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ABSTRACT

New upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box

packing. Several variants of this problem, including bounded space box packing, square packing, variable sized

box packing and resource augmented box packing are also studied. The main results, stated for d = 2, are

as follows: A new upper bound of 2.66013 for online box packing, a new 14=9 + " polynomial time o�ine

approximation algorithm for square packing, a new upper bound of 2.43828 for online square packing, a new

lower bound of 1.62176 for online square packing, a new lower bound of 2.28229 for bounded space online

square packing and a new upper bound of 2.32571 for online two-sized box packing.
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1998 ACM Computing Classi�cation System: F.2.2

Keywords and Phrases: bin packing, multi-dimensional, online, o�ine

Note: Work carried out under project SEN4 \Evolutionary Computation and Applied Algorithmics".

1. Introduction

Bin packing is one of the oldest and most well-studied problems in computer science [10, 5]. The
study of this problem dates back to the early 1970's, when computer science was still in its formative
phase|ideas which originated in the study of the bin packing problem have helped shape computer
science as we know it today. The inuence and importance of this problem are witnessed by the
fact that it has spawned o� whole areas of research, including the �elds of online algorithms and
approximation algorithms. In this paper, we study a natural generalization of bin packing, called box
packing.

Problem De�nition: Let d � 1 be an integer. In the d-dimensional box packing problem, we receive
a sequence � of pieces p1; p2; : : : ; pN . We use the words piece and item synonymously. Each piece p
has a �xed size, which is s1(p)� � � � sd(p). I.e. si(p) is the size of p in the ith dimension. We have an
in�nite number of bins each of which is a d-dimensional unit hyper-cube. Each piece must be assigned
to a bin and a position (x1(p); : : : ; xd(p)), where 0 � xi(p) and xi(p) + si(p) � 1 for 1 � i � d.
Further, the positions must be assigned in such a way that no two items in the same bin overlap. A
bin is empty if no piece is assigned to it, otherwise it is used. The goal is to minimize the number of
bins used. Note that for d = 1, the box packing problem reduces to exactly the classic bin packing
problem.

�This research was partially supported by the Research Competitiveness Subprogram of the Louisiana Board of
Regents.

yResearch supported by the Netherlands Organization for Scienti�c Research (NWO), project number SION 612-30-
002.
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In this paper, we focus mainly on the case of d = 2. This allows for a simpli�cation in notation. We
say that item p has width w(p) = s1(p) and height h(p) = s2(p). We note that many of our results
are more general, however, we focus on the two-dimensional case in order to avoid the cumbersome
notation required by a more general treatment.
There are a number of variants of this problem which are of interest:

� In the online version of this problem, each piece must be assigned in turn, without knowledge
of the next pieces.

� In the square packing problem we have the restriction that h(p) = w(p) for all items p.

� In the two-sized box packing problem, bins have one of two sizes, either 1 � 1 or 1 � z. The
algorithm chooses the size of a bin when it is allocated. The cost of a bin is equal to its area.

� In the resource augmented box packing problem, the algorithm is allowed to have larger bins
than the adversary. The cost of each bin is one.

� In the bounded space variant, an algorithm has only a constant number of bins available to
accept items at any point during processing. The bounded space assumption is a quite natural
one, especially so in online box packing. Essentially the bounded space restriction guarantees
that output of packed bins is steady, that the packer does not accumulate an enormous backlog
of bins which are only output at the end of processing.

The o�ine versions of these problems are NP-hard, while even with unlimited computational ability
it is impossible in general to produce the best possible solution online. We therefore consider both
online and o�ine approximation algorithms.
The standard measure of algorithm quality for box packing is the asymptotic performance ratio,

which we now de�ne. For a given input sequence �, let costA(�) be the number of bins used by
algorithm A on �. Let cost(�) be the minimum possible number of bins used to pack pieces in �. The
asymptotic performance ratio for an algorithm A is de�ned to be

R1A = lim sup
n!1

sup
�

(
costA(�)

cost(�)

�����cost(�) = n

)
:

In the case of a randomized algorithm we replace costA(�) with E[costA(�)] in the preceding de�nition.
Let O be the set of all online box packing algorithms. The optimal asymptotic performance ratio is
de�ned to be

R1
OPT

= inf
A2O

R1A :

Our goal is to �nd an algorithm with asymptotic performance ratio close to R1
OPT

.

Previous Results: The classic online bin packing problem was �rst investigated by Johnson [20].
He showed that the Next Fit algorithm has performance ratio 2. Subsequently, it was shown by
Johnson, Demers, Ullman, Garey and Graham that the First Fit algorithm has performance ratio
17
10 [21]. Yao showed that Revised First Fit has performance ratio 5

3 , and further showed that no
online algorithm has performance ratio less than 3

2 [34]. Brown and Liang independently improved
this lower bound to 1.53635 [3, 26]. The lower bound currently stands at 1:54014, due to van Vliet [32].
De�ne

�i+1 = �i(�i � 1) + 1; �1 = 2;

and

�1 =
1X
i=1

1

�i � 1
� 1:69103:



3

Lee and Lee showed that the Harmonic algorithm, which uses bounded space, achieves a performance
ratio arbitrarily close to �1 [24]. A sequence of further results has brought the upper bound down
to 1.58889 [24, 28, 29, 30].
While box packing is a natural next step from bin packing, the problem seems to be more diÆcult,

and the number of results is smaller. The o�ine problem was introduced by Chung, Garey and
Johnson [4]. The online problem was �rst investigated by Coppersmith and Raghavan [6], who give
an algorithm based of Next Fit with performance ratio 13

4 = 3:25 for d = 2. Csirik, Frenk and
Labbe [8] give an algorithm based on First Fit with performance ratio 49

16 = 3:0625 for d = 2. The
best result to date is that of Csirik and van Vliet [9]. They present an algorithm based on Harmonic
with performance ratio (�1)

d for all d � 2 (2.85958 for d = 2). Unlike Harmonic, this algorithm is
not a bounded space algorithm. For bounded space algorithms, a lower bound of (�1)

d is implied
by [9]. Several lower bounds have been shown [16, 17, 33, 2]. The best lower bound for d = 2 is
1.907 [2], while the best lower bound for large d is less than 3.
For online square packing, even less is known. The following results are known for d = 2: Copper-

smith and Raghavan [6] show an upper bound of 43=16 = 2:6875 and a lower bound of 4=3. The upper
bound is improved to 100=39 < 2:56411 by Fujita and Hada [15]. For the o�ine problem, Ferreira,
Miyazawa and Wakabayashi give a 1.988-approximation algorithm [14].
For d � 2, as far as we know, there are no results for either online two-sized box packing or online

resource augmented box packing.

Our Results: In this paper, we present a number of results for online and o�ine box and square
packing:

� We show that if we have a one dimensional online bin packing algorithm A chosen from a certain
class of algorithms (which we de�ne precisely later) and the performance ratio of A is r, then
we can construct an online box algorithm for d = 2 with performance ratio arbitrarily close
to r�1. The class of admissible algorithms includes Harmonic, Refined Harmonic and
Modified Harmonic. Out of these, Modified Harmonic has the lowest performance ratio,
namely 1:61562. This improves the upper bound for online box packing to 2:73220.

� We go on to examine a simple and natural randomized variant of this algorithm. The perfor-
mance ratio of the randomized variant is shown to be at most 2:66013 for a particular algorithm
A. It is possible to de-randomize this algorithm, therefore 2.66013 is also an upper bound on
the deterministic performance ratio.

� We show that no online box packing algorithm which uses d�1 open bins has �nite performance
ratio.

� For the o�ine square packing problem in two dimensions, we give an 14=9 + " polynomial time
approximation algorithm.

� For the online square packing problem in two dimensions, we show an upper bound of 2.43828.

� We show improved lower bounds for square packing for d � 2. For d = 2 we get a lower bound
of 1.62176.

� We show the �rst lower bounds for bounded space online square packing for d � 2. For d = 2
we get a lower bound of 2.28229.

� For online two-sized packing with sizes 1� 1 and 1� z we show that if the algorithm may chose
z, then a performance ratio of 2.32571 is possible.

� We show the �rst upper bound for online resource augmented box packing.

