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ABSTRACT

We study the scheduling problem of minimizing the maximum starting time on-line. The goal is to minimize

the last time that a job starts. We show that while the greedy algorithm has a competitive ratio of �(logm),
we can give a constant competitive algorithm for this problem. We also show that the greedy algorithm is

optimal for resource augmentation in the sense that it requires 2m � 1 machines to have a competitive ratio

of 1, whereas no algorithm can achieve this with 2m� 2 machines.
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1. Introduction

We study the following system which enables running jobs on independent identical servers. The
system consists of three parts. The �rst part is the set of servers which run the jobs. There are
m independent and identical such servers, without any communications channels between them. An
additional server, called the input server, is used for communication. This server is in charge of giving
input to the identical servers, and is the heart of the system. The third part is a scheduler. This is
a computer which runs a scheduling algorithm to decide where each new job is going to run. The
input server gets this information from the scheduler, and supplies the servers with all data needed
to process the required jobs. The scheduler works in an on-line paradigm where jobs arrive one by
one (each job is assigned to a machine without knowledge of future jobs). This needs to be done so
that on arrival of a request, it is possible to give an immediate acknowledgement to it and to specify
which server is going to run this job. However, the input server moves the data of each job to the
server which is going to run it, just before the job starts running. The order in which jobs, that were
assigned to a certain server, are given to it is the order of their arrival. See Figure 1. After a job has
been processed, its output needs to be collected. An output collector is not a part of the system, and
is not synchronized with it.
Since the input supplier is a communication channel between scheduler and servers, we would like

to free this server as soon as possible. Both in order to make it available for a di�erent use, and to
increase the chances of successful completion of the delivery of all jobs. To do that, the goal should
be to minimize the maximum starting time of any job.

�Research supported by the Netherlands Organization for Scienti�c Research (NWO), project number SION 612-30-
002.
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Figure 1: The system considered in this paper

An example of this situation is the following. There is a loading station where trucks are loaded
with goods. These goods need to be delivered to di�erent places, after which the trucks return to the
loading station to pick up a new load. At the end of a work day, the station can close as soon as the
truck carrying the last load has left, and does not need to wait for the trucks to return. The loading
station is the input server in our model, the servers are the trucks, and the goods are the jobs. The
time it takes to deliver the goods in one truck is the size of the job. (Here we consider a truck load to
be \one job", e. g. each truck contains only one item, or items for only one destination (client).)
We de�ne the problem in more standard terms of machine scheduling of jobs in a list. We consider

the problem of minimizing the maximum starting time. Jobs arrive on-line to be scheduled on m
parallel machines. These machines can be either identical or related, in which case each machine has
a speed that determines how long it takes to run one unit of work. We study the on-line paradigm
where jobs arrive one by one. A job Jj is de�ned by its size and by its order in the input sequence.
Denote the starting time of job Jj by Sj . We denote the cost of an algorithm A on a job sequence
� = fJ1; : : : ; Jng by A(�) = maxj Sj . An algorithm is required to run the jobs on each machine in
the order of arrival.
We use two measures to study the performance of on-line algorithms. The competitive ratio com-

pares an on-line algorithm to an optimal o�-line algorithm opt that knows the job sequence in advance
(but can not change the order in which jobs run on a machine, i.e. it also has to run jobs on a machine
in the order of their arrival). The competitive ratio R(A) of an on-line algorithm A is the in�mum
value of R such that for every sequence �,

A(�) � R � opt(�) : (1.1)

The second measure involves resource augmentation. Assume the on-line algorithm uses ~m machines,
where ~m > m. What is the minimum value of ~m such that the cost of the on-line algorithm is bounded
by the cost of the optimal o�-line algorithm (i.e. the competitive ratio is at most 1)? Resource
augmentation was originally introduced by [12], and further widely studied for various scheduling and
load balancing problems [5, 7, 12, 13, 15].
Note that if a sequence � contains at most m jobs, then opt(�) = 0. By (1.1), any algorithm with

�nite competitive ratio needs to have zero cost and run all jobs on di�erent machines in that case.
All previous work assumed that the output needs to be collected by the same system, and hence

the last completion time was considered in numerous papers [10, 11, 4, 14, 1, 9, 8]. Other papers
also considered di�erent functions of the completion times [2] but never the starting times. Resource
augmentation for scheduling of jobs one by one was also considered with the maximum completion
time goal function [6, 3]. However, to the best of our knowledge, no previous work on the above goal
function exists.
We show the following results for the competitive ratio on identical machines:

� The greedy algorithm, which assigns each job to the least loaded machine, has competitive ratio
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�(logm).

