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1 Introduction 

This document is the deliverable D8.3.2 of the DREAMS project. It is the last deliverable of task 
T8.3 – Project technologies assessment of work package WP8 – Healthcare Use Case and 
Demonstrator. This deliverable, D8.3.2 – Assessment report for mixed-criticality healthcare and 
entertainment use cases, describes the final assessment of the demonstrator for mixed-criticality 
healthcare and entertainment. 

In this document, the healthcare demonstrator is presented, as well as the assessments of the 
DREAMS objectives related to the WP8 demonstrator.  

1.1 Position of the Deliverable in the Project 

This deliverable relates to task T8.3. Over the course of the project, the task provides two 
deliverables, both of which aim to assess the technological results of the project related to the 
healthcare demonstrator along with its mixed-criticality use cases. The confidentiality level of this 
deliverable is public (PU) and it will be published on the DREAMS website, once approved by the 
European Commission. 

A previous deliverable, D8.2.1 [1], delivered in month 45, provided a general overview of the 
hardware and software architecture of the demonstrator, while this deliverable evaluates the 
DREAMS technologies involved in the mixed-criticality healthcare and entertainment demonstrator. A 
preliminary assessment was performed in deliverable D8.3.1 [2], delivered in month 30, while this 
deliverable is the final assessment report. 

1.2 Contents of the Deliverable 

In chapter 2, we provide the description of the Healthcare demonstrator platform and the 
DREAMS technologies used. In chapter 0 the evaluation methodology as well as the assessment of 
the results of the demonstrator is presented.  
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2 WP8 Healthcare Demonstrator: Platform, Technologies 
and Application 

2.1 Hospital Use Case 

The demonstrator is implementing the use-case of a Hospital Media Gateway, where the rooms 
are connected to provide medical information to the hospital staff but also to provide entertainment 
media to patients. Thus, the system demonstrator running mixed-criticality healthcare and 
entertainment use case involves the consumption of media content by several patients located in 
different Hospital rooms, while monitoring of the overall health is performed using the ST Body 
Gateway devices. The Healthcare demonstrator is a distributed system composed of several devices 
that are communicating with a central Hospital Server. This server provides the on-demand media 
content consumption by the TV sets (using a wired network) without the need of a dedicated per-
room set-top box (STB). In addition, the Hospital server is used to store the continuous flow of 
physiological info and it also detects any abnormality arising from a range of medical conditions. When 
the patient has a clinically relevant event, the Body Gateway communicates via the room wireless 
switch to the Hospital server. This information is automatically examined by the smart caregiver 
application in the hospital server and if a critical condition is detected a warning is raised to the 
hospital personnel for the necessary intervention. At the same time, this technology can provide a 
valuable history feedback on the condition of the person wearing the body monitoring system. 
Patients’ data logged on the server can be analysed via a dashboard executed on the Hospital server 
and Patients’ data can be queried on demand. 

The smart caregiver application will be executed in the secure and critical environment where 
real-time properties and uptime must be guaranteed while other non-critical applications such as the 
on-demand content consumption are concurrently executed in a separate environment, much like 
what is happening today in modern car for the infotainment system. 

 

2.2 Demonstrator Overview 

The demonstrator platform represents an implementation of the Hospital use case at a reduced 
size. Figure 1, below, shows the network architecture of the demonstrator. The Body Gateway Control 
Units that are responsible for collecting all the sensor data, which are, then, relayed to the distribution 
network via a room gateway. A wired network is responsible for the communication between the 
room gateway and the Hospital Server. The patient data are collected in a prompt and reliable way to 
the Hospital server and several incoming media requests are delivered to the Hospital Server. Body 
Gateways (BGW) are connected via Bluetooth, while media viewers are connected via Ethernet. Then 
the main communication backbone is implemented using the TTEthernet that enables the native 
support of different traffic classes having different criticality levels.  In order to be scalable, the 
backbone includes several TTEthernet switches, however in the demonstrator we just use one single 
switch. 
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Figure 1: Network architecture of the demonstrator 

The Hospital server is implemented using the ARM JUNO platform that includes the 64bit ARM 
Cortex A53 and A57 processors where DREAMS technologies and services are implemented.  The room 
gateway is implemented via the Dreams Harmonized Platform (DHP) that in real life is responsible to 
provide the wired and wireless access points in each room. A wireless access point is used by the Body 
Gateways that have been paired, while a wired access point is used by the on-demand media devices.  
In order to avoid to spend a lot of effort to implement the Bluetooth protocol stack in the DHP board, 
we have decided to add a simple BT Odroid XU4 board and to add directly the on-demand media 
devices to the TTEthernet switch. The BT Odroid includes already the Bluetooth network stack 
enabling to pair directly several body gateways.  Then the BT Odroid is connected via Ethernet to the 
DHP board. Figure 2, below, presents a photo of the demonstrator including all its components. 
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Figure 2: Picture of the demonstrator 

 

The system for screening, prevention and management of disease is the system considered as 
critical in the Healthcare demonstrator. In addition, the use case involves also the streaming of video 
content to several rooms or patients. Thus, multiple services are supported by the Hospital Server: 

• To enable content consumption by TV sets (using a wired network)  

• To enable the ECG remote monitoring by receiving BGW information 

• To have a single shared network supporting mixed critical traffic 

Two main requirements must be addressed by the Hospital server architecture. The first one implies 
to guarantee real-time operations of the overall distributed system, which is composed by several 
subsystems with different criticality levels that are sharing the network and computational resources. 
Indeed, the Hospital server architecture should provide guarantees to meet the real-time constraints 
of critical information related to electrocardiography (ECG), while sharing the network with video 
streaming contents. Last but not least is the reliability requirement in presence of faults. Indeed, the 
Hospital server architecture should provide spatial and temporal isolation for the critical ECG 
application along with entertainment systems in order to ensure that the safety critical application is 
not affected by the non-critical one even in case of failure. 

 

2.2.1 ARM Juno development platform 

In this context, the ARM Juno Development platform combined with a TTEthernet device is used as a 
Hospital server. This platform offers significant flexibility in terms of development and prototyping 
features, while providing high computing performance and a reliable communication. 
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Figure 3: Software architecture on the Juno board (Hospital server) 

Figure 3 shows that the Hospital server is composed by several DREAMS software technologies, which 
enable a safe architecture to consolidate ECG monitoring system along with video streaming 
applications. 

To achieve flexibility, the TTEthernet device has been assigned to the Non-Secure world since 
all the necessary drivers to use this peripheral are already available for Linux. However, it is important 
to notice that the TTEthernet device should be handled by the Secure partition for a final product 
direction in order to ensure the processing of ECG data by the Real-Time Operating System (RTOS) 
even in case of a Non-Secure partition failure. However, such an implementation will require to port 
the drivers in the RTOS which requires too much effort according to the project timeframe. 

Finally, this implementation enables continuous or intermittent physiological monitoring and 
detection of abnormalities arising from a range of medical conditions coming from different patients. 
As a matter of fact, the information sent by the BGWs can be examined by the doctor for the necessary 
intervention. Patients’ data are logged via a dashboard and warnings are sent in real-time. The ECG 
visualization is executed in the execution environment of the Hospital server where other less critical 
applications, such as video streaming services, are concurrently executed. 

 

2.2.2 DHP platform 

The DREAMS harmonized platform (DHP for short) is a multi-core processor architecture developed 
by the DREAMS project. A prototype of the DHP using the Xilinx Zynq ZC706 FPGA Development board 
is used in the Healthcare demonstrator. Figure 4 shows the Zynq ZC706 board (on the left), where the 
connectors to access the Ethernet and TT-Ethernet (TTE) networks are highlighted. Additionally, the 
figure shows on the right a high-level view embedded within the prototype. In the Healthcare 
demonstrator only the TTE Controller and the dual-core ARM Cortex A9 tiles were required. Detailed 
information of the platform can be found in the D1.2.1 Architectural Style of DREAMS. 
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Figure 4: DREAMS harmonized platform 

The XtratuM hypervisor is used in the DHP dual-core ARM Cortex A9 tile. Extended information can 
be found on D2.3.1 XtratuM support of enhanced hypervisor layer services and D2.3.4 Hypervisor 
adaptation and drivers for local resource manager. A multicore partition is used to manage the 
Ethernet and TTE traffic. The Ethernet software driver embedded in the partition uses the lwIP 
(lightweight IP) implementation, which is an open source TCP/IP stack designed for embedded systems 
and typically used on applications with real-time restrictions. The TTE software driver is embedded in 
the XtratuM hypervisor and it can be used by the partition in a transparent way, such as it is done for 
inter-partition communication (IPC) through queuing or sampling communication ports (see D2.3.4). 

In the DHP, the Ethernet traffic received is routed to the TTE network and vice versa, the traffic 
received from TTE is routed to the Ethernet network. A TCP server is implemented in the XtratuM 
partition in order to establish a communication channel for the Ethernet traffic from Odroid board. 
Partition application is connected to a server provided by the Odroid board to create a route for the 
TTE traffic received from Juno board. A static table for the routing is defined in the partition 
application, where IP addresses/TCP ports are linked to XM ports/TTE virtual links. 

The binding between TTE virtual links and XtratuM queuing ports is statically defined during an off-
line design. 

 

2.2.3 TTEthernet Network 

The scheduling plan for the TTE network is based on the network traffic and the temporal 
requirements needed in the system. The section 3.1 defines a set of KPIs, which describes the type of 
traffic and the temporal restrictions of the components in the Healthcare demonstrator. The traffic in 
the ST Body Gateway is periodic and the transmission path is through Odroid, DHP and TTE switch 
until reaching the Juno board. Since a Bluetooth protocol stack is not available for the DHP an Odroid 
board has been introduced to address this requirement. The STM32 board uses the TTE switch to 
communicate with the Juno Board. Juno board sends control messages to the Odroid and STM board.  

