Übungsblatt 6

Sei Σ ein Alphabet. Zu $w=a_1\cdots a_n\in \Sigma^n,\ n\geq 0,$ sei $w^R=a_n\cdots a_1$ das umgedrehte Wort. Für $L\subseteq \Sigma^*$ schreiben wir $L^R=\{w^R\in \Sigma^*\mid w\in L\}.$

Aufgabe 1 Betrachten Sie die kontextfreie Grammatik

$$G = (\{S\}, \{a, +, *\}, P, S),$$

wobei P gegeben ist durch

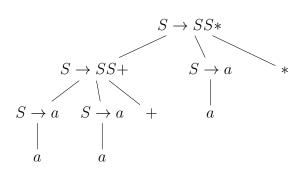
$$S \rightarrow SS + |SS*| a.$$

Sei w = aa + a*.

(a) Geben Sie zu w alle Syntaxbäume an.

Lösung:

Es gibt nur einen Syntaxbaum zu w:



Hinweis: Wir schreiben der Deutlichkeit halber die Regeln aus, statt sie zu nummerieren.

(b) Geben Sie alle Links- und Rechts-Rechtsableitungen an.

Lösung:

Da es nur einen Syntaxbaum gibt, gibt es jeweils genau eine Ableitung.

- Linksbableitung: $(S \to SS*)(S \to SS+)(S \to a)(S \to a)(S \to a)$
- Rechtsableitung: $(S \to SS*)(S \to a)(S \to SS+)(S \to a)(S \to a)$

Hinweis: Wir schreiben wieder die Regeln aus und fügen Klammern für die Lesbarkeit ein.

Aufgabe 2 Geben Sie kontextfreie Grammatiken zu folgenden Sprachen an:

(a)
$$L_1 = \{wcw^R \mid w \in \{a, b\}^*\}$$

Lösung:

 $(\{S\}, \{a, b, c\}, P, S)$, wobei P gegeben ist durch $S \to c \mid aSa \mid bSb$.

(b)
$$L_2 = \{ w \mid w \in \{a, b\}^*, w = w^R \}$$

Lösung:

 $(\{S\}, \{a,b\}, P, S)$, wobei P gegeben ist durch $S \to \varepsilon \mid a \mid b \mid aSa \mid bSb$.

(c)
$$L_3 = \{a^m b^{2m} \mid m \in \mathbb{N}\}$$

Lösung:

 $(\{S\}, \{a, b\}, P, S)$, wobei P gegeben ist durch $P = S \rightarrow \varepsilon \mid aSbb$.

(d)
$$L_4 = \{a^m b^{m+n} c^n \mid m, n \in \mathbb{N}\}$$

Lösung:

 $(\{S, L, R\}, \{a, b, c\}, P, S)$, wobei P gegeben ist durch

$$S \to LR$$

$$L \to \varepsilon \mid aLb$$

$$R \to \varepsilon \mid bRc.$$

(e)
$$L_5 = \{a^i b^j c^k \mid i, j, k \in \mathbb{N}, i = j \lor j = k\}$$

Lösung:

 $(\{S, I, K, L, R\}, \{a, b, c\}, P, S)$, wobei P gegeben ist durch

$$S \to I \mid K$$

$$I \to Ic \mid L$$

$$L \to \varepsilon \mid aLb$$

$$K \to aK \mid R$$

$$R \to \varepsilon \mid bRc$$
.

Die Sprache kann man auffassen als

$$L_5 = \{a^i b^i c^k \mid i, k \in \mathbb{N}\} \cup \{a^i b^j c^j \mid i, j \in \mathbb{N}\}.$$

Wir raten ganz zu Anfang, ob wir im linken oder rechten Teil sind. Rankbemerkung: Die beiden Mengen haben einen nicht leeren Schnitt (nämlich $\{a^ib^ic^i \mid i \in \mathbb{N}\}$). Das heißt, für solche Wörter hat unsere Grammatik zwei Ableitungen. Es ist *nicht* möglich, eine Grammatik für L_5 anzugeben, bei der alle Wörter nur eine Ableitung haben.

