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Abstract
It is shown that every tree of size n over a fixed set of σ different ranked symbols can be
decomposed into O( n

logσ n
) = O(n log σ

logn ) many hierarchically defined pieces. Formally, such a
hierarchical decomposition has the form of a straight-line linear context-free tree grammar of size
O( n

logσ n
), which can be used as a compressed representation of the input tree. This generalizes

an analogous result for strings. Previous grammar-based tree compressors were not analyzed for
the worst-case size of the computed grammar, except for the top dag of Bille et al., for which
only the weaker upper bound of O( n

log0.19 n
) for unranked and unlabelled trees has been derived.

The main result is used to show that every arithmetical formula of size n, in which only m ≤ n

different variables occur, can be transformed (in time O(n logn)) into an arithmetical circuit of
size O(n·logm

logn ) and depth O(logn). This refines a classical result of Brent, according to which an
arithmetical formula of size n can be transformed into a logarithmic depth circuit of size O(n).
Missing proofs can be found in the long version [14].
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1 Introduction

Grammar-based compression has emerged to an active field in string compression during the
past 20 years. The idea is to represent a given string s by a small context-free grammar
that generates only s; such a grammar is also called a straight-line program, briefly SLP. For
instance, the word (ab)1024 can be represented by the SLP with the productions A0 → ab

and Ai → Ai−1Ai−1 for 1 ≤ i ≤ 10 (A10 is the start symbol). The size of this grammar is
much smaller than the size (length) of the string (ab)1024. In general, an SLP of size n (the
size of an SLP is usually defined as the total length of all right-hand sides of the productions)
can produce a string of length 2Ω(n). Hence, an SLP can be seen indeed as a succinct
representation of the generated string. The goal of grammar-based string compression is to
construct from a given input string s a small SLP that produces s. Several algorithms for
this have been proposed and analyzed. Prominent grammar-based string compressors are for
instance LZ78, RePair, and BISECTION, see [7] for more details.

To evaluate the compression performance of a grammar-based compressor C, two different
approaches can be found in the literature: A first approach is to analyze the size of the SLP
produced by C for an input string x compared to the size of a smallest SLP for x. This
leads to the approximation ratio for C, see [7] for a formal definition. It is known that unless
P = NP, there is no polynomial time grammar-based compressor that produces for every
string x an SLP of size strictly smaller than 8569/8568 · g(x), where g(x) is the size of a
smallest SLP for x [7]. The best known polynomial time grammar-based compressors have

© Danny Hucke, Markus Lohrey and Eric Noeth;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Constructing small tree grammars and small circuits for formulas

an approximation ratio of O(log(n/g)), where g is the size of a smallest SLP for the input
string, and each of them works in linear time; see [22] for references.

Another approach is to analyze the maximal size of SLPs produced by C on strings of
length n over the alphabet Σ (the size of Σ is considered to be a constant larger than one
in the further discussion). An information-theoretic argument shows that for almost all
strings of length n (up to an exponentially small part) the smallest SLP has size Ω( n

logn ).
Explicit examples of strings for which the smallest SLP has size Ω( n

logn ) result from de
Bruijn sequences; see Section 2. On the other hand, many grammar-based compressors
produce for every string of length n an SLP of size O( n

logn ). This holds for instance for
the above mentioned LZ78, RePair, and BISECTION, and in fact for all compressors that
produce so-called irreducible SLPs [16]. This fact is used in [16] to construct universal string
compressors based on grammar-based compressors.

In this paper, we follow the latter approach, but for trees instead of strings. A tree in this
paper is always a rooted ordered tree over a ranked alphabet, i.e., every node is labelled with
a symbol and the rank of this symbol is equal to the number of children of the node. In [6],
grammar-based compression was extended from strings to trees. For this, linear context-free
tree grammars were used. Linear context-free tree grammars that produce only a single
tree are also known as tree straight-line programs (TSLPs) or straight-line context-free tree
grammars (SLCF tree grammars). TSLPs generalize dags (directed acyclic graphs), which
are widely used as a compact tree representation. Whereas dags only allow to share repeated
subtrees, TSLPs can also share repeated internal tree patterns.

Several grammar-based tree compressors were developed in [1, 6, 15, 23]. The algorithm
from [15] achieves an approximation ratio of O(logn) (for a constant set of node labels). On
the other hand, for none of the above mentioned compressors it is known, whether for any
input tree with n nodes the size of the output grammar is bounded by O( n

logn ), as it is the
case for many grammar-based string compressors. Recently, it was shown that the so-called
top dag of an unranked and unlabelled tree of size n has size O( n

log0.19 n
) [3]. The top dag

can be seen as a slight variant of a TSLP for an unranked tree.
In this paper, we present a grammar-based tree compressor that transforms a given

node-labelled ranked tree of size n with σ different node labels into a TSLP of size O( n
logσ n

