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Today I am very happy to present a full version of the proof that the classic List Update problem
is NP-hard, by Christoph Ambiihl. This proof first appeared in ESA 2000. It was later submitted
to a journal, but the refereeing process got stalled as Christoph left academia. Fortunately he has
now agreed to have his complete and final version appear in this column.

What makes this particularly pleasing is that the proof is now significantly easier than in the
ESA version: there is just one type of gadget left, and this gadget itself has been slightly changed,
leading to a much easier analysis. Another change from the conference version is that the final
reduction of the weighted to the unweighted problem is now done using the probabilistic method.

I am very pleased to be able to fill this gap in the literature with this column.

As always, I would like to invite more contributions to this column, be it surveys, conference
reports, or technical articles related to online algorithms and competitive analysis. If you are con-
sidering becoming a guest writer, don’t hesitate to mail me at rob.vanstee@uni-siegen.de.
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Offline List Update is NP-hard

Christoph Ambiihl*

Abstract

The list update problem is a well studied online problem in the area of self-adjusting data
structures. Understanding the offline version of this problem is crucial because of the role it
plays in the competitive analysis of online list update algorithms. In this paper we settle a
long-standing open problem by showing that the offline list update problem is NP-hard.

1 Introduction

The list update problem is a classical online problem in the area of self-organizing data structures
[3, 6]. It is concerned with unsorted linear lists as an implementation of a dictionary data
structure.

Requests to items must be served by accessing the requested item in the list. Accessing the
item at position ¢ in the list incurs a cost of ¢ units. The goal is to keep access costs small by
rearranging the items in the list. After an item has been requested, it may be moved free of
charge closer to the front of the list. This is called a free exchange. The other way of rearranging
the list items is by swapping two adjacent items, which is called a paid exchange. Paid exchanges
can be performed at any time. But each of then incurs a cost of one unit.

A list update algorithm describes the policy by which the items are rearranged. The most
famous of all is the MoveToFront algorithm (MTF), which moves each item to the front of the
list after it has been requested.

An online algorithm must serve the sequence o of requests one item at a time, without
knowledge of future requests. An optimum offline algorithm knows the entire sequence o in
advance and can serve it with minimum cost OPT (o). If the online algorithm serves o with
cost A(o), then it is called c-competitive if for a suitable constant b

A(o) <c-OPT(o)+b (1)

for all request sequences o and all initial list states. The constant c is called the competitive
ratio of A.

In a seminal paper, Sleator and Tarjan proved that MTF is 2-competitive [13]. This is best
possible for deterministic algorithms (see the remark in [12]).

As shown first by Irani [10], randomized algorithms can perform better on average. A
randomized algorithm is called c-competitive if

E[A(0)] < c¢- OPT(0) + b,

for all o and all initial list states, where the expectation is taken over the randomized choices
of the online algorithm. The best randomized list update algorithm known to date is the 1.6-
competitive algorithm COMB by Albers,von Stengel and Werchner [2]. COMB is a combination

*The research resulting in this paper was conducted while the author was a Ph.D. student at the Institute for
Theoretical Computer Science, ETH Ziirich, Switzerland.
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of the BIT algorithm by Reingold, Westbrook, and Sleator [12] and Albers’ TIMESTAMP
algorithm [1]. The former is chosen with probability 4/5, the latter with probability 1/5.

For the analysis of list update algorithms, the model in which accessing the item at position
1 costs only ¢ — 1 units is more natural. This model is called partial cost model, as opposed to
the classical full cost model. An algorithm which is c-competitive in the partial cost model is
also c-competitive in the full cost model. On the other hand, a lower bound in the full cost
model implies the same bound in the partial cost model, but not vice versa.

The first nontrivial lower bound for the full cost model is due to Karp and Raghavan (see
the remark in [12]). The best lower bound known to date is 1.5 by Teia [14].

In the partial cost model, a lower bound of 1.5 is trivial. But the best known lower bound
by Ambiihl, Gértner, and von Stengel is only marginally higher at 1.50084 [5].

The analysis of all algorithms mentioned above relies on the fact that the algorithms have
the so-called projectivity property. That is, the relative order of two items x and y does not
depend on items different from z and y. Ambiihl, Gartner, and von Stengel showed that in the
partial cost model no projective algorithm can outperform COMB [4]. This means that new
kinds of algorithms and new ways of analyzing algorithms are needed to close the gap.

Because of (1), the analysis of an online algorithm requires a good understanding of the
optimum offline algorithm OPT. Some online problems, for example Paging [6], benefit from
the fact that they have a polynomial time optimum offline algorithm. These algorithms tend to
be fairly simple and therefore help a lot in finding good online algorithms.

Unfortunately, this is probably not the case for the list update problem, as the main result
of this paper is

Theorem 1. The Offline List Update Problem (OLUP) is NP-hard.

