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SIGACT News Online Algorithms Column 25:
Online Primal Dual: Beyond Linear Programs

Zhiyi Huang*

1 Introduction

Due to the wide range of applications of online combinatorial optimization, developing techniques
for designing and analyzing online algorithms has been an active area in theoretical computer
science for decades. In this paper, we will focus on the online primal dual technique developed by
Buchbinder and Naor [10]. Informally, the online primal dual technique designs and analyzes online
algorithms based on linear program relaxations and duality. Linear programs and duality are one
of the most fundamental tool in (offline) combinatorial optimization and online primal dual can be
viewed as their online counterpart. This technique has given nearly optimal online algorithms for
many problems, including online paging and caching [3, 5], online packing and covering [11], online
matching [12, 16], etc.

In this paper, we will talk about some recent research on extending the online primal dual
technique beyond linear programs. The extension allows us to apply the technique to problems that
do not have natural linear program relaxations. For example, consider the problem of scheduling
jobs on speed-scalable machines that can run at different speeds subject to different energy costs.
Convex programs can naturally model energy costs while not finite-size linear programs can do so.

Furthermore, it allows us to design online algorithms with better competitive ratios for problems
with linear program relaxations by relaxing some of the linear constraints with convex cost func-
tions in the objective. The hardness of some online problems, e.g., online combinatorial auction,
comes from having a fixed amount of resources while not knowing the number of online requests
that demand the resources. In many practical scenarios, however, it is possible to get more re-
sources subject to extra costs. Mathematically, this is equivalent to replacing the linear resource
constraints in the linear program relaxation with convex cost functions in the objective. The prob-
lem with relaxed resource constraints often admits a better competitive ratio (with nice-behaving
cost functions) than the original problem. For example, the competitive ratio of online combinato-
rial auction with hard resource constraints is at least logarithmic [6, 8], while the relaxed problem
with, e.g., polynomial cost functions, admits constant competitive online algorithms [7, 18].

In the rest of this paper, we will focused on convex programs and Fenchel duality in the non-
stochastic setting. Readers are also referred to other interesting work along this line, including
using the online primal dual technique (or dual fitting) with Lagrangian duality [2, 17, 22|, and
online stochastic convex optimization [1].

Organization We will first recap the online primal dual technique (Section 2), and explain its
extension to convex programs (Section 3). Then, we will talk about three applications of the

*Department of Computer Science, the University of Hong Kong. Supported in part by the Research Grant
Council of Hong Kong (HKU272002/14E). Email: zhiyi@cs.hku.hk.

ACM SIGACT News 105 December 2014, vol. 45, no. 4



extension: online combinatorial auction with production costs [18] (Section 4), online matching
with concave returns [15] (Section 5), and online scheduling with speed scaling [14] (Section 6).

2 Online Primal Dual in a Glimpse

We will briefly recap the online primal dual technique for linear programs by demonstrating its
application on the ski rental problem (e.g., [9, 12]). In the ski rental problem, a skier arrives at a
ski resort but does not know the number of days of his stay. Every day, the skier needs to decide
whether to rent skis at a cost of $1 or to buy skis at a cost of $B. We assume for simplicity that
B is a positive integer. The goal is to minimize the total cost.

We present the primal and dual linear programs of the ski rental problem in Figure 1. z is
the indicator of whether the algorithm buys skis, and y; is the indicator of whether the algorithm
rent skis on day ¢. For simplicity, we will discuss solving the linear programs online to minimize
the expected primal objective value. Readers are referred to the survey by Buchbinder and Naor
[9, Section 3| for an online rounding algorithm which convert the online fractional solution into a
randomized integral algorithm of the ski rental problem with the same competitive ratio. Roughly
speaking, the fractional value of x denotes the probability that the algorithm would buy skis and
the fractional value of y; denotes the probability that the algorithm would rent skis on day t.

