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A model for the theoretical description of KIRKENDALL voiding is presented based on vacancy diffusion and plastic de-
formation of spherical voids. We start with a phenomenological explanation of the KIRKENDALL phenomenon and discuss
its consequences on microelectronic reliability. After that a constitutive model for void growth is introduced, which, for
instances, can be used in order to predict the temporal development of a certain void distribution. We end this paper with
exemplary numerical studies.

1 Introduction

Today’s lead free solder materials (e.g., SnAgCu, SnAg, SnCu) used
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Fig. 1 KIRKENDALL voiding in microelectronic pack-
aging, micrograph courtesy of [1].

in microelectronic packaging show a wide range of microstructural ef-
fects. A phenomenon, which considerably determines the joining capa-
bility between the functional unit and the circuit board, is the formation
and growth of InterMetallic Compounds (IMCs) in the interface region
between the solder and the copper pad (cf., Fig. 1). Here we typically
find two kinds of IMCs: (a) a thin layer of Cu3Sn on the Cu-pad side
followed by (b) Cu6Sn5 scallops on the solder-bulk side, cf., Fig. 1.
These compounds grow due to an interfacial reaction between Cu and Sn
enabled by migration of Cu from the pad into the solder bulk.

In contrast to the solder, which is usually a highly ductile material
with a relatively small Young’s modulus, the IMCs are brittle and ex-
tremely stiff. Consequently, in these regions considerable stresses are
induced due to the inherent mismatch of thermal expansion during ther-
mal cycling. Furthermore the IMCs show different diffusion coefficients
w.r.t. Cu and, therefore, the diffusion of Cu from the pad via the inter-
face Cu/Cu3Sn into Cu3Sn is much slower than the diffusion of Cu from
Cu3Sn into the Cu6Sn5 scallops, which also cannot be “corrected” by the invers diffusion of Sn through the Cu6Sn5/Cu3

interface, [2]. As a consequence vacancies on the lattice sides remain within the Cu3Sn IMC, which coalesce to macroscopic
voids due to vacancy diffusion. Moreover, primarily initiated by stress peaks in the vicinity of the voids further void growth
and micro crack formation is observed, which may proceed failure.

2 Constitutive Model for Void Nucleation and Growth

In what follows we distinct between void nucleation and ∼growth. Here nucleation is associated, beyond the mechanism of
vacancy formation on the atomic scale, to be the result of vacancy diffusion. The resulting vacancy “cluster” is, if a critical
amount of vacancies would be reached, treated as a nucleated macroscopic void. However, these voids do not exclusively grow
because of diffusion. In addition, local mechanical stresses or surface energy effects promote void growth and coalescence.

2.1 Void Nucleation
First of all the following assumptions are established which are, in part, adopted from the well-established LSW theory, [3]:
(i) the voids are spherical with radius a, cf., Fig. 2, and (ii) are surrounded by a supersaturated spherical matrix of radius
b characterized by the background concentration cb, (iii) the diffusion coefficient D is constant and isotropic, and (iv) we
assume stationary vacancy diffusion, i.e., ∂cvac/∂t � ∂Jvac/∂x. The following boundary value problem results for the
vacancy volume concentration c presuming that b/a→∞:

∂

∂r

(
r2 ∂c

∂r

)
= 0 with c(r = a) = ca = c0 exp

(
2γVv

akT

)
, c(r = b) = cb ⇒ c(r) = cb−(cb−ca)

a

r
, (1)

with c0 = exp[−Ev/kT ], γ: surface tension, Ev: vacancy formation energy, k: BOLTZMANN constant, Vv: atomic volume.
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Note that cb > ca must hold for void growth. Hence, there exists a critical nucleation radius, a0, with the condition
cb > c0 exp[2γVv/a0kT ]. However, following the strategy explained in [4] one can derive an evolution equation in form of
an ODE for a(t) and a diffusion rate potential Φ, namely:

ȧ =
D

a

[
cb − c0 exp

(
2γVv

akT

)]
and Φ(ȧ, a) =

Ev ȧ2

2D
−

Ev ȧ

a
(cb − ca) . (2)

2.2 Void Growth
In [5] the authors developed a model for void growth in visco-plastic met-
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Fig. 2 Illustration of the vacancy diffusion and of
the spherical shell model, [5].

als, which can be applied in a similar manner to the case of KIRKENDALL
voiding incorporating, additionally, the diffusion rate potential of Eq. (2)2.
Furthermore we assume that the power density of the external load ṗ is com-
pletely consumed by the power density required for (a) internal (elastic-)
plastic deformations ẇ, (b) the storage of surface energy at the interface
void/matrix ṡ and (c) diffusion processes Φ, viz.:

dp(t)

dt
=

d (w + s)

dt
+ Φ . (3)

Here the “pressure” results from thermal cycling and can be calculated by the
relation p(t) = 3κ(a)α[T0 − T (t)] with the thermal expansion coefficient
α and the (effective) bulk modulus κ. The surface contribution is given by
s = 4πa2γ and the deformation energy reads, cf., [5], w =

∫
σy ε̇p(t)dt

with the plastic strains εp = σ0(T )
E(T ) ( σ

σ0

)n, (RAMBERG-OSGOOD power law). Eqs. (2-3) in combination with kinematical
assumptions for spherical voids, cf., Fig. 2 and [5], and a straightforward calculation yields the following ODE for a(t):

0 = −4πp(t)a2ȧ +
8π

3
σ0a

2ȧ log

(
b3
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0 + a3

a3

)
+ 8πaγȧ +

EV ȧ2

DV

−
EV ȧ

a
(cb − ca) , (4)

which can be solved with appropriate initial conditions a(t = 0) = a0 and b(t = 0) = b0.

3 Exemplary Results & Concluding Remarks

Fig. 3 shows selected results obtained from numerical stud-
D [m2/s] c0 cb 2γVv/kT γ [N/m]
10−17 10−6 10−4 5 · 10−6 1

E [GPa] κ [GPa] μ [GPa] σ0 [MPa] α [1/K]
100 80 50 450 19 · 10−6

Table 1 Parameter used in the simulations.

ies using the parameters of Table 1. Here a(t) increases and
stagnates at a limit value. Furthermore the oscillating charac-
ter of r due to the cycling deformation is temporally shifted,
which indicates that the expansion of small void regimes is
driven by diffusion. Nevertheless the maximum radius grows
monotonically and is bound due to the amplitude of thermal
cycling. However, by means of the presented model one can now investigate a void regime consisting of different initial
radii, [5]. The resulting temporal evolution for the void distribution function can, in turn, be used in order to define suitable
mean values of material data or for a the definition of a damage parameter, cf., [5].
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Fig. 3 Numerically results obtained for the volume expansion due to thermal cycling and for the different void radii in 10
−5 mm.
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