This theorem holds in both cost models. Reingold and Westbrook provided the best pub-
lished algorithm for OLUP [11]. It runs in time O(2"n!|o|) on lists with n items. More recently
Divakaran claimed an improved running time of O(nnl!|o|) [8].

2 Preliminaries

An instance of the Offline List Update Problem (OLUP) consists of a list state Ly and a sequence
of requests o. The objective is to determine the cheapest way to serve all the requests in ¢ in
turn starting from the initial list Ly. We denote the minimal cost needed to serve an instance
(Lg,0) by OPT(Ly,0).

Throughout this paper, we assume the partial cost model. However, the cost of a schedule
S in the full cost model can be obtained by adding |o| units to the cost of S in the partial cost
model. Therefore, OLUP is certainly NP-hard in the full cost model as well.

List states will be written in brackets, with the head of the list on the left. A request sequence
is denoted by a sequence of items from Ly. For example Ly = [abc] and o = cbbe. In order to
denote that x is before y in a list state, we write x < y. The ith request of ¢ is denoted by
o(i). By o’c” we denote the concatenation of two sequences o’ and ¢”. We denote the request
sequence consisting of ¢ > 0 repetitions of ¢ by 9.

The number of requests in ¢ will be denoted by |o|. By 04, we denote the projection of o to
the items x and y. That is, the sequence obtained from o after all requests to items other than
x and y have been removed. The length of o, is denoted by |o,,|. In this vein, the number of
requests to item z in o will be denoted by |oy|.

Theorem 3 in [13] states that paid exchanges can be mimicked by free exchanges. Reingold
and Westbrook [11] give a counter-example to this claim: Consider Ly and o from two paragraphs
above. An optimal algorithm moves a behind b and ¢ before the first request to ¢. This requires
paid exchanges and incurs eight cost units. All solutions using only free exchanges incur at least
cost nine.
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On the other hand, free exchanges can be mimicked by paid exchanges as follows: Instead
of first paying k units in order to access item = and then move it at no charge t positions closer
to the front, one can first move the item ¢ positions and then access the item. In both cases,
one pays exactly k units.

Because we can ignore free exchanges, a solution to an instance of OLUP is determined by
the sequence of list states S = (Lo, L1, ..., L|s) where L; for 1 <i < |o| denotes the state in
which the ith request is performed, and Ly denotes the initial list state. A feasible (but not
necessarily optimal) solution S will be called a schedule.

Concerning the cost of a schedule S, the access cost for the ith request can easily be deter-
mined from L;. Namely, if the requested item is at position p in L;, then accessing it costs p—1
units. (Remember that we decided to use the partial cost model.)

The cost of the paid exchanges needed to turn a list state L; into L;;1 is equal to the number
of inversions between L; and L;;;. That is, the number of pairs of items whose relative order
in L; is reversed in L; 1.

We will show that computing OPT(Lg, o) is NP-hard by showing that the decision version
of the problem is NP-hard. Therefore, there cannot be a polynomial time algorithm for OLUP
unless P = NP.

In the next section, we will introduce a generalized version of OLUP, called Weighted List
Update Problem (WLUP). In Section 4, we will reduce the well known Minimum Feedback Arc
Set Problem to WLUP to show that WLUP in NP-hard. In the Section 5, we will finally show
that OLUP is NP-hard by a reduction from WLUP.

3 The Weighted List Update Problem

In this section, we introduce the Weighted List Update Problem (WLUP), which generalizes
OLUP to items with weights. These weights have to be non-negative integers. Weighted items
have been considered already in [7] for online list update.

The cost incurred by operating on weighted items is the following. The cost of a paid
exchange involving two adjacent items x; and z; with weights w; and w; is

w; - Wy (2)

units. The access cost for item x; in a list L is

Z Wg * Wy. (3)

k:xp<x; in L

An instance of WLUP consists of a request sequence o and an initial list Ly over a set
of weighted items. We denote an instance by the triple (Lo, o, W), where W is a vector that
contains the weight of each item in Lg. We denote the minimal cost to serve an instance by
WOPT(Lg,o0,W).

Note that the special case where all items have unit weight is equivalent to the classical list
update problem.

For the rest of this section, we consider a fixed WLUP instance (Lg, o, W). The cost of a
schedule S for (Lo, o, W) can be described by the two functions upd and jmp, which both map
to {0,1}. Let upd(i,{x,y},S) =1 if and only if the relative order of « and y changes from L; 4
and L;. The cost for changing the list state from L; 1 to L; can then be written as

Z upd (i, {x, y}, S)waw,.
{z,y}

What the above formula shows is that every unit of cost incurred by updating the list from
L; 1 to L; can be assigned to exactly one unordered pair of items. The same can be done for
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the access cost. When serving o (i), a pair {z,y} incurs a cost if either = is accessed and y is in
front of z in L;, or if y is accessed and z is in front of y. In this vein, let jmp(i, {z,y},S) =1 if
and only if

(c(i)=2 and y<xin L;) or (c(i) =y and = <y in L;).