.. T e e . T
. minimize _1
maximize B -a+ 30 v niice S e
subject to =+ 1y > 1 t=1,...,T subject to oy <1 t=1,...,T
T
Zt:l o < B

Figure 1: Primal and dual linear programs of the ski rental problem

Online Primal Dual Framework As the input data arrives over time, more variables and
constraints of the primal and dual programs are revealed. On each day ¢, a new primal variable y; >
0, a new primal constraint z+y; > 1, and a new dual variable 1 > «; > 0 arrive. Online primal dual
algorithms maintain a feasible primal assignment and a feasible dual assignment simultaneously.
Let A¢P and A;D be the changes of the primal and dual objectives respectively on day ¢t. The goal
is to satisfy

AP < F-AyD (1)

for some fixed parameter F' > 1. If (1) holds, then the algorithm is F' competitive because the final
primal objective P is at most F' times that of the final dual objective D, and by weak duality D is
less than or equal to the optimal primal objective.

Relaxed Complementary Slackness It is known that in the offline primal and dual solutions,
the primal/dual variables and the corresponding dual/primal constraints satisfy complementary
slackness (e.g., [13]), i.e., a primal/dual variable must be zero unless the corresponding dual/primal
constraint is tight. Specifically,

(a) = must be zero unless ZtT:1 o = B;

(b) y+ must be zero unless a; = 1;
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(¢) oy must be zero unless x + y; = 1.

In the online problem, however, it is not possible to satisfy all complementary slackness con-
ditions exactly throughout (in particular, condition (a) and (c)). Online primal dual algorithms
are therefore driven by satisfying these conditions approximately, where the value of a primal/dual
variable depends on the tightness of the corresponding dual/primal constraint. Concretely, consider
the following relaxed conditions (condition (b) remains the same):

(a’) = depends on the tightness of Zle oy < B, i.e., is a monotone function of Zthl o

(¢’) ay must be zero unless x + y, = 1 at time ¢ (the constraint may have slack in the future
because the algorithm may increase x).

Online Primal Dual Algorithms from Relaxed Complementary Slackness On the #-th
day, ¢ = 1,...,T, first consider the new dual variable a;. To maximize the dual objective, let
a; = min{l, B — Zi;% a;}. Recall that B is an integer, this is equivalent to letting o; = 1 if t<B
and o; = 0 otherwise. As a result, >, oy increases by 1 on each day t < B and the algorithm
increases z accordingly (condition (a’)). Let z; be the value of x after day ¢ for £ = 1,..., B, and
xog = 0. After day B, ), a; and, thus, the value of x remain constant. Further, let y; = 1 — x;
(condition (c’) and to minimize the primal objective). Finally, since we let a; = 0 for ¢ > B, we
must have y; = 0 and = 1 on any day t > B (condition (b)) and, thus, z5 = 1.

In sum, for every monotone sequence x¢, t = 0,1,..., B, such that xg = 0 and zp = 1, there is
an online primal dual algorithm as follows:

1. Ondayt=1,...,B, let o =1, x =23 and y; = 1 — ;.

2. On day ¢ > B, let a; = 0,  remains the same (i.e., equals 1), and y; = 0.

Online Primal Dual Analysis It remains to find the best sequence {z;};=1 . g such that (1)
holds with the smallest possible F' > 1. Note that both the primal and dual objectives remain the
say after day B, so it suffices to analyze (1) for the first B days. On each day t = 1,...,B, x
changes from x;_1 to x4, and y; = 1 — x;. So the change of primal objective is

AtP:B'(mt—l't,1)+(1—$t) :(B—l)'l‘t—B‘fL'tfl‘i‘l .
On the other hand, the algorithm sets ay = 1. So the change of dual objective is
A¢D =1 .

So (1) becomes (B — 1) 2y — B -24—1 < F — 1. Reorganizing terms, we have that z; + F — 1 <
%(:ﬂt,l + F — 1) and, thus,

t t
2 < (55) @+ F=1) - (F-1)= (%) -)EF -1 (2)
Let e(B) = (%)B. We have e¢(B) > e and limp_,;» e(B) = e ~ 2.718. By zp = 1 and the above
inequality, we have F' > e(eg)lel Let F' = e(e ]%t?l and choose x; such that (2) holds with equality.

