
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Lower Bounds for On-line Single-machine Scheduling

L. Epstein, R. van Stee

Software Engineering (SEN)

SEN-R0103 February 28, 2001

Report SEN-R0103
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Lower Bounds for On-line Single-machine Scheduling

Leah Epstein

The Interdisciplinary Center, Herzliya, Israel

Epstein.Leah@idc.ac.il

Rob van Stee�

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Rob.van.Stee@cwi.nl

ABSTRACT

The problem of scheduling jobs that arrive over time on a single machine is well-studied. We study the preemptive

model and the model with restarts. We provide lower bounds for deterministic and randomized algorithms for

several optimality criteria: weighted and unweighted total completion time, and weighted and unweighted total

ow time. By using new techniques, we provide the �rst lower bounds for several of these problems, and we

signi�cantly improve the bounds that were known.

2000 Mathematics Subject Classi�cation: 68Q25, 68W20, 68W25

1998 ACM Computing Classi�cation System: F.2.2

Keywords and Phrases: completion time, ow time, weighted, on-line algorithms, competitive analysis

Note: Work carried out under theme SEN4 \Evolutionary Systems and Applied Algorithmics".

1. Introduction

We consider on-line scheduling of n jobs on a single machine. The jobs arrive over time. Job Jj
with processing time (or size) pj is released (or arrives) at time rj . This is also the time when
it is revealed to the algorithm. The algorithm is required to assign each job to a machine. A
job can be assigned at its arrival time or later. The algorithm may run at most one job on
each machine at any time. In weighted problems, each job Jj is also given a positive weight wj
which represents its importance. We consider both deterministic and randomized algorithms.
Scheduling on a single machine simulates (e.g.) processing tasks on a serial computer.

This important problem has been widely studied both on-line and o�-line, considering various
optimality criteria [1, 3, 4, 7, 8, 16]. However, until now only relatively weak lower bounds
were known, especially for the weighted problems, and in some cases no bounds were known at
all. We make signi�cant progress in this area by providing strong (or stronger) lower bounds
for several optimality criteria.
In the standard scheduling model, a job which was assigned to a machine must be processed

continuously to its completion. The preemptive scheduling model allows the algorithm to stop
a running job and resume it later. A third model does not allow preemptions but allows
restarts. In this case a running job may be stopped, but it has to be started from scratch when

�Research supported by the Netherlands Organization for Scienti�c Research (NWO), project number SION
612-30-002.

1. Introduction 2

it is scheduled again. In this paper we focus on preemptive algorithms, and algorithms with
restarts.
We consider two optimality criteria. Each one is considered both in the weighted case and

in the unweighted case. Let Cj be the completion time of Jj. The ow time Fj is the total
time Jj exists in the system, i.e. Fj = Cj � rj . This gives the following four criteria:

1. Minimizing the total completion time (
P

Cj).

2. Minimizing the total weighted completion time (
P

wjCj).

3. Minimizing the total ow time (
P

Fj).

4. Minimizing the total weighted ow time which is
P

wjFj .

The ow time measure is used in applications where it is important to �nish tasks fast,
relative to their release time. On the other hand, the completion time measure is used when
tasks need to be �nished as fast as possible, relative to a starting time of the computer, with
no connection to their arrival time. The weighted versions of the problems model cases where
di�erent jobs have di�erent importance.
We study these problems in terms of competitive analysis. Thus we compare an (on-line)

algorithm to an optimal o�-line algorithm OPT that knows all jobs in advance, but cannot
assign a job before its release time. If the on-line algorithm is allowed to preempt jobs, we
assume that OPT can preempt as well. In the other models we only consider non-preemptive
o�-line schedules. Let TB be the cost of algorithm B. An algorithm A is R-competitive if for
every sequence TA � R � TOPT . The competitive ratio of an algorithm is the in�mum value of
R such that the algorithm is R-competitive.