� The greedy algorithm has optimal competitive ratios for 2 and 3 machines, which are 2 and 5=2
respectively.

� There exists a constant competitive algorithm Balance which has competitive ratio 12 for any
m (hence the greedy algorithm is far from having optimal competitive ratio for general m).

� For any " > 0, there exists a value m1 so that for any m1 > m, the competitive ratio of any
on-line algorithm on m machines is at least 4� ".

The last item implies that any algorithm that works on an arbitrary number of machines has a
competitive ratio of at least 4.
For two related machines, we give a matching upper and lower bound of q + 1 for the competitive

ratio, where q is the speed of the fastest machine relative to the slowest.
We show the following results for resource augmentation:

� The greedy algorithm has competitive ratio 1 if it uses 2m� 1 machines (and is compared to an
optimal o�-line algorithm with m machines).

� Any on-line algorithm which uses 2m� 2 machines has competitive ratio larger than 1, and any
on-line algorithm which uses 2m � 1 machines has competitive ratio of at least 1. Hence the
greedy algorithm is optimal in this measure.

Note that the o�-line version of minimizing the maximum starting time is strongly NP-hard. The
o�-line problem of minimizing the maximum completion time (minimizing the makespan) is a special
case of our problem. A simple reduction from the makespan problem to our problem can be given
by adding m very large jobs (larger than the sum of all other jobs) in the end of the sequence. Each
machine is forced to have one such job, and the maximum starting time of the large jobs, is the
makespan of the original sequence.
We present results on the greedy algorithm in Section 2, the constant competitive algorithm

Balance in Section 3, lower bounds in Section 4, results for related machines in Section 5 and
results for resource augmentation in Section 6.

2. The greedy algorithm

Greedy always assigns an arriving job on the machine where it can start the earliest (see [10]). In
some upper bound proofs we use the following de�nition: a �nal job is a job that starts as the last
job on some machine in opt's schedule.

Theorem 1 Greedy has a competitive ratio of �(logm).

Proof. Let � = opt(�). Note that all on-line machines are occupied until time Greedy(�). We
cut the schedule of Greedy into pieces of time length 2� starting from the bottom.
If there are less than m �nal jobs, there are less than m jobs, hence Greedy is optimal. Suppose

there are m �nal jobs.
Claim: At time 2i�, at most m=2i �nal jobs did not start yet.
Proof: By induction. The claim holds for i = 0. Assume it holds for some i � 0.
A �nal job is called missing if it did not start before time 2�i. Let k be the number of missing

jobs. We have k � m=2i starting at time 2�i or later. The total size of non-�nal jobs running at any
time after 2�i is at most k�. This follows because Greedy schedules the jobs with monotonically
increasing start times, hence if there are k missing �nal jobs, then all the unstarted jobs must have
arrived after the m� k-th �nal job. That job is started before time 2�i and hence the unstarted jobs
must be scheduled by opt on the machines where it runs the last k �nal jobs. Since opt completes
all these (non-�nal) jobs no later than at time �, the total size of these jobs is at most k�.
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At most k=2 machines can be busy with these jobs during the entire time interval [2�i; 2�(i + 1)].
Hence k=2 or more �nal jobs start in this interval (one for every machine that is not busy with non-
�nal jobs during the entire interval and that was also not running a �nal job already). At most k=2
�nal jobs will be missing at time 2�(i+ 1), and k=2 � m=2i+1. �

At time 2� log2m, only one �nal job is missing, therefore Greedy(�) � 2� log2m + �, hence
R(Greedy) = O(logm).
To show that R(Greedy) = 
(logm), we use a job sequence that consists of a job of size 1 followed

by a job of size M (a large constant, e.g. M = m), repeated m times. The optimal algorithm can
assign the jobs so that no job starts later than at time 1, whereas Greedy starts the last job at time
1 + blog2mc: �

We now consider the competitive ratio of Greedy for m = 2; 3. In Section 4, we will show matching
lower bounds. Hence, Greedy is optimal for m = 2; 3.

