
SIGACT News Online Algorithms Column 28:

Online Matching on the Line, Part 2

Rob van Stee
University of Leicester

United Kingdom

In the online matching problem on the line, requests (points in R) arrive one by one to be
served by a given set of servers. Each server can be used only once. This is a variant of the k-server
problem restricted to the real line. Although easy to state, this problem is stil wide open. The best
known lower bound is 9.001 [2], showing that this problem is really different from the well-known
cow path problem. Antoniadis et al. [1] recently presented a sublinearly competitive algorithm.

In this column, I present some results by Elias Koutsoupias and Akash Nanavati on this problem
with kind permission of the authors. The column is based on Akash’ PhD thesis [4], which contains
an extended version of their joint WAOA 2003 paper [3] which has never appeared in a journal. I
have expanded the proofs and slightly reorganized the presentation.

The previous column (see SIGACT News 47(1):99-111) contains a proof of a linear upper bound
for the generalized work function algorithm and a logarithmic lower bound for the algorithm. This
column gives a more detailed analysis of this algorithm, leading to a different (but again linear)
upper bound. The techniques used here may potentially be helpful to show a sublinear upper bound
for γ-wfa. I conjecture that this algorithm in fact has a logarithmic competitive ratio (which would
match the known lower bound for it), but this very much remains an open question.

1 Introduction

We begin by repeating some definitions for convenience.
In this column, both requests and servers are specified by points on the real line and are

multisets, as there can be multiple requests and/or servers at the same location. The same holds
for all other sets discussed below. For example, for x ∈ I, we have I (I ∪ {x}. We will use the
notation {x}k to denote a set which contains k copies of the point x. Time is discrete, with one
request occurring per time step.

Let Rt denote the set of requests until time t and let At denote the set of servers used by
the online algorithm to match these requests. Of course |At| = |Rt|. Let M(At, Rt) denote a
way of matching Rt to At that minimizes the total offline cost. This matching can be obtained by
matching the requests to servers in order from left to right. We denote its cost by pseudot, whereas
the optimal cost of serving the first t requests is denoted by optt. Clearly, optt ≤ pseudot for
t = 1, . . . , n, and optn = pseudon.

Given this definition of the matching M(At, Rt) we can ask how many of its lines cross a point
x ∈ Rt. We denote this number by crossx(At, Rt) or simply crossx. To define it properly let
leftx(I) denote the number of elements of the set I to the left of x. Then crossx(At, Rt) =
leftx(At)− leftx(Rt). We have the following property:

pseudot =

∫ ∞
−∞
|crossx(At, Rt)|dx (1)

As stated in the previous column (see Section 4 of that column), for all i = 1, . . . , n, we have the
following bound for the cost of γ-wfa to serve the ith request:

d(ri, si) ≤ pseudoi−1 + pseudoi

≤ γ + 1

γ − 1
(opti−1 + opti) using Theorem 4

≤ 2(γ + 1)

γ − 1
opti

Summing this over all i gives

γ-wfa(σ) ≤ 2(γ + 1)

γ − 1

n∑
i=1

opti ≤
2n(γ + 1)

γ − 1
opt(σ),

which is O(n) · opt(σ) for all γ > 1.
In Section 3, we give a bound in terms of the number of crossing lines in the matching produced

by γ-wfa. In Section 4, we consider the concept of extended costs. In Section 5, we define
multipliers and use them to derive a different (but still linear) upper bound on the competitive
ratio of γ-wfa.

2 Segments

A free interval is a maximal interval on the line that does not contain any requests or servers.
When γ-wfa matches a request r to some server, we will denote this server by sr and the interval
(or edge) (r, sr) or (sr, r) by Er. This interval is partitioned into a set of segments, one for each

e
9

e e

e e

ee

e

e

1 2 3 4

5 6 7

8

r r

r

r

r
5

4

3

1 2

e
10

Figure 1: Types of segments

free interval. This set is also denoted by Er. The general idea of the proof is to associate with each
edge Er a set of segments of older requests which are cancelled by the edge.

