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Abstract

In Harstad’s (2012) model, climate damage only hits one group of countries, called

the coalition, and the coalition’s climate policy consists of capping own fuel de-

mand and supply combined with the purchase of fossil fuel deposits for preserva-

tion. Harstad’s Theorem 1 states that if the deposit market clears the coalition’s

strategic fuel-cap policy implements the first-best. The present paper reconstructs

that efficiency result and argues that the deposit market equilibrium as defined in

Harstad (2012) fails to be attained, unless the non-coalition countries act cooper-

atively on the deposit market. Without such cooperation, the coalition’s strategic

action on the fuel market distorts the allocation to its own favor.
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1 Introduction

Compelling scientific evidence suggests that greenhouse gas emissions, notably carbon emis-

sions, generate severe negative climate externalities that can be internalized by global co-

operative action. The experience from the Kyoto protocol and the climate change summits

of recent years to reach a post-Kyoto agreement are disappointing. It is true that several

countries have increased their efforts to curb emissions, notably the (Annex 1) countries

that committed to emissions reductions in the Kyoto Protocol. Yet many small and large

countries still refrain from taking (strong) action, and most of them have expanded their

emissions significantly since 1990. That raises the question of what the chances are of a

climate coalition to reduce carbon emissions efficiently by unilateral action.

Environmental economists have intensively analyzed this question. There is a literature

that shows that unilateral environmental or trade policy is distortionary in the presence

of trade and transboundary pollution (Markusen 1975, Hoel 1994, Copeland 1996).1 In

these second-best settings, the unilateral policy causes carbon leakage, which renders global

emissions inefficiently high. The inefficiency aggravates, if the climate coalition implements

its environmental policy strategically by influencing the terms of trade to its own favor.

Most of the aforementioned studies investigate demand-side climate policies. Bohm

(1993), Harstad (2012) and Asheim (2013) are the only studies we know with an analytical

approach to supply-side policies in which countries suffering from climate damage purchase

or lease fossil energy deposits (’buy coal’) to prevent their extraction. In a stylized parametric

model, Bohm (1993) derives conditions under which a special policy mix consisting of the

purchase or lease of deposits and a fuel-demand cap implements the emission cap at lower

costs than the stand-alone fuel-demand-cap policy. Asheim (2013) makes the case for deposit

policies as an distributional instrument in a growth model á la Dasgupta-Heal-Solow-Stiglitz.

Harstad (2012) considers a world of heterogeneous countries in which all countries’ carbon

emissions generate climate damage in some group of countries. This group forms a coalition

to mitigate that damage with a policy mix of deposit purchases and caps on own demand and

supply of fuel. He shows that if the deposit market is in equilibrium the coalition implements

the first-best by acting strategically in the sense that it has the power to manipulate the

fuel price in its favor (ibidem, Theorem 1). That result is surprising in our view, because it

runs counter to the ’standard’ outcome in various fields of economics, that exerting market

power always makes the strategically acting agent better off than price taking.

1Not only unilateral environmental policy is inefficient, but also non-cooperative environmental policy

(Ludema and Wooton 1994, Copeland and Taylor 1995, Kiyono and Ishikawa 2013) and the formation of

self-enforcing international environmental agreements (Barrrett 1994, Rubio and Ulph 2006, Eichner and

Pethig 2013).
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The present paper aims to get a better understanding of the power and limits of

Harstad’s Theorem 1. The crucial question we wish to answer is why the coalition refrains

from using – or prefers not to use – its option to influence the fuel price. The answer is

not obvious because if the coalition would make use of that option, the intuition from the

literature is that it would benefit from strategic action at the cost of rendering the allocation

inefficient.

Harstad’s theorem relies on two key assumptions. The first is the concept of deposit

market and deposit market equilibrium. The market consists of a set of bilateral trades

with prices that may differ between each pair of traders and the ". . . market clears when

there exists no pair of countries that would both strictly benefit from trading some of their

deposits at some price" (Harstad 2012, p. 92). The second key assumption is that Harstad

sets up a three-stage game in which countries trade fuel deposits before the coalition chooses

its unilateral climate policy mix. Specifically, at the first stage deposits are traded, at the

second stage the coalition chooses its fuel caps and at the third stage the non-coalition

countries choose their fuel demand and supply and the fuel market clears. To reconstruct

Harstad’s efficiency theorem it is convenient to consider two types of deposit markets. The

deposit market I is one-directional in the sense that the only deposit trades are the coalition’s

purchases of deposits from non-coalition countries. The deposit market II is Harstad’s (2012)

deposit market. In that market concept all countries may buy and/or sell any number of

deposits and hence it contains the deposit market I as a special case.

Playing the three-stage game with deposit market I we find that if the coalition refrains

from strategic action the outcome is first-best. However, if it acts strategically, it chooses

inefficient fuel caps which increase its welfare compared to the efficient fuel caps it chooses

in case of non-strategic (price taking) action. The coalition’s benefit from strategic action

translates into a welfare loss of all non-coalition countries. The outcome of the game with

deposit market II is markedly different. We show that for any given initial endowment

of deposits there exist purchases of deposits, additional to those in market I, such that the

deposit market II clears and the coalition’s fuel supply exactly matches its fuel demand in the

fuel market equilibrium. For that specific set of deposit trade one gets Harstad’s efficiency

result, since the coalition refrains from strategically setting its fuel caps and implements the

efficient caps.

Our reconstruction of Harstad’s efficiency theorem offers interesting new insights. In

order to carry out the additional trades in deposit market II referred to in the last paragraph,

the coalition has to be compensated such that it secures (at least) the welfare it attains with

strategic action in deposit market I. If the non-coalition countries do not cooperate, then all

of them have strong free-rider incentives to let some other country purchase the additional
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deposits in market I and we are in a prisoner’s dilemma. The coalition will not be paid for

the additional deposit purchases, the equilibrium of the deposit market II is not reached

and the coalition will set strategically (and inefficiently) its caps as on the deposit market

I. Only if all non-coalition countries cooperate on the deposit market II, the non-coalition

countries may prevent the coalition from setting the fuel caps strategically.

The remainder of the paper is organized as follows. Section 2 briefly presents the

model and characterizes the social optimum without and with deposit trading. Section 3

investigates the three-stage game with deposit market I and Section 4 turns to the three-

stage game with deposit market II. Section 4 provides an assessment of Harstad’s Theorem

1. Section 5 concludes.

2 The pollutee-pays approach to restore efficiency

The basic analytical framework. Harstad (2012) considers a world economy with two

groups of countries, M and N . The members of group M participate in an international

climate agreement and group - or coalition - M acts as one agent. Each country produces

and consumes fuel. Country i ∈ {M} ∪ N =: Ω derives the benefit Bi(yi) from consuming

yi units of fuel (with B′
i > 0 and B′′

i < 0) and produces the quantity xi of fuel from the

fossil fuel deposits it owns. Fuel generates the greenhouse gas carbon dioxide proportional

to fuel production and the carbon dioxide emissions cause climate damage H (
∑

Ω
xj) in the

coalition M . At the beginning of the game, the cost of extracting fuel is Ci(xi) with C ′
i > 0

and C ′′
i > 0.

The marginal extraction function C ′
i defines country i’s endowment of deposits where

deposits are characterized by the amount of fuel stored in them and by the cost of extracting

that fuel. Specifically, the function C ′
i ". . . is a mapping from country i’s deposits, ordered

according to costs, to the marginal extraction cost of these deposits" (Harstad 2012, p. 85).2

We express the (conventional) case that country i ∈ Ω owns all deposits specified by the

marginal extraction cost function C ′
i by saying that i owns the deposits [0,∞[C′

i
.

Social optimum versus market failure. In the conventional textbook approach the

social planner solves the Lagrangean

L(x1, . . . , xN , xM , y1, . . . , yN , yM , λf ) =
∑

Ω

[Bj(yj)− Cj(xj)]−H

(

∑

Ω

xj

)

+ λf

∑

Ω

(xj − yj) (1)

2For the concept of deposit endowments in the formal model see Appendix A1.