The access cost for the ith request in the request sequence can then be written as

> gmp(i{x,y}, S)wwy.
{z,y}

Using jmp and upd, the cost of a schedule S can be expressed as

LS)= > > wowy(upd(i, {x,y},S) + jmp(i, {z,y}.S)). (4)

1<i<|o| {z,y}

The projected cost of the pair {x,y} in a schedule S for o is defined by

’Yacy(o'ys) = Z upd(i,{:z:,y},S)+jmp(i,{x,y},$).

1<i<|o]

Note that 75, does not depend on W. We can now write Equation (4) as

I(S) := Z WeWy - Yoy (0, S).
{z.y}

We will often need to argue about the projected cost of different parts of a request sequence.
Let o(a)...o(b) be a consecutive subsequence of o. The projected cost of the pair {x,y} on the
subsequence o(a) ...o(b) in a schedule S is defined by

'Ya:y(ouavbvs) = Z upd(i,{x,y},S)—|—jmp(i,{ac,y},$).

a<i<b

We also need a simple lower bound on v, (0, a,b,S). Assume that we can partition o(a) . ..o (b)
into k consecutive subsequences, with each subsequence containing at least one request to each
of x and y. Clearly, each of these subsequences will incur at least one unit towards v,,(c, a, b, S).
Therefore k is a lower bound on v, (0, a,b,S). The partitioning which yields the lower bound
can easily be computed in a greedy manner from the beginning to the end of o(a)...o(b). Let
Ozy(o(a)...o(b)) be the number of subsequences we can obtain by partitioning ¢ in the greedy
manner. Then we can state that

Proposition 2. v,,(0,a,b,8) > dzy(o(a)...o(b)).
The following properties of d;, will be useful.

Proposition 3.

ey () if o’ is a subsequence of o
If additional information about S is known, one can often get a better lower bound on
Yay(0,a,b,S).
Lemma 4. Let 1 <a < q <b < |o| and let S = (Lo, L1,...,L|s|) be a schedule for o with
x <y in Ly. Then
Yay(0,a,b,8S)

> 0zy(o(a)...o(g—1)x0(q)...0(b)) and (5)
Vay(0,a,0,85) >

ey(o(a)...o(qzo(qg+1)...0(b)). (6)

ACM SIGACT News 72 September 2017, vol. 48, no. 3



Proof. We only prove Inequality (5) here. The proof of Inequality (6) is very similar. Let ¢
be the request sequence obtained from o by adding a request to & between o(q — 1) and o(q).
Notice that o(b) corresponds to o’(b+1) since one request to « was added to the sequence. From
a schedule S described above one can easily build a schedule S’ for ¢’ such that v,y (0, a,b,S) =
Yay(0',a,b+1,8") holds. Then the lemma follows from 7., (¢’,a,b+1,8") > 6,,(c'(a)...o'(b+
1)) (Proposition 2). O

Obviously, if the relative ordering of x and y is known at two list states L, and L,, the
technique of adding a request can be applied at both o(q) and o(p), thus leading to an even
better lower bound.

The request sequence o that we will encounter in the next section will be the concatenation
of so-called gadgets. Let us introduce some special notation to handle these gadgets more easily.
Let m be a gadget starting at the ath request and ending at the bth request of o.

’Yg;y(ﬂ',S) = 7$y(0aa7 b, S),

F(?T,S) = Z Wy Wy 'me(ﬂ-,S)u
{zy}

A(m) = wawy - 6y ()
{=,y}

(7, S) is nothing else but the total cost incurred during serving the gadget 7 using schedule S.
It is easy to see that by summing up I'(w, S) for all gadgets m we obtain I'(S).

Note that for computing v, (m,S) and I'(7,S) we need to know at which request 7 starts
and ends. On the other hand, for d,,(7) all we need is the request sequence of the gadget. This
is also why we do not need a special definition for d,, ().

These new notations allow us to rewrite and extend Proposition 2. The first inequality is
just Proposition 2 using the new notation. The second inequality follows easily from the first
and the definitions of I'(w, S) and A(r).

Proposition 5.

4 WLUP is NP-hard

To show that WLUP is NP-hard, we will give a polynomial time reduction from Minimum
Feedback Arc Set Problem (MINFAS) [9] to WLUP. Given a directed graph G = (V, E), a
feedback arc set is a set B’ C F such that G’ = (V, E\ E’) is acyclic. In the decision version, we
want to decide whether there exists a feedback arc set of cardinality at most & for an instance
G. We can assume k < |V|? here since the problem is trivial for larger values of k.

The reason we reduce from MINFAS is that this problem can be reformulated as an ordering
problem. Instead of expressing a feedback arc set by a subset of F, it can be encoded in a
permutation P of the vertex set V. The permutation P in turn can be interpreted as a list
state. The feedback arc set encoded in P is

k(P) :=={(v;,v;) € E|v; <v; in P}.