)
and depth O(logn), where the depth of a TSLP is the depth of the corresponding derivation
tree. In particular, for an unlabelled binary tree we get a TSLP of size O( n

logn ). Our
compressor is an extension of the BISECTION algorithm [17] from strings to trees and works
in two steps (the following outline works only for binary trees, but it can be easily adapted
to trees of higher ranks): In the first step, we hierarchically decompose the tree into pieces of
roughly equal size, using a well-known lemma from [19]. But care has to be taken to bound
the ranks of the nonterminals of the resulting TSLP. As soon as we get a tree with three
holes during the decomposition (which corresponds in the TSLP to a nonterminal of rank
three) we do an intermediate step that decomposes the tree into two pieces having only two
holes each. This may involve an unbalanced decomposition. On the other hand, such an
unbalanced decomposition is only necessary in every second step. This trick to bound the
number of holes by three was used by Ruzzo [25] in his analysis of space-bounded alternation.

The TSLP produced in the first step can be identified with its derivation tree. Thanks
to the fact that all nonterminals have rank at most three, we can encode the derivation
tree by a tree with O(σ) many labels. Moreover, this derivation tree is weakly balanced in
the following sense. For each edge (u, v) in the derivation tree such that both u and v are
internal nodes, the derivation tree is balanced at u or v. These facts allow us to show that
the minimal dag of the derivation tree has size at most O( n

logσ n
). The nodes of this dag are
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the nonterminals of our final TSLP. The running time of our algorithm is in O(n logn).
Our size bound O( n

logσ n
) does not contradict the information-theoretic lower bound:

Consider for instance unlabelled ordered trees. When encoding a TSLP of size m into a bit
string, we get an additional log(m)-factor. Hence, a TSLP of size O( n

logn ) is encoded by a bit
string of size O(n), which is the information-theoretic bound (the exact bound is 2n− o(n)).

It is important to note that our size bound O( n
logσ n

) only holds for ranked trees and
does not directly apply to unranked trees (that are, for instance, the standard tree model for
XML). To overcome this limitation, one can transform an unranked tree of size n into its
first-child-next-sibling encoding [18, Paragraph 2.3.2], which is a ranked tree of size n. Then,
the first-child-next-sibling encoding can be transformed into a TSLP of size O( n

logσ n
).

Our main result has an interesting application for the classical problem of transforming
formulas into small circuits. Spira [26] has shown that for every Boolean formula of size
n there exists an equivalent Boolean circuit of depth O(logn) and size O(n). Brent [4]
extended Spira’s theorem to formulas over arbitrary semirings and moreover improved the
constant in the O(logn) bound. Subsequent improvements that mainly concern constant
factors can be found in [5]. An easy corollary of our O( n

logσ n
) bound for TSLPs is that for

every (not necessarily commutative) semiring (or field), every formula of size n, in which only
m ≤ n different variables occur, can be transformed into a circuit of depth O(logn) and size
O(n·logm

logn ). Hence, we refine the size bound from O(n) to O(n·logm
logn ) (Theorem 9). Another

interesting point of our formula-to-circuit conversion is that most of the construction (namely
the construction of a TSLP for the input formula) is purely syntactic. The remaining part
(the transformation of the TSLP into a circuit) is straightforward.
Related work. Several papers deal with algorithmic problems on trees that are succinctly
represented by TSLPs, see [22] for a survey. Among other problems, equality checking and
the evaluation of tree automata can be done in polynomial time for TSLPs.

It is interesting to compare our O( n
logσ n

) bound with the known bounds for dag compres-
sion. A counting argument shows that for almost all unlabelled binary trees, the size of a
smallest TSLP is Ω( n

logn ), and hence (by our main result) Θ( n
logn ). This implies that the

average size of the minimal TSLP, where the average is taken for the uniform distribution on
unlabelled binary trees of size n, is Θ( n

logn ) as well. In contrast, the size of the minimal dag
for trees of size n is Θ(n/

√
logn) on average [11] but n in the worst case.

2 Strings and Straight-Line Programs

Before we come to grammar-based tree compression, let us briefly discuss grammar-based
string compression. A straight-line program, briefly SLP, is a context-free grammar that
produces a single string. Formally, it is a tuple G = (N,Σ, P, S), where N is a finite
set of nonterminals, Σ is a finite set of terminal symbols (Σ ∩ N = ∅), S ∈ N is the
start nonterminal, and P is a finite set of productions of the form A → w for A ∈ N ,
w ∈ (N ∪Σ)∗ such that: (i) if (A→ u), (A→ v) ∈ P then u = v, and (ii) the binary relation
{(A,B) ∈ N × N | (A → w) ∈ P, B occurs in w} is acyclic. Every nonterminal A ∈ N
produces a unique string valG(A) ∈ Σ∗. The string defined by G is val(G) = valG(S). The
size of the SLP G is |G| =

∑
(A→w)∈P |w|, where |w| is the length of w.

