Musterlösung zu Übungsblatt 6

Aufgabe 1.

Zeigen Sie, dass die folgenden Sprachen nicht regulär sind:

- (a) $L_1 = \{a^n b^m \mid n < m\}$
- (b) $L_2 = \{a^n b^m \mid |n-m| \le 2\}$

Lösung zu Aufgabe 1.

(a) $L_1 = \{a^n b^m \mid n < m\}$ ist **nicht regulär**

Pumping Lemma

Wähle $x = a^n b^{n+1}$, $|x| = 2n + 1 \ge n$.

Betrachte alle Zerlegungen x = uvw mit $|v| \ge 1$ und $|uv| \le n$:

Wir haben $u = a^k, v = a^l, w = a^m b^{n+1} (k + l + m = n).$

Wir wählen den Pumpfaktor i=2 und betrachten uv^iw :

$$uv^2w = a^k a^{2l} a^m b^{n+1} = a^{n+l} b^{n+1}.$$

Da $n+l \geq n+1$ (wegen $|v| \geq 1$) gilt $uv^2w \notin L_1$. Folglich ist die Sprache L_1 nicht regulär.

<u>Zusätzliche Übung:</u> Zeigen Sie mit Hilfe der Myhill-Nerode Äquivalenz, dass L_1 nicht regulär ist (siehe Musterlösung Übungsblatt 5).

(b) $L_2 = \{a^n b^m \mid |n-m| \le 2\}$ ist **nicht regulär**

Pumping Lemma

Wähle $x = a^{n+2}b^n$, $|x| = 2n + 2 \ge n$.

Betrachte alle Zerlegungen x = uvw mit $|v| \ge 1$ und $|uv| \le n$:

Wir haben $u = a^k, v = a^l, w = a^m b^n (k + l + m = n + 2).$

Wir wählen den Pumpfaktor i = 2 und betrachten uv^iw :

 $uv^2w = a^k a^{2l} a^m b^n = a^{n+2+l} b^n$

Da $|(n+2+l)-n|=|2+l|\geq 3$ (wegen $|v|\geq 1$), gilt $uv^2w\notin L_2$. Folglich ist L_2 nicht regulär.

Zusätzliche Übung: Zeigen Sie mit Hilfe der Myhill-Nerode Äquivalenz, dass L_2 nicht regulär ist (siehe Musterlösung Übungsblatt 5).

Aufgabe 2. Sei $L = \{ab^n \mid n \ge 1\}.$

- (a) Geben Sie den Minimalautomaten (bis auf Umbenennung der Zustände) an.
- (b) Beweisen Sie, dass Ihr Minimalautomat wirklich minimal ist, indem Sie zeigen, dass der Index der Relation R_L gleich der Anzahl der Zustände Ihres Automaten ist.
- (c) Begründen Sie kurz, dass ein NFA, der L akzeptiert, mindestens drei Zustände braucht.
- (d) Geben Sie zwei verschiedene NFA (nicht durch Umbenennung der Zustände) mit drei Zuständen an, die L akzeptieren.

Lösung zu Aufgabe 2. (a)

- (b) Die Myhill-Nerode Äquivalenzklassen sind:
 - $[\varepsilon] = \{\varepsilon\}$ (Zustand 1)
 - $[a] = \{a\}$ (Zustand 2)
 - $[ab] = L = \{ab^n \mid n \ge 1\}$ (Zustand 3)
 - $[b] = \{ w \mid w \notin L, w \neq a, w \neq \varepsilon \}$ (Zustand X)

Die Klassen sind unterschiedlich, da man sie jeweils trennen kann:

- $\neg(\varepsilon R_L a)$: $\varepsilon \cdot b = b \notin L$, während $a \cdot b = ab \in L$
- $\neg(\varepsilon R_L \ ab)$: $\varepsilon \cdot \varepsilon = \varepsilon \notin L$, während $ab \cdot \varepsilon = ab \in L$
- $\neg(\varepsilon R_L b)$: $\varepsilon \cdot ab = ab \in L$, während $b \cdot ab = bab \notin L$

- $\neg (a \ R_L \ ab): a \cdot \varepsilon = a \notin L$, während $ab \cdot \varepsilon = ab \in L$
- $\neg (a \ R_L \ b): a \cdot b = ab \in L$, während $b \cdot b = bb \notin L$
- $\neg (ab \ R_L \ b): \ ab \cdot \varepsilon = ab \in L$, während $b \cdot \varepsilon = b \notin L$

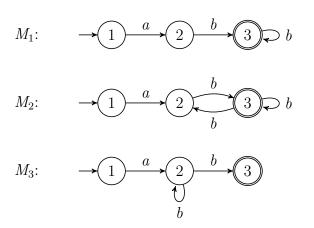
Es gilt index $(R_L) = 4$ = Anzahl der Zustände.