Known results There are several cases where the optimal schedule has a simple structure.
The optimal schedule is the same both for (weighted) ow time and for (weighted) completion
time, since the optimal costs di�er by the constant

P
riwi. For the weighted case, if all release

times are zero (all jobs are released at the same time, hence the problem is always o�-line),
then an optimal o�-line schedule is achieved by sorting the jobs by their ratios of size to
weight (pj=wj), and processing them in non-decreasing order [13]. For the unweighted case,
an optimal preemptive schedule can be built on-line by applying the SRPT algorithm. At all
times, this algorithm processes the job with the smallest remaining processing time [9]. In an
o�-line environment, the simple structure makes the complexity of those problems polynomial.
However, all weighted versions of the problem with general release times are strongly NP-hard
[8], and so are the unweighted non-preemptive problems. (Naturally, in an o�-line environment
nothing changes if restarts are allowed, since all jobs are known in advance). Moreover, it is
NP-hard to approximate the non-preemptive problem of minimizing total ow time to a factor
of O(n1=2�") [7]. This paper gives an o�-line approximation of performance ratio �(

p
n) for the

same problem. Polynomial time approximation schemes for preemptive and non-preemptive
weighted completion time, and for non-preemptive total completion time, were given recently
by [1].
Total completion time: It is known that the best competitive ratio for the standard deter-

ministic model is 2 [6, 14, 10], and e=(e � 1) for the standard randomized model [3, 15]. As
mentioned earlier, it is also known that it is possible to get an optimal algorithm (i.e. achieve
the competitive ratio 1) for the preemptive model. For the model with restarts, no better

2. Methods 3

Restarts

deterministic randomized
P

Cj 1.2108 1.1068
P

Fj
(
p
n)
(

p
n)

Restarts Preemptions

det. rand. det. rand.
P

wjCj 1.2232 1.1161 1.0730 1.0389
P

wjFj
(n)
(n) 2 4=3

Table 1: The new lower bounds

algorithms are known than the algorithms mentioned above, that do not use restarts. The
best deterministic lower bound is 1.112 is due to Vestjens [16]; no randomized lower bound is
known.
Total weighted completion time: In this case the preemptive model is more interesting, since

it is not clear if the problem can be solved optimally (competitive ratio 1) or almost optimally.
The best deterministic preemptive algorithm has competitive ratio 2 [5, 11], and the best
randomized preemptive algorithm has competitive ratio 4=3 [11]. Skutella [12] gave lower
bounds of 31/30 for deterministic algorithms and 113/111 for randomized algorithms. For the
standard model, the best algorithms are given in [5, 4] and are 2:415- and 1:686-competitive
(deterministic and randomized, respectively). The best lower bounds are the same as for the
unweighted case. No results for algorithms with restarts (that do not follow from other results)
are known.
Total ow time: The preemptive model is optimally solvable for this problem, hence the

competitive ratio for preemptive scheduling is 1. However, the deterministic non-preemptive
model is very hard to approximate, the best competitive ratio is �(n) and no better algorithms
are known for any model. Stougie and Vestjens [15] gave a lower bound of
(

p
n) for ran-

domized non-preemptive algorithms, and [16] gave a lower bound of
(n1=4) for deterministic
scheduling with restarts.
Total weighted ow time: It is easy to see that there can be no competitive (deterministic

or randomized) algorithm for the standard model. No other results for weighted ow time are
known.

Our results We give some new lower bounds, and improve some previously known lower
bounds. Our results are presented in Table 1. Speci�cally, we improve the lower bounds of
[16] for scheduling with restarts, both for total ow time and total completion time. We also
improve the bounds of [12] for preemptive (deterministic and randomized) scheduling with the
goal of minimizing the total weighted ow time. The existing lower bounds for these problems
were very close to 1. The substantial improvements we show are due to new techniques we are
using.
We begin by discussing several useful lower bounding methods, that are used in more than

one proof, in Section 2. Section 3 contains our results on total (weighted) completion time,
and Section 4 discusses the total (weighted) ow time measure.