We say that r is a left (right) request if it is serviced by a server on its left (right). This
orientation extends naturally to the segments of Er: if r is left, then so is every segment of Er. By
symmetry, every property that we show below for left requests has a counterpart for right requests.
When we have a choice, we consider left requests.

We refer to the state immediately after the t-th request is matched as time t. Let Etr(I) be the
set of edges created by γ-wfa after r and at or before time t which include the segment I.

Definition 4 A segment I ∈ Er is alive at time r′ if for every t = r+ 1, . . . , r′, at least half of the
edges in Etr(I) has the same orientation as I.

Definition 5 An alive segment I is exposed at time r′ if exactly half the edges in Er
′
r (I) are left

edges. An alive segment which is not exposed is called protected.

Definition 6 A segment is cancelled by request r′ if it ceases to be alive at time r′.

This means that after r′ was serviced, the number of edges with the opposite orientation to r in
Er

′
r (I) is larger than the number of edges with the same orientation for the first time. (Just before

r′ arrived, I was exposed.) In particular, we have the following important property.

Property 2 A request r′ which cancels a segment I of request r has the opposite orientation to r
(and hence to I).

In Figure 1, circles represent servers and crosses represent requests. Higher requests appeared
later, so r3 came after r1 and r2. The requests r1 and r2 are right requests, the others are left
requests. The edge Er1 is partitioned into the segments e1, e2, e3. This partitioning happens
gradually as later requests arrive and are served. Request r3 kills Er2 = {e4} and protects the
segments e2 and e3. After request r4 is served, the segment e1 is cancelled, and e2 is exposed.
Note that at this time, the segments e2 and e9, which are in opposite directions but cover the same
interval, are both alive (whereas e5 has been cancelled by e9).

Lemma 4 (Prefix Aliveness) Let r be a left request matched to sr. Consider some later time r′.
If some part of Er is alive at time r′, this part is a contiguous interval (sr, t) for some sr < t ≤ r.
If t < r, t is the leftmost right request occuring after time r and before or at time r′.

Proof Whether any segment of Er is still alive at time r′ is determined by the relative number
of right and left requests that arrive after r and that contain this segment. If there are no right
requests which contain any segment in (sr, r), then (sr, r) is alive in its entirety and the lemma
holds.

Otherwise, by locality, γ-wfa uses only surrounding servers for any request (see Property 1 in
the previous column). This means that after r is served, there are no unmatched servers in the
interval (sr, r). Any right request (see Property 2) that cancels a segment of Er, but does not
cancel Er completely, is in (sr, r) and must be matched to a server to the right of r. It follows
by induction that each time that this happens, a (possibly empty) suffix of the alive part of Er is
cancelled, and each time the leftmost point of a newly cancelled part is the leftmost right request
that has occurred so far inside (sr, r). Hence the alive part of Er is always a prefix of (sr, r), and
must be contiguous. �

Denote the alive part of Er after some later request r′ has been served by alive(r, r′).

Lemma 5 (Contiguity of Exposed) Let r be a left request matched to sr. Consider some later
time r′. At this time, the set of exposed segments of Er is contiguous, and bounded from the left by
the rightmost left request in (sr, r) that arrived so far. There is no request inside this set of exposed
segments at any time between r and r′.

Proof Any exposed segment of Er is alive. If there is no exposed segment, there is nothing to
show. If there is a part I of alive(r, r′) that is protected at time r′, there must be a left request
that arrives after r and that contains I. By locality (Property 1 in the previous column), γ-wfa
uses only surrounding servers for matching. Hence, there is no unused server in the interval (sr, r),
and such a left request must be matched to a server to the left of sr. This implies immediately that
at any time at which some segment of Er is alive and exposed, a (possibly empty) prefix of Er is
protected, and that it is protected from sr up to the rightmost left request in (sr, r) that arrived
so far. Hence both the protected and exposed parts of alive(r, r′) are contiguous.

