

Distributed Real-time Architecture for
Mixed Criticality Systems

Assessment report for mixed-criticality healthcare
and entertainment use cases

D 8.3.2

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date 2017-07-21 Deliverable No. D 8.3.2

Contact Person Kevin Chappuis Organisation Virtual Open Systems

Phone +33663254852 E-Mail k.chappuis@virtualopensystems.com

Contributors

Name Partner

Kevin Chappuis VOSYS

Jeremy Fanguède VOSYS

Miltos Grammatikakis TEI

Marcello Coppola ST

Jörn Migge RTAW

Javier Coronel FENTISS

Table of Contents

Contributors .. 2

1 Introduction ... 4

1.1 Position of the Deliverable in the Project ... 4

1.2 Contents of the Deliverable... 4

2 WP8 Healthcare Demonstrator: Platform, Technologies and Application 5

2.1 Hospital Use Case .. 5

2.2 Demonstrator Overview .. 5

2.2.1 ARM Juno development platform ... 7

2.2.2 DHP platform ... 8

2.2.3 TTEthernet Network .. 9

2.2.4 Ethernet network .. 10

2.2.5 Practical case and theoretical analysis .. 12

2.3 Experimental Framework on Zedboard (no DHP or TTEthernet) .. 12

2.3.1 Linux Regulation Strategies ... 13

2.3.2 WP8 Use-Case: Hospital Media Gateway .. 16

2.3.3 Experimental Framework and Results ... 18

3 Evaluation Methodology ... 22

3.1 Key Performance Indicators (KPIs) .. 22

3.2 Objectives assessment .. 34

4 Conclusion ... 38

5 Bibliography ... 39

6 Appendix .. 41

6.1 Additional information related to KPIs 36 and 37 ... 41

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 4 of 42

1 Introduction

This document is the deliverable D8.3.2 of the DREAMS project. It is the last deliverable of task
T8.3 – Project technologies assessment of work package WP8 – Healthcare Use Case and
Demonstrator. This deliverable, D8.3.2 – Assessment report for mixed-criticality healthcare and
entertainment use cases, describes the final assessment of the demonstrator for mixed-criticality
healthcare and entertainment.

In this document, the healthcare demonstrator is presented, as well as the assessments of the
DREAMS objectives related to the WP8 demonstrator.

1.1 Position of the Deliverable in the Project

This deliverable relates to task T8.3. Over the course of the project, the task provides two
deliverables, both of which aim to assess the technological results of the project related to the
healthcare demonstrator along with its mixed-criticality use cases. The confidentiality level of this
deliverable is public (PU) and it will be published on the DREAMS website, once approved by the
European Commission.

A previous deliverable, D8.2.1 [1], delivered in month 45, provided a general overview of the
hardware and software architecture of the demonstrator, while this deliverable evaluates the
DREAMS technologies involved in the mixed-criticality healthcare and entertainment demonstrator. A
preliminary assessment was performed in deliverable D8.3.1 [2], delivered in month 30, while this
deliverable is the final assessment report.

1.2 Contents of the Deliverable

In chapter 2, we provide the description of the Healthcare demonstrator platform and the
DREAMS technologies used. In chapter 0 the evaluation methodology as well as the assessment of
the results of the demonstrator is presented.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 5 of 42

2 WP8 Healthcare Demonstrator: Platform, Technologies
and Application

2.1 Hospital Use Case

The demonstrator is implementing the use-case of a Hospital Media Gateway, where the rooms
are connected to provide medical information to the hospital staff but also to provide entertainment
media to patients. Thus, the system demonstrator running mixed-criticality healthcare and
entertainment use case involves the consumption of media content by several patients located in
different Hospital rooms, while monitoring of the overall health is performed using the ST Body
Gateway devices. The Healthcare demonstrator is a distributed system composed of several devices
that are communicating with a central Hospital Server. This server provides the on-demand media
content consumption by the TV sets (using a wired network) without the need of a dedicated per-
room set-top box (STB). In addition, the Hospital server is used to store the continuous flow of
physiological info and it also detects any abnormality arising from a range of medical conditions. When
the patient has a clinically relevant event, the Body Gateway communicates via the room wireless
switch to the Hospital server. This information is automatically examined by the smart caregiver
application in the hospital server and if a critical condition is detected a warning is raised to the
hospital personnel for the necessary intervention. At the same time, this technology can provide a
valuable history feedback on the condition of the person wearing the body monitoring system.
Patients’ data logged on the server can be analysed via a dashboard executed on the Hospital server
and Patients’ data can be queried on demand.

The smart caregiver application will be executed in the secure and critical environment where
real-time properties and uptime must be guaranteed while other non-critical applications such as the
on-demand content consumption are concurrently executed in a separate environment, much like
what is happening today in modern car for the infotainment system.

2.2 Demonstrator Overview

The demonstrator platform represents an implementation of the Hospital use case at a reduced
size. Figure 1, below, shows the network architecture of the demonstrator. The Body Gateway Control
Units that are responsible for collecting all the sensor data, which are, then, relayed to the distribution
network via a room gateway. A wired network is responsible for the communication between the
room gateway and the Hospital Server. The patient data are collected in a prompt and reliable way to
the Hospital server and several incoming media requests are delivered to the Hospital Server. Body
Gateways (BGW) are connected via Bluetooth, while media viewers are connected via Ethernet. Then
the main communication backbone is implemented using the TTEthernet that enables the native
support of different traffic classes having different criticality levels. In order to be scalable, the
backbone includes several TTEthernet switches, however in the demonstrator we just use one single
switch.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 6 of 42

STM32
Discovery

DHP
(Room Gateway)

Odroid

ST BodyGateways

Juno Board
(Hospital Server)

TTE Link

TTE-Switch

Ethernet
traffic

Figure 1: Network architecture of the demonstrator

The Hospital server is implemented using the ARM JUNO platform that includes the 64bit ARM
Cortex A53 and A57 processors where DREAMS technologies and services are implemented. The room
gateway is implemented via the Dreams Harmonized Platform (DHP) that in real life is responsible to
provide the wired and wireless access points in each room. A wireless access point is used by the Body
Gateways that have been paired, while a wired access point is used by the on-demand media devices.
In order to avoid to spend a lot of effort to implement the Bluetooth protocol stack in the DHP board,
we have decided to add a simple BT Odroid XU4 board and to add directly the on-demand media
devices to the TTEthernet switch. The BT Odroid includes already the Bluetooth network stack
enabling to pair directly several body gateways. Then the BT Odroid is connected via Ethernet to the
DHP board. Figure 2, below, presents a photo of the demonstrator including all its components.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 7 of 42

Figure 2: Picture of the demonstrator

The system for screening, prevention and management of disease is the system considered as
critical in the Healthcare demonstrator. In addition, the use case involves also the streaming of video
content to several rooms or patients. Thus, multiple services are supported by the Hospital Server:

• To enable content consumption by TV sets (using a wired network)

• To enable the ECG remote monitoring by receiving BGW information

• To have a single shared network supporting mixed critical traffic

Two main requirements must be addressed by the Hospital server architecture. The first one implies
to guarantee real-time operations of the overall distributed system, which is composed by several
subsystems with different criticality levels that are sharing the network and computational resources.
Indeed, the Hospital server architecture should provide guarantees to meet the real-time constraints
of critical information related to electrocardiography (ECG), while sharing the network with video
streaming contents. Last but not least is the reliability requirement in presence of faults. Indeed, the
Hospital server architecture should provide spatial and temporal isolation for the critical ECG
application along with entertainment systems in order to ensure that the safety critical application is
not affected by the non-critical one even in case of failure.

2.2.1 ARM Juno development platform

In this context, the ARM Juno Development platform combined with a TTEthernet device is used as a
Hospital server. This platform offers significant flexibility in terms of development and prototyping
features, while providing high computing performance and a reliable communication.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 8 of 42

Figure 3: Software architecture on the Juno board (Hospital server)

Figure 3 shows that the Hospital server is composed by several DREAMS software technologies, which
enable a safe architecture to consolidate ECG monitoring system along with video streaming
applications.

To achieve flexibility, the TTEthernet device has been assigned to the Non-Secure world since
all the necessary drivers to use this peripheral are already available for Linux. However, it is important
to notice that the TTEthernet device should be handled by the Secure partition for a final product
direction in order to ensure the processing of ECG data by the Real-Time Operating System (RTOS)
even in case of a Non-Secure partition failure. However, such an implementation will require to port
the drivers in the RTOS which requires too much effort according to the project timeframe.

Finally, this implementation enables continuous or intermittent physiological monitoring and
detection of abnormalities arising from a range of medical conditions coming from different patients.
As a matter of fact, the information sent by the BGWs can be examined by the doctor for the necessary
intervention. Patients’ data are logged via a dashboard and warnings are sent in real-time. The ECG
visualization is executed in the execution environment of the Hospital server where other less critical
applications, such as video streaming services, are concurrently executed.

2.2.2 DHP platform

The DREAMS harmonized platform (DHP for short) is a multi-core processor architecture developed
by the DREAMS project. A prototype of the DHP using the Xilinx Zynq ZC706 FPGA Development board
is used in the Healthcare demonstrator. Figure 4 shows the Zynq ZC706 board (on the left), where the
connectors to access the Ethernet and TT-Ethernet (TTE) networks are highlighted. Additionally, the
figure shows on the right a high-level view embedded within the prototype. In the Healthcare
demonstrator only the TTE Controller and the dual-core ARM Cortex A9 tiles were required. Detailed
information of the platform can be found in the D1.2.1 Architectural Style of DREAMS.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 9 of 42

Figure 4: DREAMS harmonized platform

The XtratuM hypervisor is used in the DHP dual-core ARM Cortex A9 tile. Extended information can
be found on D2.3.1 XtratuM support of enhanced hypervisor layer services and D2.3.4 Hypervisor
adaptation and drivers for local resource manager. A multicore partition is used to manage the
Ethernet and TTE traffic. The Ethernet software driver embedded in the partition uses the lwIP
(lightweight IP) implementation, which is an open source TCP/IP stack designed for embedded systems
and typically used on applications with real-time restrictions. The TTE software driver is embedded in
the XtratuM hypervisor and it can be used by the partition in a transparent way, such as it is done for
inter-partition communication (IPC) through queuing or sampling communication ports (see D2.3.4).