2. Methods

To prove lower bounds for randomized algorithms we use the adaptation of Yao's theorem [17].
It states that a lower bound for the competitive ratio of deterministic algorithms on a �xed
distribution on the input is also a lower bound for randomized algorithms and is given by
E(TON=TOPT), where TON is the cost of the on-line algorithm (see [2]).
A useful method for weighted problems is as follows. Assume that at time t, the on-line

3. Total completion time 4

algorithm is left with one job of size a 6= 0 and weight b, and OPT has either completed all the
jobs or it is left with a job of a smaller ratio of weight to size. We let k jobs of size " arrive at
times t+ (i� 1)" for i = 1; : : : ; k. Each such job has weight b

a". Hence it does not matter for
the total completion time or the total ow time in which order the on-line algorithm completes
the jobs, and all the new jobs are interchangeable with the job of size a. Let c = k" and let
" tend to 0, keeping c constant. If OPT has no jobs left, and we are considering the total
weighted completion time, then the extra cost of OPT is tcb=a+ c2b=(2a) and the extra cost of
the on-line algorithm is tcb=a+ cb+ c2b=(2a). The extra cost for other cases can be calculated
similarly.
For algorithms that are allowed to restart jobs, it can be useful to let jobs of size 0 arrive

at such a time that the on-line algorithm is forced to restart the job it is running, whereas
OPT can run the jobs immediately due to its di�erent schedule of the other jobs, or possibly
delay them (in the case that more jobs arrive). This can be combined with a sequence of jobs
with exponentially increasing sizes. By timing the arrival of the jobs, it is possible to force the
on-line algorithm to restart every job in such a sequence (if it does not restart, we stop the
sequence at that point).

3. Total completion time

3.1 Lower bounds for algorithms with restarts

We begin by showing bounds for the problem where all jobs have the same weight, �rst for
deterministic algorithms and then for randomized algorithms.

Theorem 1 Any deterministic algorithm for minimizing the total completion time on a single

machine which is allowed to restart jobs, has a competitive ratio of at least R1 = 1:2102.

Proof. Assume there is an algorithm A that has a competitive ratio of R1 = 1:2102009. A job
of size 1 arrives at time 0. Since restarts are allowed, we may assume A starts it immediately.
A sequence of jobs will now arrive in steps. In each step the online algorithm must restart. If
it does not, the sequence stops at that point. Otherwise, the next item in the sequence arrives.

1. A job of size 0 arrives at time x = 1=R1 � 1=2 � 0:326309.

2. A job of size 0 arrives at time y = 3=(2R2
1)� 1=(4R1)� 1=4 � 0:567603.

3. Three jobs of size 0 arrive at time 1. If A does not restart, the implied competitive ratio
is (x+ 5y + 4)=(x+ y + 5) > R1.

If A has restarted three times so far, we repeat the following for i = 1; : : : ; 5 or as long as A
keeps restarting in step 5. OPT will complete the �rst six jobs by time 1 and pay 6 for them.
Denote the �rst job that arrived (with size x0 = 1) by J0.

4. A job of size xi arrives at the time OPT �nishes Ji�1.

5. ai jobs of size 0 arrive at the time OPT �nishes Ji. (A is still executing Ji at this
moment.)

If we �x a1; : : : ; a5 we can determine x1; : : : ; x5 so that if A does not restart on arrival of the ai
jobs of size 0, it pays exactly R1 times the optimal cost. Note that if A runs any Ji before Ji�1,

3. Total completion time 5

it pays more than R1 times the optimal cost, and the sequence stops immediately without the
arrival of ai jobs of step 5 (when Ji arrives, the only job which is still not completed in the
schedule of A is Ji�1).

i 1 2 3 4 5

ai 3 2 2 2 1

xi 2.13118 4.04404 8.33794 18.1366 36.2732

By �xing ai (i = 1; : : : ; 5) as in this table, we can ensure that A pays more than R1 times the
optimal cost for the entire sequence when the last job arrives. Since x5 = 2x4, A's costs are
the same if it restarts the job of size x5 for the last job and if it does not. �

Using a computer, we have been able to improve this bound slightly using a1 = 3; a2 =
� � � = a45 = 2, giving R2 = 1:210883. After J45 arrives, A has a cost of at least R2 times the
optimal cost whether it restarts or not on arrival of the last 2 jobs of size 0.