The final statement in the lemma follows immediately from the bounds on the exposed set of
segments in this lemma and in Lemma 4. �

In fact it can be seen from these proofs that the level of protection is monotonically decreasing
from left to right in (sr, r) for any left request r of which some part is still alive. Here the level of
protection at a point x is defined as the number of left edges arriving after r and crossing x minus
the number of right edges arriving after r and crossing x. (The part of Er that is cancelled is thus
“negatively protected”, with the protection level still monotonically decreasing from left to right.)

3 Unerased vs. Pseudo-Optimal

We say that a point x contributes to the value pseudoi at time t ≤ i if we have |crossx(At, Rt)| >
|crossx(At−1, Rt−1)| and the absolute value never drops below |crossx(At, Rt)| afterward. More
generally, x contributes to unerasedi at time t ≤ i if crossx(At, Rt) 6= crossx(At−1, Rt−1), and
we also have crossx(At′ , Rt′) 6= crossx(At−1, Rt−1) for all t < t′ ≤ i. That is, after time t− 1, the
number of lines crossing x was never again equal to crossx(At−1, Rt−1). (Note that this integer
value changes by at most one each time that a request is served.)

unerasedi counts for each point all edges that cross this point and that are not cancelled out
by later requests (up to and including at time i). The number of times that a point x contributes

to unerasedi is
max

1≤t≤i−1
crossx(At, Rt)− min

1≤t≤i−1
crossx(At, Rt)

since for each value in this range, x contributes (only) at the last time at which this value is reached.
We say that a point contributes k times to unerasedi if it contributes to unerasedi at exactly k
distinct times.

Note that the number of times that any given point x contributes to unerasedi is monotonically
nondecreasing from time 1 to time i: if a segment containing x is created at time i1 and canceled
at time i2, then it does not contribute at time i1, but it does at time i2. Thus, the contribution at
time i1 is not lost but replaced by a new contribution (by a request in the other direction).

This also shows that unerasedi itself is monotonically nondecreasing in i: the number of times
any given point contributes can only go up over time.

Theorem 9
γ − 1

2γ
unerasedi ≤ pseudoi ≤ unerasedi i = 1, . . . , n.

Proof By (1), pseudoi is the measure of all points, each point taken with the multiplicity equal
to the number of times that it contributes to pseudoi. Furthermore unerasedi is the measure of
all points, each point taken with the multiplicity equal to the number of times that it contributes
to unerasedi. Since the condition for this is weaker than for contributing to pseudoi, the second
inequality follows.

Consider a request rt which is serviced by request s and assume without loss of generality that
s < rt. By Lemma 4, the points that contribute to unerasedi at time t form an interval (s, q)
for some point q ∈ [s, rt]. (If Ert gets cancelled by time i, then q = s and the interval of points
contributing at time t is empty.)

Lemma 2 from the previous column implies directly that at least a fraction γ−1
2γ of this interval

has crossx(At−1, Rt−1) ≥ 0. This fraction contributes also to pseudoi at time t, which proves the
lower bound on pseudoi. �

Again using Theorem 4, we conclude that

opti ≤ pseudoi ≤ unerasedi ≤
2γ

γ − 1
pseudoi ≤

2γ

γ − 1

γ + 1

γ − 1
opti.

Furthermore, the cost to service request ri is at most equal to unerasedi, since each point in the
interval (ri, s) definitely contributes to unerasedi (the edge Er is new and therefore not cancelled).
Since as noted above, unerasedi is monotonically nondecreasing, we can bound the total cost by

γ-wfa ≤
n∑
i=1

unerasedi ≤ n · unerasedn ≤
2γ

γ − 1

γ + 1

γ − 1
n · optn.