These results are derived using a number of general techniques which most likely will yield further
results.
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2. The Geometric Next Fit Algorithm

The Next Fit algorithm [19, 20] is one of the simplest possible one-dimensional bin packing algo-
rithms. We shall use Next Fit as a subroutine in our multi-dimensional algorithm.
Next Fit maintains a single open bin. If the current item �ts into the open bin, it is placed there.

Otherwise, the open bin is closed and a new open bin is allocated. Obviously, this algorithm is online,
runs in linear time and uses constant space.
Let � be a positive real number. We say that an item is small if its width is at most �. Otherwise,

the item is large. We pack items which are large and small di�erently. Speci�cally, we pack small
items using an algorithm we call Geometric Next Fit, which we shall describe in this section.
Geometric Next Fit uses as a sub-routine some online one-dimensional bin packing algorithm A.
Geometric Next Fit is a generalization of Next Fit. The algorithm has a real parameter

Æ 2 (0; 1). We shall assume that all items processed by Geometric Next Fit are small. We say
that a piece p has class i if and only if �(1� Æ)i�1 < w(p) � �(1� Æ)i. Since every item processed by
Geometric Next Fit has w(p) � �, every item has a class i � 0. Every item is packed according to
its class. We say that class i is active if we have processed at least one small item with class i.
An i slice is a box of height 1 and width �(1� Æ)i. The size of an i slice is de�ned to be �(1� Æ)i.

We divide each bin used by the algorithm into several slices. In particular, we always have one bin
which we call fully open. When we need to allocate a slice, we �rst try to allocate it from this bin.
Let S be the sum of the sizes of the slices already allocated in the fully open bin. If the size of the
new slice is at most 1 � S, we allocate the slice in the fully open bin. Otherwise, we allocate a new
bin and allocate the new slice within it. The new bin becomes fully open, while the old fully open bin
becomes either open or closed as shall be explained later in our exposition. Intuitively, we are using
Next Fit to allocate slices in bins.
We run an independent copy of A for each active class. We denote the copy of A associated with

class i as An+1;i, for reasons that shall become clear in Section 4. Pieces of class i are packed into i
slices using algorithm An+1;i. We can imagine that An+1;i does not know that items have a width, it
treats height as size, and treats slices as bins.
As mentioned before, a bin other than the one fully open bin is either open or closed. Such a bin is

de�ned to be open if it contains an open slice with respect to some algorithm An+1;i. I.e. If there is
the possibility that some algorithm An+1;i will place an item in an i slice contained in it. Otherwise,
it is closed.
Note that while Next Fit is a bounded space algorithm, Geometric Next Fit is not, even if

A is a bounded space algorithm. This is because Geometric Next Fit may have an unbounded
number of active classes. In fact, it could potentially have 
(N) active classes. During processing, we
need to be able to �nd the class for the current item quickly. We can implement Geometric Next

Fit to run in time O(N logN) by keeping track of the active classes using a balanced binary search
tree.
In essence, Geometric Next Fit packs items into slices using A, then packs slices into bins using

Next Fit. In general, if we have some algorithms A and B for the one-dimensional bin packing
problem, then we can use them to construct an algorithm for two dimensions as follows. We somehow
classify items. We use A to pack items of the same class into slices, and then use B to pack slices into
bins. In Section 4, we use this algorithm design paradigm to construct an algorithm for packing large
items.

3. The Improved Harmonic Class of Algorithms

We shall also use an algorithm from the class of algorithms called Super Harmonic by Seiden [30].
These algorithms are all based on the ideas �rst used in Harmonic. More speci�cally, we use an
algorithm from a subset of Super Harmonic which we call Improved Harmonic. This class
includes Harmonic, Refined Harmonic and Modified Harmonic. We describe the class of
Improved Harmonic algorithms in this section. We assume that the reader is familiar with the
de�nition of Super Harmonic, and with the analysis of Super Harmonic given in [30].
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The fundamental idea of all Super Harmonic algorithms is to �rst classify items by size, and then
pack an item according to its class (as opposed to directly letting size inuence packing decisions).
An instance A of the Improved Harmonic algorithm is described by a number of parameters: an
integer nA � 4, a real number �A 2 [ 13 ; 12 ] and real numbers �1A : : : �

n
A 2 [0; 1]. We de�ne

t1A = 1

t2A = 1��

t3A = 1
2

t4A = �

tiA =
1

i� 2
for 5 � i � n+ 1

tn+2A = 0

We further de�ne �A = tn+1A . To facilitate the classi�cation of items, we de�ne the interval IjA to be

(tj+1A ; tjA] for j = 1; : : : ; nA + 1. Note that these intervals are disjoint and that they cover (0; 1]. An
Improved Harmonic algorithm A assigns each piece a type depending on its size. An item of size s
has type �A(s) where

�A(s) = j , s 2 IjA:

When it is clear that we are discussing algorithm A, we shall drop the A subscript.
In addition to being assigned a type, each item of type i � n is assigned a color, red or blue. The

algorithm uses two sets of counters, e1; : : : ; en and s1; : : : ; sn, all of which are initially zero. The total
number of type i items is si, while the number of type i red items is ei. For 1 � i � n, the invariant
ei = b�isic is maintained.
�i = b1=tic is the number of type i items which �t in a bin. Blue items of type i are placed �i in a

bin, as in Harmonic.
� is the amount of space left when a type 2 item is placed in a bin. If possible, we would like to

use this space to pack red items.
Since items of types 1, 2 and 3 may not �t in a bin with a type 2 item, we require that �1 = �2 =

�3 = 0. Items of type i � 4 are guaranteed to �t in a bin with a type 2 item. De�ne i = b�=tic for
i � 4. This is the number of red items of type i that the algorithm places together in a bin with a
type 2 item.
We explain the method by which red items are packed with type 2 items. When a bin is opened, it

is assigned to a group. The bin groups are named:

1; 3; 4; : : : ; n+ 1;

(2; ?);

(?; i); for �i 6= 0, 1 � i � n;
(2; i); for �i 6= 0, 1 � i � n.

We call these groups monochromatic, indeterminate blue, indeterminate red and bichromatic, respec-
tively.
The monochromatic group i contains bins which hold only blue items of type i. There is one open

bin in each of these groups; this bin has fewer than �i items. The closed bins all contain �i items.
The bichromatic group (2; j) contains bins which contain a blue item of type 2 along with red items

of type j. A closed bin in this group contains one type 2 item and j type j items. There is at most
one open bin.
The indeterminate blue group (2; ?) contains bins which hold only a blue item of type 2. These bins

are all open.
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Initialize ei  0 and si  0 for 1 � i � n.
For each piece p:

i �(p).

If i = n+ 1 place p using Next Fit.

Else:

si  si + 1.

If ei < b�isic:
ei  ei + 1.

Color p red.

If there is an open bin in group (2; i) or (?; i) with fewer than i type i items, then
place p in this bin.

Else if there is some bin in group (2; ?) then place p in it and change the group of
this bin to (2; i).

Otherwise, open a new group (?; i) bin and place p in it.

Else:

Color p blue.

If i = 2:

If there is some bin in group (?; j) then place p in it and change the group of
this bin to (2; j).

Otherwise, open a new group (2; ?) bin and place p there.

Else:

If there is an open bin in group i with fewer than �i items, then place p in this
bin.

If not, open a new group i bin and place p there.

Figure 1: The Improved Harmonic Algorithm.

The indeterminate red group (?; j) contains bins which hold only red items of type j. Again, these
bins are all open, but only one has fewer than j items.
Essentially, the algorithm tries to minimize the number of indeterminate bins, while maintaining

all the aforementioned invariants. I.e. we try to place red and blue items together whenever possible;
when this is not possible we place them in indeterminate bins in hope that they can later be so
combined. A formal description of Improved Harmonic is displayed in Figure 1.
An Improved Harmonic algorithm can be analyzed using the method of weighting systems de-

veloped in [30]. The full generality of weighting systems is not required here, so we adopt a slightly
di�erent notation than that used in [30], and restrict ourselves to a subclass of weighting systems.
However, the de�nitions here are consistent with those in [30].
A weighting system for a Improved Harmonic algorithm A is a pair (WA; VA). WA and VA are
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weighting functions which assign each item p a real number based on its size. Speci�cally, we have

WA(x) =

8>>>><
>>>>:

1 if x 2 I2,
1� �i
�i

if x 2 Ii with i 2 f1; 3; : : : ; ng,
x

1� � if x 2 In+1.