Theorem 2 Any randomized algorithm for minimizing the total completion time on a single

machine which is allowed to restart jobs, has a competitive ratio of at least R3 = 114=103 �
1:1068.

Proof. We use Yao's minimax principle [17] and consider a randomized adversary against a
deterministic algorithm. Assume there exists an on-line algorithm A with a competitive ratio
of R3. At time 0, a job of size 1 arrives. A will certainly start this job immediately since it
is allowed to restart. At time 1=3, two jobs of size 0 arrive. With probability p, 10 more jobs
of size 0 arrive at time 1, followed by 4 jobs of size 1 (either all these jobs arrive, or none of
them).
If A restarts at time 1=3 and the jobs at time 1 do arrive, it has cost 3023 independent of

whether it restarts again. The optimal cost in case all jobs arrive is 27.
This implies that ifA restarts at time 1=3, it has competitive ratio of at least 3023p=27+(1�p);

otherwise, it has competitive ratio p+ 3(1� p)=2. These ratios are equal for p = 81=103, and
are then 114=103. This implies a competitive ratio of R3. �

The methods in these proofs can be adapted for the weighted problem to give somewhat
higher bounds.

Theorem 3 Any deterministic algorithm for minimizing the total weighted completion time on

a single machine which is allowed to restart jobs, has a competitive ratio of at least R4 = 1:2232.

Proof. Assume there is an algorithm A that has a competitive ratio of R4 = 1:2232. We use
a somewhat similar structure as in Theorem 1. A job of size 1 and weight 1 arrives at time
0. Again we assume A starts it immediately. A sequence of jobs will now arrive in steps. In
each step the online algorithm must restart. If it does not, the sequence stops at that point.
Otherwise, the next item in the sequence arrives. We �x two weightsW = 0:79 andW 0 = 1:283
to be used for the �rst part of the sequence.

1. A job of size 0 and weight W arrives at time x = 1=R4 � 1=(W + 1) � 0:258869.

2. A job of size 0 and weight W 0 arrives at time y = (xW+(1+x)(1+W 0)
R4

�xW �1)=(W 0+1) �
0:574794.

3. Total completion time 6

3. A job of size 0 and weight Z = (xWR4+yW
0R4+2R4�xW�yW 0�y�1)=(y+1�R4) �

3:07699 arrive at time 1.

In all three cases, if A does not restart, the implied competitive ratio is R4. If A has restarted
three times so far, we follow the procedure described below. OPT will complete the �rst four
jobs by time 1 and will pay 6.14999 for them. The on-line cost for these jobs is TONL = 6:01896.
Denote the �rst job that arrived (with size and weight 1) by J0. Put i = 1. Let x0 = 1 (denotes
its size) z0 = 1 (denotes its weight).

4. A job Ji of size xi = 2i and weight zi arrives at the time OPT �nishes Ji�1, i.e. at time
2i � 1. If A completes Ji�1 before Ji, go to step 5, otherwise go to step 6.

5. A job of size 0 and weight wi� zi arrives at the time OPT �nishes Ji (time 2i+1 � 1). A
is still executing Ji at this moment. If A does not restart, or i = 5, stop the sequence.
Otherwise, increase i by 1 and go to Step 4.

6. k jobs of size " and weight "zi�1=xi�1 arrive at time 2i+1 � 1, where k" = ci. (A can
complete Ji no earlier than this.) The sequence stops.