In the DHP, the Ethernet traffic received is routed to the TTE network and vice versa, the traffic
received from TTE is routed to the Ethernet network. A TCP server is implemented in the XtratuM
partition in order to establish a communication channel for the Ethernet traffic from Odroid board.
Partition application is connected to a server provided by the Odroid board to create a route for the
TTE traffic received from Juno board. A static table for the routing is defined in the partition
application, where IP addresses/TCP ports are linked to XM ports/TTE virtual links.

The binding between TTE virtual links and XtratuM queuing ports is statically defined during an off-
line design.

2.2.3 TTEthernet Network

The scheduling plan for the TTE network is based on the network traffic and the temporal
requirements needed in the system. The section 3.1 defines a set of KPIs, which describes the type of
traffic and the temporal restrictions of the components in the Healthcare demonstrator. The traffic in
the ST Body Gateway is periodic and the transmission path is through Odroid, DHP and TTE switch
until reaching the Juno board. Since a Bluetooth protocol stack is not available for the DHP an Odroid
board has been introduced to address this requirement. The STM32 board uses the TTE switch to
communicate with the Juno Board. Juno board sends control messages to the Odroid and STM board.

The path 1 in the Figure 5 requires only TT (Time-Triggered) slots for time-triggered traffic (see KPIs
#22 until #31) between DHP and TTEthernet switch. It is important to point out that path 1 is one of
the critical paths since it has to support several time-triggered flows. This requirement has been
achieved using several TT slots. In the Path 2, the traffic required between Juno and STM32 discovery
is best effort traffic or in other words, regular Ethernet traffic. In the path 3, the TT traffic and best
effort traffic are mixed.

The temporal restrictions and TTE restrictions lead to define the following features:

• Several TT slots from DHP to Juno, each one associated to a Body Gateway with a Period of
10 ms

• A TT slot for traffic from Juno to DHP having a Period = 10ms

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 10 of 42

o Maximum message size => Payload = 1446 bytes

• A buffer is defined for each TT slot => 10 messages

• Based on previous characteristics (period and maximum message size), the maximum
transmission bandwidth through the TTE network in the path 1 is 144600 bytes/s, which is
around 141 Kbytes/s.

The temporal and functional restrictions for the path 2 are the same as for regular Ethernet.
In the path 3, the TT slots are defined and the regular traffic is sent together to the TT traffic. However,
the delivery of the TT traffic is guaranteed and prioritized against the regular traffic.

Figure 5: Healthcare demonstrator highlighting the network paths.

2.2.4 Ethernet network

This network is referred to the path 4, that is, to the traffic from Odroid board to DHP. This traffic is
related to the number of Body gateways associated to each DHP. In general, we assume that a
maximum of 6 devices may be associated to each DHP, which corresponds to having a maximum of 6
patients per room. Therefore, the scalability is guaranteed by different DHPs installed one per room.
Periodic messages or a periodic and limited burst transmission is expected in this path.
The introduction of Odroid board has several complications in the management of traffic within the
path 4 due to the intrinsic characteristics of the Ethernet network, where the medium access control
is oriented to events and in the other extreme we have configured the medium access based on time.
For this reason, it is important to take into account the maximum number of messages (i.e. the
maximum bandwidth) configured in the TTE network in order to avoid message loss in the TTEthernet
network, and hence, a bottleneck in the TTE transmission. The restrictions for this path can be
extracted from the configuration information provided for the path 1 (section 2.2.3) and it can be
summarized as:

• Maximum 10 messages (size of the TTE buffer) of 1446 bytes (maximum payload message
size) can be transmitted at once and it requires short periods between transmissions based
on the period of the TT slots (10ms).

• Burst transmission requires a high-bandwidth transmission over a short period. The formula
to obtain the minimum time interval between burst transmission for the traffic from Odroid
to DHP is:

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 11 of 42

𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ≥ (𝑁𝑚𝑠𝑔 + 1) ∗ 𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡

Where 𝑵𝒎𝒔𝒈 is the number of messages to be sent at once. 𝑵𝒎𝒔𝒈 must be less than the buffer

size of the TT slot (10 messages in our scenario).
𝑷𝒆𝒓𝒊𝒐𝒅𝑻𝑻𝑺𝒍𝒐𝒕 is the period of the TT slot (10ms in our scenario).

• Effective Bandwidth when the transmission of messages is not periodic but it is based on
minimum time interval between burst transmission:

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
1446 ∗ 𝑁𝑚𝑠𝑔

𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡 ∗ (𝑁𝑚𝑠𝑔 + 1)

Where 𝑵𝒎𝒔𝒈 is the number of messages to be sent at once. 𝑵𝒎𝒔𝒈 must be less than the buffer

size of the TT slot (10 messages in our scenario).

𝑷𝒆𝒓𝒊𝒐𝒅𝑻𝑻𝑺𝒍𝒐𝒕 is the period of the TT slot (10ms in our scenario).

The issue with the burst transmission can be explained through an example. We are going to suppose
that 5 messages require to be sent at once, so it requires to calculate the minimum time interval
between burst transmission and the effective bandwidth:

𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (𝑁𝑚𝑠𝑔 + 1) ∗ 𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡 = (5 + 1) ∗ 10𝑚𝑠 = 60𝑚𝑠

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
1446 ∗ 𝑁𝑚𝑠𝑔

𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑇𝑆𝑙𝑜𝑡 ∗ (𝑁𝑚𝑠𝑔 + 1)
=

1446 ∗ 5

0.01𝑠 ∗ 614
= 120500 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑

Figure 6 shows the flow of messages between Ethernet and TTEthernet for the example described
above. Note in the figure that the time interval between burst transmission can have some +/- drifts
(time 120ms and 240ms) but it does not have an impact in the TTE transmission. These drifts are
considered in the calculation because the Odroid board uses the regular Linux kernel (without RT
extensions), so the temporal requirements cannot be strictly fulfilled.

Figure 6: Example of traffic from Odroid to DHP board based on burst transmission with a 𝑩𝒖𝒓𝒔𝒕𝑷𝒆𝒓𝒊𝒐𝒅 = 𝟔𝟎𝒎𝒔 and 5
messages per burst transmission.

If the requirements listed previously are fulfilled, the traffic between Ethernet and TTE can be
guaranteed.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 12 of 42

2.2.5 Practical case and theoretical analysis

The defined number of devices supported per DHP is less than the maximum theoretical number of
devices supported per DHP. The theoretical number can be calculated using the temporal and
functional requirements of the ST BodyGateway in the transmission of the ECG raw data:

• The size per sample is 10 bytes

• 256 samples per second are generated by device, i.e. each device generates 2560 bytes per
second.

Performing a theoretical analysis and assuming the worst case:

• 1 device requires 2560 bytes which means 2 messages (maximum payload message size equals
to 1446)

If the way to send the information is through burst transmission in minimum time intervals, the
maximum number of devices supported will depend on the number of messages sent on each burst
transmission. Supposing different scenario and based on the formulas defined in the previous section:

1. The ECG raw information is sent at once for each device (2msg x 1 devices = 2msg):
o 𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (2msg + 1) * 10ms => 2 messages each 30 ms
o 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = (1446*2msg)/(0.01*(2+1))= 96400 bytes/s
o With this burst transmission rate, the maximum number of devices supported would be:

(#Devices on each burst)/𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 1 device / 0,03 = ~33 devices
2. The ECG raw information is sent at once for each 3 devices (2msg x 3 devices = 6msg):

o BurstInterval= (6msg + 1) * 10ms => 6 messages each 70 ms
o 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ= (1446*6msg)/(0.01*(6+1))= 123942bytes/second
o With this burst transmission rate, the maximum number of devices supported would be:

(#Devices on each burst)/𝐵𝑢𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 3 devices / 0,07 = ~42 devices

Therefore, the configuration proposed for the current scenario could handle more devices when the
restrictions mentioned above are fulfilled.

Additionally, the period of the TT slot could be reduced if a higher bandwidth is required.

2.3 Experimental Framework on Zedboard (no DHP or TTEthernet)

In the in-hospital ECG processing use-case, doctors connect to a server for accessing ECG data
of their patients.

In this subsection, we focus on a more limited home media gateway demonstrator (without
DHP or TTEthernet) and evaluate WP2 technologies involving memory and network bandwidth
regulation algorithms (called Extended MemGuard and NetGuard). The proposed algorithms
implemented as GNU/Linux kernel modules (in x86 and ARM v7/v8) differentiate rate-constrained
from best effort traffic and provide a mechanism for initializing (before the first period) and
dynamically adapting (at periodic intervals) the guaranteed memory bandwidth per core or network
bandwidth per connected (incoming or outgoing) network IP. The proposed strategies enhance
support of mixed criticality applications on distributed embedded architectures by extending the
current state-of-the-art in access control policies (genuine MemGuard algorithm), providing a
guaranteed violation free operating mode for rate-constrained traffic, and supporting dynamic
adaptivity through EWMA (Exponentially Weighted Moving Average) prediction. By examining a
mixed-criticality scenario with real-time ECG processing and best effort video traffic on a hospital
media gateway (Zedboard with two ARM Cortex-A9 cores), we show that simultaneous use of our
MemGuard and NetGuard implementations enables fine-grain regulation of network and memory
bandwidth for improved quality-of-service characteristics.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 13 of 42

Next, Section 2.3.1 details the MemGuardXt/NetGuardXt extensions, including the algorithm,
methodology and implementation. Section 2.3.2 details our healthcare use case running on the home
media gateway. Section 2.3.3 summarizes our results and provides a summary and future extensions.

2.3.1 Linux Regulation Strategies

Network and memory bandwidth management strategies can improve performance of
communication-intensive memory-bound computations in distributed embedded systems based on
Multi-Processor Systems-on-Chip (MPSoCs) by contracting available resources and allowing
bandwidth reclaim mechanisms to efficiently utilize unused bandwidth. These mechanisms when
combined together with CPU bandwidth scheduling, a functionality already provided by the Linux
kernel, provide the capability to apply holistic techniques to system resource management.

More specifically, network bandwidth regulation techniques allow differentiated services for
communication-intensive applications through monitoring and control of packet communications.
Traffic shaping, smart scheduling, congestion avoidance via admission control, reservation protocols
and classification schemes can be used to avoid filling the network capacity. Similarly, memory
bandwidth management schemes allow cores to share the memory hierarchy, avoid saturation or
monopoly phenomena, and run memory-intensive programs more efficiently.