To see that k(P) is indeed a feedback arc set, note that any cycle in G must contain at least
one arc for which v; < v; holds in P. Therefore, E \ x(P) is cycle-free and x(P) is indeed a
feedback arc set.
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We also have to prove that if a graph G has a feedback arc set E’ of cardinality k, then there
exists a permutation P with |k(P)| < k. To see this, remember that G’ = (V, E'\ E') is acyclic.
Therefore one can always find a permutation P of V' such that for every arc (v;,v;) € E\ E' it
holds that v; < v; € P. Such an ordering is called a topological ordering of G’. The only arcs
for which v; < v; might hold in P are those in E’. Therefore, |x(P)| < k holds.

The reduction from MINFAS to WLUP is a polynomial time computable function which
takes a MINFAS instance (G, k) as arguments and returns a WLUP instance (Lg, o, W, k') such
that (Lo, o, W) has a schedule with cost &’ if and only if G has a feedback arc set k.

We are now going to describe what (Lo, o, W) looks like. Let G = (V, E) and n = |V|. For
every vertex v; € V there is a weighted item v; with weight k£ + 1. We call them vertez items.
Additionally, we have two items ¢ and d both with weight one. They will be used to implement
the so-called gadgets.

The initial list state is Ly := [v1vav3 ... v,cd]. The request sequence o is the concatenation
of subsequences called gadgets. There is exactly one gadget for every arc of G. The gadget for
an arc e = (v;,v;) will be denoted by 7(v;,v;) or 7(e).

We now have enough information to explain the high-level ideas behind the reduction. Let
(G, k) be a MINFAS instance and let P be a permutation with |x(P)| < k. The WLUP instance
(Lo, 0, W) has a very simple schedule with value at most &’. Namely, the schedule will rearrange
the vertex items within the first n requests of ¢ in such a way that their ordering corresponds
to the ordering of the vertices in P. In the remainder of the schedule, the relative order of the
vertex items will not change anymore. The purpose of each gadget m(v;,v;) is to test whether
v; < v; holds in the list. If this is the case, serving the gadget will cost one unit more compared
to the case in which v; < v; holds. Clearly, there will be exactly x(P) gadgets which will incur
this one unit of extra cost. On the other hand, we will show that from a schedule with cost &’
for (Lo, 0, W) one can very easily read off a permutation P with |k(P)| < k.

The details of the gadgets are as follows. Every gadget consists of eight copies of the sequence
(v1...vy,) with the addition of some requests to ¢ and d. The gadget 7(v;, v;) can be written as
follows.

(v1...v)? 01 cvie . vjd. . vice. . ddd v .. vicee. . v, (V1. v,)?

The first request to ¢ in the gadget is always just before the third request to v;. The first
request to d follows just after the next request to v;. Then there is a double request to c just
after the next request to v;, followed by a triple request to d just before the next request to vj,
finally, there is a triple request to c just after the next request to v;. Note that the triple request
to ¢ always happens in the fourth copy of (v ...v,). In which copies of (v; ...v,) the requests
to d happen depends on whether ¢ > j or i < j.

Here is another view of the gadgets, where we have distinguished between the cases ¢ < j
(left) and i > j (right) and highlighted the important part.

(v1 ... v v; s p)? (vg ... v v con )2
V1 ... CU; vid ... v, v ... vj ... CU; e Up
V1 ... vice ... dddvj ... v, V] ... vid... vice ... v,
v1 ... viccCC... Vi ... Uy v1 ... dddvj ... wvicce... v,
(v1 ... v v; covp)? (vg ... v Y co )3

The crucial part of the gadget is the part between the first and the last request to ¢. The
only facts to remember about the rest of the gadget is that every vertex item gets requested at
least twice before the first request to ¢ and at least three times after the last request to c.

Although the gadgets might look very complicated when looking at them as a whole, the
inner workings are not too difficult to understand once one considers the projections to the
pairs, as we will do in the next subsection.
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We partition the gadgets into two sets. An arc (v;,v;) and its gadget m(v;,v;) belongs to
E~ifi < j,and to ET if i > j.

As already stated earlier, the request sequence ¢ is just the concatenation of all gadgets.
They are ordered in such a way that the gadgets for arcs in ET precede all the gadgets for arcs
in E~. Clearly

Afo) =Y A(n(e))
ecE
is a lower bound on WOPT (Ly, o, W). We can now complete the description of the reduction
by setting k' := A(c) + k. A schedule with cost at most A(o) + k will be called a good schedule.

If in a schedule S it holds that v, (7, S) = 65, (7) we say that the pair {z,y} is tight in the
gadget 7, otherwise it incurs wywy, - [Yuy (7, S) — 02y ()] units of extra cost. If in a gadget 7 all
pairs are tight and therefore I'(w,S) = A(7), the gadget 7 is called tight as well.

The idea behind the gadgets is the following. Consider a gadget m(v;,v;) and let L# be the
list state in which the gadget’s first request to d takes place. The purpose of the gadget is to
test whether v; < v; holds in L#. In that case, the cost of serving the gadget will be equal to
A(m), otherwise the cost will be A(w) + 1.

