
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Running a job on a collection of dynamic machines, with on-line
restarts

R. van Stee, H. La Poutré

Software Engineering (SEN)

SEN-R9841 December 1998

Report SEN-R9841
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Running a Job on a Collection of Dynamic Machines,
with On-Line Restarts

Rob van Stee∗

Han La Poutré

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We consider the problem of running a job on a selected machine of a collection of machines. Each of these

machines may become temporarily unavailable (busy) without warning, in which case the scheduler is allowed

to restart the job on a different machine. The behaviour of machines is characterized by a Markov chain, and

objective is to minimize completion time of the job. For several types of Markov chains, we present optimal

policies.

1991 Computing Reviews Classification System: F.2.2, G.3

1991 Mathematics Subject Classification: 68M20, 90B35, 90C40

Keywords and Phrases: scheduling, Markov chains, computer systems, background jobs, restarts

Note: Work carried out under theme SEN4 “Evolutionary Computation and Applied Algorithmics”

1. Introduction

In networks of workstations, a considerable amount of capacity is unused, since the
primary users are only using them part of the time. Such machines could therefore
be used for large(r) jobs that can be executed in the background or with low priority.
This means that such a job gets the “free time” of the machine, i.e., the time that no
higher-priority job is using it. However, this does not mean that a larger job does not
have any objectives in completion time.

When a workstation is used (for a higher-priority job), there is information available
on the type of job that is executed. This is e.g. available from the process manager
(process statuses). With this information, it could be decided what to do: e.g., to
just wait until the workstation is available again, or to start the larger job on another
machine. In this way, the completion time of this job could be minimized.

The above situation is not only true for workstations, but for e.g. supercomputers
or other scarce high-performance computers that are available in smaller quantities as
well. We therefore study the problem of executing a large job as a background job,

∗Supported by SION/NWO, project number 612-30-002

1. Introduction 2

where the completion time should be minimized and the job can be executed on one
machine at a time. The latter also often follows from system management requirements.

To be precise, we study the problem of scheduling a job J on a machine out of a
collection of machines that are not available continously, without having full knowledge
about when they are available. At the start, the scheduler must pick one machine to
run the job on. If the machine becomes temporarily unavailable the scheduler is allowed
to restart the job from scratch on a different machine. The goal is to minimize the
expected completion time.

As mentioned before, the job can only be assigned to one machine at a time. Practical
reasons are e.g. intensive I/O, system management guidelines, heavy use of external
data or resources, fairness between users, and availability for other large jobs. Because
of this, several such jobs can be run. Also, moving a job to another machine means a
restart; this can be due to extensive production of (local) data, usage or production of
(local) code, setting up (local) connections to other resources, etcetera. Sometimes in
practice, such a job can divided into parts, using checkpoints; in that case such parts
can be taken as the job we consider in our model.

In [1], a method is discussed for a different but related situation, viz., where a job
J must be run in a specific time interval. The assumption made on the availability
of the workstations was that at least one of the workstations would be available for
a certain amount of time (significanty larger than the time required to run the job)
during the interval in which the job was to be run. Using this assumption, a method
was shown which had an 1−O(1/m) probability of choosing a “good” workstation, so
that J is completed on time, where m is the number of workstations. However, with
this approach it is not possible to determine or minimize the expected running time of
J . As it turns out, in order to give bounds for the completion time, it is necessary to
use a different approach.

We study the case where the (typical) behaviour of the workstations (with respect
to availability) is captured by a Markov chain. This has similarities with the modeling
in [5], where the paging problem was addressed in a similar way, i. e., by modeling
the behaviour of a program by a Markov chain. One of the reasons not to use the
adversary approach [2] is that it is easy to force an online algorithm to take a factor
of m longer for this problem. Therefore, the method of distinguishing between online
algorithms by examining their competitive ratio [2] appears not to be appropriate.