While previous approaches rely on specialized hardware subsystems to successfully manage
shared resources, e.g. at memory [18][19][20][21] and network interface level [22], we concentrate
on bandwidth regulation in Linux, without the design of additional hardware components. In critical
hard real-time operating systems (e.g. in transportation or medicine) it is obligatory for certification
reasons to completely avoid interferences, while in less critical systems running Linux it is often
enough to ensure that such disruptions are not harmful. Thus, regulation policies aim at managing
interference so that higher critical application tasks in a mixed-criticality environment will effectively
fulfill a sufficient, predefined performance.

Within this context, MemGuard [23][24] performs dynamic memory bandwidth management
at CPU-level by using hardware performance counters to monitor periodically the number of last-level
cache misses (or equivalently accesses to the shared bus). In this deliverable, we introduce an
extension to MemGuard algorithm (called MemGuardXt) which a) provides as an option a hard
guarantee on the traffic rate which is especially important for real-time applications and b) improve
its adaptivity for predicting bandwidth. We also improve modularity, by allowing our MemGuardXt
algorithm to be used directly in either user- or kernel-space, in one or more instances. Using this
methodology, we define two kernel modules: a) a kernel module running our MemGuardXt algorithm
and b) a new network regulation module (called NetGuardXt) running over netfilter which uses a
similar algorithm to MemGuardXt.

We have evaluated our modules in an actual mixed-criticality use case involving a) a
distributed soft real-time ECG processing application that we have developed by extending the open
source WFDB, OSEA and WAVE packages from PhysioNet, and b) incoming best effort video traffic on
a hospital media gateway (Zedboard with two ARM Cortex-A9 cores). By focusing on both system and
application metrics, such as NetGuardXt/MemGuardXt characteristics and real-time performance of
ECG application, we show how simultaneous fine-grain control of network and memory bandwidth
can result to improved quality-of-service characteristics that can help soft real-time ECG processing.

2.3.1.1 Genuine MemGuard Principles and Related Extensions

Genuine Memguard allows sharing guaranteed bandwidth over several cores using a dynamic
reclaim mechanism. Using this mechanism, at the beginning of each period (period) cores are
allocated part (or all) of their assigned bandwidth (according to history-based prediction) and donate
the rest of their initially assigned bandwidth to a global repository (called G). Then, during the period,
a core may obtain additional budget from G based on past traffic demand (history) and residual
guaranteed bandwidth. This self-adaptive reclaim mechanism avoids over-provisioning, improves

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 14 of 42

resource utilization and is similar to extended self-adaptive Dynamic Weighted Round-Robin (DWRR)
[25].

Since the guaranteed memory bandwidth within a period under worst-case conditions (r_min) is
significantly less than the maximum attainable memory bandwidth (e.g., usually close to 20%), the
algorithm also allows best effort traffic (BE), i.e., traffic in excess of r_min. Thus, once all bandwidth

has been exhausted within a period, MemGuard supports two approaches to generate BE bandwidth
which refers to bandwidth used after all cores (i in total) have utilized all their assigned budgets,
before the next period begins. First, it allows all cores to freely compete for guaranteed bandwidth, by
posing regulation until the end of the period. Second, it applies sharing of BE bandwidth proportionally
to reservations. There is no explicit provision for best effort traffic sources in MemGuard algorithm.
As long as r_min is not exhausted, genuine MemGuard allows sources with a zero reservation (or
sources that have otherwise exceeded their reservation), to repeatedly extract guaranteed bandwidth
from G, up to the configurable minimum allocation (Q_min).

2.3.1.1.1 Genuine vs Extended MemGuard (MemGuardXt)

The genuine MemGuard algorithm [23][24] targets average instead of peak bandwidth
reservation which limits its use in real-time applications. More specifically, a rate-constrained (RC)
flow may steal guaranteed bandwidth from other RC flows and even exhaust the global repository,
while other RC-flows have not yet demanded their full reservation potentially leading to guarantee
violations. Although genuine MemGuard supports a reservation-only (RO) mode that removes
prediction and reclaiming and allocates to RC traffic sources their full reservation in each regulation
period, this mode performs poorly in terms of resource allocation.

The proposed Extended MemGuard provides a hard guarantee option on the traffic rate which is
important for real-time applications. This extension (called Violation Free mode or VF) restricts
reclaiming budget from the global repository via function overflow_interrupt_handler if, as a
result, it can cause guarantee violation for an RC-flow within the same period for one or more cores.
Moreover, it considers RC, as well as BE criticality types of cores, although this feature is not examined
in this work.

Finally, notice that genuine MemGuard supports limited adaptivity for predicting memory
bandwidth requirements (few periods). Extended MemGuard supports a general EWMA scheme, which
computes a weighted average of all past periods based on parameter (λ) which determines the

impact of history. EWMA prediction is pre-calculated for each core when a new period starts using the
formula:

zt = λ*xt +(1-λ)*zt-1, where t>1, 0≤λ≤1 and z1=x1,

where Zt is the predicted bandwidth for the next period (t+1), while xt is the consumed

bandwidth from the core at the end of the current period (t). This formula better adapts to

intermediate traffic perturbations, i.e. between short bandwidth fluctuations and abrupt changes.

Figure 7: MemGuard input parameters, system state, statistics and metrics.

We next explain the rationale in our MemGuardXt and NetGuardXt implementation as Linux kernel
modules on x86_64 and ARM platforms (32 and 64-bit). Unlike genuine MemGuard, our
MemGuardXt/NetGuardXt implementation is modular and different instances can be easily used from
either user- or kernel-space. Its core functionality is implemented as a separate, self-contained package
(.c and .h files) implemented in ANSI C. For example, as shown in Figure 7, MemGuardXt supports four
data structures:

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 15 of 42

• MG_INPUT data structure with input parameters i, Q_min, r_min, period, and VF; this
info can be dynamically modified via debugfs and update action is taken when the next period
starts.

• MG_STATE with initial, current, predicted and total used bandwidth and a criticality flag (set to true
for RC traffic and false otherwise) Qi[], qi[], Qi_predict[], ui[], and rc_flag[]. If

left uninitialized, Qi for all cores automatically takes the value of r_min/i. MemGuard algorithm
distinguishes between RC and BE cores using the rc_flag[] array which denotes the criticality
level of each core. Notice that both RC and BE cores can consume guaranteed and generate best
effort traffic.

• MG_STATS related to EWMA prediction algorithm with zt, zt-1, xt, λ, previous_period
(t-1), current_period (t), period_unit, and G; Notice that, if called from kernel

mode, EWMA bandwidth prediction is implemented using integer numbers only (instead of double)
for optimization.

• MG_METRICS with number of interrupts, i.e. when there is a request for reclaim, used bandwidth
(from all cores), best effort bandwidth and the number of guarantee violations, when guaranteed
bandwidth has been donated and already consumed by others; notice that if VF is set, then GV=0.

The above data structures and functions are used from a Linux kernel module which provides the

necessary monitors and actuators: e.g. timers, cache metrics and throttle mechanisms for

MemGuardXt, or timers, bandwidth metrics and accept/drop functionality for NetGuardXt. Basic

operation of MemGuardXt kernel module (left) with its core algorithm (right) is shown in Figure 8.

Figure 8: MemGuardXt Linux kernel module (LKM) and core algorithm

During MemGuardXt module insertion and removal (insmod/rmmod), init_module and
cleanup_module functions invoked in the kernel driver also call corresponding functions in the core
for initialization and memory cleanup. Periodically, Prediction_EWMA function is called to update
the bandwidth consumed by each core based on the previous period and
periodic_timer_handler resets all necessary statistical variables and reassigns the estimated
bandwidth per core. This information is extracted from MemGuardXt algorithm by calling
make_traffic from period_timer_callback_slave when the period starts. This value is
increased on the fly by asynchronous calls of make_traffic from

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 16 of 42

memguard_process_overflow of the LKM module which also informs Prediction_EWMA

that previously assigned bandwidth is already consumed.

2.3.1.1.2 NetGuard Extension (NetGuardXt)
We have also developed a different incarnation of Extended MemGuard as a Linux kernel module

that uses custom netfilter hooks, the packet filtering framework built around sk_buff in Linux kernel.
This allows independent kernel-level monitoring and control of network bandwidth of incoming and
outgoing network flows using two separate NetGuardXt algorithm instances. Each such instance may
define its own source/destination client IPs and bandwidth rate (r_min, Qi). This kernel module
(called NetGuardXt) supports the existing API of Extended Memguard to provide network bandwidth
regulation on Linux on x86_64 and ARMv7; our implementation on ARMv8 (64-bit Dragonboard 410c)
has failed due to currently limited Linux kernel 4.0+ support of iptables/netfilter. While currently the
period, number of traffic sources per interface and EWMA parameters can be set directly from the
module as needed, other parameters (r_min, Q_min, and Qi) can also be configured on the fly,

separately for each flow direction (outgoing and incoming) using debugfs. For example, the command
echo “7000 500 3000 4000 15000 500 5000 10000” > /sys/kernel/debug/neguard/netguard_config

configures NetGuardXt outgoing traffic to {r_min, Q_min, Q0, Q1} = {7000, 500, 3000,
4000} bytes/period (and similarly for incoming traffic).

NetGuardXt provides statistics concerning instant and cumulative statistics of accepted and
dropped traffic (in packets or bytes per flow direction and connected client).

Figure 9: NetGuardXt Linux kernel module (LKM) and core algorithm.

Without delving into Linux kernel details (which involves understanding network drivers, netfilter
for packet filtering hooks, high resolution timers, debugfs etc), we describe the main concepts of
NetGuardXt and provide its API in Figure 9.

Each packet destined to a network client (incoming or outgoing) can be counted and checked using
bool make_rc_traffic function. Packet is sent (NF_ACCEPT) if this function returns TRUE.

Otherwise, the packet is dropped (NF_DROP). Counters are reset at the end of each period (function
period_timer_handler()). A high-resolution timer (hrtimer) implements the period.

Similar to Extended MemGuard interface, the EWMA update functions
Prediction_EWMA_periodic and Prediction_EWMA_runtime are used to adjust the predicted
bandwidth per client. In cases where the requested bandwidth exceeds the given “budget”
overflow_interrupt_handler is called to reclaim unused bandwidth from the global repository
where donations may occur.