Let σ be the size of the terminal alphabet Σ. It is well-known that for every string x ∈ Σ∗
of length n there exists an SLP G of size O(n/ logσ n) such that val(G) = x, see e.g. [16]. On
the other hand, an information-theoretic argument shows that for almost all strings of length
n, the smallest SLP has size Ω(n/ logσ n). For SLPs, one can, in contrast to other models
like Boolean circuits, construct explicit strings that achieve this worst-case bound:
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I Proposition 1. Let Σ be an alphabet of size σ. For every n ≥ σ2, one can construct in time
poly(n, σ) a string sσ,n ∈ Σ∗ of length n such that every SLP for sσ,n has size Ω(n/ logσ n).

Proof. Let r = dlogσ ne ≥ 2. The sequence sσ,n is in fact a prefix of a de Bruijn sequence
[9]. Let x1, . . . xσr−1 be a list of all words from Σr−1. Construct a directed graph by taking
these strings as vertices and drawing an a-labelled edge (a ∈ Σ) from xi to xj if xi = bw and
xj = wa for some w ∈ Σr−2 and b ∈ Σ. This graph has σr edges and every vertex of this
graph has indegree and outdegree σ. Hence, it has a Eulerian cycle, which can be viewed as
a sequence u, b1, b2, . . . , bσr , where u ∈ Σr−1 is the start vertex, and the edge traversed in
the ith step is labelled with bi ∈ Σ. Define sσ,n as the prefix of ub1b2 · · · bσr of length n. The
construction implies that sσ,n has n− r + 1 different substrings of length r. By the so-called
mk-Lemma from [7], every SLP for sσ,n has size at least n−r+1

r > n
r − 1 ≥ n

logσ(n)+1 − 1. J

In [2] a set of n binary strings of length n is constructed such that any concatenation circuit
that computes this set has size Ω(n2/ log2 n). A concatenation circuit for a set S of strings
is simply an SLP such that every string from S is derived from a nonterminal of the SLP.
Using the above construction, this lower bound can be improved to Ω(n2/ logn): Simply
take the string s2,n2 and write it as s1s2 · · · sn with |si| = n. Then any concatenation circuit
for {s1, . . . , sn} has size Ω(n2/ logn).

3 Trees and Tree Straight-Line Programs

For every i ≥ 0, we fix a countably infinite set Fi (resp., Ni) of terminals (resp., nonterminals)
of rank i. Let F =

⋃
i≥0 Fi and N =

⋃
i≥0Ni. Moreover, let X = {x1, x2, . . . } be a countably

infinite set of parameters. We assume that F , N , and X are pairwise disjoint. A labelled
tree t = (V, λ) is a finite, rooted and ordered tree t with node set V and labelling function
λ : V → F ∪ N ∪ X . We require that a node v ∈ V with λ(v) ∈ Fk ∪ Nk has exactly
k children, which are ordered from left to right. We also require that every node v with
λ(v) ∈ X is a leaf of t. The size of t is |t| = |{v ∈ V | λ(v) ∈ F ∪ N}|, i.e., we do not
count parameters. We denote trees in their usual term notation, e.g. b(a, a) denotes the
tree with a b-labelled root, which has two a-labelled children. We define T as the set of
all labelled trees. The depth of a tree t is the maximal length (number of edges) of a path
from the root to a leaf, and is denoted by depth(t). Let labels(t) = {λ(v) | v ∈ V } and
T (L) = {t | labels(t) ⊆ L} for L ⊆ F ∪N ∪ X . We write <t for the depth-first-order on V .
Formally, u <t v if u is an ancestor of v or if there exists a node w and i < j such that the
ith child of w is an ancestor of u and the jth child of w is an ancestor of v. The tree t ∈ T is
linear if there do not exist different nodes that are labelled with the same parameter. We
call t ∈ T valid if (i) labels(t) ∩ X = {x1, . . . , xn} for some n ≥ 0 and (ii) for all u, v ∈ V
with λ(u) = xi, λ(v) = xj and u <t v we have i < j (in particular t is linear). For example,
f(x1, x21, x99), f(x1, x1, x3), and f(x3, x1, x2) are invalid, whereas f(x1, x2, x3) is valid. For
a linear tree t we define valid(t) as the unique valid tree which is obtained from t by renaming
the parameters. For instance, valid(f(x21, x2, x99)) = f(x1, x2, x3). A valid tree t in which
the parameters x1, . . . , xn occur is also written as t(x1, . . . , xn) and we write rank(t) = n.

We now define a particular form of context-free tree grammars (see [8] for more details
on context-free tree grammars) with the property that exactly one tree is derived. A tree
straight-line program (TSLP) is a pair G = (S, P ), where S ∈ N0 is the start nonterminal
and P is a finite set of rules of the form A(x1, . . . , xn)→ t(x1, . . . , xn) (which is also briefly
written as A→ t), where n ≥ 0, A ∈ Nn and t(x1, . . . , xn) ∈ T is valid such that:

There is an initial rule (S → t) ∈ P .
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If (A→ s) ∈ P and B ∈ labels(s) ∩N , then there is a tree t such that (B → t) ∈ P .
There do not exist rules (A→ t1), (A→ t2) ∈ P with t1 6= t2.
The binary relation {(A,B) ∈ N ×N | (A→ t) ∈ P,B ∈ labels(t)} is acyclic.