VA(x) =

8>>>><
>>>>:

0 if x 2 I2,
1� �i
�i

+
�i

i
if x 2 Ii with i 2 f1; 3; : : : ; ng,

x

1� � if x 2 In+1.
Given these de�nitions, the following lemma follows directly from Lemma 4 of [30]:

Lemma 3.1 If A is an Improved Harmonic algorithm then for all �,

costA(�) � max

(X
p2�

WA(p);
X
p2�

VA(p)

)
+O(1):

So the cost to A can be upper bounded by the weight of items in �, and the weight is independent of
the order of items in �.
Let f be some function f : (0; 1] 7! R

+
. De�ne P(f) to be the mathematical program: Maximize

nX
x2X

f(x)

subject to
P

x2X x � 1, over all �nite sets of real numbers X. It is further shown in [30] that
the performance ratio of A is upper bounded by the maximum of the values of P(WA) and P(VA).
Intuitively, given a weighting function f , P(f) upper bounds the amount of weight that can be packed
in a single bin.

Example 1 Harmonic (H) is the Improved Harmonic algorithm with �i = 0 for 1 � i � n and
� any value in [ 12 ;

1
3 ]. (The choice of � is irrelevant, since there are no red items). In this case, we

have WH(x) � VH(x) for all x 2 [0; 1]. The results of [24] imply that the value of PH is

�n =
iX

j=1

1

�j � 1
+

n� 1

(�i+1 � 1)(n� 2)
; (3.1)

where i is the integer satisfying �i < n � �i+1. Note that this is consistent with our earlier de�nition
of �1 since �1 = limn!1�n.

Example 2 Modified Harmonic (MH) is de�ned by n = 39, � = 265=684 and

�1 = �2 = �3 = 0;

�4 = 1
9 ;

�5 = 1
12 ;

�6 = �7 = 0;

�i =
39� i

37(i� 1)
; for 8 � i � 38;

�39 = 0:
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The results of [28] imply that the value of PMH is 538
333 < 1:61562.

4. The A� B Algorithm

Let A and B be instances of Improved Harmonic. We construct an algorithm A � B for the
two-dimensional box packing problem from A and B.
A�B operates as follows: We run nB+1 independent copies of A, which we denote A1; : : : ;AnB+1.

Small items are given to Geometric Next Fit which also uses A as its sub-routine algorithm. A
large item p is given to algorithm A�B(w(p)). I.e. items are processed according to the type of their
width. Algorithm Ai packs the items it receives in slices of height 1 and width tiB. When A is used to
pack an item into a slice, it considers only the item's height. I.e. it considers the size of the item to
be h(p). The size of a slice is de�ned to be its width. When a new slice is allocated by some Ai, we
allocate it from a bin using algorithm B. As far as B is concerned, the slices are items, and B knows
nothing of the internals of a slice.
We shall require that A is Harmonic, also denoted by H, while B is some Improved Harmonic

algorithm. It may be possible to get improved performance without these restrictions, but the analysis
would seem to be signi�cantly more complicated. We shall also assume that nA = nB, and henceforth
we refer to this common value as n.
We are ready to start analyzing H�B. During course of processing, H1; : : : ;Hn+1 make allocation

requests for slices to B. De�ne & to be the sequence of slices received by B. De�ne %i to be the
sub-sequence of � of items p with �B(w(p)) = i. From the de�nition of H� B we have

costH�B(�) = costB(&) + costGNF(%n+1)

We �rst consider the cost incurred by B: If s 2 & is a slice, we use w(s) to denote its width (size).
De�ne &i to be the sub-sequence of & of slices s with �B(w(s)) = i. To start, we have

X
s2&

WB(w(s)) =
nX
i=1

X
s2&i

WB(w(s))

=
nX
i=1

WB(t
i
B)j&ij

=
nX
i=1

WB(t
i
B)costHi(%i)

�
nX
i=1

WB(t
i
B)
X
p2%i

WH(h(p)) +O(1)

=
nX
i=1

X
p2%i

WH(h(p))WB(t
i
B) +O(1)

=
nX
i=1

X
p2%i

WH(h(p))WB(w(p)) +O(1):

Using analogous reasoning, we have
P

s2& VB(w(s)) �
Pn

i=1

P
p2%i

WH(h(p))VB(w(p)) + O(1). We
de�ne WH�B(x; y) = WH(x)WB(y) and VH�B(x; y) = WH(x)VB(y). In an abuse of notation, we use
WH�B(p) to mean WH�B(h(p); w(p)) and VH�B(p) to mean VH�B(h(p); w(p)). We therefore have

costB(&) � max

(
nX
i=1

X
p2%i

WH�B(p);
nX
i=1

X
p2%i

VH�B(p)

)
+O(1):

We now consider the number of bins used by Geometric Next Fit. De�ne %n+1;j to be the sub-
sequence of %n+1 of items with class j. Only a �nite number of these sub-sequences are non-empty.
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Let z be the sum of the sizes of the slices allocated by Geometric Next Fit. By de�nition of the
algorithm, each bin other than the one fully open bins contains slices with total size at least 1 � �.
Therefore, we have costGNF(%n+1) � z=(1� �) + 1. We upper bound z as follows:

z =
1X
j=1

�(1� Æ)jcostHn+1;j (%n+1;j)

�
1X
j=1

�(1� Æ)j
0
@ X
p2%n+1;j

WH(h(p)) +O(1)

1
A

=
1X
j=1

�(1� Æ)j
X

p2%n+1;j

WH(h(p)) +O(1)
1X
j=1

�(1� Æ)j

=
1X
j=1

X
p2%n+1;j

�(1� Æ)jWH(h(p)) +O(1)

<
1

1� Æ
1X
j=1

X
p2%n+1;j

w(p)WH(h(p)) +O(1)

=
1

1� Æ
X

p2%n+1

w(p)WH(h(p)) +O(1):

Therefore, the number of bins used by Geometric Next Fit is

costGNF(%n+1) � 1

(1� Æ)(1� �)
X

p2%n+1

w(p)WH(h(p)) +O(1)

=
1

1� Æ
X

p2%n+1

WH�B(p) +O(1):

Putting these two results together, we get

costH�B(�) � max

(
nX
i=1

X
p2%i

WH�B(p);
nX
i=1

X
p2%i

VH�B(p)

)
+

1

1� Æ
X

p2%n+1

WH�B(p) +O(1)

� 1

1� Æ max

(
n+1X
i=1

X
p2%i

WH�B(p);
n+1X
i=1

X
p2%i

VH�B(p)

)
+O(1)

� 1

1� Æ max

(X
p2�

WH�B(p);
X
p2�

VH�B(p)

)
+O(1): (4.1)

We are using the fact that WH�B(p) = VH�B(p) for all p 2 %n+1. As is the case with a weighting
system for the one dimensional problem, we can conclude that the cost of H�B is upper bounded by
the sum of the weights of items in �.
We now relate the algorithm's cost to that of the optimal o�ine algorithm. To facilitate this, we

need the following de�nitions: Let m = cost(�) be the number of bins in the optimal o�ine solution.
For 1 � i � m, let Xi be the multi-set of items contained in the ith bin of the optimal o�ine solution.
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We now rewrite (4.1) as

costH�B(�) � 1

1� Æ max

8<
:

mX
i=1

X
p2Xi

WH�B(p);
mX
i=1

X
p2Xi

VH�B(p)

9=
;+O(1)

� 1

1� Æ max

8<
:m max

1�i�m

X
p2Xi

WH�B(p); m max
1�i�m

X
p2Xi

VH�B(p)

9=
;+O(1)

=
1

1� Æ max
1�i�m

8<
:
X
p2Xi

WH�B(p);
X
p2Xi

VH�B(p)

9=
; cost(�) +O(1):

We conclude that the performance ratio of H�B is upper bounded by the value of the mathematical
program: Maximize

1

1� Æ max

8<
:
X
p2X

WH�B(p);
X
p2X

VH�B(p)

9=
;

over all �nite multisets of items X which �t in a single bin. We call this optimization problem Q.
The reader should note the similarity to the program P de�ned earlier.
We show

Lemma 4.1 Let f and g be functions mapping from (0; 1] to R
+
. Let F and G be the values of the

mathematical programs P(f) and P(g), respectively. Then the maximum ofX
p2X

f(h(p)) g(w(p))

over all �nite multisets of items X which �t in a single bin is at most F G.