In step 5, if it is possible to force a restart of Ji, then the cost of OPT will grow by (2i+1�1)wi
whereas the on-line cost will grow by (2i+1 � 1)(wi � zi) + (2i+1 +2i � 1)zi, hence the value zi
should be as large as possible. On the other hand, zi should be small enough so that A has a
competitive ratio of at least R4 if it runs Ji before Ji�1 (as in Theorem 1, all smaller jobs are
already completed by A when Ji arrives). We determine ci in such a way that zi is maximized,
i.e. ci = (2i+1 + 2i�1 � 1�R4(2

i+1 � 1))=(R4 � 1). Now that we know ci, we can calculate zi
and wi to force a competitive ratio of R4 if A does not restart in step 5 or if it uses the wrong
order for the jobs (step 6). We give the results in the following table.

i 1 2 3 4 5

zi 1.10638 1.48772 2.24592 3.69664 6.91845

wi 4.55118 5.34374 7.26472 10.2624 11.8410

In the last step, the competitive ratio of A is at least R4, independent of A's schedule. �

Using a computer, we have been able to improve this bound very slightly using 11 phases
instead of 5. Fixing W = 0:79 and W 0 = 1:285 we can achieve a lower bound of 1:22324655.

Theorem 4 Any randomized algorithm for minimizing the total weighted completion time on a

single machine which is allowed to restart jobs, has a competitive ratio of at least R5 = 1:1161.

Proof. We use Yao's minimax principle and consider a randomized adversary against a de-
terministic algorithm. We use the following job sequence.

time size weight number

0 1 1 1
0.379739 0 1.88288 1

1 0 7.03995 1
1 " " k

3. Total completion time 7

where k" = c = 3:31003 and the jobs at time 1 arrive with probability p = 0:691404 (either
they all arrive, or none of them).
Suppose the jobs at time 1 do arrive, then if the online algorithm A restarts at time t =

0:37978, it can choose to restart again at time 1. If it does, it has costs 1:88288�t+7:03995+2+
"
Pk

i=1(2+i") = 9:75495+2c+"2k(k+1)=2. For "! 0, this tends to 16:3750+c2=2 = 21:8532.
If A does not restart again, it has costs 1:88288 � t + (7:03995 + 1 + c)(t + 1) + "2k(k + 1)=2
which tends to the same limit.
The optimal costs in this case are 2:88288 + 7:03995 + c+ "2k(k + 1)=2! 18:7110.
This implies that ifA restarts at time t, it has a competitive ratio of at least p�21:8532=18:7110+

1� p, and otherwise, it has a competitive ratio of at least p+(1� p) � 2:88288=(2:88288 � t+1).
These ratios are equal for p = 0:691404, and are then 1:11610796. �

3.2 Lower bounds for preemptive algorithms

Since the unweighted problem can be solved to optimality, we only consider the weighted
problem in this section. We show this problem cannot be solved optimally. In the unweighted
problem, SRPT is optimal. However, in the case that jobs have weights, it is possible that
when a new job arrives, the optimal schedule before that time is di�erent compared to the
situation where the new job does not arrive. This cannot occur in the unweighted version of
the problem. We use this idea to show the following lower bounds.

Theorem 5 Any deterministic preemptive on-line algorithm for minimizing the total weighted

completion time, has a competitive ratio of at least R6 = 1:0730.

Proof. The sequence starts with two jobs arriving at time zero. One job of size 1 and weight
1, and the other of size � and weight �, where 1 < � < �. Consider an on-line algorithm A
at time �. If the smaller job is completed by then, k very small jobs of size " and weight �",
of total length c, arrive (c = k"). Otherwise, no more jobs arrive. In the �rst case, OPT runs
the larger job, then the small jobs and then the unit job. For "! 0, the cost is

TOPT = �� + c�� + �k(k + 1)"2=2 + �+ c+ 1 = (c+ 1)(�� + 1) + �+ c2�=2 :

A is left with a piece of size 1 of the larger job, hence it does not matter in which order it
completes the remaining jobs. We can assume that it runs the unit job �rst, then the larger
job, and then the small jobs. Its cost is at least TA � 1+ �(�+1)+ (c+1)�� +�+ c2�=2. In
the second case, OPT runs the unit job �rst, and hence TOPT = 1 + (�+ 1)�, whereas A can
either �nish the unit job �rst, but no earlier than time � (and pay �+ �(�+1)), or �nish the
larger job �rst (and pay �� + � + 1). The second cost is always smaller since � > 1. Using
a computer to search for good values for �; � and c, such that the competitive ratio in both
cases is high, we get that for � = 3:4141, � = 2:5274, and c = 4:4580, the competitive ratio is
at least 1:073042. �

Theorem 6 Any randomized preemptive on-line algorithm for minimizing the total weighted

completion time, has a competitive ratio of at least R7 = 1:0388.