2.3.2 WP8 Use-Case: Hospital Media Gateway

In order to demonstrate use of our kernel modules, we consider a realistic healthcare use case
composed of a mixture of medical-critical tasks related to ECG processing and non-critical parts related
to patient entertainment. This use case combines different types of devices sharing the same network
and processing infrastructure and provides a viable solution that evolves the traditional hospital
entertainment system, called linear TV, towards an on-demand system.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 17 of 42

2.3.2.1 Infotainment Functionality

A Hospital Media Gateway (HMG) solution must also address end user needs for infotainment
evolving the existing hospital entertainment system (called linear TV) located in each room to an on-
demand distributed system. Thus, in addition to medical-critical services involving healthcare data
acquisition, analysis, privacy protection and continuous physiological monitoring of the overall health
and well-being via STMicroelectronics BodyGateway device (BGW), the HMG must also involve as a
core function transmission of non-critical premium content to HMG and eventual consumption by
patients located in different rooms. With this aspect, a number of smart devices can act as video clients
(using a wired network) with regard to content services eliminating the need for a dedicated high-end
set-top-box per each end-device.

2.3.2.2 Single and Multi-Room Scenario (in-Hospital)

In the single room scenario, medical patient data from up to 8 patients collocated in the same
room who wear the BGW is transmitted via Bluetooth to local room gateways (32-bit Odroid XU4
board). Patients may move around hospital rooms and corridors as long as the Bluetooth signal-to-
noise ratio is acceptable (usually 100m range). Figure 10 demonstrates the platform architecture that
maps each local room gateway to a 32-bit Odroid XU4 board.

The single-room distributed network architecture can be extended to a multiple room scenario as
follows. First, a wireless Bluetooth connection is used to transmit sensor data from multiple BGW
gateways corresponding to patients in each room to a room gateway. Then, this data is transmitted
from each room gateway (32-bit Odroid XU4) to the HMG (32-bit Zedboard and eventually 64-bit ARM
Juno board) via the hospital’s wired distribution network.

In the above in-hospital use case, we must guarantee soft real-time operation of the overall
distributed system, consisting of subsystems (healthcare architecture and multimedia) with different
criticality levels that are sharing network and computational resources. Criticalities extend from
computation components (Media Server, BGW, ECG processing) to the communication infrastructure
(wired and wireless network). Another important requirement is scalability of the healthcare
architecture without affecting system properties, e.g. real-time requirement. Notice that the number
of BGW devices (resp. software components) can scale depending on the number of patients to be
monitored while the system is running.

Figure 10: A Hospital Media Gateway (HMG) in a multi-room
scenario

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 18 of 42

2.3.2.3 Real Time ECG Analysis and Visualization

Figure 11: The ECG analysis process.

Our soft real-time ECG analysis system is based on open source software, in particular a
medical decision support subsystem which provides annotation on the basis of non-fatal arrhythmias.
Detection and classification of heart beat signal is the objective of the algorithms designed to support
full medical decision support systems by diagnosing health issues and providing information to
physicians. Thus, the system is also able to identify alarming situations by annotating critical situations
graphically along with the ECG signal.

In our use case, an ECG analysis process is initiated on the Zedboard upon acquisition by a
server component of the heart beat signal transmitted by the Odroid XU4 board. This signal is initially
received by the Odroid board via Bluetooth from the BGW sensors and appended to a file prior to
transmission. As shown in Figure 11, ECG analysis proceeds to invoke our custom real-time extensions
on WFDB and OSEA, two open source software libraries whose main task is (offline) normalization of
the input signal according to standard EC-13, and heart beat detection and classification. Finally,
visualization is performed using WAVE, a fast-open source application based on XWindows and XView
open source client toolkit (see Figure 11). WAVE supports fast, high resolution display of ECG
waveforms at different scales with asynchronous display of the annotations. It also handles remote
access by Web browser, but this feature is not used in our tests.

More specifically, since the BGW transmits an ECG signal consisting of 256 samples per sec, we first
perform conversion to a standard ECG-13 compliant format using WFDB’s wrsamp function which
outputs two files: a standardized ECG signal “synth.dat” and an ASCII “synth.hea” file which contains
info about ECG data stored in the previous file e.g. the total samples.

Then, we use a custom real-time version of easytest algorithm (part of OSEA, a.k.a. Open
Source ECG Analysis) to a) dynamically change the sampling rate to 200 samples/sec and b) perform
on-the-fly standardized ECG13-compliant heart beat detection and classification using different types
of filters (e.g. noise reduction, QRS, SQRS) and related computations (R-R interval). This process allows
classification of the ECG signal to Normal or Ventricular in “synth.atest” file, cf. [26][27]. OSEA uses
Harvard’s WFDB Physionet software which provides stable, self-adaptive automated ECG detection
and analysis with very high positive predictivity (tested with MIT/BIH and AHA arrhythmia databases).

2.3.3 Experimental Framework and Results

In this section, we examine the effect of simultaneous memory/network bandwidth regulation
(using our MemGuardXt and NetGuardXt kernel modules) on the above realistic in-hospital use case
based on a hospital media gateway (Zedboard with two ARMv7 cores).

More specifically, in our prototype use case, we apply NetguardXt to regulate two types of incoming
traffic on the Home Media Gateway (Zedboard):

• video-on-demand traffic arriving to Zedboard from an external server via an Ethernet router; this
video is eventually distributed to clients via video streaming; notice that video streaming does not
generate significant memory bandwidth (1-2 MB), thus in this deliverable we focus (without loss of
generality) on incoming traffic. However, the same prototype has been used to control quality-of-
delivery of outbound video traffic, see Figure 12.

• ECG network traffic, originating from two BGW devices connected to an Odroid XU4 and arriving to
Zedboard via the Ethernet router.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 19 of 42

Figure 12: Regulating video streaming quality using NetGuardXt.

ECG processing at the Zedboard involves running a server that opens independent TCP

connections to receive new ECG data from BGW devices via Odroid XU4, together with an initial
consumer process that starts WAVE application for each connected client, and an animator process
(wrsamp, easytest) that sends asynchronously (via wave-remote function) an annotated ECG
signal to WAVE. Notice that all these processes run on CPU0, while video-on-demand process runs on
CPU1. Since Zedboard has only two CPUs available, both cores are considered rate-constrained. In our
experiments,

• MemGuardXt configuration uses a fixed period=1 msec, i=2, λ=0.2,
r_min=Q0+Q1=90M/sec, Q_min=50, while the MemGuardXt Q0/Q1 ratio (for cores 0 and 1)

is set by one of three scripts; furthermore, since Zedboard does not provide a counter for last level
cache (L2) cache misses, we have disabled L2 cache.

• Similarly, NetGuardXt configuration uses a fixed period=1 sec, i=2, λ=0.2,

r_min=Q0+Q1=70KB/sec, Q_min=1000, while the NetGuardXt Q0/Q1 ratio (for cores 0 and
1) is controlled dynamically by the same three scripts described below.

• The three scripts which are the driving force behind our experiment first fix MemGuardXt Q0/Q1

ratio as 25/65, 50/40, or 75/15, and then periodically, every 20 sec, reconfigure the NetGuardXt
Q0/Q1 ratio (for cores 0 and 1) always with the same sequence: {18/72, 16/74, 14/76,

12/78, 10/80, 8/82}. Thus, each script gradually decreases the assigned bandwidth rate for
ECG (and increases that of Video), while keeping a fixed ratio for ECG to Video memory bandwidth.
Each running script is named after the fixed MemGuardXt configuration value, i.e. MG 25/65, MG
50/40, or MG 75/15.

Selection of memory/network Q0/Q1 rates for MemGuardXt and NetGuardXt was based on initial

experiments that considered performance of each component (ECG processing or video traffic) in
isolation, to locate regions in the system parameter space where mixed criticality effects are
interesting.

Figure 13: Dropped Bytes for ECG and Video (as percent of accepted ones) while the corresponding script runs, i.e. ECG

rate decreases every 20 sec.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 20 of 42

Figure 13, extracted from kernel logs, shows that gradually decreasing ECG network bandwidth via
NetGuardXt from 18000kB/sec to 8KB/sec (in 20 sec intervals), results in an increasing cumulative ECG
drop rate and decreasing drop rate of video traffic.

Figure 14: Performance of MemGuardXt (MG 75/15 configuration); the vertical Axis units are in bytes for Used

Bandwidth (Ui) and Best Effort.

In Figure 14 we show corresponding MemGuard performance for MG75/15 case. Notice that
in this case all MemGuard figures scale well despite the decreased bandwidth, i.e. TCP retransmissions
due to drops at the incoming network interface (see Figure 13) appear to be still manageable in real-
time.

Figure 15: Delays at Home Media Gateway (Zedboard) for MG75/15 script.

Figure 15 shows an execution trace at the server assuming the same MemGuardXt
configuration MG 75/15. Notice that we have set affinity so that ECG server, consumer and
animation processes (involving wrsamp and easytest) all share ARM Cortex-A9 CPU0, while the

video-on-demand service transferring files to Zedboard for further delivery runs on CPU1. Although
ECG network rate is reduced, results are similar. They show that a proportionally larger share of the
total execution time (up to 50%) is spent for easytest which performs filtering and asynchronous
annotation of ECG data than either server which saves the ECG signal locally (approximately 30%),
or wrsamp which performs signal conversions to EC-13 standard (20%). Small variations at the server
can be attributed to acquiring file locks at the server and animation process (below 20ms with
rare spikes).

Figure 16: Real-time performance of ECG processing application for two BodyGateway devices for two MemGuardXT

configurations.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 21 of 42

Finally, Figure 16 compares the amount of ECG data delivery from each of the two BGW devices to
the animator (WAVE application). It is clear that while for MG 25/65 configuration one of the BGW
devices has completely stopped due to memory bandwidth starvation, in the MG75/15 configuration
the animator is able to process traffic from both BGW devices in soft real time.

Overall, system-level bandwidth regulation algorithms can differentiate among rate-constrained
and best effort traffic sources in systems-on-chip. Our work extends existing memory bandwidth
regulation policies (MemGuard) by providing improved adaptivity through EWMA prediction and
considering a violation free operating mode for rate-constrained flows. Our implementation follows a
highly modular approach, allowing our MemGuard extensions (MemGuardXt) to be used directly in
either user- or kernel-space, in multiple instances. By applying this engineering approach, we have also
designed a network bandwidth regulation module (called NetGuardXt) running over netfilter which
uses a similar algorithm to MemGuardXt to control incoming or outgoing traffic per IP.