Proof The proof is similar to the proof of Lemma 2 in [9]. We consider modi�ed multisets of items
X 0 and X 00. The items in each set are the same, however, the widths and heights of items are modi�ed
as follows: For each item p 2 X there is an item p0 2 X 0 with w(p0) = w(p) and h(p0) = f(h(p)). For
each item p 2 X there is an item p00 2 X 00 with w(p00) = g(w(p)) and h(p00) = f(h(p)). Note that the
area of item p00 is f(h(p))g(w(p)). We show that the items in X 00 �t in box of height F and width G,
which proves the desired result.
Towards this goal, we �rst show that the items in X 0 �t in a box of height F and width 1. Since

the items in X �t in a bin, there is some pair of functions � : X 7! [0; 1] and ' : X 7! [0; 1] such that
(�(p); '(p)) is the position of p. The positions must obey �(p) +w(p) � 1 and '(p) + h(p) � 1 for all
p 2 X. Furthermore, the coordinates must be such that the area of the region described by�

(x; y)

���� x 2 [�(p); �(p) + w(p)] \ [�(q); �(q) + w(q)];
y 2 ['(p); '(p) + h(p)] \ ['(q); '(q) + h(q)];

�

is zero for all p; q 2 X. Intuitively, we describe a bin using a coordinate system with origin (0,0) in
the bin's lower left corner. For each item p, �(p) is the horizontal coordinate of the lower left corner
of p, whereas '(p) is the vertical coordinate. The �rst restriction simply says that each item must be
wholly contained in the bin. The second condition prevents two items from overlapping.
We may assume without loss of generality that for all items p 2 X, either �(p) = 0 or there exists

an item q such that �(p) = �(q) + w(q). I.e. each item is as far to the left as possible. If this were
not the case, we can simply move p left until it is true, without e�ecting the validity of the packing.
Similarly, we also assume without loss of generality for all items p 2 X, either '(p) = 0 or there exists
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an item q such that '(p) = '(q) + h(q). We say that q  p if and only if �(p) = �(q) + w(q). We
say that p is leftmost if '(p) = 0 and rightmost if there is no q such that p  q. A horizontal chain

is a sequence of items p1  p2  � � � p` where p1 is leftmost and p` is rightmost. Analogously, we say
that q # p if and only if '(p) = '(q) + h(q) and de�ne bottommost, topmost and vertical chain.
Given � and ', we construct �0 and '0, which pack the items in X 0 into a bin of height F and width

1. This is done as follows: �0(p0) is assigned �(p) for all p0 2 X 0. For all bottommost items q0 we set
'0(q0) = 0. Once we have computed '0(q0) for all q0 such that q # p we assign '0(p0) the value

max
q0; q#p

'0(q0) + h(q0):

Since the relation # induces a directed acyclic graph on X, this process terminates. Further, it is
easily seen that no items overlap in the resulting packing. Suppose that the packing does not �t in
the required box. Only the vertical coordinates of items change, so this means there is some item r0

with '0(r0) + h(r0) > F . With loss of generality, r0 is topmost. Then by the construction of '0, there
is a vertical chain p01 # � � � # p0` = r such that

X̀
i=1

h(p0i) =
X̀
i=1

f(h(pi)) > F:

But since
P`

i=1 h(pi) � 1, this contradicts the fact that P(f) has value F .
Now, given �0 and '0, we construct �00 and '00, which pack the items in X 00 into a bin of height F

and width G. The construction is analogous to the one just given: '00(p00) is assigned '0(p0) for all
p00 2 X 00. For all leftmost items q00 we set �00(q00) = 0. Once we have computed �00(q00) for all q00 such
that q  p we assign �00(p00) the value

max
q00; q p

�00(q00) + w(q00):

Once the construction is complete, if there is some topmost item r00 with �00(r00) + w(r00) > G then
there is a horizontal chain p001  � � �  p00` = r00 such that

X̀
i=1

w(p00i ) =
X̀
i=1

g(w(pi)) > G:

Since
P`

i=1 w(pi) � 1, this contradicts the fact that P(g) has value G.
This implies the main theorem of this section:

Theorem 4.1 For all Æ > 0, the asymptotic performance ratio of H�MH is at most

78548

28749(1� Æ) <
2:73220

1� Æ
and at least 137243=50274 > 2:72990.

Proof First consider the upper bound. We have n = 39 and therefore �n = 438=259 by (3.1). By
Example 2, maxfP(WMH);P(VMH)g � 538=333. Note that Q can be decomposed into two mathe-
matical programs which have the form required by Lemma 4.1. In the �rst we have f = WH and
g = WMH. Hence maxp2XWH�MH(p) � P(WH)P(WMH) � 438

259 � 538333 . In the second we have f = WH

and g = VMH. Hence maxp2X VH�MH(p) � P(WH)P(VMH) � 438
259
� 538
333

. This gives the bound.
Now consider the lower bound. Let 0 < " < 1=5418 be a real number. De�ne s1 =

1
2 +", s2 =

1
3 +",

s3 = 1
7 + " and s4 = 1

42 � 3". For 1 � i � 4 and 1 � j � 4, de�ne an (i; j) item to be one with
height si and width sj . Consider an input consisting of N items of each type (i; j), 1 � i � 4 and
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s3 s4s2s1

s1

s2

s3

s4

Figure 2: A bin in the optimal o�ine solution of Theorem 4.1.

1 � j � 4. Note that the optimal o�ine cost is N ; we can pack each bin so that it contains one
item of each type. The packing is illustrated in Figure 2. Consider now the cost to H �MH. We
start by considering the number of slices used by pieces of width s1. Each of these slices has width
t2MH = 419=684. Items of width s2, s3 go into slices of widths 265=684, 1=6 respectively. Let k be
the integer such that �(1 � Æ)k�1 < s4 � �(1 � Æ)k. Items of width s4 are packed by Geometric
Next Fit into slices of width �(1 � Æ)k. For each slice width, the number of slices used is at least
` + `=2 + `=6 + `=42 = 71`=42. Now consider the way that Modified Harmonic packs slices into
bins. There are at least 71`=42 bins containing slices of width 419=684. Some of these bins also
contain slices of width 265=684. There are at least 4=9 � 71`=42 = 142`=189 bins containing only
slices of width 265=684. There are at least 39=266 � 71`=42 = 923`=3724 bins containing only slices
of width 1=6. There are at least 71s4`=42 = 71`=1764 � 71"`=14 bins containing only slices of width
�(1�Æ)k. Therefore, for all " > 0, the performance ratio of H
MH is at least 137243=50274�71"=14.

5. Improving on A� B
In the algorithm A � B described in the previous section, the roles played by height and width can
be interchanged. In fact, our choice of these roles is completely arbitrary. This insight leads us to
consider the following randomized algorithm: De�ne �A� B to be A�B with the roles of height and
width interchanged. Before processing begins, we ip a fair coin. If the result is heads, we run A�B.
If the result is tails, we run �A� B. Call this algorithm A
 B.
As with A� B, we require that A is Harmonic and B is some Improved Harmonic algorithm.