These conditions ensure that from every nonterminal A ∈ Nn exactly one valid tree valG(A) ∈
T (F ∪ {x1, . . . , xn}) is derived by using the rules as rewrite rules in the usual sense. The
tree defined by G is val(G) = valG(S). Instead of a formal definition, we give an example:

I Example 2. Let G = (S, P ), where P consists of the following rules (a ∈ F0, b ∈ F2):
S → A(B), A(x1)→ C(F, x1), B → E(F ), C(x1, x2)→ D(E(x1), x2), D(x1, x2)→ b(x1, x2),
E(x1)→ D(F, x1), F → a. Part of a possible derivation of val(G) = b(b(a, a), b(a, a)) from
S is: S → A(B)→ C(F,B)→ D(E(F ), B)→ b(E(F ), B)→ b(D(F, F ), B) → b(b(F, F ), B)
→ b(b(a, F ), B) → b(b(a, a), B) → b(b(a, a), E(F ))→ · · · → b(b(a, a), b(a, a)).

The size |G| of a TSLP G = (S, P ) is the total size of all trees on the right-hand sides of P :
|G| =

∑
(A→t)∈P |t|. For instance, the TSLP from Example 2 has size 12.

A TSLP is in Chomsky normal form if for every production A(x1, . . . , xn)→ t(x1, . . . , xn)
one of the following two cases holds:

t(x1, . . . , xn) = B(x1, . . . , xi−1, C(xi, . . . , xk), xk+1, . . . , xn) for B,C ∈ N (1)
t(x1, . . . , xn) = f(x1, . . . , xn) for f ∈ Fn. (2)

If the tree t in the corresponding rule A → t is of type (1), we write index(A) = i. If
otherwise t is of type (2), we write index(A) = 0. One can transform every TSLP efficiently
into an equivalent TSLP in Chomsky normal form with a small size increase [24]. We only
consider TSLPs in Chomsky normal form in the following.

We define the rooted, ordered derivation tree DG of a TSLP G = (S, P ) in Chomsky
normal form as for string grammars: The inner nodes of the derivation tree are labelled by
nonterminals and the leaves are labelled by terminal symbols. Formally, we start with the
root node of DG and assign it the label S. For every node in DG labelled by A, where the
right-hand side t of the rule for A is of type (1), we attach a left child labelled by B and a
right child labelled by C. If the right-hand side t of the rule for A is of type (2), we attach a
single child labelled by f to A. Note that these nodes are the leaves of DG and they represent
the nodes of the initial tree val(G). We denote by depth(G) the depth of the derivation tree
DG . For instance, the depth of the TSLP from Example 2 is 4.

A commonly used compact tree compression scheme is obtained by writing down repeated
subtrees only once. In that case all occurrences except for the first are replaced by a pointer
to the first one. This leads to a node-labelled directed acyclic graph (dag). It is known that
every tree has a unique minimal dag, which is called the the dag of the initial tree. An
example can be found in Figure 2, where the right graph is the dag of the tree in the middle.
The dag of a tree t can be constructed in time O(|t|) [10]. Dags correspond to TSLPs where
every nonterminal has rank 0.

4 Constructing a small TSLP for a tree

In this section we construct a TSLP G for a given tree t of size n. We then prove that
|G| ∈ O(n/ logn). For the remainder of this section we restrict our input to binary trees, i.e.,
every node has either zero or two children. Formally, we consider trees from T (F0 ∪ F2).

The following idea of splitting a tree recursively into smaller parts of roughly equal
size is well-known, see e.g. [4, 26]. For our later analysis, it is important to bound the
number of parameters in the resulting nonterminals (i.e., the number of holes in trees)



6 Constructing small tree grammars and small circuits for formulas

x1 x2 x3

v

x1 x2 x3

v

Figure 1 Splitting a tree with three parameters

by a constant. To achieve this, we use an idea from Ruzzo’s paper [25]. For a valid
tree t = (V, λ) ∈ T (F0 ∪ F2 ∪ X ) and a node v ∈ V we denote by t[v] the tree valid(s),
where s is the subtree rooted at v in t. We further write t \ v for the tree valid(r), where
r is obtained from t by replacing the subtree rooted at v by a new parameter. If for
instance t = h(g(x1, f(x2, x3)), x4) and v is the f -labelled node, then t[v] = f(x1, x2) and
t \ v = h(g(x1, x2), x3). The following lemma is well-known, see e.g. [19].

I Lemma 3. Let t be a binary tree with |t| ≥ 2. One can determine in time O(|t|) a node v
such that 1

3 |t| −
1
2 ≤ |t[v]| ≤ 2

3 |t|.