Theorem 10 γ-wfa has a competitive ratio of at most 2γ
γ−1

γ+1
γ−1 ·n = O(n), where n is the number

of requests.

4 Forest

We construct a forest where nodes are requests. Higher nodes in a tree (closer to the root) represent
later requests. The forest is inductively defined for each balanced interval. Here a balanced interval
may be equal to the entire real line or a halfline, in order to cover the very last request in the input
and any other requests that occur to one side of all the remaining servers. (In this case, there is
not really a server at one or both ends of the interval.)

The forest for a balanced interval (s, s′) is created as follows. Let r be the last request in the
interval and let the server it is matched to be sr. Then WLOG s < sr < r < s′. We let r be the
root of the tree. Its children are the roots of the trees defined recursively in the forest in (sr, s

′).
The requests in (s, sr) form a separate forest. So any earlier request which was to the right of sr is
a child of r, whereas any earlier request to the left of sr is not.

The children of r are ordered from left to right according to their relative positions on the line.
That is, if r1, . . . , rk are the roots of trees in the forest of (sr, s

′), such that s < r1 < · · · < rk < s′,
then they are children of r in that left to right order.

Let us label nodes of this forest by the type of the corresponding request, i.e., L for left and R
for right requests. Observe that labels of nodes when put in sequence form words from the regular
expression R∗L∗. Also, if rj is the rightmost right request and rj+1 is the leftmost left request in
(s, s′), then the order of arrival of the requests is r1 > · · · > rj and rj+1 < · · · < rk. There is no
particular ordering of the left requests relative to the right requests.

r1

r5

r6 r7

r5
r
4

r7

r
3

r6

r
3

r
4

s s s’

r
2 r

2

r11

Figure 2: An example forest. Request ri is served by server si (i = 1, . . . , 7). The roots are r2, r3, r1,
forming the word RRL. The children of r1 form the word RL. Note that r3 arrived before r2; if it
had not, s2 would have already been used when r3 arrived, and in our construction r3 would have
become a root of a tree in the interval (s, s3), with r2 as its child.

Lemma 6 (Advantage of WFA) Let (s, s′) be a balanced interval. Let A,R denote the servers
and requests inside this interval, so that γ-wfa matched R to A. Let r < r′ denote two requests in
this interval that arrived in the order r, r′ so that γ-wfa matched r to s′ and r′ to s. Then

3(M(A+ s+ s′, R+ r + r′)−M(A+ s′, R+ r′)) + d(s, r′) ≥ 2d(r, r′).

Proof Let Bj
1 = ||Bj(A,R) ∩ (s, r)||, Bj

2 = ||Bj(A,R) ∩ (r, r′)||, Bj
3 = ||Bj(A,R) ∩ (r′, s′)||.

Define B+
1 , B

0
1 , B

−
1 etc. appropriately. Let B1 = B+

i + B0
i − B−i and Bi = B−i + B0

i − B+
i for

i = 2, 3. (Note the difference, caused by the directions in which the various servers travel in the

s r’

d d d

r s’

1 2 3

Figure 3: The situation considered in Lemma 6.

scenarios considered below.) Then

M(A+ s,R+ r) = M(A,R) +B1

M(A+ s′, R+ r) = M(A,R) +B2 +B3

M(A+ s+ s′, R+ r + r′) = M(A,R) +B1 +B3.

When 3-wfa matches r to s′, the following inequality holds:

3M(A+ s,R+ r) + d(s, r) ≥ 3M(A+ s′, R+ r) + d(r, s′)

⇔ 3B1 + d1 ≥ 3B2 + 3B3 + d2 + d3.

For the quantity that we wish to bound from below, we therefore find

3(M(A+ s+ s′, R+ r + r′)−M(A+ s′, R+ r)) + d(s, r′) = 3(B1 −B2) + d1 + d2

≥ 2d2 + 3B3 + d3.