To facilitate the analysis, we will use the following de�nitions:

W�H�B(x; y) =WH(y)WB(x); V�H�B(x; y) =WH(y)VB(x);
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and

WWH
B(x; y) =
WH(x)WB(y) +WH(y)WB(x)

2
;

WVH
B(x; y) =
WH(x)WB(y) +WH(y)VB(x)

2
;

V WH
B(x; y) =
WH(x)VB(y) +WH(y)WB(x)

2
;

V VH
B(x; y) =
WH(x)VB(y) +WH(y)VB(x)

2
:

We shall abuse notation in a manner analogous to the previous section. Using the results of the
previous sections, the performance ratio of the algorithm is the maximum of

1

2(1� Æ)

0
@max

8<
:
X
p2X

WH�B(p);
X
p2X

VH�B(p)

9=
;+max

8<
:
X
p2X

W�H�B(p);
X
p2X

V�H�B(p)

9=
;
1
A

=
1

1� Æ max
8<
:
X
p2X

WH�B(p) +W�H�B(p)

2
;
X
p2X

WH�B(p) + V�H�B(p)

2
;

X
p2X

VH�B(p) +W�H�B(p)

2
;
X
p2X

VH�B(p) + V�H�B(p)

2

9=
;

=
1

1� Æ max
8<
:
X
p2X

WWH
B(p);
X
p2X

WVH
B(p);
X
p2X

VWH
B(p);
X
p2X

V VH
B(p)

9=
; (5.1)

over all �nite multisets of items X which �t in a single bin.
We would like to upper bound the weight in a single bin using Lemma 4.1. However, it is unclear how

to `factor' the weight of an item. We clarify what is meant by this. De�ne � = fWW;WV; V W;WWg.
A pseudo-weighting system for H
 B is a set of pairs of functions f(f�; g�) j � 2 �g such that

�H
B(x; y) � f�(y) g�(x);

for all 0 � x � 1 and 0 � y � 1. In the case of H 
 B, it is not immediately clear how the pseudo-
weighting functions should be de�ned. However, we can somewhat simplify matters by choosing

g�(x) = sup
0<y�1

�H
B(x; y)

f�(y)
:

The following choices of f yield good results:

fWW (x) = fWV (x) =
WH(x) +WB(x)

2
;

fVW (x) = fV V (x) =
WH(x) + VB(x)

2
:

We now turn our attention to B. The following lemma demonstrates that using Modified Har-

monic for B yields no signi�cant improvement:

Lemma 5.1 The asymptotic performance ratio of H
MH is at least 137243=50274 > 2:72990.

Proof Consider the lower bound sequence given in the proof of Theorem 4.1. Note that it is invariant
under 90 degree rotation. So the cost to �A� B is the same as that to A� B.
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The preceding lemma shows us that Modified Harmonic is not a good choice because it has the
same worst case as Harmonic. We are therefore led to consider other algorithms, ones which
do well when Harmonic does badly. Through experimentation, we have found that the follow-
ing instance of Improved Harmonic does much better than Modified Harmonic: n = 39,
� = 2825022678=7478572741 and

�1 = �2 = �3 = 0;

�4 =
37958247020777

189267718929228
;

�5 =
1

25
;

�6 = �7 = 0;

�i =
39� i

37(i� 1)
; for 8 � i � 38;

�39 = 0:

Call this algorithm Strange Harmonic (SH).
We are now prepared to state the main result of this section:

Theorem 5.1 For all Æ > 0, the asymptotic performance ratio of H
 SH is at most 2:66013=(1� Æ).
Proof We apply Lemma 4.1 four times to upper the value of (5.1). Using the branch and bound
method described in [30], we calculate the following values of P : The values of P(fWW ) and P(gWW )
are both at most 1:630990197. The square of this is at most 2.66013. The values P(fWV ) and P(gWV )
are at most 1:63100 and 1:60293, respectively. The product of these values is at most 2.61439. The
values P(fVW ) and P(gVW ) are at most 1:59726 and 1:63775, respectively. The product of these val-
ues is at most 2.61592. The values P(fV V ) and P(gV V ) are at most 1:59726 and 1:66540, respectively.
The product of these values is at most 2.66009.

It is possible to de-randomize A 
 B without increasing its performance ratio. We briey sketch
how this works: We run both A � B and �A � B independently and concurrently. For each item,
we decide whether to give it to A � B or �A � B. To make this decision for a piece p we consider
i = �A(h(p)) and j = �B(w(p)). For items with i � n and j � n, we simply balance the number of
items going to each algorithm, for each (i; j). I. e. for each (i; j) we give a new item to the algorithm
that has received the least number of items of these types so far. For items with i = n+1 or j = n+1,
we have to be a bit more careful. We instead balance the total size of items going to each algorithm.
Hence for each (i; j) with i = n+1 or j = n+1, we keep track of the total size of items that has been
given to the algorithms, and give a new item to the algorithm that has received items of the least
total size so far.

6. An Offline Approximation Algorithm for Square Packing

In the remainder of the paper, we will discuss square packing. From now on, the size of an item is
de�ned as the length of its edges.
We begin by studying the o�-line problem. We present a 14=9 + " approximation algorithm called

Square Scheme for the two-dimensional square packing problem for any " > 0. The algorithm uses
several ideas used in the design of approximation algorithms for one-dimensional bin packing [13].
The basic idea is as follows: we classify items as either small or large. Large items are further

classi�ed according to their size. For the large items, we create an optimal solution using packing
patterns derived from an integer program. Small items are then packed �rst into bins with certain
large items, and then, if necessary, into bins by themselves.
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The key is to determine which bins can hold small items. We pack small items only into bins that
contain a single large item of size at least 1=2. The key is to show that the remaining bins cannot
hold too many small items in the optimal o�ine solution.
To begin, we consider the simpler problem of two-dimensional square packing when there are a �xed

number m of item sizes. Let the sizes be A = fa1 > a2 > � � � > amg. Call this problem A-restricted
square packing.
A pattern over A is �nite multiset P of squares with sizes in A that �t (in some way) into a unit

square. For a pattern P , for 1 � j � m, de�ne Pj to be the number of items of size aj in P . De�ne
the order of pattern P to be maxfjjPj > 0g. A pattern of order j is dominant if when we increase
the number of items of size aj , the resulting multi-set of items no longer �ts in a unit square. The
waste of pattern P is de�ned to be 1�Pi Pia

2
i . De�ne A

� to be the set of all dominant patterns over

A. Note that jA�j � mb1=a2mc.
Consider an input which contains bi items of size ai for 1 � i � m. We can obtain an optimal

packing by computing the value of the integer program: Minimize
P

P2A� �P , subject to

�P � 0; for all P 2 A�;X
P2A�

�PPj � bj ; for 1 � j � m.

over integer variables �P ; P 2 A�. First we note that by considering only dominant patterns we
lose no generality, since the constraints in the linear program simply require that we have enough of
each item. Second, note that we can compute the value of this integer program in time O(mjA

�jm)
by enumerating all mjA

�j solution vectors �, checking that each is feasible and keeping track of the
minimum objective value among the feasible vectors. Call this algorithm for solving A-restricted
square packing Restricted Big Squares (RBS).
We now consider the construction of a solution for the unrestricted square packing problem, called

SquareScheme. We use a parameter �, the exact value of which shall be determined later in our
exposition. Let � be the input. From �, we create two new lists of squares. The �rst, �> contains all
squares of size greater than �. The second, �� contains the remaining squares.
We sort the squares in �>, and then divide them into m groups of approximately the same size.

More precisely, we sort �> to get squares x1 � x2 � � � �xj�>j. We also use xi to denote the size
of the ith square in this sorted list. De�ne k = dj�>j=me, Xi to be the sub-sequence of squares
xk(i�1)+1; : : : ; xki for 1 � i � m� 1, and Xm to be the sub-sequence of squares xm(i�1)+1; : : : ; xj�>j.
We get an instance of A-restricted square packing by de�ning ai = xk(i�1)+1 and bi = jXij for

1 � i � m. I.e. we round up the size of every square in a group to equal the size the largest square
in the group. Call this instance &. We solve & using Restricted Big Squares. To obtain a packing
for �>, for 1 � i � m, we replace each item of size ai with an item in Xi. We call this algorithm for
packing �> Big Squares (BS).

Lemma 6.1 For all �, � and m,

costBS(�>) � costOPT(�>) + k:

Proof First note that costBS(�>) = costRBS(&). De�ne another instance & 0 of A-restricted square
packing by setting ai = xki+1 and bi = jXij = k for 1 � i � m � 1. I.e. we round down the size
of every square in a group to equal the size the largest square in the next group and throw away all
squares in the last group. Clearly,

costRBS(&) � costOPT(�>) � costRBS(&
0):

Suppose we have a packing for & 0 generated by Restricted Big Squares. Then, as in [13], we can
obtain a packing for & as follows: For 1 � i � m�1, replace each square of size ai in the solution with
some item in Xi+1. This is possible since jXij � jXi+1j for 1 � i � m� 1. Place each of the k items
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in X1 in a separate bin. The cost of this solution is at most costRBS(&
0) + k. Since Restricted Big

Squares is an optimal algorithm, we have therefore have costRBS(&) = costOPT(&) � costRBS(&
0) + k,

and the desired result follows.