Lemma 1 For m = 2, R(Greedy) � 2. For m = 3, R(Greedy) � 5=2.

Proof. We start with the case m = 2. We need to show that the competitive ratio of Greedy is at
most 2. Assume by contradiction that Greedy has competitive ratio of � > 2. De�ne " = 1

2
(� � 2)

and consider a sequence � for which Greedy has a ratio of at least �� ". Without loss of generality
we assume that opt(�) = 1. We denote the last job in � by J`. This is a �nal job.
Since J` was assigned by Greedy to the least loaded machine, both of the on-line machines are

busy until time � � ". Hence the total size of all jobs but J` is at least 2(� � ") > 4. The volume of
jobs that opt runs before time opt(�) = 1 is at most 2. opt can run only two additional (�nal) jobs
after time 1, one on each machine. One of those jobs is J`. Hence the other job, J0, must have a size
greater than 2(�� ")� 2 > 2.
Hence there exists a job J0 of size greater than 2. The volume of the remaining jobs (apart from

J`) is at most 2. Hence Greedy will not schedule J` on the same machine as J0, because the other
machine must be less loaded. Scheduled on that machine, J` starts no later than at time 2, since at
most a volume of 2 of jobs is scheduled before it.
For m = 3, suppose Greedy has competitive ratio � > 5=2 and de�ne � and J` as above (taking

" = 1

2
(� � 5=2)). Assume opt(�) = 1. Denote the total size of all jobs but J` by V . Note that the

size of J` is irrelevant for the competitive ratio; we may assume it has size 0. Denote the total size of
all jobs of size at most 1 by V 0. Since opt(�) = 1, opt starts all its jobs no later than at time 1; the
jobs that it completes before time 1 have total size at most 3.
We have V � 3(� � ") > 15=2, since all three of Greedy's machines are busy until past time

�� " > 5=2 when J` arrives.

� If � contains no jobs larger than 1, consider the optimal o�-line schedule. Two �nal jobs are of
size at most 1, and the third (J`) is of size 0. The rest of the jobs are completed by time 1, and
their total size is at most 3. Hence V = V 0 � 5, a contradiction.

� If � contains one job larger than 1, then V 0 � 4: one �nal job has size 0, and one must have size
at most 1 (since only one can be larger than 1). The rest of the jobs are of size at most 1, and
have total size at most 3. Consider the least loaded machine among the two machines that do
not run the job larger than 1, at the time J` arrives. Since V

0 � 4, it cannot have a load more
than 2. But then Greedy starts J` no later than at time 2.

� If � contains two jobs larger than 1, then analogously to the previous cases, V 0 � 3. Denote the
time that Greedy starts the second large job by t2. Similarly to in the previous case, we have
t2 � 3=2 < 5=2. At most a volume of 1 of jobs starts after t2, since opt has to run all these jobs
and J` on one machine if opt(�) = 1: two of opt's machines are already running large jobs and
cannot be used anymore.

{ If t2 � 1=2, then in the worst case Greedy assigns all the jobs that arrive after t2 to one
machine and starts J` no later than at time 5=2.
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{ If t2 < 1=2, then at the time the second large job arrives Greedy starts no job later than
at time 1=2. Hence the on-line machine that has no large job has load at most 3=2 at this
time, since all jobs on that machine have size at most 1 and Greedy always uses the least
loaded machine. Since after t2, at most a volume 1 of jobs still arrives, J` starts no later
than at time 5=2. �

We now turn to the performance of Greedy on related machines. We set the speed of the slowest
machine to 1 and denote the speed of the fastest machine by q > 1. I.e. on the fastest machine, it
takes w=q time to complete a job of size w.

Lemma 2 For two related machines, Greedy has a competitive ratio of at most q + 1.