The path 1 in the Figure 5 requires only TT (Time-Triggered) slots for time-triggered traffic (see KPIs 
#22 until #31) between DHP and TTEthernet switch. It is important to point out that path 1 is one of 
the critical paths since it has to support several time-triggered flows. This requirement has been 
achieved using several TT slots.  In the Path 2, the traffic required between Juno and STM32 discovery 
is best effort traffic or in other words, regular Ethernet traffic. In the path 3, the TT traffic and best 
effort traffic are mixed. 

The temporal restrictions and TTE restrictions lead to define the following features: 

• Several TT slots from DHP to Juno, each one associated to a Body Gateway with a Period of  
10 ms 

• A TT slot for traffic from Juno to DHP having a Period = 10ms 



D8.3.2 Version 1.0 Confidentiality Level: PU 

06.10.2017  DREAMS  Page 10 of 42 

o Maximum message size => Payload = 1446 bytes 

• A buffer is defined for each TT slot => 10 messages 

• Based on previous characteristics (period and maximum message size), the maximum 
transmission bandwidth through the TTE network in the path 1 is 144600 bytes/s, which is 
around 141 Kbytes/s. 

 
The temporal and functional restrictions for the path 2 are the same as for regular Ethernet. 
In the path 3, the TT slots are defined and the regular traffic is sent together to the TT traffic. However, 
the delivery of the TT traffic is guaranteed and prioritized against the regular traffic.  

 

 
Figure 5: Healthcare demonstrator highlighting the network paths. 

2.2.4 Ethernet network 

This network is referred to the path 4, that is, to the traffic from Odroid board to DHP.  This traffic is 
related to the number of Body gateways associated to each DHP. In general, we assume that a 
maximum of 6 devices may be associated to each DHP, which corresponds to having a maximum of 6 
patients per room. Therefore, the scalability is guaranteed by different DHPs installed one per room. 
Periodic messages or a periodic and limited burst transmission is expected in this path.  
The introduction of Odroid board has several complications in the management of traffic within the 
path 4 due to the intrinsic characteristics of the Ethernet network, where the medium access control 
is oriented to events and in the other extreme we have configured the medium access based on time.  
For this reason, it is important to take into account the maximum number of messages (i.e. the 
maximum bandwidth) configured in the TTE network in order to avoid message loss in the TTEthernet 
network, and hence, a bottleneck in the TTE transmission. The restrictions for this path can be 
extracted from the configuration information provided for the path 1 (section 2.2.3) and it can be 
summarized as: 
 

• Maximum 10 messages (size of the TTE buffer) of 1446 bytes (maximum payload message 
size) can be transmitted at once and it requires short periods between transmissions based 
on the period of the TT slots (10ms). 

• Burst transmission requires a high-bandwidth transmission over a short period. The formula 
to obtain the minimum time interval between burst transmission for the traffic from Odroid 
to DHP is: 
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𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ≥ (𝑁𝑚𝑠𝑔 + 1) ∗ 𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡 

 
Where 𝑵𝒎𝒔𝒈 is the number of messages to be sent at once. 𝑵𝒎𝒔𝒈 must be less than the buffer 

size of the TT slot (10 messages in our scenario). 
𝑷𝒆𝒓𝒊𝒐𝒅𝑻𝑻𝑺𝒍𝒐𝒕 is the period of the TT slot (10ms in our scenario). 
 

• Effective Bandwidth when the transmission of messages is not periodic but it is based on 
minimum time interval between burst transmission: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
1446 ∗ 𝑁𝑚𝑠𝑔

𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡 ∗ (𝑁𝑚𝑠𝑔 + 1)
 

Where 𝑵𝒎𝒔𝒈 is the number of messages to be sent at once. 𝑵𝒎𝒔𝒈 must be less than the buffer 

size of the TT slot (10 messages in our scenario). 

𝑷𝒆𝒓𝒊𝒐𝒅𝑻𝑻𝑺𝒍𝒐𝒕 is the period of the TT slot (10ms in our scenario). 

 

The issue with the burst transmission can be explained through an example. We are going to suppose 
that 5 messages require to be sent at once, so it requires to calculate the minimum time interval 
between burst transmission and the effective bandwidth: 

 

𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (𝑁𝑚𝑠𝑔 + 1) ∗ 𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡 = (5 + 1) ∗ 10𝑚𝑠 = 60𝑚𝑠 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
1446 ∗ 𝑁𝑚𝑠𝑔

𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡 ∗ (𝑁𝑚𝑠𝑔 + 1)
=

1446 ∗ 5

0.01𝑠 ∗ 614
= 120500 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

 

Figure 6 shows the flow of messages between Ethernet and TTEthernet for the example described 
above. Note in the figure that the time interval between burst transmission can have some +/- drifts 
(time 120ms and 240ms) but it does not have an impact in the TTE transmission. These drifts are 
considered in the calculation because the Odroid board uses the regular Linux kernel (without RT 
extensions), so the temporal requirements cannot be strictly fulfilled. 

 

 
 

Figure 6: Example of traffic from Odroid to DHP board based on burst transmission with a 𝑩𝒖𝒓𝒔𝒕𝑷𝒆𝒓𝒊𝒐𝒅 = 𝟔𝟎𝒎𝒔 and 5 
messages per burst transmission. 

If the requirements listed previously are fulfilled, the traffic between Ethernet and TTE can be 
guaranteed. 
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2.2.5 Practical case and theoretical analysis 

The defined number of devices supported per DHP is less than the maximum theoretical number of 
devices supported per DHP. The theoretical number can be calculated using the temporal and 
functional requirements of the ST BodyGateway in the transmission of the ECG raw data: 

• The size per sample is 10 bytes 

• 256 samples per second are generated by device, i.e. each device generates 2560 bytes per 
second. 

 

Performing a theoretical analysis and assuming the worst case: 

• 1 device requires 2560 bytes which means 2 messages (maximum payload message size equals 
to 1446) 

If the way to send the information is through burst transmission in minimum time intervals, the 
maximum number of devices supported will depend on the number of messages sent on each burst 
transmission. Supposing different scenario and based on the formulas defined in the previous section: 

1. The ECG raw information is sent at once for each device (2msg x 1 devices = 2msg): 
o 𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = ( 2msg + 1) * 10ms => 2 messages each 30 ms 
o 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = (1446*2msg)/(0.01*(2+1))= 96400 bytes/s 
o With this burst transmission rate, the maximum number of devices supported would be: 

(#Devices on each burst)/𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 1 device / 0,03 = ~33 devices  
2. The ECG raw information is sent at once for each 3 devices (2msg x 3 devices = 6msg): 

o BurstInterval= ( 6msg + 1) * 10ms => 6 messages each 70 ms 
o 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ= (1446*6msg)/(0.01*(6+1))= 123942bytes/second 
o With this burst transmission rate, the maximum number of devices supported would be: 

(#Devices on each burst)/𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 3 devices / 0,07 = ~42 devices  

 

Therefore, the configuration proposed for the current scenario could handle more devices when the 
restrictions mentioned above are fulfilled.  

Additionally, the period of the TT slot could be reduced if a higher bandwidth is required. 

 

2.3 Experimental Framework on Zedboard (no DHP or TTEthernet) 

In the in-hospital ECG processing use-case, doctors connect to a server for accessing ECG data 
of their patients. 

In this subsection, we focus on a more limited home media gateway demonstrator (without 
DHP or TTEthernet) and evaluate WP2 technologies involving memory and network bandwidth 
regulation algorithms (called Extended MemGuard and NetGuard). The proposed algorithms 
implemented as GNU/Linux kernel modules (in x86 and ARM v7/v8) differentiate rate-constrained 
from best effort traffic and provide a mechanism for initializing (before the first period) and 
dynamically adapting (at periodic intervals) the guaranteed memory bandwidth per core or network 
bandwidth per connected (incoming or outgoing) network IP. The proposed strategies enhance 
support of mixed criticality applications on distributed embedded architectures by extending the 
current state-of-the-art in access control policies (genuine MemGuard algorithm), providing a 
guaranteed violation free operating mode for rate-constrained traffic, and supporting dynamic 
adaptivity through EWMA (Exponentially Weighted Moving Average) prediction. By examining a 
mixed-criticality scenario with real-time ECG processing and best effort video traffic on a hospital 
media gateway (Zedboard with two ARM Cortex-A9 cores), we show that simultaneous use of our 
MemGuard and NetGuard implementations enables fine-grain regulation of network and memory 
bandwidth for improved quality-of-service characteristics. 
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Next, Section 2.3.1 details the MemGuardXt/NetGuardXt extensions, including the algorithm, 
methodology and implementation. Section 2.3.2 details our healthcare use case running on the home 
media gateway. Section 2.3.3 summarizes our results and provides a summary and future extensions. 

 

2.3.1 Linux Regulation Strategies 

Network and memory bandwidth management strategies can improve performance of 
communication-intensive memory-bound computations in distributed embedded systems based on 
Multi-Processor Systems-on-Chip (MPSoCs) by contracting available resources and allowing 
bandwidth reclaim mechanisms to efficiently utilize unused bandwidth. These mechanisms when 
combined together with CPU bandwidth scheduling, a functionality already provided by the Linux 
kernel, provide the capability to apply holistic techniques to system resource management. 

More specifically, network bandwidth regulation techniques allow differentiated services for 
communication-intensive applications through monitoring and control of packet communications. 
Traffic shaping, smart scheduling, congestion avoidance via admission control, reservation protocols 
and classification schemes can be used to avoid filling the network capacity. Similarly, memory 
bandwidth management schemes allow cores to share the memory hierarchy, avoid saturation or 
monopoly phenomena, and run memory-intensive programs more efficiently. 

While previous approaches rely on specialized hardware subsystems to successfully manage 
shared resources, e.g. at memory [18][19][20][21] and network interface level [22], we concentrate 
on bandwidth regulation in Linux, without the design of additional hardware components. In critical 
hard real-time operating systems (e.g. in transportation or medicine) it is obligatory for certification 
reasons to completely avoid interferences, while in less critical systems running Linux it is often 
enough to ensure that such disruptions are not harmful. Thus, regulation policies aim at managing 
interference so that higher critical application tasks in a mixed-criticality environment will effectively 
fulfill a sufficient, predefined performance.  