Call a pattern which contains a single item of size greater than 1
2 a singleton. To pack the items in

��, we �rst use those bins packed according to a singleton pattern. To do this, suppose we have a bin

which contains only an item of size y 2 ( 12 ; 1�
p
�]. We place this item in the lower left corner and

divide the remaining area into two rectangular areas, one of width 1 and height 1 � y and the other
of width 1� y and height y. We sort the items in �� and use the Next Fit Decreasing algorithm
to pack items in these areas, as described in [27]. If we run out of these rectangular areas, then we
continue to use Next Fit Decreasing but with newly allocated bins.
We choose

� =
"2

4(4 + ")2
; m =

�
8(4 + ")2

"3

�
:

These choices guarantees that � < 1=4 and

4
p
�

1� 2
p
�
� "

2
;

1

�m
� "

2
:

We now analyze the performance of Square Scheme. Note that �j�>j � costOPT(�>) and so
j�>j � costOPT(�>)=� � costOPT(�)=�. In the case that all small items can be packed in singleton
bins, we have

costSS(�) = costBS(�>)

� costOPT(�>) + k

� costOPT(�) +
j�>j
m

+ 1

� costOPT(�) +
costOPT(�)

�m
+ 1

� �
1 + "

2

�
costOPT(�) + 1

The other case, where bins must be allocated to hold some small items, proves to be more compli-
cated. The following result, directly adapted from [27], will prove to be very useful:

Lemma 6.2 (Meir & Moser) Let & be a list of squares, of which the largest is of size z. & can be

packed in a rectangle of height x � z and width y � z using Next Fit Decreasing if the total area

of items in & is at most z2 + (x� z)(y � z).
We �rst bound the amount of available area in non-singleton bins:

Lemma 6.3 The waste of any dominant pattern which is not a singleton is at most 5
9 .

Proof There are �ve cases, depending on the number of items of size greater than 1=3 in the pattern.
There are at most four such items, so there are �ve cases.
In the �rst case, there are exactly four items of size greater than 1=3, and the waste is at most

1� 4=32 = 5=9.
In the second case, we have a set of items, and only one is larger than 1=3. Let the size of the largest

item be x > 1=3. We place it in the lower left corner of the bin. Let y � 1=3 be the size of the next
largest item. We use the 1� (1� x) rectangle above the largest item to pack items using Next Fit

Decreasing. Let z � y be the size of the largest item among those still remaining, if there are any,
and 0 otherwise. We now use the (1 � x) � x rectangles to the right of the largest item to pack any
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remaining items, also using Next Fit Decreasing. The total area that can be packed is at least
x2+ y2+ (1� y)(1� x� y)+ z2+ (x� z)(1� x� z). Call this expression f . Note that the size of the
smallest item in the pattern is at most z. If the total area of items in the pattern is at most f � z2,
we have a contradiction, since we can increase the cardinality of the smallest item. So the waste is at
most 1� f + z2 = 2y � xy � 2y2 + z � z2 � 5=9.
In the remaining cases, we assume for a contradiction that the total area of items in some non-

singleton dominant pattern is less than 4=9. We show that any set of items with total area 5=9 can be
packed into a bin. Since there are less than four items of size greater than 1=3, and the pattern is not
a singleton, there is some item of size at most 1=3. The area of this item is at most 1=9. Therefore
the cardinality of this size item can be incremented, and we have a contradiction.
In the third case, we have a set of items, none of which are larger than 1=3, and the largest item

is of size x. Then by Lemma 6.2 we can use Next Fit Decreasing to pack them as long as their
total area is at most x2 + (1� x)(1� x) = 1� 2x+ 2x2 � 5=9.
In the forth case, we have a set of items, two of which are larger than 1=3, and the largest is of size x.

We place the largest in the lower left corner, and the other adjacent to it to the right. We then use the
1�(1�x) area above to pack remaining items. Let the size of the largest of these remaining items be y.
The total area that can be packed is at least x2+(1=3)2+y2+(1�y)(1�x�y) = 2=3�2y=3+y2 � 5=9.
In the �fth case, there are exactly three items larger than 1=3, and the largest is of size x. We place

the largest in the lower left corner, and the others adjacent to it to the right and above. We then use the
(1�x)�(1�x) area above and to the right to pack remaining items. Let y be the size of the largest of
these items. The total area that can be packed is at least x2+2(1=3)2+y2+(1�x�y)(1�x�y) � 5=9.

We now bound the amount of usable area in singleton bins:

Lemma 6.4 For 0 � � � 1=4, Next Fit Decreasing can pack any set of items having total area

at most

(1� 2
p
�)(1� y2)

in a singleton bin containing an item of size y � 1�p�.

Proof The item of size y is placed in the lower left corner. Consider �rst the area of size 1� (1� y).
By Lemma 6.2, any set of items of total area

z2 + (1� z)(1� y � z)

can be packed into this area, where z � � is the size of the largest item. This is decreasing in z for
z < (2� y)=4. We have z � � < 1=4 � (2� y)=4, and therefore, the total area packed is at least

�2 + (1��)(1� y ��)

The ratio of this to the available area is

�2 + (1��)(1� y ��)

1� y
This is strictly decreasing in y for 0 � � < 1=4 and so it is at at most

1�p�� 2� +�3=2 + 2�2

1�p� � 1� 2
p
�;

for � < 1=4.
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Now consider the area of size y� (1� y). By similar arguments, the ratio of area used to total area
is

�2 + (y ��)(1� y ��)

y(1� y) = 1� �(1� 2�)

y(1� y) �
1� 2

p
�+ 2�3=2

1�p� � 1� 2
p
�;

for � < 1=4.
The total area available in the bin is 1� y2.

De�ne  (y) to be the number of singleton bins containing an item of size y in the solution produced
by Big Squares and 	 =

P
1=2<y�1  (y). Further de�ne S to be the total area of items in ��. We

�rst note that

costOPT(�) � costOPT(�>) + S �
X

1=2<y�1

(1� y2) (y)� 5
9 (costOPT(�>)�	)

and so

�
X

1=2<y�1

(1� y2) (y) � costOPT(�)� S � 4
9
costOPT(�>)� 5

9
	:

Consider the cost to Square Scheme. We need to determine the total number of bins allocated to
hold only small items. The total available area in singleton bins containing an item of size greater
than 1 � p� is at most 2

p
�	. Therefore, into singleton bins containing an item of size at most

1�p�, the algorithm can pack items with total area at least

(1� 2
p
�)

0
@ X
1=2<y�1

(1� y2) (y)� 2
p
�	

1
A :

Each of the bins which is allocated to only small items, except for the last, holds items of total area
at least 2�2 + 1� 2� > 1� 2� > 1� 2

p
�. We therefore have

costSS(�) � costBS(�>) +
1

1� 2
p
�

0
@S � (1� 2

p
�)

0
@ X
1=2<y�1

(1� y2) (y)� 2
p
�	

1
A
1
A+ 1

= costOPT(�>) + k +
S

1� 2
p
�
�

X
1=2<y�1

(1� y2) (y) + 2
p
�	+ 1

� costOPT(�>) + k +
S

1� 2
p
�

+ costOPT(�)� S � 4
9 costOPT(�>)� 5

9	+ 2
p
�	+ 2

�
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9
+

1

�m
+

4
p
�

1� 2
p
�

!
costOPT(�) + 2

� �
14
9 + "

2 +
"
2

�
costOPT(�) + 2

� �
14
9 + "

�
costOPT(�) + 2:

Here we have used that S � costOPT(�), 	 � costOPT(�) and k � costOPT(�)=(�m).

7. Lower Bounds for Online Box and Square Packing

In this section, we show lower bounds on bounded space algorithms for box and square packing and
unrestricted algorithms for square packing.
To begin, we consider bounded space algorithms for d-dimensional box packing. We say that a

bounded space online algorithm A is in the class BS(i) if at any point in time it has at most i bins
open. We have the following negative result:



19

Theorem 7.1 No algorithm for d-dimensional box packing in BS(d � 1) has bounded asymptotic

performance ratio.