4



and obtains the first-order condition

B′
i(yi) = λf and C ′

i(xi) = λf −H ′

(

∑

Ω

xj

)

∀ i ∈ Ω. (2)

Denote the efficient values in (2) by yi = y∗i , xi = σ∗
i , and λf = λ∗

f . According to (2) efficiency

is attained if and only if all deposits3 [0, σ∗
i ]C′

i
, ∀ i ∈ Ω, are exploited. The outcome fails to

be efficient in a world economy with a competitive fuel market when no cooperation and no

deposit trade takes place. The absence of deposit trading simply means that each country

sticks to its initial endowment of deposits, [0,∞[C′

i
. In that case, the fuel supplies and

demands are implicitly determined by

B′
i(yi) = p and C ′

i(xi) = p− δ(i)H ′

(

∑

Ω

xj

)

∀ i ∈ Ω, (3)

where δ(M) = 1 and δ(i) = 0 for i ∈ N . Comparing (2) and (3) reveals that the climate

damage is excessive in the unregulated market economy without deposit trading because the

non-coalition countries disregard the climate damage generated by their fuel supply.

The standard procedure to implement the first-best allocation (2) in a market economy

is the Pigouvian polluter-pays solution.4 However, we leave that approach to efficiency aside

in the present paper because we follow Harstad in assuming that the countries unaffected

by climate damage refrain from any mitigation policy that makes them worse off.

Social optimum and tradable deposits. The characterization of the social optimum in

(2) implicitly assumes that each country’s initial endowment of deposits is [0,∞[C′

i
, ∀ i ∈ Ω,

and the ownership of deposits remains unchanged. In order to characterize efficiency in case

of tradable deposits, we assume, as before, that country i’s initial endowment of deposits is

[0,∞[C′

i
. However, now imagine a social planner who takes away from each country i ∈ Ω all

deposits in some interval [σi, ξi]C′

i
and transfers them to the coalition obliging it to preserve

the deposits it received. Then the question arises how to choose the boundary points σi and

ξi of the interval [σi, ξi]C′

i
that maximize global welfare. We denote the ’number’ of deposits

in the interval [σi, ξi]C′

i
by zsi := ξi − σi, the total number of deposits transferred to the

coalition by zdM and answer that question by solving the Lagrangean

L(xM , y1, . . . , yN , yM , ξ1, . . . , ξN , zs1, . . . , z
s
N , zdM , λf , λz) =

∑

N

[

Bj(yj)− Cj(ξj − zsj )
]

+BM (yM)− CM (xM )−H

(

xM +
∑

N

ξj − zdM

)

+ λf

[

xM − yM +
∑

N

(ξj − zsj − yj)

]

+ λz

(

∑

N

zsj − zdM

)

. (4)

3Recall that the subscript C′

i attached to [0, σ∗

i ] indicates that C′

i(x) is the cost of extracting x ∈ [0, σ∗

i ]C′

i
.

4That solution consists of setting the fuel price p∗ = λ∗

f and a fuel supply tax equal to H ′
(
∑

Ω
σ∗

j

)

to be

levied by the coalition and all countries.
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The first-order conditions are

∂L

∂yi
= B′

i − λf = 0, ∀ i ∈ Ω,
∂L

∂xM

= −C ′
M −H ′ + λf = 0,

∂L

∂zdM
= H ′ − λz = 0,

∂L

∂ξi
= −C ′

i −H ′ + λf = 0, and
∂L

∂zsi
= C ′

i + λz − λf = 0, ∀ i ∈ N. (5)

Recalling that σi = ξi − zsi , it is easy to see that the solution of (5) exhibits the same values

σ∗
i , y

∗
i , all i ∈ Ω, and λ∗

f as the solution of (1). The additional information (5) provides is

that λz = λ∗
z is the shadow price of deposits and that zsi = zs∗i := ξ∗i − σ∗

i are the deposits

initially owned by the countries i ∈ N and saved from exploitation by the coalition.

Concepts of deposit market and efficiency. The next question is how the social op-

timum with tradable deposits can be implemented in the market economy. We will answer

that question for the following different concepts of deposit market.

• Competitive deposit market. All countries choose their welfare-maximizing supply and

demand of deposits taking the (unitary) deposit price as given. The market is in

equilibrium, when the price is such that aggregate demand matches aggregate supply.

• Deposit market I. The deposit market I is a market on which the coalition purchases

deposits from other countries for the purpose to prevent the exploitation of the acquired

deposits. The market clears, when there exist no deposit purchases for preservation

that would be strictly beneficial for both the coalition and the seller.

• Deposit market II. On the deposit market II, all countries and the coalition may buy

and/or sell deposits. Hence, market transactions include those on the market I but may

be more complex. The market clears, when ". . . there exists no pair of countries that

would both strictly benefit from trading some of their deposits at some price" (Harstad

2012, p. 92).

The concept of deposit market II is due to Harstad (2012). The difference between the de-

posit markets I and II is that the deposit trade in market I is one-directional by assumption,

while in the deposit market II all countries and the coalition may be active on both sides of

the market. The purpose of distinguishing the markets I and II is to clarify Harstad’s anal-

ysis and results, which we will discuss in detail in the Sections 4 and 5 below. Consideration

of these deposit market concepts yields5

Proposition 1 . Suppose (a) the coalition suffers, but the other countries do not

suffer from climate damage; (b) the non-coalition countries refrain from mitigating carbon

emissions; and (c) deposits can be traded internationally.

5The proof of Proposition 1 is delegated to the Appendix A2.

6



(i) The equilibrium of the world economy with a perfectly competitive fuel market is effi-

cient, when the deposit market is

(ia) either a competitive market,

(ib) or a deposit market I,

(ic) or a deposit market II.

(ii) The pattern of equilibrium deposit trades is the same in the cases (ia) and (ib) and may

but need not be the same in case (ic).

Proposition 1(i) formalizes the well-known Coasean insight that the failure to internalize an

externality is equivalent to the lack of incentives for the creation of a suitable market. In

the sequel, we focus exclusively on the deposit markets I and II. It is worth emphasizing,

however, that the competitive deposit market is a relevant benchmark, because the (unique)

shadow price of deposits also guides the clearance of the more general markets I and II.

Proposition 1(ib) obviously is an example of Proposition 1(ic). However, it is useful

for later reference to demonstrate that bilateral deposit trades in the Propositions 1(ia) and

1(ib), in which the coalition only buys and the countries only sell deposits, are not the

only pattern that sustains efficiency. The key to understand the existence of more complex

but still efficient deposit trade structures is the observation we already made above that

efficiency requires exploiting a deposit, if and only if it is contained in
⋃

Ω
[0, σ∗

j ]C′

j
. Put

differently, efficiency requires exploiting all deposits - and only those - whose extraction

costs are lower than or equal to C ′
1(σ

∗
1) = C ′

2(σ
∗
2) = · · · = C ′

M(σ∗
M). However, efficiency

does not depend on which country owns and exploits a deposit with extraction costs lower

than or equal to C ′
i(σ

∗
i ). Hence, some of those low-cost deposits may be traded between

two countries or between a country and the coalition without causing allocative distortions.

To fix our ideas, suppose such trades take place in addition to the trades zs∗1 , . . . , zs∗N and

those additional trades are priced at the profit foregone. Then both trading partners are

indifferent with respect to conducting the additional deal. Consequently, if we consider

the trades zs∗1 , . . . , zs∗N and the additional trades in bilateral deposit trade packages, such

packages can be traded without violating the requirement of mutual gains from trade.