Within this context, MemGuard [23][24] performs dynamic memory bandwidth management 
at CPU-level by using hardware performance counters to monitor periodically the number of last-level 
cache misses (or equivalently accesses to the shared bus). In this deliverable, we introduce an 
extension to MemGuard algorithm (called MemGuardXt) which a) provides as an option a hard 
guarantee on the traffic rate which is especially important for real-time applications and b) improve 
its adaptivity for predicting bandwidth. We also improve modularity, by allowing our MemGuardXt 
algorithm to be used directly in either user- or kernel-space, in one or more instances. Using this 
methodology, we define two kernel modules: a) a kernel module running our MemGuardXt algorithm 
and b) a new network regulation module (called NetGuardXt) running over netfilter which uses a 
similar algorithm to MemGuardXt.  

We have evaluated our modules in an actual mixed-criticality use case involving a) a 
distributed soft real-time ECG processing application that we have developed by extending the open 
source WFDB, OSEA and WAVE packages from PhysioNet, and b) incoming best effort video traffic on 
a hospital media gateway (Zedboard with two ARM Cortex-A9 cores).  By focusing on both system and 
application metrics, such as NetGuardXt/MemGuardXt characteristics and real-time performance of 
ECG application, we show how simultaneous fine-grain control of network and memory bandwidth 
can result to improved quality-of-service characteristics that can help soft real-time ECG processing. 

2.3.1.1 Genuine MemGuard Principles and Related Extensions 

Genuine Memguard allows sharing guaranteed bandwidth over several cores using a dynamic 
reclaim mechanism. Using this mechanism, at the beginning of each period (period) cores are 
allocated part (or all) of their assigned bandwidth (according to history-based prediction) and donate 
the rest of their initially assigned bandwidth to a global repository (called G). Then, during the period, 
a core may obtain additional budget from G based on past traffic demand (history) and residual 
guaranteed bandwidth. This self-adaptive reclaim mechanism avoids over-provisioning, improves 
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resource utilization and is similar to extended self-adaptive Dynamic Weighted Round-Robin (DWRR) 
[25].  

Since the guaranteed memory bandwidth within a period under worst-case conditions (r_min) is 
significantly less than the maximum attainable memory bandwidth (e.g., usually close to 20%), the 
algorithm also allows best effort traffic (BE), i.e., traffic in excess of r_min. Thus, once all bandwidth 

has been exhausted within a period, MemGuard supports two approaches to generate BE bandwidth 
which refers to bandwidth used after all cores (i in total) have utilized all their assigned budgets, 
before the next period begins. First, it allows all cores to freely compete for guaranteed bandwidth, by 
posing regulation until the end of the period. Second, it applies sharing of BE bandwidth proportionally 
to reservations. There is no explicit provision for best effort traffic sources in MemGuard algorithm. 
As long as r_min is not exhausted, genuine MemGuard allows sources with a zero reservation (or 
sources that have otherwise exceeded their reservation), to repeatedly extract guaranteed bandwidth 
from G, up to the configurable minimum allocation (Q_min). 

2.3.1.1.1 Genuine vs Extended MemGuard (MemGuardXt) 

The genuine MemGuard algorithm [23][24] targets average instead of peak bandwidth 
reservation which limits its use in real-time applications. More specifically, a rate-constrained (RC) 
flow may steal guaranteed bandwidth from other RC flows and even exhaust the global repository, 
while other RC-flows have not yet demanded their full reservation potentially leading to guarantee 
violations. Although genuine MemGuard supports a reservation-only (RO) mode that removes 
prediction and reclaiming and allocates to RC traffic sources their full reservation in each regulation 
period, this mode performs poorly in terms of resource allocation. 

The proposed Extended MemGuard provides a hard guarantee option on the traffic rate which is 
important for real-time applications. This extension (called Violation Free mode or VF) restricts 
reclaiming budget from the global repository via function overflow_interrupt_handler if, as a 
result, it can cause guarantee violation for an RC-flow within the same period for one or more cores. 
Moreover, it considers RC, as well as BE criticality types of cores, although this feature is not examined 
in this work. 

Finally, notice that genuine MemGuard supports limited adaptivity for predicting memory 
bandwidth requirements (few periods). Extended MemGuard supports a general EWMA scheme, which 
computes a weighted average of all past periods based on parameter (λ) which determines the 

impact of history. EWMA prediction is pre-calculated for each core when a new period starts using the 
formula:  

zt = λ*xt +(1-λ)*zt-1, where t>1, 0≤λ≤1 and z1=x1, 

where Zt is the predicted bandwidth for the next period (t+1), while xt is the consumed 

bandwidth from the core at the end of the current period (t). This formula better adapts to 

intermediate traffic perturbations, i.e. between short bandwidth fluctuations and abrupt changes. 

 
Figure 7: MemGuard  input parameters, system state, statistics and metrics. 

We next explain the rationale in our MemGuardXt and NetGuardXt implementation as Linux kernel 
modules on x86_64 and ARM platforms (32 and 64-bit). Unlike genuine MemGuard, our 
MemGuardXt/NetGuardXt implementation is modular and different instances can be easily used from 
either user- or kernel-space. Its core functionality is implemented as a separate, self-contained package 
(.c and .h files) implemented in ANSI C. For example, as shown in Figure 7, MemGuardXt supports four 
data structures: 
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• MG_INPUT data structure with input parameters i, Q_min, r_min, period, and VF; this 
info can be dynamically modified via debugfs and update action is taken when the next period 
starts.  

• MG_STATE with initial, current, predicted and total used bandwidth and a criticality flag (set to true 
for RC traffic and false otherwise) Qi[], qi[], Qi_predict[], ui[], and rc_flag[]. If 

left uninitialized, Qi for all cores automatically takes the value of r_min/i. MemGuard algorithm 
distinguishes between RC and BE cores using the rc_flag[] array which denotes the criticality 
level of each core. Notice that both RC and BE cores can consume guaranteed and generate best 
effort traffic. 

• MG_STATS related to EWMA prediction algorithm with zt, zt-1, xt, λ, previous_period 
(t-1), current_period (t), period_unit, and G; Notice that, if called from kernel 

mode, EWMA bandwidth prediction is implemented using integer numbers only (instead of double) 
for optimization. 

• MG_METRICS with number of interrupts, i.e. when there is a request for reclaim, used bandwidth 
(from all cores), best effort bandwidth and the number of guarantee violations, when guaranteed 
bandwidth has been donated and already consumed by others; notice that if VF is set, then GV=0. 

The above data structures and functions are used from a Linux kernel module which provides the 

necessary monitors and actuators: e.g. timers, cache metrics and throttle mechanisms for 

MemGuardXt, or timers, bandwidth metrics and accept/drop functionality for NetGuardXt. Basic 

operation of MemGuardXt kernel module (left) with its core algorithm (right) is shown in Figure 8. 

 
Figure 8: MemGuardXt Linux kernel module (LKM) and core algorithm 

During MemGuardXt module insertion and removal (insmod/rmmod), init_module and 
cleanup_module functions invoked in the kernel driver also call corresponding functions in the core 
for initialization and memory cleanup. Periodically, Prediction_EWMA function is called to update 
the bandwidth consumed by each core based on the previous period and 
periodic_timer_handler resets all necessary statistical variables and reassigns the estimated 
bandwidth per core. This information is extracted from MemGuardXt algorithm by calling 
make_traffic from period_timer_callback_slave when the period starts. This value is 
increased on the fly by asynchronous calls of make_traffic from 
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memguard_process_overflow of the LKM module which also informs Prediction_EWMA 

that previously assigned bandwidth is already consumed. 

2.3.1.1.2 NetGuard Extension (NetGuardXt) 
We have also developed a different incarnation of Extended MemGuard as a Linux kernel module 

that uses custom netfilter hooks, the packet filtering framework built around sk_buff in Linux kernel. 
This allows independent kernel-level monitoring and control of network bandwidth of incoming and 
outgoing network flows using two separate NetGuardXt algorithm instances. Each such instance may 
define its own source/destination client IPs and bandwidth rate (r_min, Qi). This kernel module 
(called NetGuardXt) supports the existing API of Extended Memguard to provide network bandwidth 
regulation on Linux on x86_64 and ARMv7; our implementation on ARMv8 (64-bit Dragonboard 410c) 
has failed due to currently limited Linux kernel 4.0+ support of iptables/netfilter. While currently the 
period, number of traffic sources per interface and EWMA parameters can be set directly from the 
module as needed, other parameters (r_min, Q_min, and Qi) can also be configured on the fly, 

separately for each flow direction (outgoing and incoming) using debugfs. For example, the command  
echo “7000 500 3000 4000 15000 500 5000 10000” > /sys/kernel/debug/neguard/netguard_config 

configures NetGuardXt outgoing traffic to {r_min, Q_min, Q0, Q1} = {7000, 500, 3000, 
4000} bytes/period (and similarly for incoming traffic). 

NetGuardXt provides statistics concerning instant and cumulative statistics of accepted and 
dropped traffic (in packets or bytes per flow direction and connected client). 

 
Figure 9: NetGuardXt Linux kernel module (LKM) and core algorithm. 

Without delving into Linux kernel details (which involves understanding network drivers, netfilter 
for packet filtering hooks, high resolution timers, debugfs etc), we describe the main concepts of 
NetGuardXt and provide its API in Figure 9.  

Each packet destined to a network client (incoming or outgoing) can be counted and checked using 
bool make_rc_traffic function. Packet is sent (NF_ACCEPT) if this function returns TRUE. 

Otherwise, the packet is dropped (NF_DROP). Counters are reset at the end of each period (function 
period_timer_handler()).  A high-resolution timer (hrtimer) implements the period. 