Aufgabe 3 Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ kontextfreie Sprachen. Zeigen Sie, dass folgende Sprachen kontextfrei sind:

(a) $L_1 \cup L_2$

Lösung:

Da L_1 und L_2 kontextfrei sind, gibt es kontextfreie Grammatiken

$$G_1 = (N_1, \Sigma_1, P_1, S_1),$$

 $G_2 = (N_2, \Sigma_2, P_2, S_2)$

mit $\mathcal{L}(G_1) = L_1$ und $\mathcal{L}(G_2) = L_2$. Sei $S \notin N_1 \cup N_2$. Wir konstruieren $G = (N, \Sigma, S, P)$ mit

$$N = N_1 \cup N_2 \cup \{S\},$$

$$\Sigma = \Sigma_1 \cup \Sigma_2,$$

$$P = P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}.$$

(b) $L_1 \circ L_2$

Lösung

Dies geht analog zu $L_1 \cup L_2$ mit dem Unterschied, dass wir statt den Produktionen $\{S \to S_1, S \to S_2\}$ die Produktion $\{S \to S_1 S_2\}$ verwenden.

(c) L_1^R

Lösung:

Da L_1 kontextfrei ist, gibt es eine kontextfreie Grammatik

$$G = (N, \Sigma_1, P, S)$$

mit $\mathcal{L}(G) = L_1$. Die Grammatik für L_1^R ist $G' = (N, \Sigma_1, P', S)$, wobei

$$P' = \{ A \to \alpha^R \mid A \to \alpha \in P \}.$$

Zunächst stellen wir fest, dass für alle $w, v \in \Sigma^*$ gilt, dass $(wv)^R = v^R w^R$. Denn sei $w = a_1 \cdots a_n$ und $v = b_1 \cdots b_m$ für $n, m \in \mathbb{N}$ und $a_i, b_j \in \Sigma$ für $1 \le i \le n$ und $1 \le j \le m$. Dann gilt

$$(wv)^R = b_m \cdots b_1 a_n \cdots a_1 = (b_1 \cdots b_m)^R (a_1 \cdots a_n)^R = v^R w^R.$$

Somit gilt für alle Sprachen $X,Y\subseteq \Sigma^*$, dass $(XY)^R=Y^RX^R$. Außerdem gilt $(X\cup Y)^R=X^R\cup Y^R$. Sei $A\to \alpha\in P$ mit

$$\alpha = w_0 A_1 w_1 \cdots w_{n-1} A_n w_n,$$

wobei $n \geq 0$, $w_i \in \Sigma_1^*$ für $0 \leq i \leq n$ und $A_i \in N$ für $1 \leq i \leq n$. Es gilt

$$\alpha^R = w_n^R A_n w_{n-1}^R \cdots w_1^R A_1 w_0^R.$$

Für eine Grammatik $G = (N, \Sigma, P, S)$ und $\alpha \in (\Sigma \cup N)^*$ schreiben wir $\llbracket \alpha \rrbracket_G := \{ w \in \Sigma^* \mid \alpha \to_G^* w \}$. Wir nehmen an, dass $\llbracket A_i \rrbracket_{G'} = \llbracket A_i \rrbracket_G^R$ für $1 \leq i \leq n$ und erhalten damit

Seien $A \to \alpha_1 \mid \cdots \mid \alpha_n$ für $n \ge 0$ die Produktionen für A in P. Es gilt

$$[A]_{G'} = [\alpha_1^R]_{G'} \cup \cdots \cup [\alpha_n^R]_{G'}$$

$$= [\alpha_1]_G^R \cup \cdots \cup [\alpha_n]_G^R$$

$$= ([\alpha_1]_G \cup \cdots \cup [\alpha_n]_G)^R$$

$$= [A]_G^R.$$

Dies gilt insbesondere für S und somit $\mathcal{L}(G') = \mathcal{L}(G)^R$.