Proof. We use Yao's minimax principle and consider a randomized adversary against a de-
terministic algorithm. We use the sequence from Theorem 5. The small jobs arrive at time
� with probability p. Consider a deterministic algorithm A. Let R8 be the competitive ra-
tio in the case A completes the smaller job by time �, and R9 be the competitive ratio if

4. Total ow time 8

it does not. Then in the �rst case E(TA=TOPT) � R8p + (1 � p), and in the second case
E(TA=TOPT) � R9(1 � p) + p. The best value of p for given R8 and R9 can be calculated by
making the two expected competitive ratios equal. Using a computer to search for good values
for �; � and c, such that the competitive ratio is high, we get that for � = 3:7299, � = 2:4036,
and c = 5:4309 (and p = 0:36251), the expected competitive ratio is at least 1:038872. �

4. Total flow time

For the standard problem without weights, it is known that the competitive ratio is �(n). It is
easy to see that there cannot be a competitive algorithm for the standard weighted problem.

Lemma 1 Any (deterministic or randomized) algorithm for minimizing the total weighted

ow time on a single machine that is not allowed to restart or preempt jobs, has an unbounded

competitive ratio.

Proof. We use Yao's minimax principle and consider a randomized adversary against a de-
terministic algorithm. The adversary works as follows: at time 0, a job of size and weight 1
arrives. At some time t, uniformly distributed over (0; N), where N > 1 is some constant, a
second job arrives of size 0 and weight N2. For all t, the optimal total ow time is bounded
by 2. We will show the competitive ratio of any algorithm is bounded by
(N).
Suppose the on-line algorithm starts the �rst job at time S. If S � N=2, its expected cost

is at least N=2 and we are done.
Otherwise, there is a probability of 1=(2N) that the second job arrives in the interval (S; S+

1=2), in which case the algorithm has a cost of at least N2=2. This implies its expected cost is

at least 1
2N � N2

2 =
(N).
Since we can choose N > 1 arbitrarily high, the lemma follows. �

We therefore turn to models where restarts or preemptions are allowed.

4.1 Lower bounds for algorithms with restarts

Theorem 7 Any (deterministic or randomized) on-line algorithm for minimizing the total

ow time, which is allowed to restart jobs, has a competitive ratio of
(
p
n).

Proof. Consider an on-line algorithm A. We use a job sequence consisting of n � 2 jobs of
size 0, one job of size 3 and one job of size 2. Let q = bpn� 2c. The two large jobs become
available at time 0. Also n � 2 � q2 jobs of size 0 arrive at time 0. There are two cases to
consider.
Case 1. If A completes the job of size 2 strictly before time 3, we continue as follows: at

each time 3 + 2i (for i = 0; 1 : : : ; q � 1) , q short jobs arrive. If A does not delay the process
of any small job, then it can start the job of size 3 only at time 1 + 2q, and TA � 2q.
If A runs the job of size 3 earlier than that, then at least one set of small jobs is delayed by

at least one unit of time and TA � q. OPT assigns the longest job �rst, and the job of size 2
at time 3, hence no short jobs are delayed and TOPT = 8.
Case 2. Otherwise, if at time 2, A is not in a mode where it can complete the job of size 2

strictly before time 3, then q jobs of size 0 arrive at time 2. If A is running some job at that
point, and does not stop it then all small jobs will be delayed till time 3 (this is true for any
non-zero job) and TA � q. All other jobs arrive at time 5 (or any time later). OPT assigns the
job of size 2 at time 0 and the other big job at time 2 and TOPT = 7. Otherwise an additional

4. Total ow time 9

q � 1 sets of q small jobs each, arrive at times 5 + i, for i = 0; : : : ; q � 2. A can only complete
one big job till time 5. The other big job is either postponed till time 1+ q, or processed later,
and then at least one set of short jobs is delayed by at least one unit of time, hence TA � q.
In both cases OPT completes both big jobs at time 5 and TOPT = 7.
In all cases TOPT � 8 and TA � q, hence the competitive ratio R10 satis�es R10 =
(

p
n).