Similar to Extended MemGuard interface, the EWMA update functions 
Prediction_EWMA_periodic and Prediction_EWMA_runtime are used to adjust the predicted 
bandwidth per client. In cases where the requested bandwidth exceeds the given “budget” 
overflow_interrupt_handler is called to reclaim unused bandwidth from the global repository 
where donations may occur. 

2.3.2 WP8 Use-Case: Hospital Media Gateway 

In order to demonstrate use of our kernel modules, we consider a realistic healthcare use case 
composed of a mixture of medical-critical tasks related to ECG processing and non-critical parts related 
to patient entertainment. This use case combines different types of devices sharing the same network 
and processing infrastructure and provides a viable solution that evolves the traditional hospital 
entertainment system, called linear TV, towards an on-demand system. 
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2.3.2.1 Infotainment Functionality 

A Hospital Media Gateway (HMG) solution must also address end user needs for infotainment 
evolving the existing hospital entertainment system (called linear TV) located in each room to an on-
demand distributed system. Thus, in addition to medical-critical services involving healthcare data 
acquisition, analysis, privacy protection and continuous physiological monitoring of the overall health 
and well-being via STMicroelectronics BodyGateway device (BGW), the HMG must also involve as a 
core function transmission of non-critical premium content to HMG and eventual consumption by 
patients located in different rooms.  With this aspect, a number of smart devices can act as video clients 
(using a wired network) with regard to content services eliminating the need for a dedicated high-end 
set-top-box per each end-device.  

2.3.2.2 Single and Multi-Room Scenario (in-Hospital) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the single room scenario, medical patient data from up to 8 patients collocated in the same 
room who wear the BGW is transmitted via Bluetooth to local room gateways (32-bit Odroid XU4 
board). Patients may move around hospital rooms and corridors as long as the Bluetooth signal-to-
noise ratio is acceptable (usually 100m range). Figure 10 demonstrates the platform architecture that 
maps each local room gateway to a 32-bit Odroid XU4 board.  

The single-room distributed network architecture can be extended to a multiple room scenario as 
follows. First, a wireless Bluetooth connection is used to transmit sensor data from multiple BGW 
gateways corresponding to patients in each room to a room gateway. Then, this data is transmitted 
from each room gateway (32-bit Odroid XU4) to the HMG (32-bit Zedboard and eventually 64-bit ARM 
Juno board) via the hospital’s wired distribution network.  

In the above in-hospital use case, we must guarantee soft real-time operation of the overall 
distributed system, consisting of subsystems (healthcare architecture and multimedia) with different 
criticality levels that are sharing network and computational resources. Criticalities extend from 
computation components (Media Server, BGW, ECG processing) to the communication infrastructure 
(wired and wireless network). Another important requirement is scalability of the healthcare 
architecture without affecting system properties, e.g. real-time requirement. Notice that the number 
of BGW devices (resp. software components) can scale depending on the number of patients to be 
monitored while the system is running. 

Figure 10: A Hospital Media Gateway (HMG) in a multi-room 
scenario 
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2.3.2.3 Real Time ECG Analysis and Visualization  

 
Figure 11: The ECG analysis process. 

Our soft real-time ECG analysis system is based on open source software, in particular a 
medical decision support subsystem which provides annotation on the basis of non-fatal arrhythmias. 
Detection and classification of heart beat signal is the objective of the algorithms designed to support 
full medical decision support systems by diagnosing health issues and providing information to 
physicians. Thus, the system is also able to identify alarming situations by annotating critical situations 
graphically along with the ECG signal.  

In our use case, an ECG analysis process is initiated on the Zedboard upon acquisition by a 
server component of the heart beat signal transmitted by the Odroid XU4 board. This signal is initially 
received by the Odroid board via Bluetooth from the BGW sensors and appended to a file prior to 
transmission. As shown in Figure 11, ECG analysis proceeds to invoke our custom real-time extensions 
on WFDB and OSEA, two open source software libraries whose main task is (offline) normalization of 
the input signal according to standard EC-13, and heart beat detection and classification. Finally, 
visualization is performed using WAVE, a fast-open source application based on XWindows and XView 
open source client toolkit (see Figure 11). WAVE supports fast, high resolution display of ECG 
waveforms at different scales with asynchronous display of the annotations. It also handles remote 
access by Web browser, but this feature is not used in our tests. 

More specifically, since the BGW transmits an ECG signal consisting of 256 samples per sec, we first 
perform conversion to a standard ECG-13 compliant format using WFDB’s wrsamp function which 
outputs two files: a standardized ECG signal “synth.dat” and an ASCII “synth.hea” file which contains 
info about ECG data stored in the previous file e.g. the total samples. 

Then, we use a custom real-time version of easytest algorithm (part of OSEA, a.k.a. Open 
Source ECG Analysis) to a) dynamically change the sampling rate to 200 samples/sec and b) perform 
on-the-fly standardized ECG13-compliant heart beat detection and classification using different types 
of filters (e.g. noise reduction, QRS, SQRS) and related computations (R-R interval). This process allows 
classification of the ECG signal to Normal or Ventricular in “synth.atest” file, cf. [26][27]. OSEA uses 
Harvard’s WFDB Physionet software which provides stable, self-adaptive automated ECG detection 
and analysis with very high positive predictivity (tested with MIT/BIH and AHA arrhythmia databases). 

2.3.3 Experimental Framework and Results 

In this section, we examine the effect of simultaneous memory/network bandwidth regulation 
(using our MemGuardXt and NetGuardXt kernel modules) on the above realistic in-hospital use case 
based on a hospital media gateway (Zedboard with two ARMv7 cores). 

More specifically, in our prototype use case, we apply NetguardXt to regulate two types of incoming 
traffic on the Home Media Gateway (Zedboard): 

• video-on-demand traffic arriving to Zedboard from an external server via an Ethernet router; this 
video is eventually distributed to clients via video streaming; notice that video streaming does not 
generate significant memory bandwidth (1-2 MB), thus in this deliverable we focus (without loss of 
generality) on incoming traffic. However, the same prototype has been used to control quality-of-
delivery of outbound video traffic, see Figure 12. 

• ECG network traffic, originating from two BGW devices connected to an Odroid XU4 and arriving to 
Zedboard via the Ethernet router.  
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Figure 12: Regulating video streaming quality using NetGuardXt. 

ECG processing at the Zedboard involves running a server that opens independent TCP 

connections to receive new ECG data from BGW devices via Odroid XU4, together with an initial 
consumer process that starts WAVE application for each connected client, and an animator process 
(wrsamp, easytest) that sends asynchronously (via wave-remote function) an annotated ECG 
signal to WAVE. Notice that all these processes run on CPU0, while video-on-demand process runs on 
CPU1. Since Zedboard has only two CPUs available, both cores are considered rate-constrained. In our 
experiments,  

• MemGuardXt configuration uses a fixed period=1 msec, i=2, λ=0.2, 
r_min=Q0+Q1=90M/sec, Q_min=50, while the MemGuardXt Q0/Q1 ratio (for cores 0 and 1) 

is set by one of three scripts; furthermore, since Zedboard does not provide a counter for last level 
cache (L2) cache misses, we have disabled L2 cache. 

• Similarly, NetGuardXt configuration uses a fixed period=1 sec, i=2, λ=0.2, 

r_min=Q0+Q1=70KB/sec, Q_min=1000, while the NetGuardXt Q0/Q1 ratio (for cores 0 and 
1) is controlled dynamically by the same three scripts described below.  

• The three scripts which are the driving force behind our experiment first fix MemGuardXt Q0/Q1 

ratio as 25/65, 50/40, or 75/15, and then periodically, every 20 sec, reconfigure the NetGuardXt 
Q0/Q1 ratio (for cores 0 and 1) always with the same sequence: {18/72, 16/74, 14/76, 

12/78, 10/80, 8/82}. Thus, each script gradually decreases the assigned bandwidth rate for 
ECG (and increases that of Video), while keeping a fixed ratio for ECG to Video memory bandwidth. 
Each running script is named after the fixed MemGuardXt configuration value, i.e.  MG 25/65, MG 
50/40, or MG 75/15. 

Selection of memory/network Q0/Q1 rates for MemGuardXt and NetGuardXt was based on initial 

experiments that considered performance of each component (ECG processing or video traffic) in 
isolation, to locate regions in the system parameter space where mixed criticality effects are 
interesting. 

 
Figure 13: Dropped Bytes for ECG and Video (as percent of accepted ones) while the corresponding script runs, i.e. ECG 

rate decreases every 20 sec. 
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Figure 13, extracted from kernel logs, shows that gradually decreasing ECG network bandwidth via  
NetGuardXt from 18000kB/sec to 8KB/sec (in 20 sec intervals), results in an increasing cumulative ECG 
drop rate and decreasing drop rate of video traffic.   

 
Figure 14: Performance of MemGuardXt (MG 75/15 configuration); the vertical Axis units are in bytes for Used 

Bandwidth (Ui) and Best Effort. 

In Figure 14 we show corresponding MemGuard performance for MG75/15 case. Notice that 
in this case all MemGuard figures scale well despite the decreased bandwidth, i.e. TCP retransmissions 
due to drops at the incoming network interface (see Figure 13) appear to be still manageable in real-
time. 

 
Figure 15: Delays at Home Media Gateway (Zedboard) for MG75/15 script. 

Figure 15 shows an execution trace at the server assuming the same MemGuardXt 
configuration MG 75/15. Notice that we have set affinity so that ECG server, consumer and 
animation processes (involving wrsamp and easytest) all share ARM Cortex-A9 CPU0, while the 

video-on-demand service transferring files to Zedboard for further delivery runs on CPU1. Although 
ECG network rate is reduced, results are similar. They show that a proportionally larger share of the 
total execution time (up to 50%) is spent for easytest which performs filtering and asynchronous 
annotation of ECG data than either server which saves the ECG signal locally (approximately 30%), 
or wrsamp which performs signal conversions to EC-13 standard (20%). Small variations at the server 
can be attributed to acquiring file locks at the server and animation process (below 20ms with 
rare spikes).  