Moreover, 3B3+d3 = 3(B−3 +B0
3−B

+
3)+B+

3 +B0
3 +B−3 = 4(B−3 +B0

3)−2B+
3 , which is nonnegative

by Lemma 2 of the previous column. The lemma follows. �
This lemma shows that the cancelled part, d(r, r′), is not larger than the increase in pseudo.

We are now ready to prove the most crucial lemma in our proof.

Definition 7 Let ` be a request that arrived in a balanced interval (s, s′) with servers A and requests
R. Then left(`) = M(A+ s,R+ `) and right(`) = M(A+ s′, R+ `).

Lemma 7 (Segment cancelling) Let ` be a left node and let v be its right descendant. Assume
the subinterval of E` ∩ Ev that is cancelled by ` is nonempty and denote it by (e, f). Then

3(left(`)−
∑

c∈CH(`)

left(c)) + 3d(s`, `) ≥ 4d(e, f)

where CH(`) denotes the set of children of `.

Proof Let CH(`) = {r1, . . . , ri, `k, . . . , `1}. Suppose v is in the subtree Td, where rd labeled R is a
child of `. The case when v is in a subtree of a left child is analogous. We have M(A`+s`, R`+`) ≥
M(A` + s`, R` + f)− d(f, `), since in the best (cheapest) case for M(A` + s`, R` + `), the interval
(f, `) does not need to be covered anymore after ` arrives, whereas it was covered before.

rd sd

v

r r l
1 i k

ss s si k1 s’

l

e f

r s
d−1d−1

sv

Figure 4: The situation considered in Lemma 7. Note that the interval (v, e) has been cancelled by
other requests (descendants of rd) that are not shown in this figure, whereas the interval (f, `) does
not get cancelled because it was protected by left requests that are not shown. Of course, v = e
and f = ` (and/or f = sv) are possible, as well as v = rd (instead of a descendant of rd).

In order to bound M(A`+s`, R`+f), we use that by our construction of the forest for `, we have
r1 > · · · > ri. Thus r1 arrived last and the choices of servers for 3-wfa were s and s1; generally,
the choices of servers to serve rj were sj−1 and sj for j = 1, . . . , i (i.e., for all the right children of
`). We can make a similar observation for the left children. This means that M(A` + s`, R` + f)
can be expressed in terms of right(c) for all children of ` up to rd−1, and in terms of left(c) for
all children starting from rd+1, since none of these changed after such a child was served. We get

left(`) + d(f, `) ≥M(A` + s`, R` + f)

=
d−1∑
j=1

right(rj) +
i∑

j=d+1

left(rj) +
k∑
j=1

left(`j) +M(Ard + sd−1 + sd, Rrd + rd + f). (2)

We also have

d(s, `) =

d−1∑
j=1

d(sj−1, sj) + d(sd−1, f) + d(f, `) (3)

(where we define s0 = s) and

right(rj) ≥ left(rj)− d(sj−1, sj) j = 1, . . . , d− 1. (4)

(If right(rj) < left(rj) − d(sj−1, sj), then 3-wfa would have served rj from the right, since
3right(rj) + d(sj−1, rj) < 3left(rj)− 2d(sj−1, sj) < 3left(rj) + d(sj , rj).) By (2)–(4),

left(`) ≥
d−1∑
j=1

(left(rj)− d(sj−1, sj)) +
i∑

j=d+1

left(rj) +

k∑
j=1

left(`j)

+M(Ard + sd−1 + sd, Rrd + rd + f)− d(f, `)

=
∑

c∈CH(`)

left(c)− left(rd)− (d(s, `)− d(sd−1, f)) +M(Ard + sd−1 + sd, Rrd + rd + f).