Proof. Suppose the competitive ratio of Greedy is � > 1 + q. We de�ne J` and � analogously to in
Lemma 1, taking " = 1

2
(�� q � 1). In the present case, we �nd that the total size of all jobs but J`

must be greater than (q+1)2, opt can run at most 1+ q before time 1 and there must be a job J0 of
size greater than q(1 + q). Again Greedy will not schedule J` on the same machine as J0 (even if J0
is run on the fast machine), and hence not start it later than at time q + 1 (assuming that J` is run
on the slow machine, otherwise it starts not after time (q + 1)=q). �

3. Algorithm Balance

We give an algorithm of competitive ratio 12. This algorithm works in phases and uses an estimate
on opt(�) which is denoted by �. A job is called large if its size is more than �, and small otherwise;
if � � opt(�), opt can only run one such job on each machine. Also, once opt has done this, it
cannot use that machine anymore for any job.
A phase of Balance ends if it is clear from the small jobs that arrived in the phase, and from the

large jobs that exist, that if another job arrives then � � opt(�). In this case we double � and start
a new phase.
In every phase, Balance only uses machines that do not already have large jobs. Each such

machine will receive jobs according to one of the two following possibilities.

1. Only small jobs, of total weight in that phase less than 3�.

2. Small jobs of weight less than 2�, and one large job on top of them.

A machine that received a large job is called large-heavy, a machine that received weight of at least 2�
of small jobs in the current phase is called small-heavy. Both small-heavy and large-heavy machines
are considered heavy. A machine that received more than a weight of � of small jobs in the current
phase but at most 2� (and no large job) is considered half-heavy. Other machines are non-heavy. A
machine that is not heavy (but possibly half-heavy) is called active. The algorithm Balance also
maintains a set Q that contains the active machines.
De�ne �i as the value of � in phase i. The algorithm Balance starts with phase 0 which is di�erent

from the other phases. In phase 0, m jobs arrive that are assigned to di�erent machines. We then set
�0 equal to the size of the smallest job that has arrived. Then the �rst of the regular phases starts.
Phases: A new phase starts when Q = ;, i. e. there are no active machines anymore. (Phase 1

starts when phase 0 ends.) At the start of phase i > 0, we set �i = 2�i�1. Then Q contains all
machines that do not have a large job. This holds because no machine has yet received any job in
the current phase, so no machine can be small-heavy. Note that such a large job has arrived in some
previous phase, but that the de�nition of large jobs has changed compared to the previous phase.
I. e. not all the large jobs from previous phases are still large.
At all times, the algorithm only uses active machines. When the phase starts, all active machines

are non-heavy. Each phase consists of two parts. The �rst part continues as long as there is at least
one non-heavy machine among the active machines. As soon as no machine is non-heavy, the second
part starts.
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Part 1 In the �rst part of the phase, the algorithm works as follows. For small jobs, it uses the
machines in Q in a Next Fit-fashion, moving to the next machine as soon as a machine has received
a load of more than �i in the current phase. An arriving large job is assigned to a machine that
already has weight of more than �i. If no such machine exists, it is assigned to the active machine
that Balance is currently using or going to use for small jobs (there is a unique such machine, and
all other non-heavy machines did not receive any jobs in the current phase). A machine that receives
a large job becomes large-heavy, and is removed from Q.
Part 2 When all machines are either half-heavy or large-heavy we move on to the second part of the
phase. We are ready to use the half-heavy machines once again. We again start using the machines in
Q in a Next Fit-fashion, moving to the next machine as soon as the machine has received a total load
at least 2�i in the current phase. A machine that receives weight of at least 2�i of small jobs in total
in this phase becomes small-heavy and hence stops being active (is removed from Q). A machine that
receives a large job becomes large-heavy and also stops being active (it is removed from Q).
As long as jQj > 0, there are active machines. When Q = ;, a new phase starts. An example of a

run of Balance can be seen in Figure 2.
We show that as soon as a �rst job in the new phase arrives, then �i�1 � opt(�). (Note that it is

possible that no jobs arrive in a phase; this happens if Q = ; at the beginning of a phase.)
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jobs from previous phases that are still large

small jobs from first part of this phase

large jobs from first part of this phase

small jobs from second part of this phase

large jobs from second part of this phase

jobs from previous phases that are now small

load

machines

Figure 2: A run of BALANCE

Lemma 3 In each phase i > 0 in which jobs arrive, we have opt(�) � �i=2, where � is the sequence
of jobs that arrived until phase i, including the �rst job of phase i.