For the remainder of this section we denote by split(t) the unique node in a tree t computed
using Lemma 3. We now construct a TSLP G with val(G) = t for a given binary tree
t (we assume that |t| ≥ 2). Every nonterminal of G will be of rank at most three. We
store two sets of productions, Ptemp and Pfinal. The set Pfinal contains rules of the final
TSLP G and Ptemp ensures that the TSLP (S, Ptemp ∪ Pfinal) produces t at any point of
time. Initially, we set Ptemp := {S → t} and Pfinal := ∅. While Ptemp is non-empty we
proceed for each rule (A → s) ∈ Ptemp as follows: Let A ∈ Nr. If r ≤ 2 we determine
the node v = split(s) in s. Then we split the tree s into the trees s[v] and s \ v. Let
r1 = rank(s[v]), r2 = rank(s \ v) and let A1 ∈ Nr1 and A2 ∈ Nr2 be fresh nonterminals.
Note that r = r1 + r2 − 1. If the size of s[v] (resp., s \ v) is larger than 1 we add the rule
A1 → s[v] (resp., A2 → s \ v) to Ptemp. Otherwise we add it to Pfinal as a final rule. Let k
be the number of nodes of s that are labelled by a parameter and that are smaller (w.r.t. <s)
than v. To link the nonterminal A to the fresh nonterminals A1 and A2 we add the rule
A(x1, . . . , xr)→ A1(x1, . . . , xk, A2(xk+1, . . . , xk+r2), xk+r2+1, . . . , xr) to Pfinal.

To bound the rank of the nonterminals by three we handle rules A→ s with A ∈ N3 as
follows. Let v1, v2 and v3 be the nodes labelled by the parameters x1, x2 and x3, respectively.
Instead of choosing the node v by split(s) we set v to the lowest common ancestor of (v1, v2)
or (v2, v3), depending on which one has the greater distance from the root node (see Figure 1).
This step ensures that the two trees s[v] and s\v have rank 2, so in the next step each of them
will be split in a balanced way according to Lemma 3. As a consequence, the resulting TSLP
has depth O(log |t|) but size O(|t|). The running time of this first phase can be bounded by
O(|t| log |t|): All right-hand sides from Ptemp obtained after i splittings have total size at
most |t|, so we need time O(|t|) to split them. Moreover, i ranges from 0 to O(log |t|).

I Example 4. If we apply our construction to the tree b(b(a, a), b(a, a)) we get the TSLP
with the rules S → A(B), A(x1)→ C(D,x1), B → E(F ), C(x1, x2)→ G(H(x1), x2), D → a,
E(x1)→ I(J, x1), F → a, G(x1, x2)→ b(x1, x2), H(x1)→ K(L(x1)), I(x1, x2)→ b(x1, x2),
J → a, K(x1, x2)→ b(x1, x2), and L→ a.

In the next step we want to compact the TSLP by considering the dag of the derivation tree.
For this we first build the derivation tree DG from the TSLP G as described above. The
derivation tree for the TSLP described in Example 4 is shown on the left of Figure 2.
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Figure 2 The derivation tree from Example 4

We now want to identify some (but not all) nonterminals that produce the same tree. Note
that if we just omit the nonterminal labels from the derivation tree, then there might exist
isomorphic subtrees of the derivation whose root nonterminals produce different trees. This
is due to the fact that we lost for an A-labelled node of the derivation tree with a left (resp.,
right) child that is labelled with B (resp., C) the information at which argument position
of B the nonterminal C is substituted. To keep this information we replace every label A
in the derivation tree with index(A) ∈ {0, 1, 2, 3} (the index of a nonterminal of a TSLP in
Chomsky normal form was defined in Section 3). Moreover, we remove every leaf v and write
its label into its parent node. We call the resulting tree the modified derivation tree and
denote it by D∗G . Note that D∗G is a full binary tree with node labels from {1, 2, 3} ∪ labels(t).
The modified derivation tree for Example 4 is shown in the middle of Figure 2. The following
lemma shows how to compact our grammar by considering the dag of D∗G .

I Lemma 5. Let u and v be nodes of DG labelled by A resp. B. Moreover, let u′ and v′ be
the corresponding nodes in D∗G. If the subtrees D∗G [u′] and D∗G [v′] are isomorphic (as labelled
ordered trees), then valG(A) = valG(B).

By Lemma 5, if two subtrees of D∗G are isomorphic we can eliminate the nonterminal of a
root node of one subtree. Hence, we construct the dag d of D∗G . This is possible in time
O(|DG |) = O(|t|) [10]. The minimal dag of the TSLP of Example 4 is shown on the right of
Figure 2. The nodes of d are the nonterminals of the final TSLP. We obtain rules of type (1)
for each nonterminal corresponding to an inner node of d and rules of type (2) for each leaf
in d. Let n1 be the number of inner nodes of d and n2 be the number of leaves. Then the
size of our final TSLP is 2n1 + n2, which is bounded by twice the number of nodes of d. The
dag from Figure 2 gives the TSLP for the tree b(b(a, a), b(a, a)) described in Example 2.