 
Figure 16: Real-time performance of ECG processing application for two BodyGateway devices for two MemGuardXT 

configurations. 
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Finally, Figure 16 compares the amount of ECG data delivery from each of the two BGW devices to 
the animator (WAVE application). It is clear that while for MG 25/65 configuration one of the BGW 
devices has completely stopped due to memory bandwidth starvation, in the MG75/15 configuration 
the animator is able to process traffic from both BGW devices in soft real time. 

Overall, system-level bandwidth regulation algorithms can differentiate among rate-constrained 
and best effort traffic sources in systems-on-chip. Our work extends existing memory bandwidth 
regulation policies (MemGuard) by providing improved adaptivity through EWMA prediction and 
considering a violation free operating mode for rate-constrained flows. Our implementation follows a 
highly modular approach, allowing our MemGuard extensions (MemGuardXt) to be used directly in 
either user- or kernel-space, in multiple instances. By applying this engineering approach, we have also 
designed a network bandwidth regulation module (called NetGuardXt) running over netfilter which 
uses a similar algorithm to MemGuardXt to control incoming or outgoing traffic per IP.  

We have considered combined MemGuardXt/NetGuardXt effects in a mixed-criticality use case 
involving a hospital media gateway prototype (Zedboard with two ARM Cortex-A9 cores). The media 
gateway simultaneously performs soft real-time processing and annotation of ECG signals from 
STMicroelectronics’ BodyGateway pulse sensors (relying on our extensions on the open source WFDB, 
OSEA and WAVE framework from PhysioNet) while also storing video-on-demand traffic for video 
streaming. By examining different NetGuardXt and MemGuardXt configurations, we have shown how 
fine-grain control of network and memory bandwidth can help soft real-time ECG processing.  

Our future plans include extending our use case to a more powerful hospital media gateway based 
on ARM Juno board that would enable use of rate-constrained and best-effort cores for both ECG and 
video streaming applications. 

An alternative implementation in the heart of the Linux scheduler would allow MemGuard to 
regulate rate-constrained and best-effort traffic at process- instead of core-level. This new scheduling 
policy is currently being implemented on embedded ARMv7 technology (Zedboard running Linux kernel 
3.17).  
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3 Evaluation Methodology 

In this chapter, we focus on the methodology to evaluate the project approach on the basis of a 
Healthcare demonstrator integrating all hardware components (ST Bodygateway, Odroid, DHP, 
TTEthernet and Juno) as shown in Figure 1. An assessment is achieved in this report through the 
definition and the evaluation of Key Performance Indicators (KPIs) based on the general project 
objectives defined in Description of Work [5] Part B, section 1.1. 

 

3.1 Key Performance Indicators (KPIs)  

KPIs are regarded as a collection of metrics for quantifying the objectives of the project, 
monitoring its activity progress and assess the expected results. 
 
The KPIs presented in this section are expected to be: 

• Objective: it shall be possible to measure them objectively. 

• Measurable: it shall be possible to quantify them. 

• Relevant to the project: the partners shall confirm their interest. 

• Comparable: to the situation of the application use case before using DREAMS approach and 
technologies. 

 
The performance indicators defined in the following tables will be traced to one or more measures 

for success. In this preliminary evaluation, they will provide quantitative information to support the 
qualitative evaluation of every measure for success. Some of the measures for success are not traced 
to any KPI, since there may be no quantitative data that could support the conclusion. 
 
The KPIs are classified into three subsets:  

• 'D': The KPIs marked with 'D' can be evaluated in the preliminary and final reports (e.g., jitter, 
boot time, etc). 

• 'E': These KPIs can only be evaluated in the final report at the end of the project (e.g., 
Percentage of DREAMS building blocks used by the demonstrator, etc) 

• 'A': These KPIs can be objectively evaluated only after the project since some experience with 
the technology is needed (e.g., Time-to-market reduction of a mixed-criticality system based 
on DREAMS architecture and technologies). However, an estimation is provided in this report. 

 
Table 1 lists and describes all KPIs of the project, and traces all of them to the measures for success 

they aim at providing arguments for evaluation. The last column indicates when this metric can be 
obtained: 
 

ID KPI Description Measure 
for 

Success1 

Time 

1 Achievable Safety 
Integrity Level 

Maximum achievable Safety Integrity Level (e.g. 
ASIL-B, ASIL-C) according to ISO 26262 [6][7][8] 
for the secure monitor firmware layer 

1.1, 2.7 
6.1, 6.2 

D 

2 Validated support for 
key real-time OS 

(Boolean) The ARM JUNO development 
platform supports integration of FreeRTOS to 
be used as the OS for the supervision. 

1.2 D 

                                                           
1 Detailed description of the measures for success can be found at Section 3.2. 
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ID KPI Description Measure 
for 

Success1 

Time 

3 Maximum jitter 
induced by the secure 
monitor layer 

Bounded value for jitter in the execution of the 
most critical real-time thread 

1.2 D 

4 Maximum overhead 
during the RTOS boot 

Bounded value for overhead induced by the 
secure monitor firmware layer during the boot 
of the RTOS 

1.2 D 

5 Temporal and spatial 
isolation by 
construction 

(Boolean) The safety concept (supported by the 
verification plan) demonstrates that the 
architecture provides temporal and spatial 
isolation of partitions by construction 

2.1, 2.7, 
3.1, 6.1 

D 

6 Maximum latency 
overhead of 
applications inside a 
KVM virtual machine 

Percentage of the overhead of the latency of 
KVM virtual machine on loaded system. Latency 
is measured with Linux tool “cyclictest” inside a 
virtual machine with and without CPU 
workload. The overhead is the difference 
between those two measurements. 

2.1, 2.4 D 

7 I/O latency inside KVM 
virtual machine is not 
affected by the I/O 
workload 

(Boolean) The I/O latency of application inside 
virtual machine, on a system with I/O 
workloads, is about the same value than on a 
system with idle medium. 

2.1 D 

8 Memory bandwidth 
isolation by 
construction 

(Boolean) The architecture provides a memory 
bandwidth isolation between tasks 

2.1 D 

9 Memory bandwidth 
reservation for highest 
criticality level 
application 

(Boolean) The architecture provides a memory 
reservation feature to preserve memory 
bandwidth of highest critical applications 

3.1 D 

10 Fault containment by 
construction 

(Boolean) The certification body accepts 
evidences to demonstrate fault containment by 
construction 

1.3,1.1 E 

11 Percentage of system 
architecture/design 
modelled  

Percentage of the system architecture and 
design that is able to be modelled with the 
tools developed in DREAMS 

1.7 E 

12 Percentage of software 
application modelled 

Percentage of the application software that is 
able to be modelled with the tools developed in 
DREAMS 

1.7 E 

13 Bounded temporal 
network routing. 
(TTEthernet -> 
Ethernet) 

Delay introduced in the path of data packets 
when they are routed from the TT-Ethernet 
network to the Ethernet network through the 
DHP board. 

2.3 E 

14 Bounded temporal 
network routing. 
(Ethernet -> 
TTEthernet) 

Delay introduced in the path of data packets 
when they are routed from the Ethernet 
network to the TT-Ethernet network through 
the DHP board. 

2.3 E 

15 Bounded temporal 
interference (network) 

Delay introduced in the safety-related 
communications when heavy non-safety traffic 
(video) is generated in the network 

2.1 E 
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ID KPI Description Measure 
for 

Success1 

Time 

16 Bounded temporal 
interference 
(processing) 

Delay introduced in the critical thread of the 
safety-related partition when heavy processing 
load is generated in neighbouring non-safety 
partitions 

2.1 E 

17 Bounded temporal 
interference (resources 
access rate) 

Delay introduced in the access to resources 
(memory) by the safety-related partition when 
heavy resource consumption is required by 
neighbouring non-safety partitions 

2.1, 2.2 E 

18 ST Body gateway-to-
partition latency 

Latency between a value is read at the sensor 
and delivered at the partition where it is going 
to be processed 

2.5 E 

19 Percentage of 
development steps 
covered by tools in 
demonstrator 

Percentage of development steps where 
DREAMS tools provide support in the 
demonstrator, in one or more of the following 
aspects: safety, timing, energy, variability 

4.2 E 

20 Percentage of 
automatically 
executable 
transformations 

Percentage of automatically executed 
transformations between consecutive 
development steps provided by tools 

4.3 E 

21 Adaptability to 
evolution of product 
and standards 

(Boolean) The approach provides required 
adaptability for evolution of product and 
standards 

5.6 A 

22 ST Bodygateway  
ECG raw data 

Real-time constraint 128/256 Hz 1.1 E 

23 ST Bodygateway  
Heart Rate 

Real-time constraint 1 each 10/15/30/60 sec 1.1 A 

24 ST Bodygateway  
Heart Rate Reliability 

Real-time constraint 1 each 10/15/30/60 sec 1.1 A 

25 ST Bodygateway  
R-R Variability 

Real-time constraint 1 each 10/15/30/60 sec 1.1 A 

26 ST Bodygateway  
BIOZ 

Real-time constraint 32 Hz 1.1 A 

27 ST Bodygateway  
ACC XYZ 

Real-time constraint 50hz 1.1 A 

28 ST Bodygateway  
Body Position 

Real-time constraint 1 each 5/10/15/30/60 sec 1.1 A 

29 ST Bodygateway  
Activity level 

Real-time constraint 1 each 5/10/15/30/60 sec 1.1 A 

30 ST Bodygateway  
Breathing Rate 

Real-time constraint 1 each 15/30/60 sec 1.1 A 

31 ST Bodygateway  
Battery 

Real-time constraint 1 each 10/15/30/60 sec 1.1 A 
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ID KPI Description Measure 
for 