To show that the reduction works we prove two claims. The first one is

Claim 6. If G has a permutation P with |k(P)| < k, then there is a schedule for (Lo, o, W)
with cost A(o) + |k(P)| < A(o) + k.

Since we have a gadget for every arc in G, all we have to do is to rearrange the vertex items
such that their order is equivalent to P. As we will see, this reordering does not incur any extra
cost. With the vertex items ordered according to P, all the gadgets 7(v;,v;) with v; < v; in P
will incur one additional cost unit. All other gadgets will not incur any extra cost. Hence the
cost will be bounded by A(c) + |x(P)| < A(o) + k. The second claim is

Claim 7. If there is a schedule S for (Lo,o, W) with cost at most A(c) + k, then G has a
permutation P with |k(P)| < k.

The proof of the claim is along the following lines. Clearly there can be at most k gadgets
with are not served tightly in S. Let L* be the list state just after the last gadget belonging to
E™ has been served in the schedule S. The goal is to show that the permutation P, which is
obtained from L* by removing ¢ and d, represents a feedback arc set of cardinality at most k
for G.

To see this, we will prove that for all tight gadgets 7(v;,v;) it holds that v; < v; in L* and
therefore also in P. Hence, only the at most k arcs corresponding to non-tight gadgets can have
v; < v; in P and therefore |£(P)| < k holds.

4.1 Proof of Claim 6

It is now time to analyze o as a whole and particulary the gadgets in more detail. We are mostly
interested in good schedules. In a good schedule, all the pairs except {¢,d} need to be served
tightly in all the gadgets. This holds because the projected cost of a pair of items is always a
multiple of the product of items weights, hence serving a pair of items other than {c,d} non
tightly would incur extra cost of at least k 4+ 1 units. It turns out that there is only limited
amount of freedom when it comes to serving a gadget tightly.

Lemma 8. Let m = m(vi,vj). We have 0y,c(m) = 4 for all £ € {1,...,n}, y,a(7) = 2, and
Ovpa(m) = 3 for vy # vj. Finally, 0cq(m) = 3. In a good schedule, ¢ and d are behind all vertex

items at the beginning and end of all gadgets. If the pair {c,d} is served tightly in a gadget, then
we must have ¢ < d at the beginning and end of this gadget.
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Proof. We repeatedly use Proposition 3. In the case {v;, c}, we have 6,,.(v? cv; viccvicccvd) = 4.
This lower bound can be achieved only in one way, namely by having ¢ behind v; at the start of
the gadget (i.e., without paying for an exchange), keeping ¢ behind v; until the second request
to ¢, and by moving v; in front of ¢ again after the last request to ¢ in the gadget. It is easy to
check that deviating from this approach, for example by moving c in front of v; earlier, would
add extra cost. It is not hard to see, using Lemma 4, that any other schedule would incur extra
cost.

In the case of {vy, c} for vy # v, we have 8, (v} cvccvpeccv) P) = 4 for p € {2,3} and there
are exactly two ways to serve this pair. At the start, ¢ must be behind v,. Because there is only
one request to vy between the first and second request to ¢, there is the option of moving ¢ in
front of v, either at the first or at the second request. After the last request to ¢ in the gadget,
vp has to move in front of ¢ again.

For {v;,d} we have d,,q4(v}d dddvf_p) = 2 for p € {3,4} and there is only one way to achieve
this bound, namely by having d behind v; at the start, moving d in front of v; at the first
request to d and moving it back straight after the last request to d.

For {vs,d} for vy # v;, the lower bound is 8,,4(v dv, dddv] ?) = 3 for p € {2,3,4}. And
there is again the option of moving d in front of v, either at the first or at the second request.
Again, vy has to move ahead of d after the last request to d.

Finally, the pair {c,d} has d.q(cdccdddcec) = 3. The only optimal way to serve this pair is
to serve all requests to ¢ with ¢ < d and serve the triple request to d with d < ¢. In particular,
in order to have projected cost 3, by Lemma 4 we must have ¢ < d at the beginning and end of

the gadget.
By combining all of these cases, we see that ¢ and d have to be behind all vertex items at
the end of each gadget, and in this order (¢ < d) if they are served tightly. O

Using Lemma 8, we can now prove the claim. Let G = (V, E) be a graph with permutation
P such that |x(P)| < k. We have to show that there exists a schedule S for (Lg, o, W) with cost
A(o) + |k(P)|. This means that S must be a good schedule.

We define the schedule S as follows. We use the first n requests of the first gadget of o to
rearrange the vertex items according to the permutation P. From then on, the relative order of
the vertex items will remain unchanged. To describe how this is achieved, it suffices to describe
what the list states Lq,..., L, of the schedule S look like. Namely, L; has items vy, vz ..., v;
ordered according to P, followed by the remaining items ordered as in Ly. Hence in L, all the
vertex items are ordered according to P, and this rearrangement of the items does not incur
more cost than accessing them.