To estimate the number of nodes in the dag of the modified derivation tree, we prove in
this section a general result about the size of dags of certain weakly balanced binary trees.
Let t be a binary tree and let 0 < β < 1 and γ ≥ 2 be constants. The leaf size of a node v is
the number of leaves of the subtree rooted at v. We say that an inner node v with children
v1 and v2 is β-balanced if the following holds: If ni is the leaf size of vi, then n1 ≥ βn2 and
n2 ≥ βn1. We say that t is (β, γ)-balanced if the following holds: For all inner nodes u and v
such that v is a child of u and the leaf size of v (and hence also u) is at least γ, we have that
u is β-balanced or v is β-balanced.

I Theorem 6. Fix constants 0 < β < 1 and γ ≥ 2. Then there is a constant α (depending
on β and γ) such that the following holds: If t is a (β, γ)-balanced binary tree with n leaves
and |labels(t)| = σ (hence, |t|, σ ≤ 2n− 1), then the size of the dag of t is bounded by α·n

logσ n
.

Proof. Let us fix a tree t = (V, λ) as in the theorem with n leaves. Moreover, let us fix
a number k ≥ γ that will be defined later. Let top(t, k) be the tree obtained from t by
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≤k ≤k

v1 v′1

v2 v′2

v3 v′3

v4 v′4

v5

≥βk

≥βk

≥β(1+β)k

≥β(1+β)k

≥k

or

or

Figure 3 A chain within a top tree. The subtree rooted at v1 has more than k leaves.

removing all nodes with leaf size at most k. We first bound the number of different subtrees
with at most k leaves in t. Afterwards we will estimate the size of the remaining tree top(t, k).
The same strategy is used for instance in [13, 20] to derive a worst-case upper bound on the
size of binary decision diagrams.
Claim 1. The number of different subtrees of t with at most k leaves is bounded by dk with
d = 4σ2.
A subtree of t with i leaves has exactly 2i− 1 nodes, each labelled with one of σ labels. Let
Cm = 1

m+1
(2m
m

)
be the mth Catalan number. It is known that Cm ≤ 4m. If the labels are

ignored, there are Ci−1 different subtrees with i leaves. In conclusion, we get the following
bound:

∑k
i=1 Ci−1 · σ2i−1 ≤

∑k−1
i=0 4i · σ2i+1 = σ (4σ2)k−1

4σ2−1 ≤ (4σ2)k.
Claim 2. The number of nodes of top(t, k) is bounded by c · nk for a constant c depending
only on β and γ.
The tree top(t, k) has at most n/k leaves since it is obtained from t by removing all nodes
with leaf size at most k. Each node in top(t, k) has at most two children. Therefore it
remains to show that the length of unary chains in top(t, k) is bounded by a constant.

Let v1, . . . , vm be a unary chain in top(t, k) where vi is the single child node of vi+1.
Moreover, let v′i be the removed sibling of vi in t, see Figure 3. Note that each node v′i has
leaf size at most k. We claim that the leaf size of v2i+1 is larger than (1 + β)ik for all i with
2i+ 1 ≤ m. For i = 0 note that v1 has leaf size more than k since otherwise it would have
been removed in top(t, k). For the induction step, assume that the leaf size of v2i−1 is larger
than (1 + β)i−1k ≥ k ≥ γ. One of the nodes v2i and v2i+1 must be β-balanced. Hence, v′2i−1
or v′2i must have leaf size more than β(1 + β)i−1k. Hence, v2i+1 has leaf size more than
(1 + β)i−1k + β(1 + β)i−1k = (1 + β)ik.

Let ` = log1+β(β−1). If m ≥ 2`+ 3, then v2`+1 exists and has leaf size more than k/β,
which implies that the leaf size of v′2`+1 or v′2`+2 (both nodes exist) is more than k, which is
a contradiction. Hence, we must have m ≤ 2 log1+β(β−1) + 2. Figure 3 shows an illustration.

Using Claim 1 and 2 we can now prove the theorem: The number of nodes of the dag of
t is bounded by the number of different subtrees with at most k leaves (Claim 1) plus the
number of nodes of the remaining tree top(t, k) (Claim 2). Let k = max{γ, 1

2 logd n} ≥ γ

(recall that d = 4σ2 and hence log d = 2 + 2 log σ). If k = γ, i.e., 1
2 logd n ≤ γ then we
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have n
logσ n

∈ Ω(n) and the bound O( n
logσ n

) on the size of the dag is trivial. If k = 1
2 logd n

then we get with Claim 1 and 2 the following bound on the size of the dag: dk + c · nk =
d(logd n)/2 +2c · n

logd n
=
√
n+2c · n

logd n
∈ O( n

logd n
) = O( n

logσ n
). This proves the theorem. J

Obviously, one could relax the definition of (β, γ)-balanced by only requiring that if
(v1, v2, . . . , vδ) is a path down in the tree, where δ is a constant and vδ has leaf size at
least γ, then one of the nodes v1, v2, . . . , vδ must be β-balanced. Theorem 6 would still hold
with this definition (with the constant α also depending on δ).