We have considered combined MemGuardXt/NetGuardXt effects in a mixed-criticality use case
involving a hospital media gateway prototype (Zedboard with two ARM Cortex-A9 cores). The media
gateway simultaneously performs soft real-time processing and annotation of ECG signals from
STMicroelectronics’ BodyGateway pulse sensors (relying on our extensions on the open source WFDB,
OSEA and WAVE framework from PhysioNet) while also storing video-on-demand traffic for video
streaming. By examining different NetGuardXt and MemGuardXt configurations, we have shown how
fine-grain control of network and memory bandwidth can help soft real-time ECG processing.

Our future plans include extending our use case to a more powerful hospital media gateway based
on ARM Juno board that would enable use of rate-constrained and best-effort cores for both ECG and
video streaming applications.

An alternative implementation in the heart of the Linux scheduler would allow MemGuard to
regulate rate-constrained and best-effort traffic at process- instead of core-level. This new scheduling
policy is currently being implemented on embedded ARMv7 technology (Zedboard running Linux kernel
3.17).

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 22 of 42

3 Evaluation Methodology

In this chapter, we focus on the methodology to evaluate the project approach on the basis of a
Healthcare demonstrator integrating all hardware components (ST Bodygateway, Odroid, DHP,
TTEthernet and Juno) as shown in Figure 1. An assessment is achieved in this report through the
definition and the evaluation of Key Performance Indicators (KPIs) based on the general project
objectives defined in Description of Work [5] Part B, section 1.1.

3.1 Key Performance Indicators (KPIs)

KPIs are regarded as a collection of metrics for quantifying the objectives of the project,
monitoring its activity progress and assess the expected results.

The KPIs presented in this section are expected to be:

• Objective: it shall be possible to measure them objectively.

• Measurable: it shall be possible to quantify them.

• Relevant to the project: the partners shall confirm their interest.

• Comparable: to the situation of the application use case before using DREAMS approach and
technologies.

The performance indicators defined in the following tables will be traced to one or more measures

for success. In this preliminary evaluation, they will provide quantitative information to support the
qualitative evaluation of every measure for success. Some of the measures for success are not traced
to any KPI, since there may be no quantitative data that could support the conclusion.

The KPIs are classified into three subsets:

• 'D': The KPIs marked with 'D' can be evaluated in the preliminary and final reports (e.g., jitter,
boot time, etc).

• 'E': These KPIs can only be evaluated in the final report at the end of the project (e.g.,
Percentage of DREAMS building blocks used by the demonstrator, etc)

• 'A': These KPIs can be objectively evaluated only after the project since some experience with
the technology is needed (e.g., Time-to-market reduction of a mixed-criticality system based
on DREAMS architecture and technologies). However, an estimation is provided in this report.

Table 1 lists and describes all KPIs of the project, and traces all of them to the measures for success

they aim at providing arguments for evaluation. The last column indicates when this metric can be
obtained:

ID KPI Description Measure
for

Success1

Time

1 Achievable Safety
Integrity Level

Maximum achievable Safety Integrity Level (e.g.
ASIL-B, ASIL-C) according to ISO 26262 [6][7][8]
for the secure monitor firmware layer

1.1, 2.7
6.1, 6.2

D

2 Validated support for
key real-time OS

(Boolean) The ARM JUNO development
platform supports integration of FreeRTOS to
be used as the OS for the supervision.

1.2 D

1 Detailed description of the measures for success can be found at Section 3.2.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 23 of 42

ID KPI Description Measure
for

Success1

Time

3 Maximum jitter
induced by the secure
monitor layer

Bounded value for jitter in the execution of the
most critical real-time thread

1.2 D

4 Maximum overhead
during the RTOS boot

Bounded value for overhead induced by the
secure monitor firmware layer during the boot
of the RTOS

1.2 D

5 Temporal and spatial
isolation by
construction

(Boolean) The safety concept (supported by the
verification plan) demonstrates that the
architecture provides temporal and spatial
isolation of partitions by construction

2.1, 2.7,
3.1, 6.1

D

6 Maximum latency
overhead of
applications inside a
KVM virtual machine

Percentage of the overhead of the latency of
KVM virtual machine on loaded system. Latency
is measured with Linux tool “cyclictest” inside a
virtual machine with and without CPU
workload. The overhead is the difference
between those two measurements.

2.1, 2.4 D

7 I/O latency inside KVM
virtual machine is not
affected by the I/O
workload

(Boolean) The I/O latency of application inside
virtual machine, on a system with I/O
workloads, is about the same value than on a
system with idle medium.

2.1 D

8 Memory bandwidth
isolation by
construction

(Boolean) The architecture provides a memory
bandwidth isolation between tasks

2.1 D

9 Memory bandwidth
reservation for highest
criticality level
application

(Boolean) The architecture provides a memory
reservation feature to preserve memory
bandwidth of highest critical applications

3.1 D

10 Fault containment by
construction

(Boolean) The certification body accepts
evidences to demonstrate fault containment by
construction

1.3,1.1 E

11 Percentage of system
architecture/design
modelled

Percentage of the system architecture and
design that is able to be modelled with the
tools developed in DREAMS

1.7 E

12 Percentage of software
application modelled

Percentage of the application software that is
able to be modelled with the tools developed in
DREAMS

1.7 E

13 Bounded temporal
network routing.
(TTEthernet ->
Ethernet)

Delay introduced in the path of data packets
when they are routed from the TT-Ethernet
network to the Ethernet network through the
DHP board.

2.3 E

14 Bounded temporal
network routing.
(Ethernet ->
TTEthernet)

Delay introduced in the path of data packets
when they are routed from the Ethernet
network to the TT-Ethernet network through
the DHP board.

2.3 E

15 Bounded temporal
interference (network)

Delay introduced in the safety-related
communications when heavy non-safety traffic
(video) is generated in the network

2.1 E

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 24 of 42

ID KPI Description Measure
for

Success1

Time

16 Bounded temporal
interference
(processing)

Delay introduced in the critical thread of the
safety-related partition when heavy processing
load is generated in neighbouring non-safety
partitions

2.1 E

17 Bounded temporal
interference (resources
access rate)

Delay introduced in the access to resources
(memory) by the safety-related partition when
heavy resource consumption is required by
neighbouring non-safety partitions

2.1, 2.2 E

18 ST Body gateway-to-
partition latency

Latency between a value is read at the sensor
and delivered at the partition where it is going
to be processed

2.5 E

19 Percentage of
development steps
covered by tools in
demonstrator

Percentage of development steps where
DREAMS tools provide support in the
demonstrator, in one or more of the following
aspects: safety, timing, energy, variability

4.2 E

20 Percentage of
automatically
executable
transformations

Percentage of automatically executed
transformations between consecutive
development steps provided by tools

4.3 E

21 Adaptability to
evolution of product
and standards

(Boolean) The approach provides required
adaptability for evolution of product and
standards

5.6 A

22 ST Bodygateway
ECG raw data

Real-time constraint 128/256 Hz 1.1 E

23 ST Bodygateway
Heart Rate

Real-time constraint 1 each 10/15/30/60 sec 1.1 A

24 ST Bodygateway
Heart Rate Reliability

Real-time constraint 1 each 10/15/30/60 sec 1.1 A

25 ST Bodygateway
R-R Variability

Real-time constraint 1 each 10/15/30/60 sec 1.1 A

26 ST Bodygateway
BIOZ

Real-time constraint 32 Hz 1.1 A

27 ST Bodygateway
ACC XYZ

Real-time constraint 50hz 1.1 A

28 ST Bodygateway
Body Position

Real-time constraint 1 each 5/10/15/30/60 sec 1.1 A

29 ST Bodygateway
Activity level

Real-time constraint 1 each 5/10/15/30/60 sec 1.1 A

30 ST Bodygateway
Breathing Rate

Real-time constraint 1 each 15/30/60 sec 1.1 A

31 ST Bodygateway
Battery

Real-time constraint 1 each 10/15/30/60 sec 1.1 A

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 25 of 42

ID KPI Description Measure
for

Success1

Time

32 Juno R1 CPU utilization
in video streaming –
Maximum overhead

CPU utilization to achieve a required frame-rate
quality on the STM32F746G-DISCO (2 scenarios)
– AVI video rendering and streaming raw
bitmap images (not jpeg) application pinned to
A57
Real-time constraint for:
 a) 24 FPS, half-screen size, 24-bits/pixel,
 peak=90%, avg=85% (A57 cluster)
 b) 20 FPS, half-screen size, 16-bits/pixel

1.4 E

33 Juno R1 memory
utilization in video
streaming – Maximum
overhead

Memory utilization to achieve a required frame-
rate quality on the STM32F746G-DISCO (2
scenarios) – AVI video rendering and streaming
raw bitmap images (not jpeg) application
pinned to A57
Real-time constraint for:
24 FPS, half-screen size, 24-bits/pixel: 240MB

 1.4 E

34 Juno R1 –
STM32F746G-DISCO
Ethernet network
utilization in video
streaming – Maximum
overhead

Ethernet (UDP) network bandwidth to achieve a
required frame-rate using raw video for half-
screen size of STM32F746G-DISCO
Real-time constraint for:
24 FPS, half-screen size, 24-bits/pixel: 80Mbps

1.4 E

35 STM32F746G-DISCO
CPU utilization in video
streaming – Maximum
overhead

CPU utilization to achieve a required frame-rate
using raw video in STM32F746G-DISCO without
JPEG accelerator, DMA to framebuffer.
Real-time constraint for:
24 FPS, half-screen size, 24-bits/pixel: 75%

1.4 E

36 Real-time
characteristics of ECG
Processing application

Related to ECG data analysis for automated
cardiac disease detection and visualization, soft
real-time operations of the overall distributed
system must be guaranteed since the healthcare
demonstrator includes subsystems with
different criticality levels (healthcare data and
multimedia).

1.2 E/A

37 Scalability of the
healthcare architecture
in terms of number of
Body Gateway devices

Number of ST body gateway devices that can be
simultaneously connected to the platform
without affecting real-time constraints.

3.5 E/A

Table 1: Key Performance Indicators

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 26 of 42

Table 2 collects the values of the KPIs, evaluated or estimated. According to the KPI type (i.e.,
Boolean or not), some results have been measured while others have been determined through the
documentation. Additional information is provided in the comments column.

ID KPI Goal Value Comments

1 Achievable Safety
Integrity Level

ASIL-C Under functional
safety assessment

The secure monitor firmware
layer has been designed to meet
the stringent requirements of
the ISO 26262 standard. The
certification target of this
software component is ASIL-C,
which corresponds to SIL-2/SIL-3
of the Functional Safety
Standard IEC61508 that fits the
needs of the healthcare use-
case. The Audit phase 1 related
to the concept has been passed
with success and the Audit
phase 2 is ongoing.