It remains to describe how ¢ and d behave in the schedule. The items ¢ and d are always at
the tail of the list at the start of a gadget, which ¢ < d. Just before the first request to ¢ in the
gadget, we move c right behind v;. Then we move d right before v; before the first request to
d. Before the double request to ¢, we move ¢ to the front of the list. Before the triple request
to d, we move d to the front of the list. The same happens to ¢ before its triple request. After
the last request to ¢ in the gadget, we move both ¢ and d back to the tail of the list.

To analyze the amount of extra cost incurred in the schedule, we look at the projected cost
of all pairs of items. Remember that in order to compute the projected cost of a pair in a part
of a request sequence, all one needs to know is their relative order at each request to one of them
(for the access cost) and how many times the pair changes its relative order (for the update
cost).

Let us first check that all pairs of vertex items {v,, v,} do not induce extra cost. W.lLo.g.
we can assume that x < y. In the schedule described above, v, either stays behind v, for the
whole schedule, or v, passes v, just before v,’s first request in o, using a single paid exchange.
Hence 7y,0, (7, S) = 8 holds in both cases for all gadgets, which is tight.
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The behavior of the pairs {v;, ¢} and {v;,d} is completely determined by the description of
the schedule: c stays behind v; until the second request to ¢, whereas d moves ahead to v; right
at the first request. Both ¢ and d move behind the other item after their last request. For the
other pairs, it can easily be checked that this schedule serves them as in the proof of Lemma 8§,
hence serving them tightly.

Finally, the pair {c,d} needs to be analyzed. From the description of the schedule we know
that ¢ < d holds at the start of the gadget. If (v; < v;) in P and therefore v; is before v; in the
list during the service of the gadget (or at least after the first n requests of this gadget have been
served, in case this is the first gadget), d will stay behind ¢ at its first request, and therefore the
projected cost will be three. But if v; < v; holds in P, then v; is before v; in the list when the
requests to ¢ and d are served. In that case d passes ¢ at the first request to d in the gadget,
thus causing one extra cost unit as ¢ passes d again at the second request to c.

Since the one unit of extra cost occurs only for gadgets m(v;,v;) with v; < v; in P and the
number of such gadgets is k(P), the schedule as described incurs |<(P) < k units of extra cost.
This completes the proof of Claim 6.

4.2 Proof of Claim 7

We need to prove that a good schedule S for (Lg, o, W) implies that there exists a permutation
P with |k(P)| < k.

Lemma 9. In a good schedule S, the relative order of a pair of vertex items can change at most
once.

Proof. Consider a good schedule S and two vertex items v, and v,. Without loss of generality
we can assume z < y. Clearly it holds that v, < v, in L.

The proof is by contradiction. Assuming that the relative order of v, and v, changes at
least twice, one can partition ¢ into o’c”’¢’” such that v, < v, holds when the first request of
o' takes place and v, < v, when the first request of 0" takes place. Applying Lemma 4 at
the first request of ¢’ and at the first request of ¢’”, one can conclude that there exist integers

p,q > 0 such that v,,,,(c0,S) is lower bounded by

/ 1" " )

! " "
Ovyv, (0 0y0" 0 0™") = by 0, (00, VYO, V0

Va Uy Vg Vy "TY Vgvy
= Ou,v, ((Umvy)q(vy%)“l(vwvy)SlEl—q—p)
= 8|E| + 1.

The first equality follows from Proposition 3. For the second equality, it helps to notice that the
sequence on the left hand side always has exactly one double request to each v, and v, with the
double request to v, preceding the one to v,. By cutting the sequence between the two double
requests, one ends up with the three terms stated on the right hand side. (In case lezvy =0,
vy is inserted at the start, and we have ¢ = 0. We have U;’;Uy # () since there is no state change
after the last request.)

This implies that the pair {v;,v,} is not served tightly, causing at least w,w, = (k + 1)?
units of extra cost. Hence S cannot be a good schedule. O

Lemma 10. Consider the gadget m(v;,v;) in a good schedule S. Let L¥ denote the list state
when the first request to d within the gadget is served. If v; < v; holds in L#, then this incurs
at least one extra unit of cost in this gadget.

Proof. Using Lemma 4, it is not hard to see that in a tight gadget, the following relative orderings
in L# are needed: v; < ¢, ¢ <d, d < vj. Indeed, if ¢ < v; holds in L#, then by Lemma 4 and
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Proposition 3 the projected cost of the pair {c,v;} is at least
Su;e(Vicvicviccvieccv?) = 5.