Let us fix the TSLP G for a binary tree t ∈ T (F0 ∪ F2) that has been produced by the
first part of our algorithm. Let n = |t| and σ = |labels(t)|. Then, the modified derivation
tree D∗G is a binary tree with n leaves (and hence 2n − 1 nodes) and σ + 3 different node
labels (namely 1, 2, 3 and those appearing in t). Moreover, D∗G is (1/3, 6)-balanced: If we
have two successive nodes in D∗G , then we split at one of the two nodes according to Lemma 3.
Now, assume that we split at node v according to Lemma 3. Let v1 and v2 be the children
of v, let ni be the leaf size of vi, and let n = n1 + n2 ≥ 6 be the leaf size of v. We get
1
3n−

1
2 ≤ n1 ≤ 2

3n and 1
3n ≤ n2 ≤ 2

3n+ 1
2 (or vice versa). Since n ≥ 6 we have 1

4n ≤ n1 ≤ 2
3n

and 1
3n ≤ n2 ≤ 3

4n. We get n1 ≥ 1
4n ≥

1
3n2 and n2 ≥ 1

3n ≥
1
2n1. Hence, we get:

I Corollary 7. Let t be a binary tree with |t| = n and |labels(t)| = σ. Let d be the minimal
dag of the modified derivation tree produced from t by our algorithm. Then the number of
nodes of d is in O

(
n

logσ n
)
. Hence, the size of the TSLP produced from t is in O

(
n

logσ n
)
.

The conditions in Theorem 6 ensure that depth(t) ∈ O(log |t|). One might think that a tree
t of depth O(log |t|) has a small dag. For instance, the dag of a complete binary tree with n
nodes has size O(logn). But this intuition is wrong:

I Theorem 8. There is a family of trees tn ∈ T ({a, c}) (a ∈ F0, c ∈ F2), n ≥ 1, such that
(i) |tn| ∈ O(n), (ii) depth(t) ∈ O(logn), and (iii) the size of the dag of tn is at least n.

Proof. To simplify the presentation, we use a unary node label b ∈ F1. It can be replaced
by the pattern c(d, x), where d ∈ F0 \ {a} to obtain a binary tree. Let k = n

logn (we ignore
rounding problems with logn, which only affects multiplicative factors). Choose k different
binary trees s1, . . . , sk ∈ T ({a, c}), each having logn internal nodes. Note that this is
possible since by the formula for the Catalan numbers there are more than n different binary
trees with logn internal nodes for n large enough. Then consider the trees s′i = blogn(si).
Each of these trees has size at most 3 logn as well as depth at most 3 logn. Next, let
un(x1, . . . , xk) ∈ T ({c, x1, . . . , xk}) a binary tree (all non-parameter nodes are labelled with
c) of depth log k ≤ logn and size O(k) = O( n

logn ). We finally take tn = un(s′1, . . . , s′k). A
possible choice for t16 is shown below. We obtain |tn| = O( n

logn ) +O(k · logn) = O(n). The
depth of tn is bounded by 3 logn. Finally,
in the dag for tn the unary b-labelled nodes
cannot be shared. Basically, the pairwise
different trees t1, . . . , tn work as different
constants that are attached to the b-chains.
But the number of b-labelled nodes in tn is
k · logn = n. J

It is straightforward to adapt our algorithm to trees where every node has at most r children
for a fixed constant r. One only has to prove a version of Lemma 3 for r-ary trees. The
multiplicative constant in the O

(
n

logσ n
)
bound for the final TSLP will depend on r. On the

other hand, for unranked trees, where the number of children of a node is arbitrary, our
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algorithm does not work. This problem can be solved by transforming an unranked tree into
a binary tree of the same size using the first-child next-sibling encoding [18]. For this binary
tree we get a TSLP of size O

(
n

logσ n
)
.

For traversing a compressed unranked tree t, another well-known encoding is favorable.
Let ct be a compressed representation (e.g., a TSLP) of t. The goal is to represent t in space
O(|ct|) such that one can efficiently navigate from a node to (i) its parent node, (ii) its first
child, (iii) its next sibling, and (iv) its previous sibling (if they exist). For top dags [3], it was
shown that a single navigation step can be done in time O(log |t|). Using the right binary
encoding, we can prove the same result for TSLPs: Let r be the maximal rank of a node of
the unranked tree t. We define the binary encoding bin(t) by adding for every node v of rank
s ≤ r a binary tree of depth dlog se with s many leaves, whose root is v and whose leaves are
the children of v. This introduces at most 2s many new binary nodes, which are labelled by
a new symbol. We get |bin(t)| ≤ 3|t|. In particular, we obtain a TSLP of size O

(
n

logσ n
)
for

bin(t), where n = |t| and σ = |labels(t)|. Note that a traversal step in the initial tree t (going
to the parent node, first child, next sibling, or previous sibling) can be simulated by O(log r)
many traversal steps in bin(t) (going to the parent node, left child, or right child). But for a
binary tree s, it was recently shown that a TSLP G for s can be represented in space O(|G|)
such that a single traversal step takes time O(1) [21] (this generalizes a corresponding result
for strings [12]). Hence, we can navigate in t in time O(log r) ≤ O(log |t|).