The proof can be extended for randomized algorithms with restarts. We use Yao's minimax
principle and consider a randomized adversary against a deterministic algorithm. In this case,
we use the following distribution on the input: choose with equal probability the �rst or the
second sequence from the proof above. This gives the lower bound of
(

p
n). �

If the jobs can have di�erent weights, the competitive ratio increases to n.

Theorem 8 Any (deterministic or randomized) on-line algorithm for minimizing the total

weighted ow time, which is allowed to restart jobs, has a competitive ratio of
(n).

Proof. The proof is very similar to that of the previous theorem. We make the following
changes:

� let q = n,

� at time 0, one job of size 2 and weight 1 arrives and one job of size 3 and weight 1 (and
no other jobs),

� in all places where q jobs used to arrive in that proof, we now let one job arrive of size 0
and weight q = n.

It is easy to see that still the competitive ratio is
(q), hence the theorem. �

4.2 Lower bounds for preemptive algorithms

In this section we again consider only weighted ow time, since SRPT clearly gives an op-
timal solution for total ow time. We can show the following lower bound for deterministic
algorithms.

Theorem 9 Any preemptive deterministic on-line algorithm for minimizing the total weighted

ow time, has a competitive ratio of at least R11 = 2.

Proof. Consider the following sequence. At time 0 a job of size � and weight � arrives (we
call this job the large job), such that 1 < � < �. For i = 1 : : : q (q < �), a job of size and
weight 1 arrives at time i� 1 (medium jobs). Consider the on-line algorithm A at time �. Let
V be the total length of medium jobs that A processed till that time.
If V < 1, no more jobs arrive. In this case A is left with less than size 1 of the large job. Since

running pieces of di�erent medium jobs only increases the cost, we assume that A completed a
size V of one of the medium jobs. Since no other jobs arrive, there are two cases to consider. It
is either best to complete the large job and then all medium jobs, or to complete one medium
job, then the large job and then the rest of the medium jobs. In both cases, TA � ��+q(�+1).
OPT will run all medium jobs before the large job and TOPT = q + �(�+ q).
If V � 1, A is left with at least 1 unit of the large job at time �. Let � � � be the time

where A is left with exactly 1 unit of the large job. At each time �+ (i� 1)", for i = 1; : : : ; k,
a job of size " and weight �" is released (small jobs). Again we may assume that A does not

5. Conclusions and open questions 10

start a medium job before completing the previous one. Then let j = b� � � + 1c be the
number of medium jobs completed by A before time �. Let V 0 = � � � + 1 � j, this is the
part of a medium job that started its process by A but was not completed by time �. Since
no more jobs arrive, A decides whether it should complete this job before the small jobs. The
rest of the medium jobs clearly run after the small jobs. Let j0 be the number of medium jobs
that A runs before the small jobs (j0 2 fj; j + 1g). Hence

TA � j0 + (�+ j0)� + k("+ 1)�" + (q � j0)(�+ k"+ 1) :

OPT runs only j0 � 1 medium jobs before time � and completes the large job at time �. At
time j0 + � � 1 OPT is left with all small jobs and q � j0 + 1 medium jobs which have lower
priority. Hence

TOPT = j0 � 1 + (�+ j0 � 1)� + k"�"+ (q � j0 + 1)(�+ k"+ 1) :

Taking q to be large enough, � = q, � = q2 and k" = q3 where " tends to zero, we get that the
competitive ratio in both cases tends to 2. �

We use a similar method for randomized algorithms.