The common features of the parts (ia), (ib) and (ic) of Proposition 1 are that the fuel

market is perfectly competitive, i.e. that all countries and the coalition take the fuel price

as given, and that the markets for fuel and deposits clear simultaneously. In the remainder

of the paper, we follow Harstad in assuming that the deposit market clears prior to the fuel

market and that the coalition exerts market power on the fuel market. The market power

takes the form of influencing the terms of international fuel trade, i.e. the fuel price, by

7



the coalition’s strategic choice of fuel supply and demand. The analysis of these features

requires setting up a game model with three stages. The timing of the game is as follows. At

stage 1, the deposit market clears. The coalition determines its fuel supply and demand at

stage 2, and at stage 3, the fuel market equilibrates. In the following Section 3, we analyze

and solve that three-stage game applying the concept of the deposit market I. In section 4,

we replace the deposit market I by the deposit market II.

3 The three-stage game with deposit market I

We follow the standard procedure of solving the game via backward induction.

Stage 3. At stage 3, M has already chosen its fuel supply and demand, xM and yM . The

representative consumer of country i ∈ N determines its fuel demand by maximizing with

respect to yi

Bi(yi)−Ki(xi, pa, πz)− p(yi − xi) +Ri(pa, πz) ∀ i ∈ N.

pa is the fuel price anticipated at stage 1; p is the fuel price prevailing at stage 3; πz is the

marginal climate damage determined at stage 1;6 Ki is country i’s extraction cost function

after the deposit sales at the first stage; and Ri(pa, πz) is i’s revenue from selling deposits at

stage 1.7 The first-order condition readily yields

B′
i(yi) = p and hence yi = B−1

i (p) =: Di (p) ∀ i ∈ N, (6)

where B−1
i is the inverse of the marginal benefit function B′

i. Next, consider the fuel supply

of country i ∈ N . At stage 3, i recalls that it sold at stage 1 the deposits [σi(pa, πz), ξi(pa)]C′

i
,

where

ξi = ξi(pa) = C
′−1
i (pa), σi = σi(pa, πz) := C

′−1
i (pa − πz) (7)

and where C
′−1
i is the inverse of the marginal cost function C ′

i. The deposit sale at stage

1 changed i’s endowment of deposits such that i’s initial marginal cost function C ′
i turned

6For details of the role and determination of πz see Lemma 1 and footnote 16.
7Due to the quasi-linearity of the utility function, the fuel demand is independent of both the extraction

costs Ki (·) and the revenues Ri (·). We provide the definition of these terms in the appropriate context

below.
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Figure 1: Marginal and total cost curves of country i ∈ N before and after deposit trading

[σi, ξi]C′

i
at stage 110

into the marginal cost function K ′
i defined by8

K ′
i(xi, pa, πz) :=

{

C ′
i(xi) for xi ≤ σi,

C ′
i(ξi)− C ′

i(σi) + C ′
i(xi) for xi ≥ σi,

∀ i ∈ N. (8)

Figure 1 illustrates the marginal cost functions C ′
i and K ′

i (Figure 1a) and the total

cost functions Ci and Ki (Figure 1b). The straight line 0D in Figure 1a is the graph of C ′
i.

After having sold the deposits [σi, ξi]C′

i
at stage 1, country i’s marginal cost function K ′

i, is

represented by the line 0BEF . We derive that line from 0D by shifting the line segment CD

to the left by the amount ξi − σi such that CD becomes EF . Thus, country i’s endowment

of deposits changed from 0ABCD to 0ABEF . The function K ′
i is discontinuous at xi = σi,

as reflected in the gap BE of the graph 0BEF . In Figure 1b, 0BCD is the graph of the

cost function Ci. After the deposit sale at stage 1, the curve 0BF represents country i’s

new cost function Ki. The curve segment BF of Ki results from moving the curve segment

CD from its base point C to the new base point B. The gap BE of the graph of K ′
i in

Figure 1a translates into a kink of the cost curve 0BF at xi = σi (= at point B) in Figure

1b. Figure 1b illustrates that if σi is approached from above, the marginal extraction cost

8To avoid clutter, we write σi, ξi etc. for the terms σi(pa, πz), ξ(pa) etc. unless it is useful to emphasize

their dependence on the variables which were determined at earlier stages of the game. Throughout the

paper a "prime" indicates the partial derivative with respect to the first argument of a function.
10The line OBEF in Figure 1a and the line OBGH in Figure 2 are constructed as in Harstad’s (2012)

Figure 1.
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is K ′
i(σi) = tanα = pa, and it is K ′

i(ξi) = tanβ = pa − πz < pa, if σi is approached from

below.

The Appendix A2 shows that maximizing with respect to xi the welfare Ui = Bi(yi)−

Ki(xi, pa, πz)− p(yi − xi) +Ri(pa, πz) yields the fuel supply function Si with the properties

Si(p, pa, πz) =















C
′−1
i (p) for p ≤ pa − πz,

σi for p ∈ [pa − πz, pa],

C
′−1
i [p− C ′

i(ξi) + C ′
i(σi)] for p ≥ pa,

∀ i ∈ N. (9)

In view of (6) and (9), the fuel market clearing condition is

xM +
∑

N

Sj(p, pa, πz) = yM +
∑

N

Dj (p) . (10)

Equation (10) yields the equilibrium fuel price as a function of xM , yM , pa and πz, all of

which have been determined earlier in the game. We denote that price function as

p = P (xM , yM , pa, πz). (11)

Stage 2. M ’s deposit purchases at stage 1 turned its initial extraction cost function C ′
M

into the cost function K ′
M defined by

K ′
M(xM , pa, πz) =















C ′
M(xM) for xM ≤ σM ,

K̃ ′
M(xM) for xM ∈ [σM , σ̃M ],

K̃ ′
M(σ̃M)− C ′

M(σ̃M) + C ′
M(xM) for xM ≥ σ̃M ,

(12)

where

σ̃M = σM +
∑

Ω

(ξj − σj), K̃ ′
M(xM) := C ′

M(σM)− C̃ ′(σM ) + C̃ ′(xM) and

ζ = C̃ ′(x) ⇐⇒ x =
∑

Ω

C
′−1
j (ζ)

Figure 2 illustrates the marginal cost functions C ′
M and K ′

M .11 The straight line 0D

in Figure 2 is the graph of C ′
M . After having purchased the deposits

⋃

N [σj , ξj]C′

j
at stage 1,

M ’s marginal cost function K ′
M is represented by the graph 0BGH . The line segment BG

on that graph, which is flatter than the segments 0B and GH , contains both M ’s deposits

[σM , ξM ]C′

M
and all acquired deposits

⋃

N [σj , ξj]C′

j
reordered according to extraction costs.

The line segment GH of the graph 0BGH results from shifting the line segment CD to

11The comparison of the Figures 2 and 1a reveals that they (approximately) illustrate a world economy

with the coalition and one country (N = {i}); the initial deposit endowments the coalition and the country

own are the same (C′

i = C′

M ).
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C ′
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Figure 2: Extraction cost curves of coalition M before and after its purchase of the deposits
⋃

N [σj , ξj]C′

j
at stage 1

the right by the amount
∑

N(ξj − σj). Thus, M ’s purchase of deposits changes its deposit

endowment from 0D to 0BGH . M chooses its fuel supply and demand by maximizing with

respect to xM and yM its welfare

UM(xM , yM , pa, πz) = BM(yM)−KM(xM , pa, πz)− p(yM − xM)

−H

[

xM +
∑

N

Sj(p, pa, πz)

]

−RM(pa, πz) (13)

subject to (11). The first-order conditions

∂UM

∂yM
= B′

M − p−

(

yM − xM +H ′
∑

N

S ′
j

)

∂P

∂yM
= 0, (14)

∂UM

∂xM

= −K ′
M + p−H ′ −

(

yM − xM +H ′
∑

N

S ′
j

)

∂P

∂xM

= 0 (15)

coincide with Harstad’s (2012) equations (6) and (7). Implicitly, these equations determine