5 Arithmetical Circuits

In this section, we present our main application of Theorem 7. Let S = (S,+, ·) be a (not
necessarily commutative) semiring. Thus, (S,+) is a commutative monoid with identity
element 0, (S, ·) is a monoid with identity element 1, and · left and right distributes over +.
We use the standard notation of arithmetical formulas and circuits over S: An arithmetical
formula (resp. arithmetical circuit) is a binary tree (resp. dag) where internal nodes are
labelled with the semiring operations + and ·, and leaf nodes are labelled with variables
y1, y2, . . . or the constants 0 and 1. The depth of a circuit is the length of a longest path from
the root node to a leaf. An arithmetical circuit evaluates to a multivariate noncommutative
polynomial p(y1, . . . , yn) over S, where y1, . . . , yn are the variables occurring at the leaf
nodes. Two arithmetical circuits are equivalent if they evaluate to the same polynomial.
Brent [4] has shown that every arithmetical formula of size n over a commutative ring can
be transformed into an equivalent circuit of depth O(logn) and size O(n) (the proof easily
generalizes to semirings). Using Theorem 7 we can refine the size bound to O(n·logm

logn ), where
m is the number of different variables in the formula:

I Theorem 9. An arithmetical formula F of size n with m different variables can be
transformed in time O(n logn) into an arithmetical circuit C of depth O(logn) and size
O(n·logm

logn ) such that C and F are equivalent for every semiring.

Proof sketch. Fix a semiring S. We apply our TSLP construction to the formula tree F and
obtain a TSLP G for F of size O(n·logm

logn ) and depth O(logn). Using the main construction
from [24] we can reduce the rank of nonterminals in G to 1. Thereby the size and depth of the
TSLP only increase by constant factors. Recall that for a nonterminal A(x), valG(A) is a tree
in which each of the parameter x occurs exactly once. By evaluating this tree in the polynomial
semiring S[y1, . . . , ym], we obtain a noncommutative polynomial pA(x) = a0 + a1xa2, where
a0, a1, a2 ∈ S[y1, . . . , ym]. We now transform G into an arithmetical circuit that contains
for every nonterminal A of rank one gates that evaluate to the above polynomials a0, a1, a2.
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E.g., for a rule of the form A(x)→ B(C(x)) one has to substitute the polynomial pC(x) into
pB(x) and carry out the obvious simplifications. For a nonterminal A of rank 0, the circuit
simply contains a gate that evaluates to the polynomial to which valG(A) evaluates. J

Theorem 9 can also be shown for fields instead of semirings. In this case, the expression is
built up using variables, the constants −1, 0, 1, and the field operations +, · and /.

6 Future work

In [27] a universal (in the information-theoretic sense) code for binary trees is developed.
This code is computed in two phases: In a first step, the minimal dag for the input tree
is constructed. Then, a particular binary encoding is applied to the dag. It is shown that
the average redundancy of the resulting code converges to zero (see [27] for definitions) for
every probability distribution on binary trees that satisfies the so-called domination property
(a somewhat technical condition) and the representation ratio negligibility property. The
latter means that the average size of the dag divided by the tree size converges to zero
for the underlying probability distribution. This is, for instance, the case for the uniform
distribution, since the average size of the dag is Θ(n/

√
logn) [11]. We are confident that

replacing the minimal dag by a TSLP of size O( n
logn ) in the universal tree encoder from

[27] leads to stronger results. In particular, we hope to get a code whose maximal pointwise
redundancy converges to zero for certain probability distributions. For strings, such a result
was obtained in [16] using the fact that every string of length n has an SLP of size O( n

logn ).
Another interesting question is whether the time bound of O(n logn) for the construction

of a TSLP of size O( n
logσ n

) can be improved to O(n). Related to this is the question for the
worst-case output size of the grammar-based tree compressor from [15]. It works in linear
time and produces a TSLP that is only by a factor O(logn) larger than an optimal TSLP.
From a complexity theoretic point of view, it would be also interesting to see, whether our
TSLP construction can be carried out in logarithmic space or even NC1.

In [3] the authors proved that the top dag of a given tree t of size n is at most by a factor
logn larger than the minimal dag of t. It is not clear, whether the TSLP constructed by our
algorithm has this property too. The construction of the top dag is done in a bottom-up
way, and as a consequence identical subtrees are compressed in the same way. This property
is crucial for the comparison with the minimal dag. Our algorithm works in a top-down way.
Hence, it is not guaranteed that identical subtrees are compressed in the same way.

Finally, one should also study whether all the operations from [3] for top dags can be
implemented with the same time bounds also for TSLPs. For traversing the tree, this is
possible, see the paragraph at the end of Section 4. For the other operations, like for instance
computing lowest common ancestors, this is not clear.

Acknowledgment. We have to thank Anna Gál for helpful comments.
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