Proof. The lemma holds for phase 1, since there is at least one machine of the optimal o�-line
algorithm that has two scheduled jobs after the �rst job in phase 1 arrives.
Consider a phase i > 1. If phase i starts when phase i � 1 is still in its �rst part, then no

machines are small-heavy. Hence in total m jobs have arrived that were considered large in phase
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i� 1 (where some may have arrived before phase i� 1). After the �rst job arrives in phase i, we have
opt(�) > �i�1 = �i=2.
If phase i starts while phase i � 1 is in its second part, let K be the set of large jobs that were

assigned to non-heavy machines in phase i� 1. (If no such jobs exist, K = ;). The jobs in K arrived
in part 1 of phase i� 1, since in part 2 only half-heavy machines are used. In part 1 of a phase, the
active machines that have already been used are half-heavy or large-heavy.
Assume by contradiction that opt(�) < �i�1. Suppose K 6= ;. Denote the last job in K by JK

and denote the set of machines that are still active after JK has arrived by Q0. Write q = jQ0j. There
was no half-heavy machines available for JK , so all the machines that already received jobs in phase
i � 1, including the one that received JK , are large-heavy at this point (they cannot be small-heavy
in part 1). If K = ;, de�ne Q0 as the set of active machines at the start of phase i � 1. Clearly, all
machines not in Q0 are large-heavy at that point.
From this, we have that there exist m� q large jobs after JK has arrived (or at the start of phase

i� 1): all machines not in Q0 either were large-heavy when phase i� 1 started, or became large-heavy
during it. Hence there are m � q machines of opt with a large job, since opt cannot put two large
jobs on one machine; opt cannot put any more jobs on those machines if opt(�) < �i�1. Consider
the set Q0opt of machines of opt that do not run any of the m � q large jobs that arrived already.
We have jQ0optj = jQ0j = q.
We calculate how much weight can be assigned by Balance to the machines in Q0 (or equivalently,

by opt to the machines in Q0opt) in the remainder of phase i�1. In the schedule of opt, the machines
in Q0opt have some q jobs running last on them. Apart from that they have at most an amount of
opt(�) < �i�1 small jobs.
Let q1 � q be the number of large jobs assigned by Balance to machines in Q0 in the remainder

of phase i� 1. At the end of phase i� 1, each machine in Q0 is either small-heavy, or has an amount
of at least �i�1 small jobs and a large job. The total weight of small jobs assigned in phase i � 1 to
the machines of Q0 by Balance is at least (2q � q1)�i.
Suppose we remove the q largest jobs assigned in phase i � 1 to the machines of the set Q0 in the

assignment of Balance. This means that we remove q1 large jobs and q�q1 small jobs. By de�nition,
each small removed job has size of at most �i�1, so we removed at most an amount of (q � q1)�i�1
small jobs. Therefore we are left with total weight of at least q�i�1 on the machines in Q0, counting
only weight from jobs that arrived in this phase.
This implies that even if opt runs the largest q jobs last on the machines in Q0opt, it starts at least

one of them at time �i�1 or later, by the total weight of the other jobs. This gives a contradiction,
already without the �rst job in phase i. This proves the lemma. �

Theorem 2 Algorithm Balance has a competitive ratio of 12.

Proof. Consider the last phase ` > 0 in which jobs arrived. (If ` = 0, Balance is optimal.) Let
� = �`. We have opt � �=2 by Lemma 3. Consider the machines that received jobs in phase `, and
for each such machine, consider the total size of jobs below the last job that is run on that machine.
(For the machines that did not receive jobs in this phase, we have stronger bounds.) This size consists
of three parts:

� The small jobs of phase `

� The small jobs of previous phases

� The large jobs of previous phases

For the computation, for phases 0 < i < ` in which a machine got only small jobs, we replace an
amount of 2�i of small jobs from that phase by one (large) job. (Possibly a small job is broken in two
parts to get a total of exactly 2�i.) Because we only consider machines that received jobs in phase `,
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the maximum starting time is una�ected by this substitution. As a result, each machine receives at
most a weight of 2�i of small jobs in phase i.
In phase `, each machine receives at most 2� of small jobs before it receives its last job. The value of

� is doubled between phases, hence the total amount of small jobs from previous phases on a machine
is at most

P
i<` 2�i � 2�.

