Übungsblatt 9

Aufgabe 1. Zeigen Sie, dass wenn $(D_1, \sqsubseteq_{D_1}), \ldots, (D_n, \sqsubseteq_{D_n})$ für $n \ge 0$ CPOs sind, dann ist auch $(D_1 \oplus \cdots \oplus D_n, \sqsubseteq_{D_1 \oplus \cdots \oplus D_n})$ eine CPO.

Lösung. Wir schreiben \sqsubseteq für $\sqsubseteq_{D_1 \oplus \cdots \oplus D_n}$ und \bot für $\bot_{D_1 \oplus \cdots \oplus D_n}$. Des Weiteren sei $D'_i = D_i \setminus \{\bot_{D_i}\}$ für $1 \le i \le n$.

Wir zeigen zunächst, dass $\sqsubseteq_{D_1 \oplus \cdots \oplus D_n}$ eine partielle Ordnung ist.

Reflexivität: Sei $d \in D_1 \oplus \cdots \oplus D_n$. Im Fall, dass $d = \bot$ ist, gilt $d \sqsubseteq d$. Im Fall, dass $d = (e, i) \in D'_i \times \{i\}$ ist, gilt $e \sqsubseteq_{D_i} e$ und deshalb auch dass $d \sqsubseteq d$. Antisymmetrie: Seien $d, d' \in D_1 \oplus \cdots \oplus D_n$ mit $d \sqsubseteq d'$ und $d' \sqsubseteq d$. Wenn $d = \bot$, dann folgt aus $d' \sqsubseteq d$ auch, dass $d' = \bot$, also d = d'. Der Fall, dass $d' = \bot$, ist analog. Wenn $d \ne \bot$, dann ist $d = (e, i) \in D'_i \times \{i\}$. Wegen $d \sqsubseteq d'$ muss auch $d' = (e', i) \in D'_i \times \{i\}$ sein mit $e \sqsubseteq_{D_i} e'$. Aus $d' \sqsubseteq d$ folgt analog, dass $e' \sqsubseteq_{D_i} e$. Also gilt wegen Antisymmetrie von \sqsubseteq_{D_i} , dass e = e' und somit, dass d = d'.

Transitivität: Seien $d, d', d'' \in D_1 \oplus \cdots \oplus D_n$ mit $d \sqsubseteq d'$ und $d' \sqsubseteq d''$. Wenn $d = \bot$, dann gilt auch $d \sqsubseteq d''$. Sei nun $d \neq \bot$, also $d = (e, i) \in D'_i \times \{i\}$. Wegen $d \sqsubseteq d'$ muss also $d' = (e', i) \in D'_i \times \{i\}$ sein mit $e \sqsubseteq_{D_i} e'$. Wegen $d' \sqsubseteq d''$ muss also auch $d'' = (e'', i) \in D'_i \times \{i\}$ sein mit $e' \sqsubseteq_{D_i} e''$. Nach Transitivität von \sqsubseteq_{D_i} folgt dann $e \sqsubseteq_{D_i} e''$ und damit auch $d \sqsubseteq d''$.

Kleinstes Element: Für alle $d \in D_1 \oplus \cdots \oplus D_n$ gilt nach Definition bereits, dass $\bot \sqsubseteq d$.

Kleinste obere Schranke: Sei $c: \mathbb{N} \to D_1 \oplus \cdots \oplus D_n$ eine Kette. Wenn $c(n) = \bot$ für alle $n \in \mathbb{N}$ gilt, dann ist $c': \mathbb{N} \to \{\bot\}$ mit c'(n) = c(n) eine Kette und es gilt $\sqcup c' = \sqcup c$. Wenn es ein $k \in \mathbb{N}$ gibt mit $c(k) \in D'_i \times \{i\}$, dann muss auch für alle k' > k gelten, dass $c(k') \in D'_i \times \{i\}$. Damit ist $c_k : \mathbb{N} \to (D_i \times \{i\})$ mit $c_k(n) = c(n+k)$ eine Kette und es gilt $\sqcup c_k = \sqcup c$.

Aufgabe 2. Zeichnen Sie jeweils die Domains zu folgenden Data-Deklarationen. Sie können die "Tags" von den Summen weglassen.

(a) $\mathcal{D}(Void)$ für

data Void

Lösung. Hier haben wir bloß \perp .

(b) $\mathcal{D}(\text{Unit})$ für

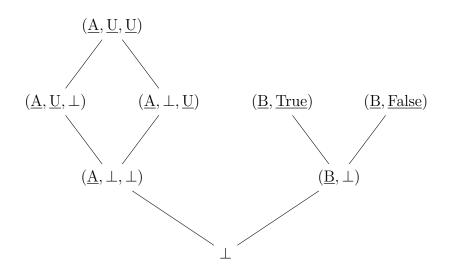
data Unit = U

Lösung.

(c) $\mathcal{D}(\text{Test})$ für

data Test = A Unit Unit | B Bool

Lösung.



Aufgabe 3. Betrachten wir wieder

data Test = A Unit Unit | B Bool

Geben Sie jeweils Haskell-Ausdrücke zu folgenden Semantiken an:

(a) ⊥

Lösung.

a :: Test

a = undefined

(b) $(\underline{A}, \bot, \underline{U})$

Lösung.

b :: Test

b = A undefined U

(c) (\underline{B}, \bot)

Lösung.

c :: Test

c = B undefined