Damit ist der Automat aus Aufgabenteil (a) minimal.

(c) M_1 : $\longrightarrow 1$ \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{b}

Die drei Zustände werden benötigt, da die Wörter ε , a und ab in unterschiedliche Zuständen führen müssen. Genauer gesagt: Es muss einen nicht-akzeptierenden Startzustand geben (wird durch das Lesen von ε erreicht), so dass man von dort mit ab in einen Endzustand gelangt. Dieser Zustand darf aber nicht durch das Lesen von a oder ab erreicht werden, da ansonsten fälschlicherweise aab bzw. abab akzeptiert würde. Außerdem muss es einen weiteren nicht-akzeptierenden Zustand geben, den man durch das Lesen von a erreicht. Dass dieser nicht der eben erwähnte Startzustand sein kann wurde bereits argumentiert. Abschließend muss es auch noch einen Endzustand geben, der z.B. durch das Lesen von ab erreicht wird.

(d) Verschiedene NFAs für L:

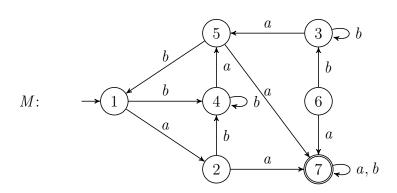


Aufgabe 3. Sei $\Sigma = \{a, b\}$. Gegeben ist der DFA $M = (Z, \Sigma, \delta, 1, E)$ mit $Z = \{1, 2, 3, 4, 5, 6, 7\}, E = \{7\}$ und

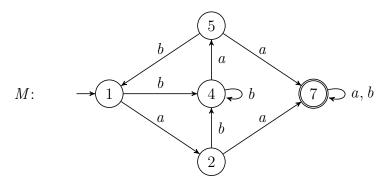
a	b
2	4
7	4
5	3
5	4
7	1
7	3
7	7
	2 7 5 5 7 7

- (a) Zeichnen Sie M.
- (b) Verwenden Sie den "Algorithmus Minimalautomat", um den Minimalautomaten für die Sprache ${\cal L}(M)$ zu erhalten.
- (c) Zeichnen Sie den in (b) erhaltenen Automaten.

Lösung zu Aufgabe 3. (a)



(b) Die Zustände 3 und 6 sind vom Startzustand aus nicht erreichbar und können gestrichen werden.

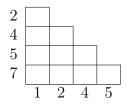


Nun wenden wir den den "Algorithmus Minimalautomat" von Folie 131 des Skripts an.

Anmerkung: Wir arbeiten mit **Mengen** von zwei Zuständen, nicht mit Tupeln, es gilt also $\{x, y\} = \{y, x\}$.

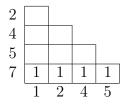
Schritt 1

Bilden aller Zustandspaare $\{z,z'\}$ mit $z \neq z'$.



Schritt 2

Markiere alle Paare $\{z,z'\}$ mit $z\in E$ und $z'\notin E$.



Schritt 3

Für jedes noch unmarkierte Paar $\{z,z'\}$ und jedes $s\in\Sigma$ teste, ob $\{\delta(z,s),\delta(z',s)\}$ bereits markiert ist. Falls ja, markiere auch $\{z,z'\}$. Neue Markierungen:

- $\{1,2\}$, da $\{\delta(1,a),\delta(2,a)\}=\{2,7\}$ bereits markiert
- $\{1,5\}$, da $\{\delta(1,a),\delta(5,a)\}=\{2,7\}$ bereits markiert
- $\{2,4\}$, da $\{\delta(1,a),\delta(4,a)\}=\{7,5\}$ bereits markiert
- $\{4,5\}$, da $\{\delta(4,a),\delta(5,a)\}=\{5,7\}$ bereits markiert

Schritt 3, Wiederholung

 $\{1,4\}$ und $\{2,5\}$ sind noch unmarkiert, es kommen keine weiteren Markierungen hinzu, da

- $\{\delta(1, a), \delta(4, a)\} = \{2, 5\}$ nicht markiert
- $\{\delta(2, a), \delta(5, a)\} = \{7, 7\}$ nicht markiert
- $\{\delta(2,b),\delta(5,b)\}=\{1,4\}$ nicht markiert

Die verbleibenden unmarkierten Zustandspaare $\{1,4\}$ und $\{2,5\}$ sind jeweils erkennugsäquivalent.

<u>Beachte:</u> Diese Begründungen müssen auch in der Klausur dazugeschrieben werden!

(c)