We still need to consider the large jobs from previous phases. We count the large jobs not by the
phases they arrive; instead, each large job is counted in the �rst phase where it is not large anymore,
and the machine is active again. The large jobs that replace 2� worth of small jobs as described
above, are always already small in the subsequent phase. For each phase i � `, a machine has at most
one job that has just become small. This job is of size at most �i. Hence in total the size of all these
jobs is at most

P
i�` �i � 2�. Therefore the total load below the last jobs on any machine is at most

2� + 2� + 2� � 6�:

Since � � 2opt, we are done. �

4. Lower bounds

In the following proofs, we take M to be a large constant. If we construct a job sequence � that
contains a job of size M , then we assume that M is larger than R times the sum of smaller jobs in �,
where R is the competitive ratio that we want to show. This choice of M ensures that if a machine is
assigned a job of size M , it cannot receive any other job after this without violating the competitive
ratio.

Lemma 4 Suppose we have a job sequence � that shows that R(A) � R for all on-line algorithms on
m1 machines. Then for any m > m1, R(A) � R for all on-line algorithms on m machines, as well.

Proof. Construct the sequence �0 by adding m �m1 jobs of size M before the �rst job of �. The
optimal cost for this sequence is the same as for � on m1 machines. On the machines that do not run
the �rst m�m1 jobs, we have that A must have a cost at least R times the optimal cost for � on m1

machines, and we are done. �

Theorem 3 Take � = (
p
5+ 1)=2 � 1:618 and M a large constant. For all on-line algorithms A, we

have the following lower bounds for the competitive ratio.
Number of machines Job sequence R

2 1;M; 1;M 2
3 1=2; 1=2;M; 1;M; 1;M 5=2
4 �� 1; �� 1;M;M; 1;M; 1;M �+ 1 � 2:618

Moreover, as the number of machines tends to in�nity, the competitive ratio tends to at least 4.

Proof. For m � 4, we use the job sequences described in the table above. For these sequences, any
on-line algorithm that has a better competitive ratio than in the last column of the table must assign
these jobs in the same way as the greedy algorithm, or violate the competitive ratio. In all cases, after
the last job arrives we have opt(�) = 1 and A(�) = R.
As an example, for m = 4, the �rst four jobs must be assigned to four di�erent machines, the next

two jobs to the machines with the jobs of size � � 1, and the last two to the machine that does not
have a job of size M yet. The sequence stops as soon as A assigns a job di�erently than described
here, or after the fourth large job.
For larger m, we use the following job sequence. Assume m = 2r for some r � 3, and consider

a sequence of real numbers fkig1i=0 with properties to be de�ned later. We will �rst de�ne the job
sequence and then specify for which value of r it works. The job sequence consists of r+1 steps. For
1 � i � r, in step i �rst m=2i jobs of size ki arrive, and then m=2i jobs of size M . In step r + 1, one
last job of size kr arrives, followed by a job of size M .
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We denote the optimal maximum starting time after step i by opti. If ki � ki+1 for all 1 � i � r�1,
then for 1 � i � r, we have opti = ki�1 (we put k0 = 0), which is seen as follows. We describe the
optimal schedule after step i. (We note that the optimal schedules after di�erent steps can be very
di�erent.) There are m=2i machines with one job of size ki, and m=2i machines with one job of size
M . These machines do not have any other jobs. The remaining machines have one job of size ks for
some s < i, and after it one job of size M . After the last step we have optr+1 = kr. In this case, all
machines have one job of size ks for some s � r, and after it one job of size M .
We will now de�ne the sequence fkig1i=0 in such a way that the on-line algorithm cannot place two

jobs on the same machine in one step. By induction we can see that at the start of step i (1 � i � r),
m(1 � 1=2i�1) jobs of size M have already arrived. Thus if the on-line algorithm places the m=2i�1

jobs from step i on di�erent machines (that moreover do not have a job of size M yet), then also by
induction, after every step i (1 � i � r), every machine of the on-line algorithm either has a job of
size M , or it has one job of each size kj , for 1 � j � i.