(The extra ¢ induced by Lemma 4 is underlined.) Hence the projected cost is strictly larger
than the lower bound from Lemma 8. The proof for the other pairs is similar:

d=<c: dea(cddeedddece) = 4
v; <d: 5vjd(vfd&dddv?7p) =3 (pe{3,4})

Hence, each pair incurs extra cost if it is not in the right order. But the three required
orderings also imply v; < v;. Hence if v; < v; holds, at least one of the three relative orders
cannot hold, resulting in at least one extra cost unit. O

Lemma 11. Let L* be the list state of a good schedule S just after the last gadget of ET has
been served and before the first gadget of E~ is served. If the gadget m(v;,v;) is tight, then
v; < v; must hold in L*.

Proof. Let us first consider a gadget m(v;,v;) belonging to E~. Remember that in this case
i < j and v; < vj in Lo hold. The gadget m(v;, v;) is served after reaching L*. From Lemma 10
it follows that for 7(v;,v;) to be tight, v; < v; has to hold when the first request to d takes
place in 7(v;,v;). According to Lemma 9, this is possible in a good schedule only if v; < v; did
hold in all list states before. Therefore v; < v; must hold in L*.

In the second case, consider a gadget m(v;,v;) belonging to E™. Hence we have ¢ > j and
vj < v; in Lg. This time, 7(v;,v;) is served before reaching L*. Again Lemma 10 implies that
for m(v;, v;) to be tight, v; < v; has to hold when the first request to d takes place in 7(v;,v;).
To achieve this, the pair has to change its relative order. According to Lemma 9, v; cannot move
ahead of v; anymore after m(v;,v;) has been served. Therefore v; < v; must hold in L*. O

With Lemma 11 available, proving Claim 7 is quite easy. The desired permutation P can be
obtained from L*, after removing the items ¢ and d.

Lemma 11 proves that the gadgets which are tight in S do not belong to x(P). Since every
non-tight gadget incurs at least one unit of extra cost, there can be at most k£ non-tight gadgets.
Even if for all these gadgets 7(vg,vy) we have v, < v, in P, it still holds |x(P)| < k.

5 OLUP is NP-hard

We will now reduce WLUP to OLUP. The reduction is defined by a function g that converts a
WLUP instance into an OLUP instance. Let the WLUP instance be (Lg, o, W) with items z;
of weight w; for i = 1,...,n. The function g converts (Lo, o, W) into an OLUP instance (Lg, &)
by textually replacing any occurrence of x; in Ly and o by the block ; 1%;2 ... & .4,-

As a general comment on the notation in this section: all objects with a hat accent, such
as Lo, &, and W will always refer to an instance involving the #; ; items. Those without the
hat-accent refer to instances involving the x; items.

Most of the section will be concerned with proving the following lemma.

Lemma 12. If the access cost defined in (3) is replaced by

5 wiwk> (%) @

kixp<x; in L

it holds that WOPT(Lgy,0, W) = OPT(Lo, ).
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The following example illustrates Lemma 12. Consider the WLUP instance (Lg,o, W) =
([x12223], 3227923, [1,2,2]). If we apply the g function, we obtain the OLUP instance

([T1,122,122,2%3,1%3,2], ©3,123,2%2,1%2,2%2,1%2,283,183,2). (8)

In our example, the optimum schedule for the WLUP instance is to move to the list state
[xoxsx1] before the first request and stay there. This schedule has update cost 4 and access cost
541+ 1+ 5 =12. The intuition about Lemma 12 is that one can obtain an optimal schedule
for (LO7 &) by applying the textual replacement rule from function g to the optimum schedule
of (Lg,0,W). In our example, this means that the optimal way to serve (Lo7 ) is to move to
list state [$2122,2%83183,2%1,1] and to stay there. It is easy to check that this schedule has also
update cost 4 and access cost 12. This concludes the example.

Using Lemma 12, we are able to prove the main theorem of this paper stated in the intro-
duction.

Proof of Theorem 1. It is not hard to see that with the original access cost from (3), the rela-
tionship between WOPT and OPT described in Lemma 12 turns into

WOPT (Lo, 0, W)+ Y (U;).m

z;€Lo

= OPT(Ly,5). (9)

The second term of (9) on the left hand side only depends on ¢ and W, but not on the
optimal schedule. Hence the reduction also works with the original access cost.

For the reduction to be polynomial, we need the weights of the items x; to be bounded by a
polynomial in the number of items in Ly and the length of the request sequence o. But from the
previous section we know that WLUP is NP-hard even if the weights of the items are bounded
by O(n?) where n is the number of items. O

Lemma 12 will be proved by showing WOPT (Lo, 0, W) > OPT(Lg, &) and WOPT (Lgy, 0, W) <
OPT(Lg,5).

In order to see the first, we transform (as in the example above) an optimal schedule S for
(Lo, 0, W) into a schedule S for (ﬁo, &) by using the same textual replacement rule as in g. That
is, S is obtained by applying the textual replacement rule to all list states of S (recall that a
schedule is just a sequence of list states). The cost of & is WOPT(Lg, o, W). This follows by
comparing the access and update cost in both schedules: Accessing z; in a list L of S translates
to accessing all items Z; 1 &, 1IN L of § in turn. In order to access Z; 5 in L one has to pass
all £; 5 with ; < z; in L plus all Z; , with k£ < j. Summing up the cost for accessing all items
&ij, j =1,...,w;, we obtain (7). Concerning update costs, a paid exchange of two Welghted
items x; and x), translates to swapping the order of every pair of items {Z; ;, 2%} in S. This
costs w; - wy units, exactly as in (2). This completes the proof of the first inequality.