Theorem 10 Any preemptive randomized on-line algorithm for minimizing the total weighted

ow time, has a competitive ratio of at least R12 = 4=3.

Proof. We use Yao's minimax principle and consider a randomized adversary against a de-
terministic algorithm. Consider the sequence introduced in Theorem 9. We use the same
sequence for q = 1 (this sequence is similar to the one given in the proofs for completion time,
except that now the small jobs arrive with intervals of " apart). Since V � 1, the second case
must satisfy � = �. With probability p, the small jobs arrive starting at time � as in Theorem
9 (they all arrive, or none of them arrives).
We �x � >> �, and k" = �2. Then the competitive ratio in the �rst case is (� + 1)=� if

the small jobs do not arrive (and 1 otherwise). In the second case, j0 = 1 and the competitive
ratio is �. The best choice for p is (�2��)=(�2 ��+1). Then the expected competitive ratio
is �2=(�2 � � + 1). Maximizing this expression we get � = 2 and expected competitive ratio
of at least 4=3. �

5. Conclusions and open questions

An interesting general question is what the di�erence is between minimizing the weighted and
unweighted total completion time, in terms of the competitive ratios that can be achieved.
Based on the results in this paper, we know that the preemptive versions of the weighted

completion and ow time problems are di�erent from the unweighted versions, since if the jobs
all have the same weight it is possible to schedule the jobs optimally and have a 1-competitive
algorithm, both for completion times and for ow times.
It is possible however, that minimizing the total completion time in the standard model

and in the model with restarts is as hard in the weighted problem as it is in the unweighted
problem. These problems are still open.

11

References

1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes for
minimizing average weighted completion time with release dates. In Proceedings of the

40th Annual IEEE Symposium on Foundations of Computer Science, pages 32{43, Octo-
ber 1999.

2. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

3. C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average
completion time scheduling. In Proceedings of the Eighth Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA'97), pages 609{618. SIAM, Philadelphia, PA, 1997.

4. M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang. Single machine
scheduling with release dates. manuscript, 1999.

5. Michel X. Goemans. Improved approximation algorithms for scheduling with release dates.
In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
591{598, New York / Philadelphia, 1997. ACM / SIAM.

6. J.A. Hoogeveen and A.P.A. Vestjens. Optimal on-line algorithms for single-machine
scheduling. In Proc. 5th Int. Conf. Integer Programming and COmbinatorial Optimization,
LNCS, pages 404{414. Springer, 1996.

7. H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproxima-
bility results for minimizing total ow time on a single maching. In Proceedings of the

Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 418{426,
Philadelphia, Pennsylvania, 1996.

8. J. Labetoulle, E..L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Preemptive schedul-
ing of uniform machines subject to release dates. Progress in Combinatorial Optimization,
pages 245{261, 1984.

9. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and

References 12

scheduling: algorithms and complexity. In Handbooks in operations research and manage-

ment science, volume 4, pages 445{522. North Holland, 1993.

10. C.A. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In Proceedings

of the 4th Workshop on Algorithms and Data Structures (WADS'95), volume 955 of Lecture
Notes in Computer Science, pages 86{97. Springer, 1995.

11. A.S. Schulz and M. Skutella. The power of alpha-points in preemptive single machine
scheduling. manuscript, 1999.

12. M. Skutella. personal communication, 2000.

13. W. E. Smith. Various optimizers for single-stage production. Naval Research and Logistics

Quarterly, 3:59{66, 1956.

14. L. Stougie. unpublished manuscript, 1995.

15. L. Stougie and A.P.A. Vestjens. Randomized on-line scheduling: How low can't you go?
unpublished manuscript, 1997.

16. A. P. A. Vestjens. On-line machine scheduling. Technical report, Ph.D. thesis, Eindhoven
University of Technology, The Netherlands, 1997.

17. A. C. Yao. Probabilistic computations: Towards a uni�ed measure of complexity. In Proc.

18th Annual Symposium on Foundations of Computer Science, pages 222{227. IEEE, 1977.