De�ne si =
Pi

j=1 kj . If the on-line algorithm does put two jobs on the same machine in some step

i � r, then by the above the last job on that machine starts at time
Pi

j=1 kj and the implied ratio is

Ri =

Pi

j=1 kj

ki�1
=

si
ki�1

: (4.1)

If the on-line algorithm never does this, then in the �nal step r + 1 it has only m=2r = 1 machine
left without a job of size M , and this machine has one job of each size kj for 1 � j � i. The on-line
algorithm has minimal cost if it places the two jobs from step i+ 1 on this machine, and the implied
competitive ratio is thus Rr+1 = (

Pr

j=1 kj + kr)=kr = (sr + kr)=kr. Using (4.1), we will de�ne the
sequence fkig1i=0 so that Ri = R is a constant for 1 � i � r + 1. This implies

k0 = 0; k1 = 1; ki = Rki�1 �
i�1X
j=1

kj = Rki�1 � si�1 for i > 1:

This proves a competitive ratio of R if ki � ki+1 for 1 � i � r � 1 and (sr + kr)=kr � R (where this
last condition follows from step r + 1). We have

(sr + kr)=kr � R () kr + sr � Rkr = sr+1 using (4.1)

() kr � sr+1 � sr = kr+1

() sr+1 � sr+2 () kr+2 � 0 () sr+3 � 0:

Hence it is suÆcient to show that the sequence fsig1i=0 has its �rst nonpositive term sr+3 for some
r � 1. This value of r determines for which m this job sequence shows a lower bound of R, since
m = 2r. Note that if sr+3 is nonpositive, we have to stop the job sequence after step r + 1 at the
latest, because by the above kr+2 � 0 < k1 � kr: the sequence is no longer non-decreasing. As stated
above, we will in fact give one �nal job of size kr in step r + 1, and a job of size M , and thus not
use any value ki for i > r. The sequence fsig1i=0 satis�es the recurrence si+2 �Rsi+1 +Rsi = 0. For
R < 4, the solution of this recurrence is given by

si =
2 sin(�i)

pR i

p
4R�R2

where

cos � = �1

2

p
R and sin � =

r
1� R

4
:

Since sin � 6= 0, then � 6= 0, which implies si < 0 for some value of i. Furthermore, this value of i tends
to 1 as R tends to 4 from below. Direct calculations show that for i = 1; 2; 3; 4, si > 0, hence given
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such minimal integer i, we can de�ne r = i � 3. From the calculations it also follows that fkigri=0 is
non-decreasing.
In conclusion, for any value of R < 4 it is possible to �nd a value r so that any on-line algorithm

has at least a competitive ratio of R on 2r machines. By Lemma 4, this implies that for every " > 0,
there exists a value m1 such that for any on-line algorithm A on m > m1 machines, R(A) � 4� ". �
Note that this proof does not hold for R � 4, because the solution of the recurrence in that case is

not guaranteed to be below 0 for any i.

Corollary 1 Greedy is optimal for m = 2; 3.

Proof. This follows from Lemma 1 and Theorem 3. �

5. Related machines

We only study the special case m = 2 and give a matching lower bound to the upper bound from
Lemma 2, showing that Greedy is optimal for this case.

Theorem 4 For the problem of minimizing the maximum starting time on 2 related machines, the
competitive ratio is at least q + 1.

Proof. Consider an algorithm A for this problem and suppose it has a competitive ratio of less than
q + 1. A job of size 1 arrives. If A places it on the slow machine (the machine with speed 1), then a
job of size M arrives (which has to go on the other machine; M is de�ned as in Section 4), followed by
a job of size q and another job of size M . The maximum starting time of A is at least q + 1, whereas
the optimal maximum starting time is 1, by putting the job of size 1 on the slow machine, the job of
size q on the fast machine, and starting both the large jobs at time 1.
If A places the �rst job on the fast machine, then take N a large constant. The second job has

size Nq and must be placed on the slow machine. The third job has size NM , where M = (q + 1)N ,
and must be placed on the fast machine, otherwise a competitive ratio of Nq=(1=q) = Nq2 is implied.
Then a job of size N � 1 arrives which must go on the slow machine; �nally another job of size NM
arrives. A starts its last job at time Nq+(N � 1) whereas in the optimal schedule, no job starts after
time N . By letting N grow without bound (maintaining M = (q + 1)N), this proves the ratio. �

Corollary 2 Greedy is optimal for two related machines.

