Funktionales Programmieren

Teil 7

Carl Philipp Reh

Universität Siegen

24. November 2023

Stetige Funktionen

Seien (D, \sqsubseteq_D) und (E, \sqsubseteq_E) CPOs. Eine monotone Funktion $f \colon D \to E$ heißt *stetig*, wenn für jede Kette $c \colon \mathbb{N} \to D$ gilt, dass

$$f(\sqcup c)=\sqcup(f\circ c).$$

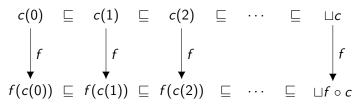
Alle oberen Schranken existieren, weil D und E CPOs sind. Außerdem ist $f \circ c$ eine Kette in E nach Folgerung 5. Wenn es sich anbietet, werden wir λ -Notation für Funktionen benutzen. Statt zu sagen, dass $f \colon X \to Y$ eine Funktion ist mit f(x) = y, schreibt man einfach $\lambda x.y$, wobei X und Y aus dem Kontext ersichtlich sind. Die Stetigkeitsbedingung kann man also auch schreiben als

$$f(\sqcup \lambda i.c(i)) = \sqcup \lambda i.(f(c(i))).$$

Die Menge der stetigen Funktionen bezeichnen wir mit $[(D, \sqsubseteq_D) \to (E, \sqsubseteq_E)]$ oder einfach nur $[D \to E]$, wenn die CPOs aus dem Kontext bekannt sind.

Stetige Funktionen

Die Kette c bildet auf "immer definiertere" Elemente in D ab. Wenn wir $f \circ c$ bilden, erhalten wir wegen Monotonie von f also immer definiertere Elemente in E. Die kleinste obere Schranke davon muss mit dem Element übereinstimmen, das wir erhalten, wenn wir f auf die kleinste obere Schranke von c anwenden. Man kann also entweder $c(0), c(1), \ldots$ bis $\Box c$ verfolgen und dann f anwenden, oder man kann $f(c(0)), f(c(1)), \ldots$ bis $\Box (f \circ c)$ verfolgen. Grafisch:



Beispiele für stetige Funktionen

- ▶ Die Identität $f: D \to D$ mit f(x) = x ist stetig, da $f(\sqcup c) = \sqcup c = \sqcup (f \circ c)$.
- ▶ Jede konstante Funktion $f: D \to E$ mit f(x) = e für $e \in E$ ist stetig, denn $(f \circ c)(x) = e$ für alle $x \in D$ und somit $\sqcup (f \circ c) = e = f(\sqcup c)$.
- ▶ Die Projektionen π_i : $D_1 \times \cdots \times D_n \to D$ sind stetig. Wegen $\sqcup c = (\sqcup \pi_1 \circ c, \ldots, \sqcup \pi_n \circ c)$ gilt, dass $\pi_i(\sqcup c) = \sqcup (\pi_i \circ c)$.

Doppelt indizierte Ketten

Wenn man zeigen will, dass Funktionen stetig sind, kommt es oft vor, dass man mit mehreren Ketten auf einmal zu tun hat. Sei (D,\sqsubseteq_D) eine partielle Ordnung. Eine Funktion $c\colon\mathbb{N}^2\to D$ heißt doppelt indizierte Kette in D, wenn $\lambda j.c(i,j)$ für jedes $i\in\mathbb{N}$ und $\lambda i.c(i,j)$ für jedes $j\in\mathbb{N}$ Ketten sind.

Lemma 9

Sei $c: \mathbb{N}^2 \to D$ eine doppelt indizierte Kette. Dann sind $\lambda i. \sqcup \lambda j. c(i,j)$, $\lambda j. \sqcup \lambda i. c(i,j)$ und $\lambda k. c(k,k)$ Ketten in D und es gilt

$$\sqcup \lambda i. \sqcup \lambda j. c(i,j) = \sqcup \lambda j. \sqcup \lambda i. c(i,j) = \sqcup \lambda k. c(k,k).$$

Doppelt indizierte Ketten

Grafisch:

$$c(0,0) \sqsubseteq c(0,1) \sqsubseteq \cdots \sqsubseteq \sqcup \lambda j.c(0,j)$$

$$\sqcap \qquad \qquad \sqcap$$

$$c(1,0) \sqsubseteq c(1,1) \sqsubseteq \cdots \sqsubseteq \sqcup \lambda j.c(1,j)$$

$$\sqcap \qquad \qquad \sqcap$$

$$\vdots \qquad \vdots \qquad \ddots \qquad \vdots$$

$$\sqcap \qquad \qquad \sqcap$$

$$\sqcup \lambda i.c(i,0) \sqsubseteq \sqcup \lambda i.c(i,1) \sqsubseteq \cdots \sqsubseteq \sqcup \lambda i.\sqcup \lambda j.c(i,j)$$

Doppelt indizierte Ketten, Beweis (Teil 1)

Beweis.