Then, we have an online primal dual algorithm with competitive ratio % < 55 ~ 1.582.
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3 Convex Programs and Fenchel Duality

Conjugate Let f: R’} — R be a convex function. Its conver conjugate is defined as

f(x*) = mai(izrélize {{z,2*) — f(2)} .

_a
For example, if f(z) = 12 is a polynomial, then f*(2*) = (1 — 2)2*o=T is also a polynomial.
For simplicity, we will further assume that f is non-negative, non-decreasing, strictly convex, and
differentiable for the rest of this paper. In this case, the conjugate satisfies the following properties:

e f* is non-negative, non-decreasing, strictly convex, and differentiable;

o« [

e Vf and V f* are inverse of each other, and we say that z and «* form a complementary pair
if 2 = Vf*(z*) and 2* = Vf(x);

Next, consider a concave function g : R +— R. Its concave conjugate is defined as

g« (%) = mir;izrgize {{z, ") — g(z)} .
Similar to the convex case, we will further assume g to be non-negative, non-decreasing, strictly
convex, and differentiable for the rest of this paper. In this case, the concave conjugate satisfies
the following properties:

e ¢, is non-positive, non-decreasing, strictly convex, and differentiable;
® Gwx = G;

e Vg and Vg* are inverse of each other, and we say that « and z* form a complementary pair
if z = Vg.(2*) and * = Vg(z);

Assuming mild regularity conditions which we omit in this paper, the following strong duality holds:

migiznolize {f(z)—g(2)} = maﬁigéize mir;izrgize {f(z) — (z,2*) + (z,2*) — g(z)}

= maéigéize {ge(z®) = f*(=")} .

Fenchel Duality of Convex Programs with Linear Constraints In this paper, we will
restrict our attention to convex programs with linear constraints. In the rest of this section, we
will consider online combinatorial auction with production costs as an illustrative example, and
will explain its convex program relaxation and the dual convex program.

Let there be a seller with m items for sale, and n buyers that arrive online. Each buyer i has
a combinatorial valuation function v; : 2™ — R,. On the arrival of a buyer i, the seller allocates
a bundle of items S C [m] to the buyer. The seller may produce an arbitrary number of copies of
each item j subject to a production cost function f; (i.e., producing y; copies costs fj(y;)). The
goal is to maximize the social welfare, i.e., the sum of each buyer’s value for the allocated bundle
of items less the total production cost.

Below is the convex program relaxation of online combinatorial auction with production costs
(assume for simplicity that f;’s are defined for all non-negative real numbers):
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mazxgg%)ize Yoy ng[m} vi(S)Tis — 2721 i)

subject to Esg[m} Tis < 1 i € [n] (3)
> ict > 555 Tis < Yj J € [m]

Here, ;g is the indicator of whether buyer i gets bundler S. y; is the total demands of item j.
The Fenchel dual convex program can be derived from the Lagrangian dual program and the
definition of convex conjugate. Taking the Lagrangian dual, we have

minimize maximize Y1 > gcpy, vi(S)wis — 2070 f(y;)
u,p>0 z,y>0 =
i i (1= g Tis) + 251 i - (95 — it Dogs; Tis)

First, consider the maximization problem w.r.t. x;g5, namely,

0 if i + 32595 = vil S),

maximize (v;(S) —u; — > ..aPj) Tis =
(0:(5) ' ZJES ]) ' {+oo otherwise.

z;5>0

Thus, it imposes a linear constraint u; +_ g pj > vi(S) on the dual problem. Next, consider the
maximization problem w.r.t. y;, namely,

maximize p;y; — fi(y;)
y;=0

By the definition of convex conjugate, the optimal value of the above maximization problem is
f7(pj). In sum, the Lagrangian dual can be simplified as follows:

minimize >0 u + 370 [ (py)
u,p=>0 (4)
subject to u; + > ;cop; = vi(S) i€ [n], S C[m]
The above convex program is the Fenchel dual convex program of combinatorial auction with
production costs. We can interpret p; as the price of item j and w; as the utility of buyer i (i.e.,

his value for the allocated bundle less the total price).