M ’s optimal choice of xM and yM as functions of pa and πz. We denote the solution of (14)

and (15) by

xM = XM(pa, πz) and yM = YM(pa, πz). (16)

While at stage 3 the equilibrium fuel price depends on xM , yM , pa and πz, as shown in (11),

it now depends on pa and πz only,

p = P [XM(pa, πz), YM(pa, πz), pa, πz] . (17)
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Stage 1. We have to determine those deposits [xi, xi]C′

i
which each country i ∈ N sells

to the coalition with mutual gains from trade and which clear the deposit market I. M

aims at buying deposits the preservation of which fully reduces the climate damage. Hence,

M only buys some of those deposits, which are profitable, that is, which country i would

have extracted in the absence of deposit trading. Given the anticipated fuel price pa, the

interval with profitable deposits is [0, ξi]C′

i
, where ξi = ξi(pa) := C

′−1(pa).
12 Hence M ’s

purchase and subsequent preservation of [xi, xi]C′

i
secures full climate damage reduction only

if [xi, xi]C′

i
⊂ [0, ξi]C′

i
.13 Moreover, the inequality xi ≤ ξi must hold as equality, because there

is no other interval of deposits in [0, ξi]C′

i
of the same size as [xi, ξi]C′

i
, whose economic value

is smaller than that of [xi, ξi]C′

i
.14 These considerations make M ’s purchase (and country i’s

sale) of deposits equivalent to the choice of xi. To put it differently, we have to determine

zsi = ξi − xi, the ’number’ of deposits M buys in the interval [xi, ξi]C′

i
. In the Appendix A2

we prove

Lemma 1. (Equilibrium of the deposit market I)

Suppose pa, πz, ξ(pa), σi(pa, πz) from (7) and xM = XM(pa, πz) from (16) are given and

define

σ̂i(pa) := σi(pa, πz(pa)) = C
′−1
i (pa − πz(pa)), (18)

where πz = πz(pa), if and only if

πz = H ′

[

XM(pa, πz) +
∑

N

σj(pa, πz)

]

. (19)

Contingent on the anticipated fuel price pa, the deposit market I is in equilibrium, if and

only if the coalition purchases the deposits
{

[σ̂i(pa), ξi(pa)]C′

i

}

i∈N
.

Lemma 1 establishes that the deposit market is cleared,15 if xi = σ̂i(pa) and therefore

zsi = ξi(pa) − σ̂i(pa) is satisfied for all i ∈ N . Equation (19) provides the reason for our

interpretation of πz as the shadow price of climate damage and it implicitly specifies the

12See equation (7) above.
13Here we presuppose w.l.o.g. that the price pa is so low that the aggregate fuel supply XM (pa, πz) +

∑

N ξj(pa) leads to excessive climate damage.
14The economic value of the deposits in the interval [xi, ξi(pa)]C′

i
is the profit p(ξi(pa)−xi)−Ci(ξi(pa))+

Ci(xi) that would accrue to country i if it would extract and sell the fuel from these deposits instead of

selling the unexploited deposits to M .
15The countries in group N are price takers on the fuel market. They leave the decision about which and

how many deposits to buy to the coalition, but they do not sell deposits unless the sales price exceeds the

profits they could have made from exploiting instead of selling their deposits (profits foregone). If a deal

enhances the joint welfare of the trading partners, an agreement about their shares of the surplus is always

reached.
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shadow price πz, which we treated as given up to now, as a function of pa.
16 The specification

of πz by πz(pa) in (18) not only yields (19), but also determines the equilibrium values

xM = XM(pa, πz(pa)) := X̂M(pa), yM = YM(pa, πz(pa)) := ŶM(pa)

and p = P̂ (pa) := P [XM(pa, πz(pa)), YM(pa, πz(pa)), pa, πz(pa)] . (20)

Consistency requires equality of the fuel price pa that is anticipated at stage 1 and the fuel

price p that clears the fuel market at stage 3. Assuming that the price function P̂ from (20)

possesses a fixed point, we set p = pa. That completes the characterization of the solution

to the three-stage game.

It remains to examine the efficiency properties of the outcome. Efficiency requires

B′
i = B′

j for all i, j ∈ Ω and B′
i −K ′

i −H ′ = 0 for all i, j ∈ Ω. These equations are satisfied

for all i ∈ N due to p = pa, (6), (7) and (19). In view of (14) and (15), the equation

B′
M −K ′

M −H ′ = 0 is also satisfied, if and only if
(

yM − xM +H ′
∑

N

S ′
j

)

∂P

∂yM
= 0. (21)

If the coalition acts strategically on the fuel market, as assumed by design of the three-stage

game, we have ∂P
∂xM

= − ∂P
∂yM

6= 0. Hence B′
M − K ′

M − H ′ = 0, if and only if yM − xM +

H ′
∑

N S ′
j = 0. This condition is violated, in general. However, if the exceptional case

yi = xi for all i ∈ Ω and
∑

N S ′
j = 0 holds, the coalition prefers acting as a price taker - and

thus secures efficiency - although it has the option to exert market power.

Finally, we consider the interesting special case in which we drop the second stage by

assuming that the coalition acts as a price taker on the fuel market along with all other

countries. We simply generate that case by setting ∂P
∂xM

= − ∂P
∂yM

= 0 in (21) and find that

(14) and (15) then yield the efficiency condition B′
M − K ′

M − H ′ = 0. We conclude that

the outcome is efficient if the coalition acts as a price taker on the fuel market and that

conclusion is in line with our result in Proposition 1(ib).

The equilibrium fuel supplies can conveniently be illustrated in the Figures 1a and 2.

Suppose first, the coalition acts as a price taker in the fuel market, denote by an asterisk

the corresponding equilibrium, and substitute in both figures pa and pa − πz with p∗ and

p∗ − π∗
z , respectively. Then country i’s fuel production is point E in Figure 1a and M ’s fuel

production is point B in Figure 2. When M acts strategically, the equilibrium values of p

and p − πz differ from p∗ and p∗ − π∗
z . If we replace in both figures pa and pa − πz by the

new equilibrium prices the production points are again point E in Figure 1a and point B in

Figure 2.

16Obviously, πz = πz(pa) is the equilibrium deposit price of a perfectly competitive deposit market

(contingent on the anticipated fuel price pa).
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If M is a price taker on the fuel market, efficiency is secured no matter how different the

countries’ fuel supplies and demands are. In contrast, the outcome is inefficient, in general, if

the coalition acts strategically at stage 2 of the three-stage game. That observation raises the

question whether strategic action is beneficial from the coalition’s viewpoint. The answer is

in the affirmative because an agent who has the option to act strategically can always choose

that value of her policy parameter (here: the fuel supply) which she would have chosen as

a price taker. If we find that this agent does not choose the price-taking option, we know

that she is better off acting strategically than acting as a price-taker. We summarize the

conclusions in

Proposition 2 . (Three-stage game with deposit market I)

Consider the world economy with deposit market I.

(i) The deposit market clears, if and only if the coalition purchases the deposits {[σ̂i(pa),

ξi(pa)]C′

i

}

i∈N
.

(ii) If the coalition takes the fuel price as given, the outcome of the game is first-best.

Denoting the efficient equilibrium fuel price by p∗, the corresponding fuel supplies and

demands are x∗
i = σ̂i(p

∗) and yi = Di(p
∗) for all i ∈ Ω.

(iii) Denote by E the set of economies E = [Bi, C
′
i, H ]i∈Ω that are under consideration in the

present paper and by E ⊂ E the set of economies satisfying yM −xM +H ′
∑

N S ′
j = 0 in

the equilibrium of the game. The coalition’s strategic action implements the first-best,

if and only if E ∈ E .

(iv) If the coalition’s strategic action fails to implement the first-best, the coalition is better

off than in the first-best.