Proof. This follows from Lemma 2 and Theorem 4. �

6. Resource augmentation

We now consider on-line algorithms that have more resources than the o�-line algorithm. It turns out
that in these changed circumstances, Greedy is optimal in the sense that it requires the minimum
possible number of machines to have a competitive ratio of 1.

Lemma 5 Greedy has a competitive ratio of 1 if it has at least 2m� 1 machines.

Proof. Let h = Greedy(�) and h� = opt(�). Note that the last job J` that is assigned at time h
by Greedy is a �nal job for opt as well, since this is the very last job in the sequence. Let S be the
set of on-line machines of Greedy that only contain non-�nal jobs or J`. Since there are at most m
�nal jobs, jSj � 2m � 1 � (m � 1) = m. All of Greedy's machines are occupied from 0 to h. The
machines in S are occupied during this time by non-�nal jobs. Let W be the total size of non-�nal
jobs. We have W � mh. But W � h�m. Hence h � h�: �

Note that a similar proof shows that the competitive ratio of Greedy tends to zero as the number
of on-line machines tends to 1.

Lemma 6 Any algorithm that has at most 2m� 2 machines has a competitive ratio greater than 1.
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Proof. Suppose A has a competitive ratio of at most 1. We use a construction in phases, where
in each phase the size of the arriving jobs is equal to the total size of all the jobs from the previous
phases. Let ni denote the number of jobs in phase i, and Mi denote the size of the jobs in phase i.
We determine the number of phases later. We take n0 = m and ni = 2m� 1 for i > 0. Furthermore,
we take M0 = 1, M1 = n0M0 = m and

Mi =
i�1X
j=0

njMj =
i�2X
j=0

njMj + ni�1Mi�1 =Mi�1 + (2m� 1)Mi�1 = 2mMi�1 for i > 1:

Claim: After i phases, at least min(m+ (m� 1)(1� 1

2i
); 2m� 2) machines are non-empty.

Proof: We use an induction. All jobs from phase 0 have to be assigned to di�erent machines to
have a �nite competitive ratio, so m machines are non-empty after phase 0.
Consider phase i for i > 0. During each phase i > 0, the optimal costs are at most Mi: all the

jobs from the previous phases go together on one machine, followed by one job of size Mi. All other
machines have two jobs of size Mi. In order to have a competitive ratio of 1, A can assign at most one
job of size Mi on each non-empty machine, and at most 2 such jobs on each empty machine. Let x be
the number of non-empty machines at the start of phase i. If x = 2m � 2 we are done immediately.
Else, we have x � m+(m�1)(1� 1

2i�1
) by induction. The number of machines that become non-empty

in phase i is at least (2m � 1 � x)=2, so after phase i, at least m � 1

2
� 1

2
x + x machines are non-

empty. By induction, we have m� 1

2
+ 1

2
x � m� 1

2
+(m+(m�1)(1� 1

2i�1
))=2 = m+(m�1)(1� 1

2i
).�

Taking k = dlog2me, we have that after k phases, m+(m�1)(1� 1

2k
) � m+(m�1)(1� 1

m
) > 2m�2,

hence A needs more than 2m� 2 machines to maintain a competitive ratio of 1. �

Note that no algorithm A which uses 2m � 1 machines can have competitive ratio less than 1,
due to the sequence 1; : : : ; 1 (2m jobs). At least two jobs run on the same on-line machine, hence
A(�) = opt(�) = 1.

7. Conclusions

We showed that the greedy algorithm is far from being optimal in one measure (competitive ratio),
but optimal in a di�erent measure (amount of resource augmentation). This phenomenon raises many
questions. Which of the two measures is more appropriate for this problem? Furthermore, which
measure is appropriate for other problems? Is it possible to introduce a di�erent measure that would
solve the question: is Greedy a good algorithm to use?
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