2 Validated support
for key real-time
OS

Yes Yes The support of FreeRTOS, which
is the monitoring real-time OS
for Healthcare demonstrator, is
fully validated on the ARM JUNO
Development platform.

3 Maximum jitter
induced by the
secure monitor
layer

1 µs 780 ns Isolated executions of critical
partition guarantee not exceed
this value.
Evidences of this performance
measurement can be extracted
from D2.3.2 [9].

4 Maximum
overhead during
the RTOS boot

600 µs 23 µs Safety domains (e.g.,
automotive) have stringent
requirements related to the
RTOS boot time, which has to be
completed in less than 60ms. As
the secure monitor firmware
adds an overhead before the
RTOS execution, the goal is to
setup this software layer in less
than 600 µs in order to not
impact the full RTOS boot time
more than 1%.
Evidences of this performance
measurement can be extracted
from D2.3.2 [9].

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 27 of 42

ID KPI Goal Value Comments

5 Temporal and
spatial isolation by
construction

Yes Yes Spatial isolation is guaranteed
by the secure monitor firmware
layer which relies on the ARM
TrustZone. These evidences can
be extracted from specific
documentation of the secure
monitor layer as well as D2.3.2
[9]. Although the current
implementation gives the full
priority to the RTOS, temporal
isolation could also be
guaranteed by the secure
monitor layer, if needed.

6 Maximum latency
overhead of
applications inside
KVM virtual
machine

5% 1.1% The latency overhead can be
extracted from D2.2.1 [3], the
experiment has been run on an
ARM Chromebook with the CFS
scheduler. It corresponds to the
worst case scenario in term of
number of workload in host and
guest.

7 I/O latency inside
KVM virtual
machine is not
affected by the I/O
workload

Yes Yes The I/O latency is not affected
by I/O workloads thanks to the
V-BFQ I/O coordinated
scheduler. Measurement of the
I/O latency can be extracted
from D2.2.1 [3].

8 Memory
bandwidth
isolation by
construction

Yes Yes Memory bandwidth isolation is
guaranteed by the memguard-
kvm implementation of the
memguard kernel module on
ARMv8 architecture. These
evidences can be extracted from
the D2.2.3 [4]. The
implementation isolates each
virtual machine regarding the
executed task.

9 Memory
bandwidth
reservation for
highest criticality
level application

Yes Yes Memory bandwidth isolation is
guaranteed by the memguard-
kvm implementation of the
memguard kernel module on
ARMv8 architecture. These
evidences can be extracted from
the D2.2.3 [4]. The
implementation isolates each
virtual machine regarding the
executed task.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 28 of 42

ID KPI Goal Value Comments

10 Fault containment
by construction

Yes Yes By leveraging on the secure
monitor firmware, faults in a
specific system cannot affect the
correct execution of the other
systems. In addition, the secure
monitor firmware is able to
perform a “warm reboot“ of the
failed system without impacting
the other systems. Specific
documentation for each
building block and mainly, the
deliverables D2.3.2 [9] and
D2.4.2 [10] could represent
evidences to consider fault
containment by construction.

11 Percentage of
system
architecture/design
modelled

As much as
needed for
configuration
file generations.

Modelling of the
off-chip network
and the connected
nodes.

The off-chip network and the
hardware of the connected
nodes and the system software
have been modelled to a degree
that makes the execution of the
tools possible.

12 Percentage of
software
application
modelled

As much as
needed for
configuration
file generations.

Modelling of
application tasks
requiring off-chip
communication.

The communication related
properties of the concerned
tasks have been modelled, such
as the size of the exchanged
data and communication
periods.

13 Bounded temporal
network routing.
(TTEthernet ->
Ethernet)

<100ms BCET: 0 ms
WCET: 58ms

This is defined by the period
used to check the TTEthernet
buffer and the time to send the
message by Ethernet. The
TTEthernet buffer can store up
to 10 messages, which can be
received with a period of 10ms.
Therefore, the TTE buffer can
store information until 100ms.
However, it is processed each
50ms. All pending messages are
processed and send through
Ethernet on each check.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 29 of 42

ID KPI Goal Value Comments

14

Bounded temporal
network routing.
(Ethernet ->
TTEthernet)

<300ms BCET: 0ms
WCET:100ms

The maximum transmission rate
from Ethernet to TTEthernet
network is limited by the period
defined in the TTEthernet
configuration. In the
demonstrator, for the path from
Ethernet to TTEthernet, the TTE
configuration defines one TT
slot with period 10ms and a
buffer of 10 messages. These
temporal requirements were
based on KPI #22 to #31. The
BCET is obtained when the
message is received just before
start the TT slot. The WCET is
obtained when the message
received is the latest in the
buffer and it arrives just at the
end of the TT slot.

15

Bounded temporal
interference
(network)

Safety related
communications
are not affected
by non-safety
communications

No delay
introduced in
safety
communication
when non-safety
traffic is also used

Safety-related communication
uses Time-Triggered network
traffic type, while videos
streaming use Best-Effort traffic
type (i.e, normal Ethernet).
Therefore, the Time-Triggered
aware hardwares (TTswitch and
TTethernet card) ensure that no
delay is introduced when using
non-safety network traffics.

16

Bounded temporal
interference
(processing)

 Not evaluated. The safety related partition of
the Hospital server (Juno board)
run a Real-Time operating
system (FreeRTOS) on which the
drivers of the TTEthernet PCI
card are not available. Doing the
porting was resource consuming
and out of the scope of DREAMS
project, so, as a workaround, the
PCI card is used on the Linux side
sharing its data with the RT-OS
through a shared memory
mechanism.

17

Bounded temporal
interference
(resources access
rate)

 Not evaluated. See #16.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 30 of 42

ID KPI Goal Value Comments

18

ST Body gateway-
to-partition latency

Below 1sec for 8
(ST
Bodygateway
devices) x 256
samples (per ST
Bodygateway)

An alternative way
is to examine delay
to process 256
samples on the
server. We have
seen that it’s
possible to support
1 ST Bodygateway
at full rate (256
point/sec) with
delay < 1sec on
Zedboard (see
Section 2.3, Figure
9) and up to 4 ST
Bodygateways on
the final
healthcare
demonstrator (see
KPI #36 and #37).

Since the full platform is a
distributed embedded system
without a global synchronized
clock, we examine whether the
update rhythm at the hospital
media server is sufficient to
guarantee real-time
visualization for a number of
pulse sensor devices. An
alternative approach, taken in
Section 2 concentrates on the
total delay to process 256
samples (or more) on the server
(single clock reference). Both
techniques provide practical
approximations, since precise
estimation of the proposed KPI
requires modifying the final
demonstrator to support clock
synchronization which is beyond
the project goals.

19

Percentage of
development steps
covered by tools in
demonstrator

As many as
possible.

65% The applicable tool chain Use
Case 1 has 14 steps. The 5 steps
related to on-chip
communication and task
scheduling configurations have
not been covered since the used
technologies are not supported
by the tools of the toolchain.

20

Percentage of
automatically
executable
transformations

As many as
possible of the
steps that can
be automated.

100% Among the development steps
covered by the tool chain, only
the off-chip scheduling related
steps can be automated. The
exchange of data with
configuration file generator TTE-
Plan has been completely
automated.

21

Adaptability to
evolution of
product and
standards

To support FDA
and EC
standards

Yes, using a flexible
scalable hardware
and software
platform is
possible to go
through the
approval processes
and procedures
requested for FDA
or EC.

Some of the standards are EN
60601, EN 62304, EN 980, EN
60529; ISO 14971, ISO 10993,
EC38, EC57.

22
ST Bodygateway
ECG raw data

For remote
analysis

Yes, implemented Reference: technical
specification of the STM body
gateway

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 31 of 42

ID KPI Goal Value Comments

23
ST Bodygateway
Heart Rate

To calculate
heart rate

Yes, implemented
possible values 128
or 256 Hz

Reference: technical
specification of the STM body
gateway

24

ST Bodygateway
Heart Rate
Reliability

Heart Rate
Reliability
calculated using
ECG raw data

Yes, implemented Reference: technical
specification of the STM body
gateway

25

ST Bodygateway
R-R Variability

peak Variability
calculated by
processing the
ECG raw data

Yes, implemented Reference: technical
specification of the STM body
gateway

26

ST Bodygateway
BIOZ

Breathing rate
calculated using
the BIOZ raw
Data

Yes, implemented Reference: technical
specification of the STM body
gateway

27
ST Bodygateway
ACC XYZ

Yes Yes, implemented
value: 50Hz

Reference: technical
specification of the STM body
gateway

28

ST Bodygateway
Body Position

Body Posture
calculated
starting from
the ACC info

Yes, implemented Reference: technical
specification of the STM body
gateway

29

ST Bodygateway
Activity level

Activity Level
calculated
starting from
the ACC info

Yes, implemented Reference: technical
specification of the STM body
gateway

30

ST Bodygateway
Breathing Rate

Breathing rate
calculated using
the measure the
bio-impedance
(BIOZ) raw
data

Yes, implemented Reference: technical
specification of the STM body
gateway

31

ST Bodygateway
Battery

Battery level
measurements

Yes, implemented
values to be probe
10,15,30,60,300
sec

Reference: technical
specification of the STM body
gateway

32

Juno R1 CPU
utilization in video
streaming –
Maximum
overhead

For 24 FPS, half-
screen size, 24
bits/pixel, A57
cluster 85% on
average.

63% on average for
single video, and
100% for 2 videos

Refers to average CPU utilization
for video streaming on Juno R1.
Video streaming virtual machine
is machine is running with two
virtual cores on the A57 cluster.

33

Juno R1 memory
utilization in video
streaming –
Maximum
overhead

Expected 1-2
MB/s from
previous tests
on Zedboard

~5Mbit/s

Refers to average memory
utilization for video streaming
from Juno R1. Video streaming is
allocated to two A57 cores on
Juno.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 32 of 42

ID KPI Goal Value Comments

34

Juno R1 –
STM32F746G-
DISCO Ethernet
network utilization
in video streaming
– Maximum
overhead

For 24 FPS, half-
screen size, 24
bits/pixel,
80 Mbits/sec (10
MB/sec)

~2.22 MB/sec The network bandwidth used by
the whole virtual machine
streaming a video has been
measured at 2.22 MB/sec.