(5)

We will express left(rd) and M(Ard + sd−1 + sd, Rrd + rd + e) in terms of left(v) and M(Av +
s′v + sv, Rv + v + e) in order to apply Lemma 7. By Lemma 5, there is no request after v in the

Q
OUT

L R v Q
OUT

R

A
OUT

L
Av A

OUT
R

R
IN

R

sd−1 vt
v
sv fe

ds

R RR
L

OUTIN
R

L

OUT

Figure 5: Zooming in on request v and what happened afterwards. Compare Figure 4.

interval (e, f). We partition the set of requests that arrived after v and before ` as follows. Let tv
be the closest server to the right of v when v arrived (the one that 3-wfa also considered using).

• requests Rout
r in the interval (sd−1, tv)

• requests Rin
l in the interval (tv, e)

• requests Rin
r in the interval (f, sv)

• requests Rout
r in the interval (sv, sd).

We also partition requests that arrived before v along with the servers used to serve them:

• requests Qout
l , servers Aout

l in the interval (sd−1, tv)

• requests Qout
r , servers Aout

r in the interval (sv, sd).

The requests in (tv, sv) before v are denoted by Av as usual; they were served by servers Rv in
(tv, sv). See Figure 5.

Request rd arrived after v and is to the right of f , since (e, f) was exposed when ` arrived. In
the proof below, we consider the case that rd ∈ Rin

right. The case rd ∈ Rout
right is similar.

We have |Av| = |Rv|, and (e, f) was exposed after rd arrived and until ` arrived, so when
` arrives no line in the matching of 3-wfa crosses the interval (e, f) or the points sd−1 and sd.
Therefore |Qout

l + Rout
r + Rin

l | = |Aout
l + tv| and |Qout

r + Rout
r + Rin

r | = |A2 + sd|. Hence, in the
pseudo-optimal matching left(rd), x(t) = |Rin

l | lines cross (or reach!) tv and x(v) = |Rin
r | lines

cross sv. By cutting these lines at tv and sv, we can write its cost as follows.

left(rd) = M(Ard + sd, Rrd + rd)

= M(Aout
l + tv, Q

out
l +Rout

r + tx(t)v) +M(Aout
r + sd, Q

out
r +Rout

r + sx(v)v)

+M(Av + tx(t)v + sv + sx(t)v , Rv +Rin
l + v +Rin

r).

Using similar reasoning (but this time assigning tv to the middle part), we can write

M(Ard + sd + sd−1, Rrd + rd + f) = M(Aout
l + sd−1, Q

out
l +Rout

r + tx(t)v)

+M(Aout
r + sd, Q

out
r +Rout

r + sx(v)v)

+M(Av + tx(t)v + tv + sv + sx(v)v , Rv +Rin
r + v + f +Rin

r)

Similarly to (4), we have M(Aout
l +sd−1, Q

out
l +Rout

r + t
x(t)
v) ≥M(Aout

l + tv, Q
out
l +Rout

r + t
x(t)
v)−

d(sd−1, tv). Starting from (5), we conclude

3(left(`)−
∑

c∈CH(`)

left(c)) + 3d(s`, `)

≥ 3(M(Ard + sd−1 + sd, Rrd + rd + f)− left(rd)) + 3d(sd−1, f)

≥ 3M(Av + tx(t)v + tv + sv + sx(v)v , Rv +Rin
r + v + f +Rin

r)

− 3M(Av + tx(t)v + sv + sx(t)v , Rv +Rin
l + v +Rin

r)) + 3d(tv, f)

≥ 3(M(Av + tv + sv, Rv + v + f)−M(Av + sv, Rv + v)) + 3d(tv, f)

≥ 2d(v, f) + 2d(tv, f)

= 4d(v, f) + 2d(tv, v)

≥ 4d(v, f)

≥ 4d(e, f).

Here we have applied the quasi-convexity theorem (Theorem 2) for the third inequality, and Lemma
6 for the fourth inequality. �

5 Multipliers

Let I1, . . . , Ik be the set of maximal contiguous segments cancelled by `. Suppose inductively that we
have multipliers mi for each request corresponding to the segments I1, . . . , Ik. Let j = arg maxmi.
Define

m` = 1 + max(mj − 1,max
i 6=j

mi).