In spirit, Proposition 2(iii) is similar to Harstad’s (2012) Theorem 1. We will offer a detailed

discussion of the similarities and differences in Section 5 below. However, for the benefit of

our later comparison of the game with deposit market I and Harstad’s game, we rewrite and

interpret the message of Proposition 2(iii) in a more formal way by means of the following

definitions

Ωeq
I = set of equilibrium allocations on the deposit market I;

Ωsa = set of allocation implemented through the coalition’s strategic action (sa stands for

strategic action);

Ω∗ = set of first-best allocations;

E \ E set of economies in E that are not contained in E .
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Using these definitions, Proposition 2(iii) consists of the statements

∀E ∈ E : Ωeq
I ⇒ Ωsa ⊂ Ω∗ and ∀E ∈ E \ E : Ωeq

I ⇒ Ωsa ∩ Ω∗ = ∅. (22)

The second statement in (22) is as interesting as the first one. Since E is a very small

subset of E , one can say that, in general, the coalition’s strategic action fails to implement

the first-best solution in the game with deposit market I. That failure is in the coalition’s

interest because it benefits from its distortionary strategic action (Proposition 2(iv).

4 The three-stage game with deposit market II

The previous section demonstrated that the coalition benefits from strategic action on the

fuel market compared to price taking behavior in the market I (on which the coalition only

buys and the other countries only sell deposits). The present section aims to reconstruct

Harstad’s (2012) efficiency-despite-strategic-action result in a three-stage game with the

more general deposit market II.

Recall that according to Proposition 1(ic) the outcome of the game with the deposit

market II is efficient, if the coalition refrains from exerting market power and the markets for

fuel and deposits clear simultaneously. The challenge of the present section is to understand

why the coalition cannot benefit from strategic action, when a more general deposit market

concept is applied and market clearance is sequential. We will show that the key to Harstad’s

efficiency result is a pattern of deposit transactions, which ’redistributes’ the ownership of

deposits such that in the subsequent fuel market equilibrium the coalition’s fuel supply

exactly matches its fuel demand.

We follow the standard procedure of solving the game via backward induction.

Stage 3. As in the game of the previous section, M has already chosen its fuel supply and

demand xM and yM , and the fuel demand of the representative consumer of country i ∈ N

is yi = Di(p) from (6). At stage 3, i ∈ N is aware that its sales and/or purchases of deposits

at stage 1 changed its initial endowment of deposits from [0,∞[C′

i
to [0,∞[K ′

i
, where K ′

i,

∀ i ∈ Ω, denotes the marginal cost function after clearance of the deposit market.17 Choosing

an arbitrary country k ∈ N , there exist functions K ′
i after stage 1 that satisfy equation (8)

for all i ∈ N, i 6= k, and

K ′
k(xk, pa, πz) :=

{

K̃ ′
k(xk) for xk ≤ σ̃k,

C ′
k(ξk)− C ′

k(σ̃k) + C ′
k(xk) for xk ≥ σ̃k,

k ∈ N, (23)

17We use the same functional sign K ′

i as in the previous section for notational relief.
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where σ̃k := σk + (σM − DM) and where K̃ ′
k is a weakly monotone increasing function on

the domain [0, σ̃k] that results from reordering the marginal extraction costs of the deposits

contained in [0, σk]C′

k
∪ [DM , σM ]C′

M
. The corresponding fuel supply functions satisfy (10)

for i ∈ N, i 6= k, and

Sk(p, pa, πz) =















K̃
′−1
i (p) for p ≤ C ′

k(σk),

σ̃k for p ∈ [C ′
k(σk), pa],

C
′−1

k [p− C ′
k(ξk) + C ′

k(σ̃k)] for p ≥ pa,

k ∈ N. (24)

In view of (6), (9) and (24), the fuel market equilibrium condition is

xM +
∑

N

Sj(p, pa, πz) = yM +
∑

N

Dj(p). (25)

Equation (25) yields the equilibrium fuel price as a function of xM , yM , pa and πz, all of

which have been determined earlier in the game. We denote that price function as

p = P (xM , yM , pa, πz). (26)

Stage 2. The analysis of stage 2 is the same, in qualitative terms, as in the last section.

The only difference is that we replace the function K ′
M from (12) with the coalition’s marginal

extraction cost function18

K ′
M(xM , pa, πz) =















C ′
M(xM ) for xM ≤ DM ,

K̃ ′(xM) for xM ∈ [DM , x̃M ],

K̃ ′(x̃M)− C ′
M(x̃M) + C ′

M(xM) for xM ≥ x̃M ,

(27)

where

K̃ ′(xM) := C ′
M(σM)− C̃ ′

M(DM) + C̃ ′(xM ), x̃M := σM +
∑

Ω

(ξj − σj) and

ζ = C̃ ′(x) ⇐⇒ x =
∑

Ω

C
′−1
j (ζ)

The stage 2 of the present game is fully characterized by the equations (14) through (17).

Stage 1. At stage 1, the following set of bilateral deposit transactions is carried out.

Deposit purchase A: The coalition buys the deposits [σi, ξi]C′

1i
from each country i ∈ N .

18With a slight abuse of notation, we use the same functional sign K ′

M for the functions in (12) and (27).
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Deposit purchase B: The coalition sells the deposits [DM , σM ]C′

M
to some country k ∈ N ,

if σM > DM ; otherwise it buys the amount DM − σM > 0 of deposits with extraction

costs less than or equal to pa − πz from some country k ∈ N . 19,20

The deposit purchases A are the coalition’s deposit purchases in the game of the last section.

These deposits [σi, ξi]C′

1i
, ∀ i ∈ N , are profitable but socially inefficient, and they therefore

ought to be preserved. In contrast, the deposits B are profitable and socially efficient and

hence ought to be exploited.21 With regard to efficiency, it is irrelevant, however, whether

the coalition or any other country k ∈ N exploits them.22 We have shown in Section 3 that

it is possible to carry out the deposit purchases A with mutual gains from trade. This is

slightly different with the deposits B. If σM > DM , country k is willing to buy the deposits

B when the price is slightly lower than the profit it can make by exploiting them itself. If

σM < DM , the coalition is willing to buy the amount DM − σM of deposits with extraction

costs less than or equal to pa−πz at a price that is slightly higher than the selling country’s

profits foregone.23

To ease the exposition, we restrict our focus on cases in which the deposit purchase

B is a sale (which we nevertheless denote as purchase B for convenience of notation). The

inequality σM > DM , or more precisely σM(pa, πz) > DM(pa), will be satisfied in economies

characterized by σM (p∗, πz(p
∗)) > DM(p∗), if the anticipated values (pa, πz) are sufficiently

close to (p∗, πz(p
∗)).

The Figures 1a and 2 illustrate the marginal extraction cost curves after the deposit

purchases A and B in an economy with the coalition and N = {i}. As described above,

the curves 0BEF in Figure 1a and 0BGH in Figure 2 represent the marginal extraction

cost curves of country i and the coalition, respectively, after the coalition has purchased the

deposits [σi, ξi]C′

i
(=deposits A) from country i. By presupposition, the purchase A results

19Suppose that σM < DM and that there is a country k ∈ N with a sufficiently large endowment of

deposits with costs equal to or less than pa − πz . Then one possible purchase B is that the coalition buys

the deposits [x, σk]C′

k
⊂ [0, σk]C′

k
, where x := σk + σM −DM .