Online Primal Dual with Convex Programs Online primal dual algorithms for convex pro-
grams are driven by the Karush-Kuhn-Tucker (KKT) conditions [19, 20]. The KKT conditions for
linear constraints are the same as complementary slackness. Online primal dual algorithms handle
variables only involved in linear constraints in the same way as in the original approach for linear
programs. Next, consider variables involved in the convex functions in the primal and dual objec-
tives, namely, y; and p;. The KKT conditions indicate that in the offline primal and dual solutions,
y; and p; form a complementary pair, i.e., p; = fj’»(yj), for j = 1,...,m. This coincides with the
economic intuition, namely, the unit price of an item j shall equal to the marginal production cost
of the item. In the online problem, however, the algorithm knows only the current supply y; of
each item j, but not the final supply. As a result, the algorithm needs to predict the final supply
according to the current supply (e.g., double the current supply), and set the price according to the
predicted final supply (e.g., p; = f’(2y;)). To minimize the competitive ratio, let p; = p;(y;) be a
monotone function of y; to be determined. We will choose the pricing functions to minimize F' > 1
such that the change of the dual objective is at most F' times the change of the primal objective
as the algorithm proceeds (similar to (1)).
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4 Example 1: Online Combinatorial Auction with Production
Costs

In this section, we will describe the online primal dual algorithms and their analysis for the illustra-
tive example in the previous section, namely, online combinatorial auction with production costs.
The results are from a paper by Huang and Kim [18].

Recall that the primal and dual convex programs are given in (3) and (4) respectively. For
simplicity, we assume all f;’s are the same and denote it and its convex conjugate as f and f*. The
results extend to heterogeneous f;’s where the competitive ratio depends on the “worst” production
cost function f;.

4.1 Online Primal Dual Algorithms

First consider solving the fractional problem, namely, allowing z;g’s to take fractional values be-
tween 0 and 1. The online primal dual algorithms are driven by the following relaxed KKT condi-
tions and a regularity condition.

Relaxed KKT Conditions:

(a) z;s must be zero unless u; + ;g p; = v;(S) when buyer i comes (the constraint may have
slack in the future because the algorithm may increase p;’s);

(b) p; = p(y;) is a function of the current demand y;.

Regularity Condition:
(€) ¥j =D im1 2og5 ; %ig, 1.e., the algorithm should not produce more than the current demand.

Given any pricing function p : Ry +— Ry, we have the online primal dual algorithm in Figure 2.

1. Initially, let y; = 0 and p; =0 for j =1,...,m.
2. Maintain p; = p(y;) (condition (b)) and y; = > 7L ; > - 75 (condition (c)).
3. On the arrival of buyer i, continuously increase x;g’s as follows until > SClm] TiS = 1:

(a) Let S* = argmingcp {vi(S) - Zjespj}, breaking ties arbitrarily.
(b) Increase zis+ by dx and u; by (v;(S*) — > jes pj) - dz (condition (a)).

(c) Update y;’s and, thus, p;’s accordingly.

Figure 2: Online primal dual algorithm for online combinatorial auction with production cost
function f and price function p

4.2 Online Primal Dual Analysis

Following the same framework online primal dual analysis as in the case of linear programs, we seek
to prove F' - dP > dD for some fixed parameter ' > 1, where dP and dD denotes the changes of
the primal and dual objectives as the algorithm continuously increases x;g’s. In particular, Huang
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and Kim [18] showed that the best pricing function and the corresponding parameter F is derived
from solving a differential equation:

Theorem 4.1. If the function p satisfies the following differential equation

Vy>0: F-(ply)—f'(y) dy> ")) dply) subject to p(0)=0,p(y) >0  (5)

for some fized parameter F' > 1, then the online primal dual algorithm in Figure 2 is F-competitive
for fractional combinatorial auction with production cost function f.

For illustrative purposes, we present a proof sketch of the above theorem. We will omit the
proofs of similar theorems in the other two examples.