Success1 

Time 

32 Juno R1 CPU utilization 
in video streaming – 
Maximum overhead 

CPU utilization to achieve a required frame-rate 
quality on the STM32F746G-DISCO (2 scenarios) 
– AVI video rendering and streaming raw 
bitmap images (not jpeg) application pinned to 
A57 
Real-time constraint for: 
     a) 24 FPS, half-screen size, 24-bits/pixel, 
         peak=90%, avg=85% (A57 cluster) 
     b) 20 FPS, half-screen size, 16-bits/pixel 

1.4 E 

33 Juno R1 memory 
utilization in video 
streaming – Maximum 
overhead 

Memory utilization to achieve a required frame-
rate quality on the STM32F746G-DISCO (2 
scenarios) – AVI video rendering and streaming 
raw bitmap images (not jpeg) application 
pinned to A57 
Real-time constraint for: 
24 FPS, half-screen size, 24-bits/pixel: 240MB 

 1.4 E 

34 Juno R1 – 
STM32F746G-DISCO 
Ethernet network 
utilization in video 
streaming – Maximum 
overhead 

Ethernet (UDP) network bandwidth to achieve a 
required frame-rate using raw video for half-
screen size of STM32F746G-DISCO 
Real-time constraint for: 
24 FPS, half-screen size, 24-bits/pixel: 80Mbps 

1.4 E 

35 STM32F746G-DISCO 
CPU utilization in video 
streaming – Maximum 
overhead 

CPU utilization to achieve a required frame-rate 
using raw video in STM32F746G-DISCO without 
JPEG accelerator, DMA to framebuffer. 
Real-time constraint for: 
24 FPS, half-screen size, 24-bits/pixel: 75% 

1.4 E 

36 Real-time 
characteristics of ECG 
Processing application 

Related to ECG data analysis for automated 
cardiac disease detection and visualization, soft 
real-time operations of the overall distributed 
system must be guaranteed since the healthcare 
demonstrator includes subsystems with 
different criticality levels (healthcare data and 
multimedia). 

1.2 E/A 

37 Scalability of the 
healthcare architecture 
in terms of number of 
Body Gateway devices 

Number of ST body gateway devices that can be 
simultaneously connected to the platform 
without affecting real-time constraints. 

3.5 E/A 

Table 1: Key Performance Indicators 
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Table 2 collects the values of the KPIs, evaluated or estimated. According to the KPI type (i.e., 
Boolean or not), some results have been measured while others have been determined through the 
documentation. Additional information is provided in the comments column.  
 

ID KPI Goal Value Comments 

1 Achievable Safety 
Integrity Level 

ASIL-C Under functional 
safety assessment 

The secure monitor firmware 
layer has been designed to meet 
the stringent requirements of 
the ISO 26262 standard. The 
certification target of this 
software component is ASIL-C, 
which corresponds to SIL-2/SIL-3 
of the Functional Safety 
Standard IEC61508 that fits the 
needs of the healthcare use-
case. The Audit phase 1 related 
to the concept has been passed 
with success and the Audit 
phase 2 is ongoing. 

2 Validated support 
for key real-time 
OS 

Yes Yes The support of FreeRTOS, which 
is the monitoring real-time OS 
for Healthcare demonstrator, is 
fully validated on the ARM JUNO 
Development platform. 

3 Maximum jitter 
induced by the 
secure monitor 
layer 

1 µs 780 ns Isolated executions of critical 
partition guarantee not exceed 
this value.  
Evidences of this performance 
measurement can be extracted 
from D2.3.2 [9]. 

4 Maximum 
overhead during 
the RTOS boot 

600 µs 23 µs Safety domains (e.g., 
automotive) have stringent 
requirements related to the 
RTOS boot time, which has to be 
completed in less than 60ms. As 
the secure monitor firmware 
adds an overhead before the 
RTOS execution, the goal is to 
setup this software layer in less 
than 600 µs in order to not 
impact the full RTOS boot time 
more than 1%. 
Evidences of this performance 
measurement can be extracted 
from D2.3.2 [9]. 
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ID KPI Goal Value Comments 

5 Temporal and 
spatial isolation by 
construction 

Yes Yes Spatial isolation is guaranteed 
by the secure monitor firmware 
layer which relies on the ARM 
TrustZone. These evidences can 
be extracted from specific 
documentation of the secure 
monitor layer as well as D2.3.2 
[9]. Although the current 
implementation gives the full 
priority to the RTOS, temporal 
isolation could also be 
guaranteed by the secure 
monitor layer, if needed. 

6 Maximum latency 
overhead of 
applications inside 
KVM virtual 
machine 

5% 1.1% The latency overhead can be 
extracted from D2.2.1 [3], the 
experiment has been run on an 
ARM Chromebook with the CFS 
scheduler. It corresponds to the 
worst case scenario in term of 
number of workload in host and 
guest. 

7 I/O latency inside 
KVM virtual 
machine is not 
affected by the I/O 
workload 

Yes Yes The I/O latency is not affected 
by I/O workloads thanks to the 
V-BFQ I/O coordinated 
scheduler. Measurement of the 
I/O latency can be extracted 
from D2.2.1 [3]. 

8 Memory 
bandwidth 
isolation by 
construction 

Yes Yes Memory bandwidth isolation is 
guaranteed by the memguard-
kvm implementation of the 
memguard kernel module on 
ARMv8 architecture. These 
evidences can be extracted from 
the D2.2.3 [4]. The 
implementation isolates each 
virtual machine regarding the 
executed task. 

9 Memory 
bandwidth 
reservation for 
highest criticality 
level application 

Yes Yes Memory bandwidth isolation is 
guaranteed by the memguard-
kvm implementation of the 
memguard kernel module on 
ARMv8 architecture. These 
evidences can be extracted from 
the D2.2.3 [4]. The 
implementation isolates each 
virtual machine regarding the 
executed task. 
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ID KPI Goal Value Comments 

10 Fault containment 
by construction 

Yes Yes By leveraging on the secure 
monitor firmware, faults in a 
specific system cannot affect the 
correct execution of the other 
systems. In addition, the secure 
monitor firmware is able to 
perform a “warm reboot“ of the 
failed system without impacting 
the other systems. Specific 
documentation for each 
building block and mainly, the 
deliverables D2.3.2 [9] and 
D2.4.2 [10]  could represent 
evidences to consider fault 
containment by construction.  

11 Percentage of 
system 
architecture/design 
modelled  

As much as 
needed for 
configuration 
file generations. 

Modelling of the 
off-chip network 
and the connected 
nodes. 

The off-chip network and the 
hardware of the connected 
nodes and the system software 
have been modelled to a degree 
that makes the execution of the 
tools possible. 

12 Percentage of 
software 
application 
modelled 

As much as 
needed for 
configuration 
file generations. 

Modelling of 
application tasks 
requiring off-chip 
communication. 

The communication related 
properties of the concerned 
tasks have been modelled, such 
as the size of the exchanged 
data and communication 
periods.  

13 Bounded temporal 
network routing. 
(TTEthernet -> 
Ethernet) 

<100ms BCET: 0 ms 
WCET: 58ms 

This is defined by the period 
used to check the TTEthernet 
buffer and the time to send the 
message by Ethernet. The 
TTEthernet buffer can store up 
to 10 messages, which can be 
received with a period of 10ms. 
Therefore, the TTE buffer can 
store information until 100ms. 
However, it is processed each 
50ms. All pending messages are 
processed and send through 
Ethernet on each check. 
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ID KPI Goal Value Comments 

14 

Bounded temporal 
network routing. 
(Ethernet -> 
TTEthernet) 

<300ms BCET: 0ms 
WCET:100ms 

The maximum transmission rate 
from Ethernet to TTEthernet 
network is limited by the period 
defined in the TTEthernet 
configuration. In the 
demonstrator, for the path from 
Ethernet to TTEthernet, the TTE 
configuration defines one TT 
slot with period 10ms and a 
buffer of 10 messages. These 
temporal requirements were 
based on KPI #22 to #31. The 
BCET is obtained when the 
message is received just before 
start the TT slot. The WCET is 
obtained when the message 
received is the latest in the 
buffer and it arrives just at the 
end of the TT slot.  

15 

Bounded temporal 
interference 
(network) 

Safety related 
communications 
are not affected 
by non-safety 
communications 

No delay 
introduced in 
safety 
communication 
when non-safety 
traffic is also used 

Safety-related communication 
uses Time-Triggered network 
traffic type, while videos 
streaming use Best-Effort traffic 
type (i.e, normal Ethernet). 
Therefore, the Time-Triggered 
aware hardwares (TTswitch and 
TTethernet card) ensure that no 
delay is introduced when using 
non-safety network traffics. 

16 

Bounded temporal 
interference 
(processing) 

 Not evaluated. The safety related partition of 
the Hospital server (Juno board) 
run a Real-Time operating 
system (FreeRTOS) on which the 
drivers of the TTEthernet PCI 
card are not available. Doing the 
porting was resource consuming 
and out of the scope of DREAMS 
project, so, as a workaround, the 
PCI card is used on the Linux side 
sharing its data with the RT-OS 
through a shared memory 
mechanism. 

17 

Bounded temporal 
interference 
(resources access 
rate) 

 Not evaluated. See #16. 
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ID KPI Goal Value Comments 

18 

ST Body gateway-
to-partition latency 

Below 1sec for 8 
(ST 
Bodygateway 
devices) x 256 
samples (per ST 
Bodygateway) 

An alternative way 
is to examine delay 
to process 256 
samples on the 
server. We have 
seen that it’s 
possible to support 
1 ST Bodygateway 
at full rate (256 
point/sec) with 
delay < 1sec on 
Zedboard (see 
Section 2.3, Figure 
9) and up to 4 ST 
Bodygateways on 
the final 
healthcare 
demonstrator (see 
KPI #36 and #37). 