Seien $i_1, i_2 \in \mathbb{N}$ mit $i_1 \leq i_2$. Um zu zeigen, dass $\lambda i. \sqcup \lambda j. c(i, j)$ eine Kette ist, müssen wir $\sqcup \lambda j.c(i_1,j) \sqsubseteq \sqcup \lambda j.c(i_2,j)$ zeigen. Da $\lambda i.c(i,j_1)$ für alle $j_1 \in \mathbb{N}$ eine Kette ist, gilt $c(i_1,j_1) \sqsubseteq c(i_2,j_1)$. Außerdem ist $\lambda j.c(i_2,j)$ eine Kette. Wegen $c(i_2,j_1) \sqsubseteq \sqcup \lambda j.c(i_2,j)$ folgt, dass $c(i_1, j_1) \sqsubseteq \sqcup \lambda j. c(i_2, j)$ für alle $j_1 \in \mathbb{N}$. Da also $\sqcup \lambda j.c(i_2,j)$ obere Schranke von $\lambda j.c(i_1,j)$ ist, liegt es über der kleinsten oberen Schranke von $\lambda j.c(i_1, j)$, also $\sqcup \lambda j.c(i_1,j) \sqsubseteq \sqcup \lambda j.c(i_2,j).$ Analog folgt, dass auch $\lambda j. \sqcup \lambda i. c(i, j)$ eine Kette ist. Außerdem gilt für alle $i_1, i_2 \in \mathbb{N}$ mit $i_1 \leq i_2$, dass $c(i_1, i_1) \sqsubseteq c(i_1, i_2) \sqsubseteq c(i_2, i_2)$, weswegen auch $\lambda k.c(k, k)$ eine Kette ist.

Doppelt indizierte Ketten, Beweis (Teil 2)

Beweis.

Sei $i_1 \in \mathbb{N}$. Dann gilt für alle $i_2 \in \mathbb{N}$ mit $i_1 \leq i_2$, dass $c(i_1,i_2) \sqsubseteq c(i_2,i_2) \sqsubseteq \sqcup \lambda j.c(j,j)$. Die Argumentation im Fall, dass $i_2 \leq i_1$, ist analog. Wir haben also, dass $\sqcup \lambda j.c(j,j)$ obere Schranke von $\lambda j.c(i_1,j)$ ist, also $\sqcup \lambda j.c(i_1,j) \sqsubseteq \sqcup \lambda j.c(j,j)$. Ebenso gilt $c(i_1,i_1) \sqsubseteq \sqcup \lambda j.c(i_1,j)$. Damit erhalten wir

$$c(i_1,i_1) \sqsubseteq \sqcup \lambda j.c(i_1,j) \sqsubseteq \sqcup \lambda j.c(j,j),$$

woraus folgt, dass

$$\sqcup \lambda i.c(i,i) \sqsubseteq \sqcup \lambda i.\sqcup \lambda j.c(i,j) \sqsubseteq \sqcup \lambda i.\sqcup \lambda j.c(j,j) = \sqcup \lambda j.c(j,j).$$

Da (D, \sqsubseteq_D) eine partielle Ordnung ist, erhalten wir $\sqcup \lambda k.c(k,k) = \sqcup \lambda i.\sqcup \lambda j.c(i,j)$. Analog folgt, dass $\sqcup \lambda k.c(k,k) = \sqcup \lambda j.\sqcup \lambda i.c(i,j)$, und somit auch $\sqcup \lambda i.\sqcup \lambda j.c(i,j) = \sqcup \lambda j.\sqcup \lambda i.c(i,j)$.