Proof. Let i be the current buyer and suppose the algorithm has increased z;5+ by dz and has
updated the other primal and dual variables accordingly. It suffices to show F - dP > dD.
First, consider the change of the primal objective:

AP = vi(8*) - dx =Y ics f'(ys) - dy; -

Further, by the definition of the algorithm, dy; equals dx for j € S* and equals 0 for j ¢ S*, and
that v;(S™) - dz = du; + 3 g+ pj - dx = du; + 372 pj - dy;. The change of primal objective is

dP = du; + 370 pj - dy; — 3770, f'(y) - dy;

Further, the change of dual objective is:

dD = du; + 3772 ' (p;) - dp;

Therefore, to show F - dP > dD, it suffices to show

F(dui + 3750 pj - dyy — 3250 f'(yy) - dyg) > dui + D252 ¥ (py) - dpy
which follows from du; > 0, F' > 1, and (5). O

Huang and Kim [18] further showed that the best possible competitive ratio is indeed charac-
terized by differential equation (5) and the online primal dual algorithm in Figure 2 is optimal.

Theorem 4.2. If there is an F-competitive online algorithm for fractional combinatorial auction
with production cost function f, then there is a feasible solution for differential equation (5).

4.3 Applications

So far, we have focused on solving the fractional problem online. Huang and Kim [18] showed
that the pricing functions and online primal dual algorithms for the fractional problem can also
be used to solve the integral problem for many natural production cost functions with minor
changes and essentially the same competitive ratios. In particular, for several previously studied
families of production cost functions, including polynomial functions [7], functions with concave
derivatives [7], and zero-infinity step functions (i.e., fixed supply) [6, 8], the competitive ratios of
the aforementioned online primal dual algorithms are nearly optimal, matching or improving those
of previous work.

Theorem 4.3. For any € > 0, there is an (ea + €)-competitive online primal dual algorithm for
(integral) combinatorial auction with polynomial production cost functions f(y) = y®, and there are
no (ea — €)-competitive online algorithms.
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Theorem 4.4. For any ¢ > 0, there is a (4 + €)-competitive online primal dual algorithm for
(integral) combinatorial auction with production cost function f such that f’ is concave, and there
are no (4 — €)-competitive online algorithms.

Theorem 4.5. There is an O(logm + log f}f;‘ﬁ)—competitive online primal dual algorithm for
(integral) combinatorial auction with Q(logm + log qj:ﬁ) copies of each item, and there are no

lOgm Umax T ; ;
0(10g ogm T log m) -competitive online algorithms.

5 Example 2: Online Matching with Concave Returns

In this section, we will talk about online matching with concave returns introduced by Devanur
and Jain [15]. We will modify the original presentation of the results and analysis for consistency
with the other parts of this paper. The underlying ideas and reasonings are the same.

Let there be m agents that are known upfront, and n items that arrive online. On the arrival
of an item, the online algorithm needs to match the item to one of the agents immediately. Let v;;
be agent j’s value for item i. Each agent j is associated with a concave, non-decreasing function
gj + Ry — Ry such that agent j’s value for a bundle of item S C [n] is g;(>,cqvij). In this
sense, g; serves as a discount function of agent j’s value for receiving multiple items. The goal is
to maximize the total value of the matching.

For simplicity, we assume that g;’s are the same and denote it and its concave conjugate as g
and g.. We further assume that ¢’(0) = 1, i.e., the value would not discounted if no items have
been allocated to the agent so far.

The convex program relaxation and its dual are given below in Figure 3:

maximize 35 g(y;) minimize 3 iy 0 — 250 9+(55)
subject to > w <1 J € [m] subject to oy > v;;; i€[n],j€[m]

Yi < 25 vigTiy i € [n]

Figure 3: Primal and dual convex programs of online matching with concave return function g

5.1 Online Primal Dual Algorithms

Again, we will focus on solving the fractional problem, namely, allowing x;;’s to take fractional
values between 0 and 1. The online primal dual algorithms are driven by the following relaxed
KKT conditions and a regularity condition.