The Markov chain is a model of the workstation behaviour. Every behaviour can be
modeled by such a chain, depending on the grain of description. E.g, the most simple
chain can be obtained by having, besides a state for “available” (idle), one state for
”unvailable”, with the expected unavailibility time as its cost. Making more elaborate
Markov chains based on (on-line) system statistics and additional information, enables
finer grained description and improved scheduling strategies, yielding lower completion
times. We also refer to [5] for some general comments on Markov chains.

We present an optimal scheduling strategy for running large jobs on partly available
machines. The actual job size J does not need to be known (but it does not help to

2. The Model 3

know it either). The computational complexity of our strategy is O(n3), where n is the
number of nodes in the Markov chain. So, this only needs to be computed once for all
future large jobs. The strategy only depends locally on the machine the job is running
on. This is in contrast with [1], where global decisions are needed.

In the paper, we begin by looking at a simple Markov chain, where only one user-job
size can occur. We then examine more complex Markov chains, where jobs of different
sizes can occur. Finally, we look at the case where the interrupting jobs themselves
form a Markov chain (i. e. more is known about the sequences in which jobs are often
started), thus enabling a fine-grained description of machine behaviour.

2. The Model

We have a job J which takes d units of time to complete. (Although d does not need
to be known in advance, throughout the paper, we use d as if it were known.) At any
time, we can allocate exactly one machine from a collection of machines to run J . If the
machine becomes temporarily unavailable, the scheduler is allowed to restart the job
from scratch on a different machine. The goal is to minimize the expected completion
time of J .

The behaviour of every machine is characterized by a Markov chain. One state of
this chain, called the idle state, represents the situation that the machine is available
for executing a (new) large job. Any other state represents a local job or a job session,
that makes the machine unavailable for the scheduler. Such local jobs or job sessions
can have different sizes. Only the expectation of the size of each such job or job session
needs to be known, since we minimize the expected completion time of J . However,
for reasons of simplicity, we henceforth consider a state to correspond to just one job
with a fixed size. The conversion to job sessions and expected size of those is not
made explicit any more, but this is trivial since only expected (completion) times are
considered.

The machines are identical, in the sense that they are modeled by the same Markov
chain. All machines behave independently of each other and of the decisions made by
the scheduler. The scheduler may use the information of the Markov chain. We assume
that if the scheduler wants to restart J , there is always a machine available. This is
realistic, since we will show that in a network of some non-trivial size, the expected
time for the first machine to become available, starting in a randomly chosen time step,
is very small as long as the Markov chain does not yield extreme occupation in this
network.

We will consider Markov chains that, if the idle state is deleted, become acyclic.
Note that cycles in a given (theoretical) Markov chain can be approximated by re-
placing cycles by paths, e. g., cycle abc could be replaced by the path abcabcabcabc
or longer versions. By including some of these (shorter) paths and representing other
paths or path tails by a new state, the (theoretical) chain can be approximated to
an arbitrary precision. For practical situations, however, this is not important, since
a Markov chain is obtained and approximated from statistical information, and since

3. The Basic Case 4

approximating “infinite cycling behaviour” by just one or a couple of states will fall
within the statistical and practical accuracies.

3. The Basic Case

3.1 Problem definition
All machines behave according to the Markov chain shown in Figure 1 (left). A more

1

2
1p

M

1-p

0

p

1-p

M

0

Figure 1: Markov chain of one machine in two forms

compact way of picturing this is shown on the right, where the M-node costs M units of
time. This chain, together with the possibility of a restart, induces a Markov decision
process on our job. We define J to be in state i if it has been worked on for i time
steps since its latest restart, not counting the time that the current machine was busy
(when a higher priority job was running on it). We then have the situation shown in
Figure 2. Costs are in bold type.

