	MODULE DESCRIPTION	Last up-date: 20.02.2006	
Abbr.	Description	Lecturer	
MA_W10	Structural Dynamics	Zhang	
Position in			
4 SWH, 6 CF			

Applicability, module type, offer frequency

Master of Science, optional obligatory module, yearly offer

Admission requirements for examination

Approved home works

Achievement and examination forms, requirements, work expenditure, credit points

Form of achievement	Requirements		Work expenditure	СР	Mark weights
Presence, self-study			130 h		
Elaborations	Approved home works		50 h	-	-
Examination	Examination (2 h)			6	100 %
		Sum	180 h	6	100 %

Which technical, methodical and practical contents will be conveyed?

- Kinematics and kinetics of a system of masses
- Central and oblique impact of two rigid bodies
- d'Alembert's principle, Lagrange's equations 2. kind
- Undamped and damped vibrations of a single mass
- Undamped and damped vibrations of multiple masses
- Vibrations of bars, rods and beams

Which technical/methodical competence and key qualifications should be gained?

This course deals with fundamental topics of structural dynamics. The students should learn the methods for describing the kinematics and kinetics of a system of masses, the impact of two rigid bodies, undamped and damped vibrations of single mass and multiple masses, as well vibrations of bars, rods and beams.