Proof Let k and n be a positive integers. We consider an input � of length dn consisting of d di�erent
types of items. An item p of type i has si(p) = 1=k and sj(p) = 1 for j 6= i. The jth item in � has
type (j mod d) + 1. The optimal o�ine cost for the sequence is ddn=ke. Note that items of di�ering
types cannot be placed in the same bin. The cost to any algorithm in BS(d � 1) is at least n: For
every d items processed, the algorithm is forced to close at least one bin, since it can keep only bins
containing d� 1 types open. Therefore, the asymptotic performance ratio of any BS(d� 1) algorithm
is at least

lim
n!1

n

ddn=ke =
k

d
;

and k can be arbitrarily large.

We extend Liang's sequence [26] to d dimensions as follows. The input consists of k phases. The

ith phase consists of mbi hyper-cubes with size ai = 1=�i+ ", where bi =
Qi�1

j=1(�
d
j � (�j � 1)d). Note

that at most (�i� 1)d items of size 1=�i+ " �t together in a bin. We denote this input sequence by L,
and write A = fa1; : : : ; akg. Denote by Li the input sequence containing only the i smallest items in
L. Algorithm A is given Li for some i 2 f1; : : : ; kg. Note that the smallest item ak appears �rst, and
the largest item appears last. For a �xed m, de�ne �i(m) to be the optimal o�ine cost for packing
the items in Li. We have the following lemma.

Lemma 7.1 For 1 � i � k, �i(m) = mbi=(�i � 1)d.

Proof We start with the case i = k. We show that the cost for packing all items is at most m. Each
of the m bins is packed identically, so we merely describe how a single bin is packed. We pack the
items by phase. The packing is recursive, in the sense that at each point we have a number of equal
sized hyper-cubes into which we place a single item (all of these hyper-cubes lie within the original
bin). The number of hyper-cubes available after items from the �rst i� 1 phases have been packed isQi�1

j=1(�
d
j � (�j � 1)d). To start, we have a single hyper-cube of size 1, which is just the bin itself. We

place a single phase 1 item, an item of size 1=2 + ", so that one of its corners coincides with one of
the corners of the bin. In the remaining space, we allocate 2d � 1 hyper-cubes of size 1=2� " (leaving
a small amount of wasted space along some edges). We now pack items of the second phase, items of
size 1=3+ ". Each of these is placed in one of the hyper-cubes left from the �rst phase, with one of its
corners coinciding with a corner of the hyper-cube. In general, to pack the items of phase i, we use theQi�1

j=1(�
d
j � (�j � 1)d) = bi hyper-cubes of size 1=(�i � 1)� (i� 1)" left over from the previous phase,

and in the remaining space allocate
Qi

j=1(�
d
j � (�j � 1)d) = bi+1 hyper-cubes of size 1=(�i+1� 1)� i".

We illustrate the packing for d = 2 and k = 4 in Figure 3.
For 1 � i < k, we need mbi=(�i � 1)d bins to pack all the items of size ai, since there are mbi

such items. We show that we can pack all smaller items with them in the same bins, proving the
lemma. We use a recursive packing similar to the one for the complete list, reserving hypercubes for
the items. However, we now start with the items of size ai = 1=�i + ", putting them in hypercubes
of size 1=(�i � 1)� (i� 1)". Then, the total number of hypercubes over all the bins for items of size
ai is (�i � 1)dmbi=(�i � 1)d = mbi. This is the same total number as we had above in the packing
for L. This implies that if we continue to pack as described for L, we can pack all the items of sizes
ai+1; : : : ; ak in these mbi=(�i)

d bins.

We start with the result for bounded space algorithms.
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Figure 3: A bin in the optimal o�ine packing of L with d = 2 and n = 4.

Theorem 7.2 The asymptotic performance ratio of any bounded space online square packing algo-

rithm is at least

kX
i=1

1

(�i � 1)d

i�1Y
j=1

(�dj � (�j � 1)d);

for all k � 1.

Proof Let " < 1=(k(�k+1 � 1)) be a small positive real number and m be a large positive integer.
We give any bounded space online square packing algorithm the input L de�ned above. Since only a
constant number of items from phase i can be packed with items from previous phases, the number
of bins used in phase i is at least m(�i� 1)�d

Qi�1
j=1(�

d
j � (�j � 1)d)�O(1). Since k is a constant, the

total number of bins used by the algorithm for all phases is

m
kX
i=1

1

(�i � 1)d

i�1Y
j=1

(�dj � (�j � 1)d)�O(1):

Since the optimal number of bins to pack L is m by Lemma 7.1, we are done.

Note that this gives the bound of Lee and Lee for d = 1 [24]. Numeric values for this lower bound are
calculated in Table 1.
Next we give a lower bound for general (unbounded space) algorithms.

Lemma 7.2 Consider a packing pattern P = (P1; : : : ; Pk) for the input L. Then

Pi � (�i � 1)d �
i�1X
j=1

Pj

�
�i � 1

�j

�d
: (7.1)

Proof Suppose (7.1) does not hold for some i, and consider the smallest i for which it does not hold.
Consider an item of size aj with j < i that appears in P . If there is no such j, we have a contradiction,
since at most (�i � 1)d items of size ai �t in the unit hypercube.
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k d = 1 d = 2 d = 3 d = 4
1 1 1 1 1
2 1.5 1.75 1.875 1.9375
3 1.66667 2.16666 2.49074 2.68981
4 1.69047 2.27721 2.71872 3.03604
5 1.69102 2.28229 2.73426 3.06715
6 1.69103 2.28229 2.73429 3.06721
7 1.69103 2.28229 2.73429 3.06721

Table 1: Values calculated from Theorem 7.2.

If we replace an item os size aj with (�i�1
�j

)d items of size ai, the resulting pattern is still feasible:

all the new size ai items can be placed inside the hypercube that this size aj item has vacated.
We can do this for all items of size aj , j < i that appear in the pattern. This results in a pattern

with only items of size ai or smaller. Since every size aj item is replaced by (�i�1�j
)d items of size ai,

the �nal pattern has more than (�i � 1)d items of size ai, a contradiction.

Dominant patterns were de�ned in the previous section. We now also de�ne greedy patterns.
De�nition A pattern P = (P1; : : : ; Pk) is greedy if the largest item in it appears as many times as it
can �t in a bin, and each successive item that appears, appears as many times as it can be added to
the bin given the previous (larger) items in the pattern.

Lemma 7.3 For the input L, any dominant pattern that is not greedy is a convex combination of

dominant patterns that are greedy.

Proof We use an induction to construct a convex combination of greedy patterns.
Consider a pattern P . Clearly, the smallest item in P appears as many times as it can �t given the

larger items, because P is dominant.
Suppose item i appears not as many times as it could, given the larger items. By induction, we

only need to consider patterns in which all the smaller items that appear, appear as many times as
possible, starting with the largest smaller item. (All other patterns are convex combinations of such
patterns.)
We de�ne two patterns P 0 and P 00 such that P is a convex combination of them. P 0 is de�ned as

follows: modify P by removing all items i and adding smaller items, starting with the largest smaller
items that appear in P , and each time adding as many items as possible.
P 00 on the other hand is created by adding items of phase i to P and removing smaller items, until

the number of items of phase i is maximized, given the larger items. Each time that we add an item i,
we remove the maximum amount of smaller items that would �t inside the area of an item i, starting
with the largest smaller items. We can do this because we know that the number of these items is
maximal (starting with the largest), so the number of items that �t inside the area of an item i is
certainly present if the full number of items i is not present.
This implies that by adding an item i in creating P 00, we remove exactly the same numbers of smaller

items as we add when we remove an item i while creating P 0. Therefore, P is a convex combination
of P 0 and P 00, and we are done.