Relaxed KKT Conditions:

(a) z;; must be zero unless o; = v;;; when item i comes (the constraint may have slack in the
future because the algorithm may decrease 3;’s);

(b) B; = B(y;) is a function of the current total value y;.
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Regularity Condition:

(c) Y = Z?:l VijTij-

Here, 3; serves as a discount factor of the value of allocating an item to agent j. In the offline
primal and dual solutions, §; and y; forms a complementary pair and, thus, 3; is equal to the
derivative of g at agent j’s final total value y;. In the online problem, however, the algorithm can
only predict the final total value based on the current total value. Therefore, we let 5; = ((y;)
where 3 is a discount function to be determined later, which specifies how much the algorithm
discounts an agent’s value from future items given his current total value. Recall that g is concave
and ¢’(0) = 1. The value of the discount function starts from §(0) = ¢’(0) = 1 and decreases as
the agent’s total value increases. Given any discount function 5 : R4y +— Ry, we have the online
primal dual algorithm in Figure 4.

1. Initially, let y; =0 and 8; =¢/(0) =1for j=1,...,m.
2. Maintain §; = ((y;) (condition (b)) and y; = ;" ; vijz4; (condition (c)) throughout.
3. On the arrival of each item 4, continuously increase z;;’s as follows until Z;nzl xi = 1

(a) Let j* = argmax;cpy, vi;3;, breaking ties arbitrarily.
(b) Increase zj; by dx and «; by v;j=(;+ - dx (condition (a)).
(c) Update y;’s and, thus, §;’s accordingly.

Figure 4: Online primal dual algorithm for online matching with concave return function g and
discount function

5.2 Online Primal Dual Analysis

Recall that the online primal dual analysis seeks to show F' - dP > dD for some fixed parameter
F > 1, where dP and dD are the changes of the primal and dual objectives as the algorithm
continuously increase x;;’s. Similar to the case of online combinatorial auction with production
costs, Devanur and Jain [15] showed that the best discount function [ and the corresponding
parameter F' can be derived from solving a differential equation.

Theorem 5.1. If the discount function B satisfies the following differential equation

Vy>0: F-g'(y)-dy>pBy) dy—g.(B(y))-dB(y) subject to ((0)=g'(0) =1, B(y) >0 (6)

for some fized parameter F > 1, then the online primal dual algorithm in Figure / is F-competitive
for fractional online matching with concave return function g.

Devanur and Jain [15] further showed a matching lower bound:

Theorem 5.2. If there is an F'-competitive online algorithm for fractional online matching with
concave return function g, then there is a discount function [ that satisfies (6).
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5.3 Applications

Considering concave return functions in online bipartite matching problems is motivated by the
adword problem. A concrete motivation is the budget constraint of advertisers: an advertiser would
pay his bid for each allocated ad slot but there is a hard budget constraint on his maximum payment
per day. As a result, the revenue (return function) is a budget additive function ¢g(y) = min{y, B}
for some budget B > 0. For this special case, we can explicitly find the smallest possible F' = —£

e—1’

and solve differential equation (6), i.e., B(y) = -5 (e — ey/B).

Theorem 5.3. There is an %5 -competitive online algorithm for the adword problem under the
small-bid assumption, which is equivalent to fractional online matching with budget additive concave

return function g(y) = min{y, B} for some budget B > 0.

The competitive ratio in the above theorem is optimal, matching the ratio from previous work
(e.g., Buchbinder et al. [12], Mehta et al. [21]).

6 Example 3: Online Scheduling with Speed Scaling

Let there be m machines that are known upfront, and n jobs that arrive online. Each machine j can
run at different speeds subject to different energy costs. Let f; be the power function of machine
j such that running the machine at speed y; consumes f;(y;) energy per unit of time. Each job
1 is defined by its arrival time r;, weight w;, and volumes v;. A feasible schedule consists of an
allocation of jobs to time slots on machines and a speed profile specifying how fast the machines
run at each time slot, such that the total computational resources assigned to the job, i.e., the sum
of speeds of the allocated time slots, is at least its volume.

There are two natural objectives in this problem: minimizing total energy consumption, and
minimizing the delay of jobs. A standard measure of the delay of jobs is flow time. The flow time
of a job is the difference between its completion time and arrival time. The weighted flow time
is the weighted sum of the flow time of jobs. In this section, we focus on minimizing the sum of
weighted flow time and energy.