20Our specification of purchase B follows Harstad’s (2012, p. 93) observation that efficiency is attained

if we make the coalition a nontrader of fuel through a suitable deposit purchase or sale. In his Lemma 2,

Harstad requires all non-coalition countries to become nontraders as well. For details about how one can

extend purchase B to make all countries nontraders, see Appendix A3.
21To avoid clumsy wording, we refer to the deposits in the deposit purchase A[B] also as deposits A[B].
22Consequently, there may be more than one country k to whom the coalition sells some of the deposits

B (if σM < DM ) or from whom the coalition buys some of the deposits B (if σM > DM ). For convenience

of exposition, we keep supposing that the deposit transactions B are between one country k ∈ N and the

coalition.
23Sellers and buyers of deposits with extraction costs less than or equal to pa − πz are indifferent with

respect to making the deal, if the price is exactly equal to the seller’s profits foregone.
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in σi < Di = xII
i and σM > DM = xII

M . Hence, the purchase B requires the coalition to

sell its deposits [DM , σM ]C′

M
to country i. After that transaction, the marginal extraction

curves are 0AKLM in Figure 1a for country i and 0APQR in Figure 2 for the coalition.

Consistency requires equality of the fuel price pa anticipated at stage 1 and the fuel

price p that clears the fuel market at stage 3. We assume that the price function P̂ possesses

a fixed point, i.e. we set p = pa, and denote the equilibrium price by p = po. Appendix A4

shows that the equilibrium fuel price is p = pa = p∗ implying that the equilibrium allocation

is first-best in the game with deposit market of type II and a price-taking coalition. This

’Coasean’ efficiency result remains valid with any number and size of additional bilateral de-

posit trades between the countries in group N as long as the deposits traded have (marginal)

extraction costs that are lower than or equal to pa − πz (Harstad 2012, p. 104). Harstad’s

Theorem 1 also answers in the affirmative the question whether efficiency can be retained

when the deposit purchases A and B are made and the coalition acts strategically on the

fuel market. We summarize his results in

Proposition 3 . (Harstad 2012)

(i) If the coalition takes the fuel price as given in the world economy with deposit market

II, the equilibrium of the game is efficient (Harstad 2012, p. 104).

(ii) The set of equilibrium allocations on the deposit market II, Ωeq
II , is non-empty in every

economy satisfying the assumptions of the present paper: ∀E ∈ E : Ωeq
II 6= ∅.

(iii) In every equilibrium of the deposit market II the coalition’s strategic action implements

the first-best: Ωeq
II ⇒ Ωsa ⊂ Ω∗ (Harstad 2012, Theorem 1).

5 An assessment of Harstad’s Theorem 1

By definition, the deposit market II is in equilibrium, if the climate damage externality is

fully internalized. This is true independent of whether the coalition seeks to influence the

fuel price. In Harstad’s Theorem 1 the equilibrium of the deposit market II is a necessary

condition for the solution of the three-stage game. It follows that if the coalition does influ-

ence the fuel price and thus distorts the allocation, the outcome is obviously incompatible

with the presupposition that the deposit market II is in equilibrium. The definitional link

between equilibrium and efficiency excludes the possibility of an inefficient equilibrium and

hence an inefficient outcome of the game. As our game model of Section 3 shows, there is

no compelling reason for an equilibrium concept that requires efficiency by definition.

For the better understanding of Harstad’s Theorem 1, it is helpful to compare the

18



games with deposit market I from Section 3 and deposit market II from Section 4. In

formal terms, Harstad’s Theorem 1 - as reconstructed in our Propositions 3(ii) and 3(iii) -

states that

∀E ∈ E : Ωeq
II ⇒ Ωsa ⊂ Ω∗, (28)

whereas Proposition 2(iii) states

∀E ∈ E : Ωeq
I ⇒ Ωsa ⊂ Ω∗ and ∀E ∈ E \ E : Ωeq

I ⇒ Ωsa ∩ Ω∗ = ∅,

as observed above in (22). At first sight, the comparison of (28) and (22) suggests that the

market concept II is superior to the market concept I with respect to efficiency, because the

former concept prevents inefficiencies of strategic action in every economy, while the latter

achieves that result only in the small set of economies E . In all economies E \E , the outcome

of the game is inefficient, if the deposit market is of type I, and it is efficient, if the market

is of type II. As shown in Section 4, the deposit market II cannot attain an equilibrium

unless the coalition makes a purchase (or sale), denoted deposit purchase B, in addition

to its deposit purchases it makes in the deposit market I (denoted deposit purchases A in

Section 4). The crucial question is whether it is in the coalition’s self-interest to carry out

that extra deposit purchase B.

To answer that question we consider and compare the following games.

Game G(Ans): The coalition purchases the deposit A and implements the first-best by

refraining from strategic action on the fuel market.

Game G(As): The coalition purchases the deposit A and distorts the allocation to its own

favor by acting strategically on the fuel market.

Game G(AB): The coalition purchases the deposit A and B and implements the first-best,

because the purchase B rendered its strategic action ineffective.
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Figure 3: Welfare implications of different games
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The games G(Ans) and G(As) have been analyzed in Section 3 and the game G(AB)

has been analyzed in Section 4. In what follows we will discuss and compare the welfare

implications of these games by means of the Figures 3a and 3b.24 The vertical axis of these

figures measures the coalition’s welfare, UM , and the horizontal axis measures the aggregate

welfare, UN , of all non-coalition countries. The negatively sloped straight line WW is the

welfare frontier.

Consider first the game G(Ans). Since we require the gains from bilateral deposit trades

to be shared among the trading partners, we consider two polar cases. In the first case, the

coalition reaps (almost) all trade gains by purchasing the deposits A for (slightly more than)

the seller country’s profits foregone. In Figure 3a, this case corresponds to the move from

the origin 0 (laissez-faire) to the point D on the welfare frontier WW . In the second polar

case, (almost) all gains from deposit trades go to the non-cooperative countries. That case

corresponds to a move from the origin 0 to a point such as D on the welfare frontier in

Figure 3b. All intermediate cases lie on the line segment DD of the welfare frontier.

If we take the polar solution D of the game G(Ans) as our point of departure, the

outcome of game G(As) is illustrated in Figure 3a by the move from D to E. As argued

in Section 3, that move is welfare-increasing for the coalition, welfare-reducing for the non-

coalition countries, and it is wasteful because the point E lies below the welfare frontier.

Figure 3b generalizes the outcome of the game G(As). If all gains from deposit trade in

game G(Ans) accrue to the non-coalition countries, the result of strategic action in game

G(As) is the move from D to E. Consequently, the line segment EE represents all possible

outcomes of game G(As).

Next, assume the economy is in the equilibrium point D of the game G(Ans) in Figure

3a and suppose some country considers buying the deposits B. The minimum price the

coalition demands is ∆Us
M in Figure 3a, because it will not strike any bargain in addition

to its purchases A that makes it worse off than in the outcome of game G(As).
25 More

generally, the range of feasible prices for the purchase B is the interval ]∆Us
M ,∆Us

M +∆Us
N [,

which translates in outcomes on the line segment FF on the welfare frontier of Figure 3a.

Any such outcome is better than the outcome at the equilibrium E of game G(As) for both

the coalition and for the group of non-coalition countries. However, the question is whether

an individual country is willing to pay a price in the range ]∆Us
M ,∆Us

M +∆Us
N [, which must

be paid in order to induce the coalition to sell the deposits B.

24Table 1 in the Appendix A5 presents the welfare implications for the coalition and the group of non-

coalition countries in a systematic way.
25If the deposit purchase B requires the coalition to buy deposits, then the selling country likely needs to

sell deposits at some negative price. Recall from Section 4 from the definition of the deposit purchase B.
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This scenario gives rise to an interesting strategic ’sub-game’ among the non-coalition

countries. Suppose first - as we did up to now - that all countries act independently without

coordination or cooperation. Then each country has strong free-rider incentives to let some

other country purchase the deposits B and benefit without contributing. If the number of

non-coalition countries is large, it is plausible that the price the coalition demands for selling

the deposits B is so high that the buying country is worse off than in the equilibrium of the

game G(As). Put differently, it is plausible that abstaining from buying the deposits B is

the dominant strategy for all countries (prisoner’s dilemma). Even if the coalition’s price

for selling the deposits B is lower than the buying country’s welfare gains from restoring

efficiency, the country will be reluctant to buy because of strong free-rider incentives. Each

country would benefit from the purchase without contributing to the costs. Our conclusion

therefore is that an equilibrium of the game G(AB) cannot be attained under the assumption

that the countries outside the coalition act non-cooperatively.

