.1 - Superstructure
Specification," ed: Object Management Group, 2011.

[50] Object Management Group, "OMG Systems Modeling Language (OMG SysML)," ed: Object
Management Group, 2012.

[51] Modelica Association, "Modelica - A Unified Object-Oriented Language for Systems Modeling
(v3.3)," ed: Modelica Association, 2012.

[52] J. Lee, S. Kang, and D. Lee, "A survey on software product line testing," in 16th International
Software Product Line Conference, SPLC '12, Salvador, Brazil - September 2-7, 2012, Volume 1,
2012, pp. 31-40.

[53] M. F. Johansen, O. Haugen, and F. Fleurey, "A Survey of Empirics of Strategies for Software
Product Line Testing," in Software Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on, 2011, pp. 266-269.

[54] H. Cichos, S. Oster, M. Lochau, and SchC, "Model-Based Coverage-Driven Test Suite
Generation for Software Product Lines," in Model Driven Engineering Languages and Systems.
vol. 6981, J. Whittle, T. Clark, and Kc, Eds., ed: Springer Berlin Heidelberg, 2011, pp. 425-439.

[55] D. R. Kuhn, "Software Fault Interactions and Implications for Software Testing," IEEE
Transactions on Software Engineering, vol. 30, pp. 418-421, 2004.

[56] E. Althammer, E. Schoitsch, G. Sonneck, H. Eriksson, and J. Vinter, "Modular certification
support -- the DECOS concept of generic safety cases," in Industrial Informatics, 2008. INDIN
2008. 6th IEEE International Conference on, 2008, pp. 258-263.

[57] A. Kornecki and J. Zalewski, "Certification of software for real-time safety-critical systems:
state of the art," Innovations in Systems and Software Engineering, vol. 5, pp. 149-161, 2009.

[58] F. Dordowsky, R. Bridges, and H. TschC6pe, "Implementing a Software Product Line for a
Complex Avionics System," in Software Product Lines - 15th International Conference, SPLC
2011, Munich, Germany, August 22-26, 2011, 2011, pp. 241-250.

[59] S. Hutchesson and J. McDermid, "Development of High-Integrity Software Product Lines Using
Model Transformation," in Computer Safety, Reliability, and Security. vol. 6351, E. Schoitsch,
Ed., ed: Springer Berlin Heidelberg, 2010, pp. 389-401.

[60] I. M. Habli, "Model-based assurance of Safety-Critical Product lines," University of York,
Department of Computer Science, 2009.

[61] R. T. V. Braga, O. T. Jc:nior, K. R. L. J. C. Branco, and J. Lee, "Incorporating certification in feature
modelling of an unmanned aerial vehicle product line," in 16th International Software Product
Line Conference, SPLC '12, Salvador, Brazil - September 2-7, 2012, Volume 1, 2012, pp. 249-
258.

D 5.5.1 Version 1.0 Confidentiality Level:PU

28.11.2014 DREAMS Page 39 of 39

[62] P. Conmy and I. Bate, "Assuring Safety for Component Based Software Engineering," in High-
Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on, 2014, pp.
121-128.