Since the full platform is a 
distributed embedded system 
without a global synchronized 
clock, we examine whether the 
update rhythm at the hospital 
media server is sufficient to 
guarantee real-time 
visualization for a number of 
pulse sensor devices. An 
alternative approach, taken in 
Section 2 concentrates on the 
total delay to process 256 
samples (or more) on the server 
(single clock reference). Both 
techniques provide practical 
approximations, since precise 
estimation of the proposed KPI 
requires modifying the final 
demonstrator to support clock 
synchronization which is beyond 
the project goals. 

19 

Percentage of 
development steps 
covered by tools in 
demonstrator 

As many as 
possible. 

65% The applicable tool chain Use 
Case 1 has 14 steps. The 5 steps 
related to on-chip 
communication and task 
scheduling configurations have 
not been covered since the used 
technologies are not supported 
by the tools of the toolchain. 

20 

Percentage of 
automatically 
executable 
transformations 

As many as 
possible of the 
steps that can 
be automated. 

100% Among the development steps 
covered by the tool chain, only 
the off-chip scheduling related 
steps can be automated. The 
exchange of data with 
configuration file generator TTE-
Plan has been completely 
automated. 

21 

Adaptability to 
evolution of 
product and 
standards 

To support FDA 
and EC 
standards 

Yes, using a flexible 
scalable hardware 
and software 
platform is 
possible to go 
through the 
approval processes 
and procedures 
requested for FDA 
or EC. 

Some of the standards are EN 
60601, EN 62304, EN 980, EN 
60529; ISO 14971, ISO 10993, 
EC38, EC57. 

22 
ST Bodygateway  
ECG raw data 

For remote 
analysis 

Yes, implemented Reference: technical 
specification of the STM body 
gateway 
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ID KPI Goal Value Comments 

23 
ST Bodygateway  
Heart Rate 

To calculate 
heart rate 

Yes, implemented 
possible values 128 
or 256 Hz 

Reference: technical 
specification of the STM body 
gateway 

24 

ST Bodygateway  
Heart Rate 
Reliability 

Heart Rate 
Reliability 
calculated using 
ECG raw data 

Yes, implemented Reference: technical 
specification of the STM body 
gateway 

25 

ST Bodygateway  
R-R Variability 

peak Variability 
calculated by 
processing the 
ECG raw data 

Yes, implemented Reference: technical 
specification of the STM body 
gateway 

26 

ST Bodygateway  
BIOZ 

Breathing rate 
calculated using 
the BIOZ raw 
Data 

Yes, implemented Reference: technical 
specification of the STM body 
gateway 

27 
ST Bodygateway  
ACC XYZ 

Yes Yes, implemented 
value: 50Hz 

Reference: technical 
specification of the STM body 
gateway 

28 

ST Bodygateway  
Body Position 

Body Posture 
calculated 
starting from 
the ACC info 

Yes, implemented Reference: technical 
specification of the STM body 
gateway 

29 

ST Bodygateway  
Activity level 

Activity Level  
calculated 
starting from 
the ACC info 

Yes, implemented Reference: technical 
specification of the STM body 
gateway 

30 

ST Bodygateway  
Breathing Rate 

Breathing rate 
calculated using 
the measure the 
bio-impedance 
(BIOZ) raw 
data 

Yes, implemented Reference: technical 
specification of the STM body 
gateway 

31 

ST Bodygateway  
Battery 

Battery level 
measurements 

Yes, implemented 
values to be probe 
10,15,30,60,300 
sec 

Reference: technical 
specification of the STM body 
gateway 

32 

Juno R1 CPU 
utilization in video 
streaming – 
Maximum 
overhead 

For 24 FPS, half-
screen size, 24 
bits/pixel, A57 
cluster 85% on 
average. 

63% on average for 
single video, and 
100% for 2 videos 

Refers to average CPU utilization 
for video streaming on Juno R1. 
Video streaming virtual machine 
is machine is running with two 
virtual cores on the A57 cluster. 
 

33 

Juno R1 memory 
utilization in video 
streaming – 
Maximum 
overhead 

Expected 1-2 
MB/s from 
previous tests 
on Zedboard 

~5Mbit/s 
 

Refers to average memory 
utilization for video streaming 
from Juno R1. Video streaming is 
allocated to two A57 cores on 
Juno. 
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ID KPI Goal Value Comments 

34 

Juno R1 – 
STM32F746G-
DISCO Ethernet 
network utilization 
in video streaming 
– Maximum 
overhead 

For 24 FPS, half-
screen size, 24 
bits/pixel, 
80 Mbits/sec (10 
MB/sec) 

~2.22 MB/sec The network bandwidth used by 
the whole virtual machine 
streaming a video has been 
measured at 2.22 MB/sec. 

35 

STM32F746G-
DISCO CPU 
utilization in video 
streaming – 
Maximum 
overhead 

Expected to be 
less than 100% 
since no 
transcoding is 
used 

not precisely 
measured, but less 
than 80% 

CPU utilization on STM32F7 
board is significantly less than 
100%. However, STM32F7 runs 
a single application (video 
player), so this KPI is not so 
relevant (it does not affect ECG 
parameters).  

36 

Real-time 
characteristics of 
ECG Processing 
application 

The ECG data 
analysis is 
performed in 
real-time. 

Real-time 
visualization and 
cardiac disease 
detection is 
performed by the 
Hospital Server 
application for up 
to 4 ECG devices 

Although the number of 
supported device on the full 
demonstrator is up to 6 (see KPI 
#37 below). The visualization 
application that also detects 
cardiac anomalies on the ECG is 
only able to handle 4 devices at 
the same time; with more 
devices the refresh rate of the 
visualization is too low. It is also 
important to note that the 
Hospital Server used in this 
demonstrator is low power 
server (Juno r1) compared to a 
machine that can be used in a 
real deployment. 
 
See Appendix 6.1 for further 
details. 

37 

Scalability of the 
healthcare 
architecture in 
terms of number of 
Body Gateway 
devices 

Up to 6 Body 
Gateway 
devices per 
DREAMS 
Harmonized 
Platform. 

The demonstrator 
contains one DHP 
and is able to 
handle up to 6 
Body Gateway 
devices. However, 
the system is 
scalable 
accordingly the 
number of DHPs 

6 Body Gateway devices are 
supported by the demonstrator. 
But only 4 of them can be 
visualized simultaneously on the 
Hospital Server, due to 
computing power limitation. 
This means that if a DHP is used 
per hospital room, 6 patients 
can be supported per room, 4 if 
real-time visualization on the 
same server is needed 
(considering the same hardware 
than in this demonstrator). 
 
See Appendix 6.1 for further 
details. 

Table 2: KPIs evaluated at M48 
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3.2 Objectives assessment 

The following tables present the progress towards the completion of measure for success and 
project objectives by analysing available information. The measures for success are marked with green 
colour if the progress is positive, orange if there is not enough information to evaluate it, and red if 
the progress is negative. 
 
 

Objective 1: Architectural style and modelling methods based on waistline structure of platform 
services 

Measure for success KPIs Evaluation 

1.1 Safety 1, 10, 
22-31 

The ISO 26262 certification ASIL C of the secure 
monitor firmware, which corresponds to SIL-2/SIL-
3 of the Functional Safety Standard IEC61508 that 
fits the needs of the healthcare use-case, is under 
functional safety assessment. The final audit is 
planned for mid of September, however the results 
of the ISO 26262 – Audit phase 1 related to the 
concept phase did not reveal any non-compliances. 
Therefore, the secure monitor firmware is able to 
ensure the execution of the safety features. 

 

1.2 Real-time 2, 3, 4, 
36 

The relevant RTOS is supported and the timing 
requirements are met according to tests carried 
out in this preliminary evaluation. The ECG 
visualization can be also performed in real-time 
with up to 4 sensor devices. Therefore, real-time 
objectives are achieved. 

 

1.3 Fault containment 10 By leveraging ARM TrustZone, the secure monitor 
firmware provides a system-wide security 
approach which isolates processor cores, bus, 
memory and peripherals in two separate 
compartments, ensuring fault containment in 
order to preserve the execution of mission-critical 
tasks if a fault occurs in the non-critical application. 

 

1.4 Timely adaptation 32, 33, 
34, 35 

Already evaluated. Improvements relate to DHP.  

1.5 Security    

1.6 Domain-independent core 
services 

   

1.7 System Modelling (i.e., fine 
grained analysis / scheduling, 
complexity, completeness) 

11, 12 The DREAMS tool chain has been applied (as far as 
possible) to the healthcare demonstrator, including 
the modelling of the system (see D4.4.2). 

 

Objective evaluation 

All the measures for success for this objective, regarding the safety, real-time and model aspects have 
been evaluated positively.  

Table 3 : Objective 1 assessment 

 

Objective 2: Virtualization technologies to achieve security, safety, real-time performance as well as 
data, safety, energy and system integrity networked multi-core chips 

Measure for success KPIs Evaluation 
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2.1 Isolation 5, 6, 7, 
8, 15, 
16, 17 

On the gateway server (Juno), the memory 
bandwidth isolation is guaranteed by the 
memguard-kvm implementation, whereas critical 
applications are isolated through the secure 
monitor firmware relying on ARM TrustZone. On 
the network, the critical traffic uses Time-Triggered 
traffic class while non safety-related traffic 
(entertainment) use Best-Effort traffic class, this 
ensure a total isolation for the safety-related 
communication. 

 

2.2 Reduced bank conflicts    

2.3 Gateways 13, 14 The temporal requirements for the management of 
the network traffic are achieved. However, the 
restrictions listed on section 2.2.4 shall be taken into 
account when the periodic burst transmission is 
considered in the Odroid board. 

 

2.4 Reduction of latencies 6 The co-scheduling implementation for KVM virtual 
machines allows minimizing the overhead. 

 

2.5 Reduction of jitter 18 The latency of the whole demonstrator has been 
evaluated and is enough to meet the needed real-time 
requirements.  