Hence the only way to secure an equilibrium of the game G(AB) is to assume co-

operation among all non-coalition countries. At stage 1 we then have a bargaining game

between two groups of countries. One group is the ’climate coalition’ we have considered

throughout the paper, namely the group of countries that suffer from climate damage and

pursue a cooperative climate policy of purchasing deposits for preservation. All countries

not suffering from climate damage now also form a group, treated as a single agent, whose

only purpose is to reap some benefits from preventing allocative distortions, which would

result from the climate coalition’s strategic action in game G(As).

The bargaining set of the ’sub-game’ between these two groups is illustrated by the

shaded area EEFG in Figure 3b the construction of which is straightforward from our

preceding discussion of the Figures 3a and 3b. One can then apply a standard solution

concept of the cooperative game theory, e.g. the Nash bargaining solution, which selects

some equilibrium point on the segment FG of the welfare frontier in Figure 3b. The closer

the equilibrium point is to the point F [G], the larger is the climate coalition’s [the other

group’s] share of the gains from deposit trade. An interesting additional observation is that

in order to make an agreement about some equilibrium point on the line segment FG in

Figure 3b the groups need not carry out the deposit purchase B. One reason why the group

of non-coalition countries might want to insist on the purchase B is uncertainty about the

coalition’s willingness to comply with the agreement. However, compliance is not an issue

in Harstad’s analysis.

Summing up, we find it highly implausible to argue that the game G(AB) can be played

without coordination and cooperation among the non-coalition countries. It is also highly

implausible, however, to assume that the non-coalition countries move from independent
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action to full cooperation to reap the benefits from restoring efficiency. While this is a

possibility in a frictionless world, that assumption is not common practice in economic

analyses of markets with strategically acting agents.26 We summarize our results in

Proposition 4 .

(i) Suppose the non-coalition countries act non-cooperatively in the deposit market II. Then

that market does not clear and the coalition’s strategic action fails to implement the

first-best.

(ii) Suppose the non-coalition countries cooperate and bargain with the coalition in the de-

posit market II. If the bargaining solution is Pareto-optimal, then the coalition’s strategic

action implements the first-best.

6 Concluding remarks

As pointed out in the introduction, the motivation for the present paper is to understand

better Harstad’s (2012) ’efficiency-despite-strategic-action result’. His theorem appears to

contradict conventional wisdom according to which exerting market power always makes

the strategically acting agent better off than price taking. Our strategy of analysis was

to decompose the transactions on Harstad’s deposit market (market II) into the sequential

purchases A and B. That enabled us to show that making the deposit purchase B is in

the coalition’s interest only, if it is fully compensated for the welfare increase it would

have experienced in case of strategic action. It is grossly implausible that any individual

independently acting non-coalition country would make such a deal which likely reduces its

welfare while it makes all other non-coalition countries better off. We conclude, therefore,

that the only way to rationalize Harstad’s efficiency result is to assume full cooperation on

the part of non-coalition countries along with the standard idea that two bargaining partners

always find a way to exhaust all gains from bargaining.

It is a long standing insight that allocative inefficiencies resulting from non-cooperative

behavior can be fixed by adopting a cooperative approach. Evidence from economic activities

in the real world also suggests, however, that such cooperation often fails due to various

barriers that admittedly are not captured in the formal model. We therefore consider it

more realistic that an agent makes use of – and benefit from – her market power at the cost

of efficiency than assuming a collective bargaining approach to implement the first-best.

26For example, take the textbook (partial equilibrium) monopoly. The demanders could cooperate and

induce the monopolist to produce the perfectly competitive allocation by paying her (slightly more than)

the monopoly profit foregone.
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Appendix

A1: Extraction costs and endowment of deposits

For analytical convenience, we assume that each deposit contains a single (small) unit of

fuel. The ordering of country i’s deposits according to costs results in a step function, say

Ci : N → R+, such that Ci(xi) is the cost of extracting the unit of fuel from the xth

i deposit27

and Ci(xi) ≤ Ci(xi+1) for all xi ∈ N (where we exclude the equality sign for analytical relief).

Finally, we replace the step function Ci(xi) by its real-number approximation, denoted C ′
i :

R+ → R+. With a slight abuse of notation we refer to C ′
i(xi) as the extraction cost of

country i’s xth

i deposit - which is the deposit with the xth

i lowest extraction cost.28

A2: Proofs

Proof of Proposition 1:

To prove Proposition 1 consider first the case of competitive markets for fuel and deposits

with prices p and pz, respectively. If the countries i ∈ N would ignore the market for

deposits, they would choose their fuel supply as in (2) such that C ′
i(xi) = p or

xi = ξi (p) := C
′−1
i (p) . (A1)

If they take advantage of the deposit market, they maximize with respect to yi and zsi

Ui = Bi(yi)− Ci (ξi (p)− zsi )− p (yi − ξi (p) + zsi ) + pzz
s
i (A2)

and obtain

yi = B
′−1
i (p) =: Di (p) and zsi = Zs

i (p, pz) = ξi (p)− σi(p, pz) ∀ i ∈ N, (A3)

where σi(p, pz) := C
′−1
i (p− pz). The coalition maximizes with respect to xM , yM and zdM

UM = BM(yM)− CM (xM)− p (yM − xM)−H

(

xM +
∑

N

ξj (p)− zdM

)

− pzz
d
M (A4)

which yields

yM = B
′−1

M (p) = DM (p) , xM = σM(p,H ′) := C
′−1

M (p−H ′)

and zdM = Zd
M(p, pz) = σM (p,H ′) +

∑

N

ξj (p)−H
′−1(pz). (A5)

27We need not care about an upper bound of the domain of the function Ci because deposits with extremely

high extraction costs will never be exploited under realistic conditions.
28Hence the primary concept is the marginal cost function C′

i rather than the total cost function Ci.

Differently put, in the deposit-trading perspective we derive Ci from C′

i rather than C′

i from Ci.
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It is straightforward that setting p = p∗ = λ∗
f and pz = p∗z = λ∗

z = H
′∗ in (A3) and (A5) lets

the equations in (A3) and (A5) coincide with the equations (5). In particular, we have

y∗i = Di (p
∗) , σ∗

i = σi(p
∗, p∗z) ∀ i ∈ Ω, ξ∗i = ξi(p

∗) ∀ i ∈ N,

zs∗i = Zs
i (p

∗, p∗z) = ξ∗i − σ∗
i ∀ i ∈ N, zd∗M = Zd

M(p∗, p∗z) = σ∗
M +

∑

N

ξ∗j −H
′−1(p∗z). (A6)

To prove Proposition 1(ib), suppose the first-best allocation (5) is given and assume

the price p∗ clears the fuel market. We have to show that the coalition can buy the deposits

zs∗i = ξ∗i − σ∗
i from country i ∈ N at a price that is strictly beneficial for both. Country

i is obviously willing to sell, if it receives a payment that is slightly higher than the profit

p∗zz
∗
i −Ci(ξ

∗
i ) +Ci(σ

∗
i ) it would have received in case of keeping its deposits [σ∗

i , ξ
∗
i ]C′

i
. That

profit foregone is smaller than the payment p∗zz
s∗
i country i gets for its deposit sale in the

competitive world economy of Proposition 1(ia), if and only if the functions C ′
i are strictly

increasing. The coalition’s maximum willingness-to-pay for the deposits zd∗M =
∑

N zs∗j is

the value of the climate damage reduction H
(

σ∗
M +

∑

N ξ∗j
)

−H
(

σ∗
M +

∑

N ξ∗j − zd∗M
)

. That

value exceeds M ’s expenditure p∗zz
d∗
M in the competitive world economy, if and only if the

damage function H is strictly increasing. We conclude that there is room for agreements

on prices for selling/buying zs∗i such that the deal is mutually advantageous for both the

coalition and country i. The deposit market I is cleared (as well as the deposit market II),

because when all countries i ∈ N have sold their deposits [σ∗
i , ξ

∗
i ]C′

i
there exists no pair of

countries that would both strictly benefit from trading some additional deposits at some

price.