This problem is more complicated than the previous two examples in the sense that the online
algorithm needs to make multiple types of online decisions. At each time slot, the online algorithm
needs to decide which job to run on each machine (job selection) and at what speed (speed scaling).
Further, on the arrival of a job, the online algorithm needs to assign the job to one of the machines
immediately (job assignment). Note that the algorithm may preempt the current job processing on
a machine with the new job and resume after the new job is finished. This usually happens when
the new job is more important, e.g., having larger weight /volume ratio.

The main results in this section are from a paper by Devanur and Huang [14]. For simplicity, we
will present the algorithms and their analysis for the case of a single machine while the results hold
more generally for multiple unrelated machines (i.e., a job can have distinct weights and volumes
on different machines).

The convex program relaxation of the single machine problem and its dual is given in Figure 5.
Here, x;; is the speed of the machine at time ¢ on processing job i. 1 is the total speed at time ¢.

We will first discuss a simple online primal dual algorithm and its analysis to illustrate the
structure of the convex programs. Then, we will explain how to improve the simple algorithm to
achieve asymptotically optimal competitive ratios.
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minir>noize Dy TJ.FOO wi(t — ri)xidt + f0+oo fye)dt
T,Yy> ‘

subject to f:oo Tit > U; i € [n]

Ye > Do T t>0

ngﬁlrznolze Zi:l Vit — |y f*(ﬁt)dt

subject to a; < B¢ + TE(E —73) i€nl,t>r

Figure 5: Primal and dual convex programs of online scheduling for minimizing fractional flow time
plus energy with power function f on a single machine

6.1 A Simple Online Primal Dual Algorithm

Again, we will focus on the fractional problem, namely, solving the primal convex program in
Figure 5 online. The fractional problem is known as minimizing fractional flow time plus energy.
We first present the relaxed KKT conditions and a regularity condition that lead to the online
primal dual algorithms.

Relaxed KKT Conditions:

(a) @i must be zero unless a; = (¢ + T(t — r;) when job i comes (the constraint may have slack
in the future because the algorithm may increase (3;’s);

(b) B¢ = B(yr) is a function of the current total speed y;.

Regularity Condition:

(c) yr = Z?:1 Tit.

Given any function 3 : Ry — R, we have the online primal dual algorithm in Figure 6.

1. Initially, let y¢ = 0 and B = f’(0) for j =1,...,m, t > 0.

2. Maintain §; = B(y:) (condition (b)) and y; = >_;" | x; (condition (c)) throughout.

3. On the arrival of each job i, continuously increase x;;’s as follows until frjoo Tip = Ui
(a) Let t* = argmax;s,, {3 + TH(t - r;)}, breaking ties arbitrarily.

(b) Increase zj+ by dz and o by (B + (T — r;)) - dz (condition (a)).
(c) Update y;’s and, thus, 5;’s accordingly.

Figure 6: A simple online primal dual algorithm for online scheduling for minimizing fractional
flow time plus energy with power function f on a single machine
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6.2 Online Primal Dual Analysis of the Simple Algorithm

Recall that the online primal dual analysis seeks to show F' - dP > dD for some fixed parameter
F > 1, where dP and dD are the changes of the primal and dual objectives as the algorithm
continuously increase x;;’s.

Theorem 6.1. If § satisfies the following differential equation

Vy>0: (F-By)— f'(y) dy=F-f"(B(y)-dBly) subject to  B(0) =g¢'(0), By) =0 (7)

for some fized parameter F' > 1, then the online primal dual algorithm in Figure 6 is F-competitive
for minimizing fractional flow time plus energy with power function f on a single machine.

The most common power functions in the literature are polynomial power functions with degree
2 or 3. For the special case of polynomial power functions, we can explicitly solve differential
equation (7) and find the smallest F' for which the differential equation is feasible.

Theorem 6.2. For polynomial power function f(y) = y®, then the online primal dual algorithm in
a—1

Figure 6 with 5(y) = % s a®-competitive online primal dual algorithm for minimizing fractional

flow time plus energy with power function f on a single machine.