 

2.6 Reconfiguration    
2.7 Security 1, 5 The secure monitor layer ensures the security 

configuration of ARM TrustZone in order to instantiate 
a secure compartment isolated from non-critical 
accesses.  

 

Objective evaluation 

All the measures for success for this objective have been evaluated positively. The isolation provided 
by the different technology blocks allow strong isolation, security and latency reduction. 

Table 4: Objective 2 assessment 

 

Objective 3: Adaptation strategies for mixed-criticality systems to deal with unpredictable 
environment situations, resource fluctuations and the occurrence of faults 

Measure for success KPIs Evaluation 

3.1 Variability 5, 9 Critical applications (e.g., bandwidth, peripheral, 
memory, etc) are isolated from faults which occur 
in other partitions. It has been tested by forcing a 
crash in the Normal partition running on top the 
secure monitor firmware, which does not impact 
the execution of the Secure partition containing 
the mission-critical tasks. 

 

3.2 Criticality spectrum  The architecture and technologies ensure the correct 
isolation of the criticality applications for the 
healthcare demonstrator. 

 

3.3 Applicability    
3.4 Efficiency    
3.5 Scalability 37 The number of “Body Gateway” supported by the 

healthcare demonstrator is up to 6 devices, 4 if the 
visualization in real-time is needed. 

 

3.6 Portability  All technologies used in the healthcare demonstrator 
have been developed in other Work Packages (e.g., 
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WP2). In this context, portability can be positively 
assessed. 

Objective evaluation 

All the measures for success for this objective have been evaluated positively. 
Table 5: Objective 3 assessment 

 

Objective 4: Development methodology and tools based on model-driven engineering 

Measure for success KPIs Evaluation 

4.1 Development process    

4.2 Development steps covered 
by tools 

19 The DREAMS tool chain has been applied (as far as 
possible) to the healthcare demonstrator, including 
the identification of the toolchain use case and 
associated development steps (see D4.4.2). 

 

4.3 Automatically executable 
transformations 

20 See #19, above.   

Objective evaluation 

All the measures for success for this objective have been evaluated positively. 
Table 6: Objective 4 assessment 

 

Objective 5: Certification and mixed-criticality product lines 

Measure for success KPIs Evaluation 

5.1 Modular safety-case    

5.2 Safety-case modularity  The Hospital server is based on the secure monitor 
firmware to consolidate non-critical partition along 
with mission-critical tasks. This software 
component is certified, therefore, only the critical 
application needs to be certified when changed. 

 

5.3 Architectural support  Some components used in the demonstrator are 
generic enough to be used in other use cases, 
while some components of platform specific. 

 

5.4 Configuration optimization    

5.5 Variability  Critical applications (e.g., bandwidth, peripheral, 
memory, etc) are isolated from faults which occur 
in other partitions. 

 

5.6 Domains and market 
features 

21 It is possible to go through the approval process 
and procedures requested by FDA or EC. 

 

Objective evaluation 

All the measures for success for this objective have been evaluated positively. 
Table 7: Objective 5 assessment 

 

Objective 6: Feasibility of DREAMS architecture in real-world scenarios 

Measure for success KPIs Evaluation 

6.1 Separation 1, 5 According to KPI values obtained in the preliminary 
evaluation, the level of time and space separation 
obtained in the demonstrator is enough to perform 
certification. 

 

6.2 Standard compliance 1 The secure monitor firmware is under functional 
safety assessment according to the ISO 26262. The 
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final audit is planned for mid of September, 
however it is important to notice that the ISO 
26262 – Audit phase 1 has been achieved without 
any major non-compliances raised by the auditor, 
thus meaning that the secure monitor firmware is 
on the right way to comply with the standard. 

6.3 Cost  The mixed-criticality concept applied to this 
demonstrator allow to combine critical 
applications along with non-critical ones, inside the 
same SoC or network. Therefore, less hardware is 
required, lowering the cost. Although, in this 
demonstrator only development platforms are 
used which have a very high cost compared to 
production hardware. 

 

6.4 Reusability  Most of the components, not directly related to 
healthcare, can be used in other domains where 
mixed-criticality is needed.  

 

6.5 Extensibility  Most of the technology block and component can 
be extended to cover other use cases. 

 

Objective evaluation 

All the measures for success for this objective have been evaluated positively. The implementation 
done for this demonstrator can be performed in real-world scenarios related to healthcare domain. 

Table 8: Objective 6 assessment 

 

Objective 7: Promoting widespread adoption and community building 

Measure for success KPIs Evaluation 

7.1 Community infrastructure  All technologies used in the healthcare 
demonstrator have been developed in other 
DREAMS Work Package. Most of these 
technologies have been exposed though the 
DREAMS project, and some components have been 
open-sourced (e.g., KVM modifications, 
MemGuard, …) via the Mixed Criticality Forum 
website. 

 

7.2 Training material  All technologies used in the healthcare 
demonstrator have been developed in other 
DREAMS Work Package. Most of these 
technologies (e.g., KVM) have been presented in 
video training session available on DREAMS 
YouTube channel. In this context, the measure for 
success can be positively assessed. 

 

7.3 Standardization  The secure monitor firmware is certifiable up to 
ASIL C according to ISO26262 which corresponds to 
SIL2/3 of IEC61508. 

 

7.4 Roadmap    

Objective evaluation 

All the measures for success for this objective have been evaluated positively. 
Table 9: Objective 7 assessment 
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4 Conclusion 

In this document, the result of the assessment of the technological results of the project within the 
Healthcare demonstrator is reported, including the use case and scenarios as well as the technological 
results. Key Performance Indicators have been calculated or estimated in order to provide 
measurable, quantitative and objective information to evaluate the measures for success and the 
achievement of the objectives. 

Section 2 presents the current status of the demonstrator, on which all the hardware and software 
components are integrated, including the DREAMS harmonized platform. The demonstrator aims to 
replicate a hospital use case where critical and non-critical data are routed among a network of 
heterogeneous platform, allowing sensitive ECG data to be used by a medical staff while media 
content is streamed to patients at the same time. The isolation of the critical data inside this mixed-
critical demonstrator is achieved thanks to three main technologies, with XtratuM on the DREAMS 
Harmonized Platform, the Time-Triggered network class and KVM with the secure monitor firmware 
on the Juno board. 

The assessment results were provided in Section 0. All the KPIs are considered, but the ones that can 
only be objectively evaluated after the project (marked with an A) were only estimated. Overall, KPIs 
are evaluated with success, as well as the measures for success and the objectives of the project. The 
main goals of the healthcare demonstrator have been satisfied.  Non-safety-critical data and 
applications have been integrated along with safety-critical ones without affecting them, creating a 
mixed-criticality system. 
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6 Appendix 

6.1 Additional information related to KPIs 36 and 37 

Our default configuration for Juno (ARM v8 architecture) assigns 2 ARM A57s to the two Video 
virtual machines (ARM v8), and 4 ARM A53s to the ECG virtual machine (ARM v7, identical architecture 
to the one described in Section 2). Since in our experiments we are limited to two video streams (CPU 
bandwidth 100%), for each scenario, we consider 3 cases: (i) ECG in isolation, (ii) ECG with one video 
stream, and (iii) ECG with two video streams. Moreover, since a limited number of video streams does 
not significantly affect memory bandwidth (1-2 MB/s increase), we have not configured 
MemGuard/NetGuard LKMs on ARM Juno. 

Notice that using ARMv8 64bits VM for running ECG on Juno is not feasible at all due to limited support 
of 32-bit compatibility libraries on ARM v8 which are required for running xview toolkit. The xview 
toolkit is an X11 utility (360k lines of code) on top of which our fast WAVE ECG visualization application 
is built, however xview has not been ported yet on 64-bit architecture. 

 

Figure 17 shows the display on the Hospital Server when a single BodyGateway transmits an ECG via 
the full platform (DHP with XtratuM, TTE, Juno). This test performed successfully on the full platform 
with 0, 1, and 2 videos. Very small performance degradation (in the display) appears when we 
simultaneously use video streaming (see also Table 10). 

 

Figure 17: ECG signal for one ST Bodygateway on full platform 

To test the scalability of the platform a “fake ECG generator” that generates fake ECG data was also 
used. It allows to test the platform with as many “devices” as needed. 
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In order to check correctness and estimate bounds to scalability we have run the test with multiple 
fake ECGs (1 to 16) not in the full platform, but only on Juno (without DHP, TTE). The test worked 
correctly and the approximate rhythm of updates is shown in Table 10. Notice that both the average 
and range of values increase linearly with the number of ECG signals (or patients). Since we are capable 
to visualize up to 10 seconds of the ECG signal in a single WAVE application screen, the update rate is 
sufficient to support soft real-time for up to 4 ECGs. 

 

 

 

 

 

The same test has been performed considering the full platform, but only up to 6 “fake ECG” devices. 
Results are similar to the ones run in the Juno only (Table 10). 

 

 
Figure 18: Delays during successive updates on Juno (average 6-7 sec, worst-case 13). 

Figure 18 shows two successive updates (snapshots) of the 4 wave processes via wave-remote 
corresponding to 4 fake ECG traffic patterns. ECG analysis runs on the Juno. This case corresponds to 
emulating 4 ST Bodygateways and can be considered as a limit to scalability in terms of available 
processing power, since the application is able to capture the heartbeats of successive computations 
almost all the time. Furthermore, notice that for 8 emulated ST Bodygateways, delays become much 
larger (15 to 25s), and ECG signals cannot be updated by the display application in real-time (i.e. most 
points will never appear on the screen). 

 

Number of ECGs Typical Update Rhythm for WAVE visualization (sec) 

2 3-5 

4 7-12 

8 15-25 

16 31-54 

Table 10: Update rate for WAVE visualization without video streaming; the update rate is not much affected for 1 or 2 
video streams and less than 8 ECGs, since video streams run on separate processors and memory bandwidth 

requirements are minimal 1-2MB/s; for 16 ECGs and two videos the update rate increases slightly to 39 to 65 secs. 