Die stetigen Funktionen sind eine CPO (Teil 1)

Wir haben bereits gezeigt, dass $(D \to E, \sqsubseteq_{D \to E})$ eine CPO ist. Wenn wir $D \to E$ auf $[D \to E]$ beschränken wollen, müssen wir noch Folgendes zeigen:

Lemma 10

Wenn (D, \sqsubseteq_D) und (E, \sqsubseteq_E) CPOs sind, dann ist auch $([D \to E], \sqsubseteq_{D \to E})$ eine CPO.

Beweis.

Die Funktion $f: D \to E$ mit $f(x) = \bot_E$ ist wieder das kleinste Element. Diese Funktion ist stetig, weil sie konstant ist.

Die stetigen Funktionen sind eine CPO (Teil 2)

Beweis.

Sei $c: \mathbb{N} \to [D \to E]$ eine Kette. Sei wieder $f: D \to E$ definiert als $f(d) = \sqcup (a_d \circ c)$, also $f(d) = \sqcup \lambda i.c(i)(d)$. Wir wollen zeigen, dass f stetig ist. Sei also $c': \mathbb{N} \to D$ eine weitere Kette. Dann ist zu zeigen, dass $f(\sqcup c') = \sqcup (f \circ c')$ bzw.

$$f(\sqcup \lambda j.c'(j)) = \sqcup \lambda j.f(c'(j)).$$

Nach Definition von f können wir $f(\sqcup \lambda j.c'(j))$ umformen zu $\sqcup \lambda i.c(i)(\sqcup \lambda j.c'(j))$. Da c(i) stetig ist, ist dies gleich $\sqcup \lambda i.\sqcup \lambda j.(c(i)(c'(j)))$. Dann ist $g\colon \mathbb{N}^2\to E$ mit g(i,j)=c(i)(c'(j)) eine doppelt indizierte Kette (Beweis: Übung). Nach Lemma 9 können wir also umformen zu $\sqcup \lambda j.\sqcup \lambda i.(c(i)(c'(j)))$. Nach Definition von f ist dies gleich $\sqcup \lambda j.f(c'(j))$.

Stetigkeit der Applikation

Als weiteres Beispiel einer stetigen Funktion betrachten wir die Applikationsfunktion $a\colon [D\to E]\times D\to E$ mit a(f,x)=f(x). Um zu zeigen, dass a stetig ist, sei $c\colon \mathbb{N}\to [D\to E]\times D$ eine Kette mit $c(i)=(f_i,d_i)$. Wegen $\sqcup c=(\pi_1\circ \sqcup c,\pi_2\circ \sqcup c)$ können wir schreiben $a(\sqcup c)=(\sqcup \lambda i.f_i)(\sqcup \lambda j.d_j)$. Da $\sqcup \lambda i.f_i$ stetig ist, können wir dies umformen zu $\sqcup \lambda j. \sqcup \lambda i.f_i(d_j)$. Dann ist $g\colon \mathbb{N}^2\to E$ mit $g(i,j)=f_i(d_j)$ eine doppelt indizierte Kette. Wir können also $\sqcup \lambda j. \sqcup \lambda i.f_i(d_j)$ nach Lemma 9 umformen zu $\sqcup \lambda k.f_k(d_k)$, was gleich $\sqcup (a\circ c)$ ist.

Beispiel einer nicht stetigen Funktion

Ein Beispiel für eine nicht stetige Funktion ist der Totalitätstest.

Sei $t \colon (\mathbb{N} \to \mathbb{N}_\perp) \to (\mathbb{Z}_2)_\perp$ definiert als

$$t(f) = egin{cases} 1 & ext{falls } f(i)
eq \bot & ext{für alle } i \in \mathbb{N}, \\ 0 & ext{sonst.} \end{cases}$$

Für jedes $i \in \mathbb{N}$ sei $f_i \colon \mathbb{N} \to \mathbb{N}_{\perp}$ definiert als

$$f_i(x) = \begin{cases} \bot & \text{falls } x \ge i, \\ 0 & \text{falls } x < i. \end{cases}$$

Dann ist $c \colon \mathbb{N} \to (\mathbb{N} \to \mathbb{N}_\perp)$ mit $c(i) = f_i$ eine Kette, wobei $\sqcup c$ die konstante 0-Funktion ist. Deshalb gilt $t(\sqcup c) = 1$, weil $\sqcup c$ total ist. Für jedes $i \in \mathbb{N}$ gilt aber, dass f_i nicht total ist, also ist $t(f_i) = 0$ und somit $\sqcup (t \circ c) = 0$.