6.3 A Better Online Primal Dual Algorithm

The main drawback of the simple algorithm is that it does not reschedule the remaining volume of
old jobs (i.e., assign them to other time slots) on the arrival of a new job. In particular, the simple
algorithm does not preempt less important old jobs with the new one. We can obtain better online
primal dual algorithms for this problem by rescheduling old jobs as a new job arrives.

A natural rescheduling rule is to reschedule jobs in future time slots to minimize the the frac-
tional flow time plus energy in the remaining instance (i.e., the effective weight and volume of each
old job is scaled down according to its remaining volume) assuming that there would be no future
jobs. Devanur and Huang [14] called this greedy approach the conservative greedy algorithm and
showed that it is O(«) competitive for minimizing fractional flow time plus energy.

We can further improve the conservative greedy algorithm. Note that the conservative greedy
algorithm achieves the optimal fractional flow time plus energy if there are no future jobs, but is
far from optimal when there are a lot of future jobs. A smarter rescheduling rule would run faster
than the optimal schedule of the remaining instance to hedge between the two cases: if there are
no future jobs, this approach pays more in energy comparing to the conservative greedy algorithm;
if there are a lot of future jobs, however, this approach would do better than the conservative
greedy algorithm because it has predicted the arrival of future jobs and has run faster in the past.
Specifically, Devanur and Huang [14] considered a family of such algorithms that run C' times faster
than the optimal schedule of the remaining instance for some fixed parameter C' > 1 and called
them C-aggressive greedy algorithms (Figure 7).

Speed Scaling: Choose speed s.t. f*(f'(%)) equals the total weight of the remaining jobs.
Let 8, = %f’(%) s.t. f*(CB) equals the total weight of the remaining jobs.

Job Selection: Schedule the job with highest weight/volume ratio (highest density first).

Figure 7: C-aggressive greedy online primal dual algorithm for minimizing fractional flow time plus
energy with power function f on a single machine
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Moreover, Devanur and Huang [14] conducted an online primal dual analysis of C-aggressive
greedy algorithms for all C' > 1 and chose C to balance the case with no future jobs and the case
with a lot of future jobs. By doing so, they showed the following result.

Theorem 6.3. For polynomial power function f(y) = y®, the C-aggressive greedy online primal
dual algorithm is Q( &

1Ogoé)—competitive for minimizing fractional flow time plus energy on unrelated

machines with C ~ 1 + loia.

If there are at least two machines, then Devanur and Huang [14] further showed that the above
competitive ratio is asymptotically tight.

Theorem 6.4. For polynomial power function f(y) = y®, there are no 0(%)—competitive online

algorithm for minimizing fractional flow time plus energy with at least two machines.

Recall that in the previous two examples, the upper and lower bounds match exactly as they
both reduce to the same differential equation. In this example, however, there is a constant gap
between the upper and lower bounds. One of the reasons is that the algorithms in this example
assign jobs to machines integrally, i.e., a job cannot be processed on multiple machines in parallel.
We do not know whether we can derive the same form of tight upper and lower bounds as in the
previous two examples if we allow parallel processing and truly focus on solving the primal convex
program online.

Further, if there is only one machine, Bansal et al. [4] gave a 2-competitive online algorithm
for minimizing fractional flow time plus energy with arbitrary power functions using a potential
function argument. It is an interesting open question whether there is a 2-competitive online primal
dual algorithm for the single machine case.

6.4 Applications

Finally, Devanur and Huang [14] also showed that the C-aggressive algorithms can be applied to
minimizing (integral) weighted flow time plus energy with minor changes.

Theorem 6.5. For polynomial power function f(y) = y®, there is an Q(loga)—competitz’ve online

primal dual algorithm for minimizing weighted flow time plus energy on unrelated machines.

Essentially the same algorithm and analysis can be further used to derive better competitive
ratios in the resource augmentation setting, where the online algorithm can run the machines 1+ ¢
times faster than the offline benchmark using the same amount of energy.

Theorem 6.6. There is a (1 + €)-speed and Q(%)—competitive online primal dual algorithm for
minimizing weighted flow time plus energy with arbitrary power functions.
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