That is, m` is the maximum of the multipliers of its cancelled descendants unless two of them
achieve the maximum value, in which case m` is raised by 1. If there are no segments cancelled by
`, define m` = 1.

Property 3 For i 6= j = arg maxmi, we have m` ≥ mi + 1 and m` ≥ mv. Furthermore m` ≤
mj + 1, and m` = mj + 1⇔ mj = mi for some i 6= j.

For the following lemma, recall that alive(a, b) is the part of Ea that is still alive after request
b has been served.

Lemma 8 (Total benefit of cancelling) Let T` denote the set of nodes in the subtree rooted at
request `. Then

3left(`) + 4
∑
i∈T`

mi||alive(i, `)|| ≥
∑
i∈T`

d(i, si).

Proof We use induction. The base case is trivial: if a tree consists of a single node `, then E` is
completely alive, m` = 1 and ||alive(`, `)|| = d(`, s`).

For the induction step, we need to prove the following. Recall that {Ii}ki=1 is the set of segments
cancelled by `.

3(left(`)−
∑

c∈CH(`)

left(c)) + 4m`||alive(`, `)|| ≥ d(`, s`) + 4
k∑
i=1

mi||Ii||.

Clearly, ||alive(`, `)|| = d(`, s`) >
∑k

i=1 ||Ii||. By Property 3, we have

4(m` − 1)||alive(`, `)|| ≥ 4
∑
i 6=j

mi||Ii||+ 4(mj − 1)||Ij ||.

This means that we need to show

3(left(`)−
∑

c∈CH(`)

left(c)) + 4||alive(`, `)|| ≥ d(`, s`) + 4||Ij ||. (6)

We have ||alive(`, `)|| = d(`, s`), so (6) follows from Lemma 7. �
Unfortunately, the only bound on mi that we have is that mi ≤ n for i = 1, . . . , n. Thus all we

can conclude from this lemma is that the total online cost is upper bounded by

3pseudon + 4n
∑
i∈Tn

||alive(i, `)||.

Now
∑

i∈Tn ||alive(i, `)|| is exactly unerasedn. For γ = 3, we have unerasedn ≤ 3pseudon
by Theorem 9, and pseudon ≤ 2optn. We conclude that the total online cost is at most (12n +
3)pseudon ≤ (24n+ 6)optn.

In some cases, for instance the lower bound shown in Theorem 8 in the previous column, the
multipliers do not get higher than log n and in this case, a logarithmic upper bound follows imme-
diately. This happens on any input for which requests are never protected or partially cancelled.
For general inputs, it appears the maximum multiplier can be Ω(n).

References

[1] Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, and Michele Scquizzato. A
o(n) -competitive deterministic algorithm for online matching on a line. In Evripidis Bampis and
Ola Svensson, editors, Approximation and Online Algorithms - 12th International Workshop,
WAOA 2014, Wroc law, Poland, September 11-12, 2014, Revised Selected Papers, volume 8952
of Lecture Notes in Computer Science, pages 11–22. Springer, 2014.

[2] Bernhard Fuchs, Winfried Hochstättler, and Walter Kern. Online matching on a line. Theor.
Comput. Sci., 332(1-3):251–264, 2005.

[3] Elias Koutsoupias and Akash Nanavati. The online matching problem on a line. In Klaus Jansen
and Roberto Solis-Oba, editors, Approximation and Online Algorithms, First International
Workshop, WAOA 2003, Budapest, Hungary, September 16-18, 2003, Revised Papers, volume
2909 of Lecture Notes in Computer Science, pages 179–191. Springer, 2003.

[4] Akash Nanavati. Coordination Mechanisms and Online Matching. PhD thesis, University of
California, Los Angeles, 2004.