De�ne A� to be the set of all patterns P with respect to A. Note that A� is necessarily �nite.
Given an input sequence of items, and its length, an algorithm is de�ned by the numbers and types
of items it places in each of the bins it uses. Speci�cally, any algorithm is de�ned by a function
� : A�� N 7! R �0. The algorithm uses �(P;m) bins containing items as described by the pattern P .
Here we assume that the ratios between the amounts of times that items of sizes ai and aj appear are
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�xed for all i 6= j, and hence that the length of the input sequence is determined by a single parameter
m.
Consider the function � that determines the packing used by online algorithm A uses for Lk. Since
A is online, the packings it uses for L1; : : : ; Lk�1 are completely determined by �. We assign to each
pattern an order, which is de�ned

order(P ) = maxfi j Pi 6= 0g:

Intuitively, the order tells us the �rst item size ai which results in some item being placed into a bin
packed according to this pattern. I.e. if the algorithm packs some bins according to a pattern which
has order i, then these bins will contain one or more items after Li. De�ne

A�i = fP 2 A� j order(P ) � ig:

Then if A is determined by �, its cost for Li is simplyX
P2A�

i

�(P;m):

Since the algorithm must pack every item, we have the following constraintsX
P2A�

�(P;m)Pi � mbi; for 1 � i � k. (7.2)

De�ne ��i = �i=m for i = 1; : : : ; k. By Lemma 7.1, ��i = bi=(�i � 1)d for i = 1; : : : ; k. We can now
readily compute a lower bound for online algorithms:

Lemma 7.4 The optimal value of the linear program: Minimize c subject to

c � 1

��i

X
P2A�

i

�P ; for 1 � i � k;

bj �
X
P2A�

�P Pi; for 1 � i � k;
(7.3)

over variables c and �(P ); P 2 A�, is a lower bound on the asymptotic performance ratio of any online

bin packing algorithm.

Proof For any �xed m, any algorithm A has some � which must satisfy (7.2). Further, � should
assign an integral number of bins to each pattern. However, in the LP this integrality constraint is
relaxed, and

P
P2A�

i
�P is 1=m times the cost to A for Li as m ! 1. (I. e. we introduce decision

variables �P to represent �(P;m)=m.) The value of c is then just the maximum of the performance
ratios achieved on L1; : : : ; Lk.

As discussed in [33], we only need to consider dominant patterns. By Lemma 7.3, we can even restrict
ourselves to greedy patterns.
Any greedy pattern can be represented by a sequence of k bits, where k is the number of items

in the item sequence, and bit i indicates whether or not item i appears in this pattern. Hence the
number of these patterns is 2k. For any given greedy pattern, we can calculate the number of times
that each item appears, using Lemma 7.2 and starting with the largest item that appears.
All we have to do then is compute the value of the LP given in Lemma 7.4. Solving this linear

program for several values of d and k gives us the results shown in Table 2.
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k d = 1 d = 2 d = 3 d = 4
1 1 1 1 1
2 1.33333 1.23076 1.12280 1.06224
3 1.50000 1.48453 1.36801 1.24674
4 1.53900 1.61235 1.57453 1.51173
5 1.54014 1.62175 1.60180 1.55679
6 1.54014 1.62176 1.60185 1.55690

Table 2: Lower bounds for unbounded space algorithms

8. An Upper Bound for Online Square Packing

In this section, we consider the performance of the H � H algorithm for d = 2 when all items are
squares. From Theorem 4.1 we have that the performance ratio of this algorithm is at most �2

n

(which is approximately 2:85958 for large n), however, we seek to show a better result. By using the
fact that all items are squares, we show the following result:

Theorem 8.1 For n � 7, the asymptotic performance ratio of H � H is at most 395=162 < 2:43828
for the square packing problem with d = 2.

Before the theorem can be shown we require the following technical lemma:

Lemma 8.1 If a square of size strictly greater than 1=2 is packed in the unit square then at most 5

squares of size strictly greater than 1=4 can packed with it.

Proof Call the item of size strictly greater than 1=2 the big item, and the others small items. We
show that without loss of generality, the lower left corner of the big item coincides with the lower left
corner of the unit square. First we show that some corner of the big item can be made to coincide
with some corner of the unit square. If this is not already true, note that one horizontal edge of the
big item is at a distance strictly less than 1=4 away from a horizontal edge of the unit square. No
small item �ts in the space between, and so we can move the big item until the two sides coincide,
without creating overlap with a smaller item. Now the same can be done in the vertical direction, and
one corner coincides. We can now rotate everything until the coinciding corners are in the lower left.
Now we divide the unit square into 4 equal quadrants. The lower left quadrant is entirely occupied

by the big item. At most one small item can be contained entirely within each quadrant apart from
the lower left quadrant. In addition, no small item can overlap with the lower left quadrant. At most
one small item can overlap with both the two top quadrants, and at most one small item can overlap
with both the two right quadrants. Putting these facts together, the total number of small items is
at most 5.

Proof of Theorem 8.1 By the results of Section 4, the asymptotic performance ratio of H � H
is upper bounded by the maximum amount of weight that �ts in a single bin. Recall that a square
has type i � n if its size is in (1=(i + 1); 1=i]. The weight of a type i � n item is just 1=i2. De�ne
the expansion of a type i � n item to be (i+ 1)2=i2. Intuitively, the expansion is the maximum ratio
of weight to size for a type i item. Recall that � = 1=(n � 1) and so � � 1=6. Items of type n + 1
have size in s 2 (0; �] and weight s=((1 � Æ)(1 � �)2). De�ne the expansion of such an item to be
1=((1� Æ)(1� �)2). Since � � 1=6 we can pick Æ so that the expansion of type n+ 1 items is at most
25=16.
The proof now proceeds by considering a number of cases, depending on the contents of the bin:

1. The bin contains no type 1 item.

2. The bin contains one type 1 item and i < 3 type 2 items.

3. The bin contains one type 1 item, 3 type 2 items and i � 2 type 3 items.
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We �rst need to show that these cases are the only possible ones. This follows from two facts: 1) at
most four items of types 1 and 2 �t in a bin, 2) by Lemma 8, if there is a type 1 item in a bin, no
more than �ve items of types 2 or 3 �t in that bin.
We now bound the total weight of items in each case.
In the �rst case, note that the expansion of all items is at most 9=4, while their total area is at most

1. Therefore the total weight in the bin is no more than 9=4 < 395=162.
In the second case, the weight of the type 1 and 2 items is 1 + i=4. The remaining area is at most

1 � 1=4 � i=9. The expansion of all remaining items is at most 16=9. So the total weight is at most
1 + i=4 + 16=9(1� 1=4� i=9) = 7=3 + 17i=324 � 395=162 for 0 � i � 2.
In the third case, using similar arguments to those in the previous ones, the total weight is at most

1 + 3=4 + i=9 + 25=16(1� 1=4� 3=9� i=16) = 461=192 + 31i=2304 < 395=162 for 0 � i � 2.

Note that the lower bound of Theorem 7.2 for d = 2 also applies to H�H, so its performance ratio is
at least 2.28229.

9. Conclusions

We have improved the upper bound for online two-dimensional bin packing from 2.85958 to 2.66013,
and also for the special case of two-dimensional packing of squares, both online (2.56411 to 2.43828)
and o�ine (1.988 to 14=9 + "). Furthermore, we have improved the lower bound for square and
hypercube packing, and given the �rst lower bounds for bounded space square and hypercube packing.
Our results also imply the following results:

� H � B generalizes easily to d > 2, but the bound we get is r(�1)
d�1. It is not clear what the

performance of H�MH is, but it is at most 2:66013(�1)
d�2.

� In the two-sized bin packing problem, bins have one of two sizes, either 1 or z < 1. In the
two-sized two-dimensional box packing problem, bins have one of two sizes, either 1�1 or 1� z.
The algorithm chooses the size of a bin when it is opened. The cost of a bin is equal to its area.
The Variable Harmonic (VH) algorithm [7, 31], is an optimal bounded space algorithm for
the two-sized bin packing problem. It performance ratio is a function R1VH(z). For the two-sized
two-dimensional box packing problem, the performance ratio of H � VH is R1VH(z)�1. The
results of [31] imply that for z = 5=7 this is at most 2.32571.

� In the resource augmented box packing problem, the algorithm is allowed to have larger bins
than the adversary. The cost of each bin is one. In [11], for the one-dimensional case where
the algorithm is allowed bins of size z, it is shown that the performance ratio of Harmonic is
a function R1H (z). It is easy to show that the performance ratio of H � H is (R1H (z))2 for the
two-dimensional case where the algorithm uses z � z bins.

There are also a number of open problems. A main problem is that the analysis does not go through
if we chose B to be Harmonic++. The problem is that we rely on Lemma 4.1. To get better results,
we need some stronger way of bounding the weight in a bin.
Related open problems are the two-dimensional box packing problem with rotations [15], the vector

packing problem [18, 23], and strip packing [1, 12, 25]. Furthermore, in the two-sized two-dimensional
bin packing problem it is also possible to have bin sizes of 1 � 1 and z � z. It is unclear what the
performance ratio is, but the techniques given here should be applicable.
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