Proposition 1(ic) is a special case of Proposition 1(ib). �

Proof of Lemma 1:

Solve the Lagrangean

L(zs1, . . . , z
s
N , z

d
M , λz) =

∑

N

[

Bj(yj)− Cj(ξi(pa)− zsj )− pa(yj − ξj(pa) + zsj )
]

+BM(yM)− CM(XM(pa, πz))− pa(yM −XM(pa, πz))

−H

[

XM(pa, πz) +
∑

N

ξj(pa)− zdM

]

− πz

(

zdM −
∑

N

zsj

)

(A7)
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with respect to zs1, . . . , z
s
N , z

d
M and λz for predetermined pa, πz, yM and yi ∀ i ∈ Ω. The

first-order conditions yield

C ′
i(xi) = pa − λz and hence xi = σi(pa, λz) := C

′−1
i (pa − λz) ∀ i ∈ N (A8)

and λz = H ′

[

XM(pa, πz) +
∑

N

σj(pa, λz)

]

. (A9)

(A9) implicitly characterizes λz as a function of pa and πz, and this function possesses a fixed

point, denoted λz = πz = πz(pa), for all pa in the relevant sub-domain. Under consideration

of λz = πz = πz(pa), we determine the solution of (A7) as

zsi = Zs
i (pa) := ξi(pa)− σ̂i(pa) ∀ i ∈ N, (A10)

where σ̂i(pa) := σi(pa, πz(pa)). That M is able to purchase Zi(pa) at a price that makes both

parties better off as described in the paragraph following the equations (A6). �

Derivation of (9):

Maximizing ui = Bi(yi)−Ki(xi, pa, πz)− p(yi − xi) +Ri(pa, πz) with respect to xi yields

K ′
i(xi, pa, pz) = p.

Suppose that xi ≤ σi(pa, πz) = C
′−1
i (pa − πz), then we obtain

C ′
i(xi) = p ⇐⇒ xi = C

′−1
i (p)

for p ≤ pa − πz.

Suppose that xi ≥ σi(pa, πz) = C
′−1
i (pa − πz), then we get

C ′
i(ξi)− C ′

i(σi) + C ′
i(xi) = p ⇐⇒ xi = C

′−1
i [p− C ′

i(ξi) + C ′
i(σi)]

for p ≥ pa (due to C ′
i(σi)− C ′

i(ξi) = −πz). �

A3: Bilateral deposit trades that make all countries nontraders of

fuel in the equilibrium of the game

Suppose all deposit purchases A and B are made. Then each country i ∈ N has sold

the deposits [σi, ξi]C′

i
and country k ∈ N has purchased the deposits [DM , σM ]C′

M
. The

profitable and socially efficient deposits are now allocated to the countries as follows. Each
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country i ∈ N, i 6= k, owns [0, σi]C′

i
and country k ∈ N owns [0, σk]C′

k
∪ [DM , σM ]C′

M
of

these deposits. It is convenient to choose a different but equivalent representation of the set

[0, σk]C′

k
∪ [DM , σM ]C′

M
by reordering the deposits in that set according to extraction costs.

We thus generate a weakly increasing marginal extraction cost function, say K̃ ′
k, on the

domain [0, σk + σM −DM ]K̃ ′

k
. Using that notation the set of profitable and socially efficient

deposits owned by all countries of group N is S := [0, σk + σM −DM ]K̃ ′

k
∪
⋃

j∈N,j 6=k[0, σj ]C′

j
.

The fuel price is unaffected by any relocation of these deposits between the countries and

all countries are indifferent with respect to such relocations as long as the sales are priced at

profits foregone. Hence, any partition of S into N subsets can be attained as the result of

(additional) deposit exchanges priced at profits foregone. Harstad’s Lemma 2 requires the

very specific redistribution of ownership, which allocates to each i ∈ N a subset of S which

contains

σ̃i = σ̃i(pa, πz) :=
σk(pa, πz) + σM(pa, πz)−DM(pa) +

∑

j∈N,j 6=k σj(pa, πz)
∑

N Dj(pa)
Di(pa). (A11)

deposits, where the numerator in (A11) is the ’number’ of deposits contained in S. It is easy

to see that (A11) yields σ̃i(pa, πz) = Di(pa) in the equilibrium of the game.

A4: Efficiency of outcome with deposit market II and price-taking

coalition

Assume that the price function P̂ from (26) possesses a fixed point, i.e. set p = pa, and

denote the equilibrium price by p = po. Collecting the information from the preceding

analysis, the fuel supplies and demands are

• xo
M = X̂M(po), yoM = ŶM(p0) from (20) due to the deposit purchases A and B;

• yoi = Di(p
o) ∀ i ∈ N from (6);

• xo
i = σ̂i(p

o) for i ∈ N, i 6= k, from (7) due to the deposit purchases A;

• xo
k = σ̃k(p

o) = σ̂k(p
o) + (σM(po)−DM(po)) due to the deposit purchases A and B.

Consider first the special case in which the coalition takes fuel prices as given – as do all

countries – and suppose that po = p∗. We then have

xo
M = σ̂M (p∗)− (σ̂M(p∗)−DM(p∗)) = DM(p∗) and yoM = DM(p∗);

xo
i = σ̂i(p

∗) ∀ i ∈ N, i 6= k and yoi = Di(p
∗) ∀ i ∈ N ;

xo
k = σ̂k(p

∗) + (σ̂M(p∗)−DM(p∗)) for k ∈ N.















(A12)

From (A12) follows
∑

Ω
(xo

j − yoj ) =
∑

Ω
(x∗

j − y∗j ) = 0, where x∗
i = σ̂i(p

∗) and y∗i =

Di(p
∗) ∀ i ∈ Ω characterize the fuel market equilibrium in the efficient equilibrium of

the game with deposit market II when the coalition takes the fuel price as given.

28



A5: Welfare implications in the games

Coalition Group N

GAME G(Ans)

(Purchases A without

strategic action)

Best for coalition 1 UM(Ans) = U
A

M UN (Ans) = UA
N

Worst for coalition 2 UM(Ans) = UA
M UN (Ans) = U

A

N

Intermediate 3 UM(Ans) = UA
M(λ) = λU

A

M + (1− λ)UA
M UN (Ans) = UA

N(λ) = λUA
N + (1− λ)U

A

N

GAME G(As)

(Purchases A plus

strategic action)

Best for coalition 4 UM(As) = U
A

M +∆Us
M UN (As) = UA

N −∆Us
M −∆Us

N

Worst for coalition 5 UM(As) = UA
M +∆Us

M UN (As) = U
A

N −∆Us
M −∆Us

N

Intermediate 6 UM(As) = UA
M(λ) + ∆Us

M UN(As) = UA
N (λ)−∆Us

M −∆Us
N

GAME G(AB)

(Purchases A+B no

strategic distortion)

Best for coalition 7 UM(AB) = U
A

M +∆Us
M +∆Us

N UN (AB) = UA
N −∆Us

M −∆Us
N

Worst for coalition 8 UM(AB) = UA
M +∆Us

M UN (AB) = U
A

N −∆Us
M

Intermediate 9 UM(AB) = UM(λ) + ∆Us
M + µ∆Us

N UN(AB) = UA
N (λ)−∆Us

M + (1− µ)∆Us
N

Table 1: Welfare implications of three different games in comparison (based on the Figures 3a and 3b)

(U
A

M + UA
N = UA

M + U
A

N = first best; λ ∈ [0, 1];µ ∈ [0, 1])
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