35

STM32F746G-
DISCO CPU
utilization in video
streaming –
Maximum
overhead

Expected to be
less than 100%
since no
transcoding is
used

not precisely
measured, but less
than 80%

CPU utilization on STM32F7
board is significantly less than
100%. However, STM32F7 runs
a single application (video
player), so this KPI is not so
relevant (it does not affect ECG
parameters).

36

Real-time
characteristics of
ECG Processing
application

The ECG data
analysis is
performed in
real-time.

Real-time
visualization and
cardiac disease
detection is
performed by the
Hospital Server
application for up
to 4 ECG devices

Although the number of
supported device on the full
demonstrator is up to 6 (see KPI
#37 below). The visualization
application that also detects
cardiac anomalies on the ECG is
only able to handle 4 devices at
the same time; with more
devices the refresh rate of the
visualization is too low. It is also
important to note that the
Hospital Server used in this
demonstrator is low power
server (Juno r1) compared to a
machine that can be used in a
real deployment.

See Appendix 6.1 for further
details.

37

Scalability of the
healthcare
architecture in
terms of number of
Body Gateway
devices

Up to 6 Body
Gateway
devices per
DREAMS
Harmonized
Platform.

The demonstrator
contains one DHP
and is able to
handle up to 6
Body Gateway
devices. However,
the system is
scalable
accordingly the
number of DHPs

6 Body Gateway devices are
supported by the demonstrator.
But only 4 of them can be
visualized simultaneously on the
Hospital Server, due to
computing power limitation.
This means that if a DHP is used
per hospital room, 6 patients
can be supported per room, 4 if
real-time visualization on the
same server is needed
(considering the same hardware
than in this demonstrator).

See Appendix 6.1 for further
details.

Table 2: KPIs evaluated at M48

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 33 of 42

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 34 of 42

3.2 Objectives assessment

The following tables present the progress towards the completion of measure for success and
project objectives by analysing available information. The measures for success are marked with green
colour if the progress is positive, orange if there is not enough information to evaluate it, and red if
the progress is negative.

Objective 1: Architectural style and modelling methods based on waistline structure of platform
services

Measure for success KPIs Evaluation

1.1 Safety 1, 10,
22-31

The ISO 26262 certification ASIL C of the secure
monitor firmware, which corresponds to SIL-2/SIL-
3 of the Functional Safety Standard IEC61508 that
fits the needs of the healthcare use-case, is under
functional safety assessment. The final audit is
planned for mid of September, however the results
of the ISO 26262 – Audit phase 1 related to the
concept phase did not reveal any non-compliances.
Therefore, the secure monitor firmware is able to
ensure the execution of the safety features.

1.2 Real-time 2, 3, 4,
36

The relevant RTOS is supported and the timing
requirements are met according to tests carried
out in this preliminary evaluation. The ECG
visualization can be also performed in real-time
with up to 4 sensor devices. Therefore, real-time
objectives are achieved.

1.3 Fault containment 10 By leveraging ARM TrustZone, the secure monitor
firmware provides a system-wide security
approach which isolates processor cores, bus,
memory and peripherals in two separate
compartments, ensuring fault containment in
order to preserve the execution of mission-critical
tasks if a fault occurs in the non-critical application.

1.4 Timely adaptation 32, 33,
34, 35

Already evaluated. Improvements relate to DHP.

1.5 Security

1.6 Domain-independent core
services

1.7 System Modelling (i.e., fine
grained analysis / scheduling,
complexity, completeness)

11, 12 The DREAMS tool chain has been applied (as far as
possible) to the healthcare demonstrator, including
the modelling of the system (see D4.4.2).

Objective evaluation

All the measures for success for this objective, regarding the safety, real-time and model aspects have
been evaluated positively.

Table 3 : Objective 1 assessment

Objective 2: Virtualization technologies to achieve security, safety, real-time performance as well as
data, safety, energy and system integrity networked multi-core chips

Measure for success KPIs Evaluation

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 35 of 42

2.1 Isolation 5, 6, 7,
8, 15,
16, 17

On the gateway server (Juno), the memory
bandwidth isolation is guaranteed by the
memguard-kvm implementation, whereas critical
applications are isolated through the secure
monitor firmware relying on ARM TrustZone. On
the network, the critical traffic uses Time-Triggered
traffic class while non safety-related traffic
(entertainment) use Best-Effort traffic class, this
ensure a total isolation for the safety-related
communication.

2.2 Reduced bank conflicts

2.3 Gateways 13, 14 The temporal requirements for the management of
the network traffic are achieved. However, the
restrictions listed on section 2.2.4 shall be taken into
account when the periodic burst transmission is
considered in the Odroid board.

2.4 Reduction of latencies 6 The co-scheduling implementation for KVM virtual
machines allows minimizing the overhead.

2.5 Reduction of jitter 18 The latency of the whole demonstrator has been
evaluated and is enough to meet the needed real-time
requirements.

2.6 Reconfiguration
2.7 Security 1, 5 The secure monitor layer ensures the security

configuration of ARM TrustZone in order to instantiate
a secure compartment isolated from non-critical
accesses.

Objective evaluation

All the measures for success for this objective have been evaluated positively. The isolation provided
by the different technology blocks allow strong isolation, security and latency reduction.

Table 4: Objective 2 assessment

Objective 3: Adaptation strategies for mixed-criticality systems to deal with unpredictable
environment situations, resource fluctuations and the occurrence of faults

Measure for success KPIs Evaluation

3.1 Variability 5, 9 Critical applications (e.g., bandwidth, peripheral,
memory, etc) are isolated from faults which occur
in other partitions. It has been tested by forcing a
crash in the Normal partition running on top the
secure monitor firmware, which does not impact
the execution of the Secure partition containing
the mission-critical tasks.

3.2 Criticality spectrum The architecture and technologies ensure the correct
isolation of the criticality applications for the
healthcare demonstrator.

3.3 Applicability
3.4 Efficiency
3.5 Scalability 37 The number of “Body Gateway” supported by the

healthcare demonstrator is up to 6 devices, 4 if the
visualization in real-time is needed.

3.6 Portability All technologies used in the healthcare demonstrator
have been developed in other Work Packages (e.g.,

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 36 of 42

WP2). In this context, portability can be positively
assessed.

Objective evaluation

All the measures for success for this objective have been evaluated positively.
Table 5: Objective 3 assessment

Objective 4: Development methodology and tools based on model-driven engineering

Measure for success KPIs Evaluation

4.1 Development process

4.2 Development steps covered
by tools

19 The DREAMS tool chain has been applied (as far as
possible) to the healthcare demonstrator, including
the identification of the toolchain use case and
associated development steps (see D4.4.2).

4.3 Automatically executable
transformations

20 See #19, above.

Objective evaluation

All the measures for success for this objective have been evaluated positively.
Table 6: Objective 4 assessment

Objective 5: Certification and mixed-criticality product lines

Measure for success KPIs Evaluation

5.1 Modular safety-case

5.2 Safety-case modularity The Hospital server is based on the secure monitor
firmware to consolidate non-critical partition along
with mission-critical tasks. This software
component is certified, therefore, only the critical
application needs to be certified when changed.

5.3 Architectural support Some components used in the demonstrator are
generic enough to be used in other use cases,
while some components of platform specific.

5.4 Configuration optimization

5.5 Variability Critical applications (e.g., bandwidth, peripheral,
memory, etc) are isolated from faults which occur
in other partitions.

5.6 Domains and market
features

21 It is possible to go through the approval process
and procedures requested by FDA or EC.

Objective evaluation

All the measures for success for this objective have been evaluated positively.
Table 7: Objective 5 assessment

Objective 6: Feasibility of DREAMS architecture in real-world scenarios

Measure for success KPIs Evaluation

6.1 Separation 1, 5 According to KPI values obtained in the preliminary
evaluation, the level of time and space separation
obtained in the demonstrator is enough to perform
certification.

6.2 Standard compliance 1 The secure monitor firmware is under functional
safety assessment according to the ISO 26262. The

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 37 of 42

final audit is planned for mid of September,
however it is important to notice that the ISO
26262 – Audit phase 1 has been achieved without
any major non-compliances raised by the auditor,
thus meaning that the secure monitor firmware is
on the right way to comply with the standard.

6.3 Cost The mixed-criticality concept applied to this
demonstrator allow to combine critical
applications along with non-critical ones, inside the
same SoC or network. Therefore, less hardware is
required, lowering the cost. Although, in this
demonstrator only development platforms are
used which have a very high cost compared to
production hardware.

6.4 Reusability Most of the components, not directly related to
healthcare, can be used in other domains where
mixed-criticality is needed.

6.5 Extensibility Most of the technology block and component can
be extended to cover other use cases.

Objective evaluation

All the measures for success for this objective have been evaluated positively. The implementation
done for this demonstrator can be performed in real-world scenarios related to healthcare domain.

Table 8: Objective 6 assessment

Objective 7: Promoting widespread adoption and community building

Measure for success KPIs Evaluation

7.1 Community infrastructure All technologies used in the healthcare
demonstrator have been developed in other
DREAMS Work Package. Most of these
technologies have been exposed though the
DREAMS project, and some components have been
open-sourced (e.g., KVM modifications,
MemGuard, …) via the Mixed Criticality Forum
website.

7.2 Training material All technologies used in the healthcare
demonstrator have been developed in other
DREAMS Work Package. Most of these
technologies (e.g., KVM) have been presented in
video training session available on DREAMS
YouTube channel. In this context, the measure for
success can be positively assessed.

7.3 Standardization The secure monitor firmware is certifiable up to
ASIL C according to ISO26262 which corresponds to
SIL2/3 of IEC61508.

7.4 Roadmap

Objective evaluation

All the measures for success for this objective have been evaluated positively.
Table 9: Objective 7 assessment

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 38 of 42

4 Conclusion

In this document, the result of the assessment of the technological results of the project within the
Healthcare demonstrator is reported, including the use case and scenarios as well as the technological
results. Key Performance Indicators have been calculated or estimated in order to provide
measurable, quantitative and objective information to evaluate the measures for success and the
achievement of the objectives.

Section 2 presents the current status of the demonstrator, on which all the hardware and software
components are integrated, including the DREAMS harmonized platform. The demonstrator aims to
replicate a hospital use case where critical and non-critical data are routed among a network of
heterogeneous platform, allowing sensitive ECG data to be used by a medical staff while media
content is streamed to patients at the same time. The isolation of the critical data inside this mixed-
critical demonstrator is achieved thanks to three main technologies, with XtratuM on the DREAMS
Harmonized Platform, the Time-Triggered network class and KVM with the secure monitor firmware
on the Juno board.