In order to prove WOPT(Lg,0,W) < OPT(f/O, &), we have to show that a schedule S for
(Lo, ) can be turned into a schedule S for (Lo, o, W) without increasing the cost. Remember
that the OLUP instance (f/o,&) is equivalent to the WLUP instance (ﬁo,&, 1). That is, the
WLUP instance where all items have weight one. Also, the schedule S is a valid schedule for
(fLO, &,1). The schedule S remains a valid schedule for all instances (fLO, g, W) This holds even
if some of the weights are zero. (By equations (7) and (2), items with weight zero incur neither
access cost nor update cost.)

The existence of S is proved using the probabilistic method based on the following ran-
domized construction: For each 1 < i < n, choose uniformly at random one of the items
231,242, -+, Tiw, in block i. Let X be the set of chosen items.
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Let (f/o, g, W) be the instance obtained by reweighing all the items such that w; ; = w; iff
Z;,; € X and W; ; = 0 otherwise. Without increasing the cost, one can obtain a schedule § for
(Lo, 0, W) by replacing &; ; by «; if ; ; € X and removing &; ; ¢ X from the list states of S.

Notice that S does consist of || list states. But only in the list states that correspond to a
request to an item £; ; € X in the original schedule S, we will perform a request by accessing
x;. One could remove the list states without request from the schedule S, without increasing
the cost of the schedule, but the calculations are easier if we assume that the list passes through
these states.

The projected cost vz, ;z,., (6,8) will be abbreviated by (i ;,2¢.m) in this proof since in
what follows S and & will be fixed. The cost of S can be expressed as

F(S) = Z Y Zi g, Toym) + Z Z V(T g, Tim)-
{2i,5:20,m?} i {#q5:%;m?
(=) G#m
The first sum represents the cost due to pairs {7, ¢} (i # ¢) and the second sum counts for each
i the cost due to the pairs of items inside block i. (There are no visible weight factors since all
weights are 1 in this instance.)
A property of the function g that will be useful in this proof is that for every block 1,

X X A . Wy
. Z V(&g Lim) 2 A Z 6(&ij, Bigm) = (21) "o, | (10)
{2, 2i,m} {24,5,%i,m?}
jm j#m

This follows from oz, .3, .3 = (i‘imjii}m)lgmi'.

As we will show next, the expected cost of S is bounded by the cost of S. First, we have
to introduce proper random variables. For each item £; ;, we introduce a random variable z; ;.
We set z; ; :=11if x; ; € X, and z; ; := 0 otherwise.

Using the cost as defined in (7), the cost of the schedule S is then simply

A N W; N
Yo Y(EigRem) © ZigEm - wim + Y 2 o ) 02l
{&4,5:%0,m} %,J

i#0

This is a random variable, whose expectation is

E| > A(Eij&em) - zijzemwitm + Y % < 21> 163, ]

{i,j:%0,m} %,
i4e
N o W;
= Y A@ig@em) - Elzijzemlwiwm + Y Elzi) 5 ) lowi]
{25,580, m1} %,
i#0

= Y (@i &em) - Blaig)Blzem)wiws + Z (112}1) oa,| ZE[’ZiJ]

{2i,5,80,m}
i#L

— Z Y Zij, Tem) + Z (I;Z) o,

{24,5:%0,m}

i£e
S Z ’Y(i‘i,jviﬂ,m) + Z Z ’Y(i‘i,ﬁjji,m)
{2i,5:%0,m} i {2 5% m}
i#e #m
=T(S).
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Here we used linearity of expectation, |6z, ;| = |oz,| by construction of g, the fact that z; ;
and z¢,, are independent for i # ¢, and E[z; ;| = 1/w; and (10).

Since the expected cost of S is bounded by I'(S), there must exist an assignment of the
random variables z; ; such that the cost of the resulting schedule for (Lo, o, W) is bounded by

r(S).

6 Conclusions

We have shown that the Offline List Update Problem is NP-hard using a reduction from Min-
imum Feedback Arc Set. It seems to be quite difficult to use this technique to obtain an
APX-hardness proof. For MINFAS instances with n vertices and m arcs, the optimal schedule
for the WLUP instance (Lo, o, W) created by the reduction has cost between WOPT ((Lg, o, W))
and WOPT ((Lg,o,W))+m. Since WOPT ((Lg,o,W)) = mO(n*) and m = O(n?), clearly this
cannot lead to an APX-hardness proof. It would be very interesting to know whether other
techniques allow an APX-hardness proof or whether a PTAS for OLUP exists.
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