The assessment results were provided in Section 0. All the KPIs are considered, but the ones that can
only be objectively evaluated after the project (marked with an A) were only estimated. Overall, KPIs
are evaluated with success, as well as the measures for success and the objectives of the project. The
main goals of the healthcare demonstrator have been satisfied. Non-safety-critical data and
applications have been integrated along with safety-critical ones without affecting them, creating a
mixed-criticality system.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 39 of 42

5 Bibliography

[1] D8.2.1 - System Demonstrator running mixed-criticality healthcare and entertainment use
case, DREAMS Consortium, 6/2016

[2] D8.3.1 - Preliminary assessment report related to improving or calibrating the technological
results, DREAMS Consortium, 2017

[3] D2.2.1 - Optimized hierarchical real-time scheduling heuristics at the network interface layer
and their seamless integration into a real-time KVM hypervisor, DREAMS Consortium, 3/2015

[4] D2.2.3 - Implementation of real-time scheduling heuristics and coordination for the KVM
hypervisor, DREAMS Consortium, 4/2016

[5] DREAMS, Distributed Real-Time Architecture for Mixed-Criticality Systems: Description of
Work, in DOW2014. p. 260.

[6] ISO 26262 - Part 4: Road vehicles - Functional Safety - Product development at the system
level

[7] ISO 26262 - Part 6: Road vehicles - Functional Safety - Product development at the software
level

[8] ISO 26262 - Part 8: Road vehicles - Functional Safety - Supporting processes

[9] D2.3.2 – Firmware monitor layer implementation for the concurrent execution of an RTOS and
Linux/KVM, DREAMS Consortium, 7/2016

[10] D2.4.2 - Extensions and modifications related to supporting integration with industrial
demonstrators, DREAMS Consortium, 7/2016

[11] M. Hadjem, O. Salem, and F. Nait-Abdesselam, "An ECG monitoring system for prediction of
cardiac anomalies using WBAN", in Proc. Conf. e-Health Netw. Appl. and Services, 2014, pp.
441—436.

[12] J. Ko, J. H. Lim, Y. Chen, R. Musvaloiu-E, A. Terzis et al., "Medisn: Medical emergency detection
in sensor networks", ACM Trans. on Embedded Comput. Syst., 10 (1), p. 11, 2010.

[13] J.A. Walsh III, E.J. Topol, S.R. Steinhubl. 2014. “Novel wireless devices for cardiac monitoring”,
New Drugs and Technologies, pp. 573—581.

[14] [s4,2] American Heart Organization, https://www.heart.org/idc/groups/ahamah-
public/@wcm/@sop/@smd/documents/downloadable/ucm_491265.pdf

[15] Alivecor, https://www.alivecor.com/

[16] L.A. Saxon, "Ubiquitous wireless ECG recording: a powerful tool physicians should embrace", J.
Cardiovascular Electrophysiology, 24 (4), pp. 480–483, 2013.

[17] BG Heart, http://www.preventicesolutions.com/services/body-guardian-heart.html

[18] Lifemonitor, http://www.equivital.co.uk/products/tnr/sense-and-transmit

[19] NowCardio, https://contex-tech.com/medical/nowcardio

[20] Physiomem, http://www.getemed.net/en/telemonitoring/physiomemr-pm-1000

[21] S. Gradl, P. Kugler, C. Lohmüller, and B. Eskofier, "Real-time ECG monitoring and arrhythmia
detection using Android-based mobile devices", in Proc. Conf. IEEE Engin. Medicine and Biology
Society, 2012, pp. 2452--2455.

https://www.alivecor.com/
http://www.preventicesolutions.com/services/body-guardian-heart.html
http://www.equivital.co.uk/products/tnr/sense-and-transmit
https://contex-tech.com/medical/nowcardio
http://www.getemed.net/en/telemonitoring/physiomemr-pm-1000

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 40 of 42

[22] J.J. Oresko, Z. Jin, J. Cheng, S. Huang, et al., "A wearable smartphone-based platform for real-
time cardiovascular disease detection via electrocardiogram processing", IEEE Trans. Info Tech.
Biomedicine, 14 (3), pp. 734–740, 2010.

[23] T.-H. Yen, C.-Y. Chang, S.-N. Yu, “A portable real-time ECG recognition system based on
smartphone”, in Proc. Conf. IEEE Engin. Medicine and Biology Society, 2013, pp. 2=7262—7265.

[24] S. Hu, H Wei, and Y. Chen, “ A real-time cardiac arrhythmia classification system with wearable
sensor network”, Sensors, 12, 2012, pp. 12844—12869.

[25] A.M. Patel, P.K. Gakare, and A.N. Cheeran, “Real-time ECG feature extraction and arrhythmia
detection on mobile platform”, J. Comp. Appl., 44 (23), 2012, pp 40—45.

[26] J. Weng, X.M. Guo, L.S. Chen, Z.H. Yuan et al., “Study on real-time monitoring technique for
cardiac arrhythmia based on smartphone”, J. Medical and Biological Engineering, 33 (4),
pp.394—399.

[27] A. Iglesias, R. Istepanian, J.G. Moros. "Enhanced real-time ECG coder for packetized
telecardiology applications”, IEEE Trans. Info Tech. Biomedicine, 10 (2), 2006, pp. 229—236.

[28] J.D.-Ferrer, D. Sánchez, G.R.-Torrell, “Anonymization of nominal data based on semantic
marginality”, Info Sciences, 242, 2013, pp. 35--48.

[29] P.S. Hamilton, S. Patrick, and W.J. Tompkins. 1986. "Quantitative investigation of QRS detection
rules using the MIT/BIH arrhythmia database", IEEE Trans. Biomedical Engin., 12, pp. 1157—
1165.

[30] W.J. Tompkins. 1985. “A real-time QRS detection algorithm”, IEEE Trans. on Biomedical Engin.,
3, pp. 230--236.

[31] Soft Real Time ECG Analysis and Visualization, https://physionet.org/works

[32] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Secure memory accesses on
networks-on-chip,” IEEE Trans. Comput., vol. 57, no. 9, pp. 1216–1229, Sep. 2008.

[33] J. Porquet, A. Greiner, and C. Schwarz, “NoC-MPU: A secure architecture for flexible co-hosting
on shared memory MPSoCs,” in Proc. Design Autom. Test Europe, Grenoble, France, Jul. 2011,
pp. 591–594.

[34] A. Wiggins, S. Winwood, H. Tuch, and G. Heiser, “Legba: Fast hardware support for fine-grained
protection,” in Proc. 8th Asia-Pac. Conf. Adv. Comput. Syst. Archit., Aizuwakamatsu, Japan,
2003, pp. 320–336.

[35] M.D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigoriou, G. Kornaros, I.
Christoforakis, O. Tomoutzoglou, G. Tsamis, and M. Coppola, “Security in MPSoCs: A NoC
Firewall and an Evaluation Framework“, IEEE Trans. Computer-Aided Design, 34(8), pp. 1344-
1357, Aug, 2015.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 41 of 42

6 Appendix

6.1 Additional information related to KPIs 36 and 37

Our default configuration for Juno (ARM v8 architecture) assigns 2 ARM A57s to the two Video
virtual machines (ARM v8), and 4 ARM A53s to the ECG virtual machine (ARM v7, identical architecture
to the one described in Section 2). Since in our experiments we are limited to two video streams (CPU
bandwidth 100%), for each scenario, we consider 3 cases: (i) ECG in isolation, (ii) ECG with one video
stream, and (iii) ECG with two video streams. Moreover, since a limited number of video streams does
not significantly affect memory bandwidth (1-2 MB/s increase), we have not configured
MemGuard/NetGuard LKMs on ARM Juno.

Notice that using ARMv8 64bits VM for running ECG on Juno is not feasible at all due to limited support
of 32-bit compatibility libraries on ARM v8 which are required for running xview toolkit. The xview
toolkit is an X11 utility (360k lines of code) on top of which our fast WAVE ECG visualization application
is built, however xview has not been ported yet on 64-bit architecture.

Figure 17 shows the display on the Hospital Server when a single BodyGateway transmits an ECG via
the full platform (DHP with XtratuM, TTE, Juno). This test performed successfully on the full platform
with 0, 1, and 2 videos. Very small performance degradation (in the display) appears when we
simultaneously use video streaming (see also Table 10).

Figure 17: ECG signal for one ST Bodygateway on full platform

To test the scalability of the platform a “fake ECG generator” that generates fake ECG data was also
used. It allows to test the platform with as many “devices” as needed.

D8.3.2 Version 1.0 Confidentiality Level: PU

06.10.2017 DREAMS Page 42 of 42

In order to check correctness and estimate bounds to scalability we have run the test with multiple
fake ECGs (1 to 16) not in the full platform, but only on Juno (without DHP, TTE). The test worked
correctly and the approximate rhythm of updates is shown in Table 10. Notice that both the average
and range of values increase linearly with the number of ECG signals (or patients). Since we are capable
to visualize up to 10 seconds of the ECG signal in a single WAVE application screen, the update rate is
sufficient to support soft real-time for up to 4 ECGs.

The same test has been performed considering the full platform, but only up to 6 “fake ECG” devices.
Results are similar to the ones run in the Juno only (Table 10).

Figure 18: Delays during successive updates on Juno (average 6-7 sec, worst-case 13).

Figure 18 shows two successive updates (snapshots) of the 4 wave processes via wave-remote
corresponding to 4 fake ECG traffic patterns. ECG analysis runs on the Juno. This case corresponds to
emulating 4 ST Bodygateways and can be considered as a limit to scalability in terms of available
processing power, since the application is able to capture the heartbeats of successive computations
almost all the time. Furthermore, notice that for 8 emulated ST Bodygateways, delays become much
larger (15 to 25s), and ECG signals cannot be updated by the display application in real-time (i.e. most
points will never appear on the screen).

Number of ECGs Typical Update Rhythm for WAVE visualization (sec)

2 3-5

4 7-12

8 15-25

16 31-54

Table 10: Update rate for WAVE visualization without video streaming; the update rate is not much affected for 1 or 2
video streams and less than 8 ECGs, since video streams run on separate processors and memory bandwidth

requirements are minimal 1-2MB/s; for 16 ECGs and two videos the update rate increases slightly to 39 to 65 secs.