2 d-1

1-p 1-p

p

1

0 1 2 d-1 d

0

p

1-p

0

1 1 1 1

1-p

p p MMMM

Figure 2: Markov chain of our job

In Markov decision theory, this is known as a first-passage problem [4]. Such prob-
lems can be solved using a linear program, but this requires introducing 2d variables,
one for each node in the Markov chain. Solving a linear program with 2d variables can
be done in O(8d3) time. This is clearly impractical, as this is far more than the running
time of the (large) job itself. Furthermore, such a linear program would have to be
solved for every occurring job size d. We show an optimal policy with time complexity
O(1), that is independent of, and does not need to know, d.

Clearly, in the top row of this Markov chain (representing the idle state), it is always
optimal to continue. Only when the process moves to one of the nodes in the second

3. The Basic Case 5

row, meaning that the current machine is taken by a higher priority job, do we need
to make a choice. For every state 0, . . . , d− 1, we need to decide what to do in case of
such an interruption. Do we restart J , or pay M? When we reach state d, the job is
finished.

3.2 The structure of the optimal policy
It is known [4] that for any first-passage problem there is an optimal policy that is
stationary: it does not depend on the total time that the job has been running, or the
number of times it has been in the current state. Also, it is deterministic. In [4], linear
programming is used to obtain the optimal policy. Here it is possible to use a more
efficient approach.

A policy will be denoted by a vector a = (a0, . . . , ad−1), where ai = 1 means the
scheduler will restart J if it gets interrupted in state i, and ai = 0 means he will not
restart. Define f(i) to be the expected minimal costs (running time) to complete J ,
starting in state i. These costs satisfy f(d) = 0 and

f(i) = (1− p)(1 + f(i+ 1))

+ p ·min{f(0),M + f(i+ 1)} i = 0, . . . , d− 1. (3.1)

This holds because the probability of going directly to the next state is the probability
of remaining in the idle node, 1−p, and the optimal costs in that case are 1 + f(i+ 1).
When the machine becomes busy, the minimal costs are the minimum of the two choices
there: restarting costs f(0), and waiting costs M + f(i+ 1).

It follows from (3.1) that a restart in state i is optimal if and only if

f(0) ≤M + f(i+ 1), (3.2)

and in that case restarting is optimal in all the previous states as well, since f(i) is
monotonically decreasing: ai = ai−1 = · · · = a0 = 1.

It follows that an optimal policy is a threshold policy: interruptions cause restarts
only up to a certain point. Therefore an optimal policy is of the form a(k):

a(k) = (1, k. . ., 1, 0, d−k. . ., 0) k ∈ {0, . . . , d}.

Here k indicates the number of steps for which an interruption causes a restart, e. g. k =
2 means a0 = 1, a1 = 1, a2 = · · · = ad−1 = 0. We have k ≥ 1 since in state 0, restarting
is always cheapest.

3.3 When is the threshold reached?
It follows from (3.2) that restarting is optimal as long as f(0)− f(i + 1) < M. Since
f(0) − f(i + 1) is the expected total optimal cost minus the expected optimal cost
starting in i+ 1, in other words, the expected optimal cost to reach i+ 1 for the first
time, starting in 0, we need to calculate C(k): the expected cost to reach k for the
first time using strategy a(k), and find the smallest k for which this is greater than the
threshold M .

3. The Basic Case 6

Define Rk as the event that a restart occurs before reaching state k, then P(Rk) =
1− (1− p)k. We write CR(k) for the cost until a restart, given that this occurs before
k is reached. After a restart the costs are again C(k). Using that the expectation of a
random variable EX = E(X|Y)P(Y) + E(X|¬Y)P(¬Y) we can see that

C(k) = (CR(k) + C(k))(1− (1− p)k) + k(1− p)k (3.3)

or

C(k) = CR(k)
1− (1− p)k

(1− p)k + k. (3.4)

Since E(X|Y) =
∑

x∈Y xP(X = x)/P(Y), we have that

CR(k) =

∑
i<k i · P(restart after i steps)

(1− (1− p)k) . (3.5)

Using
k−1∑
i=0

ip(1− p)i =
1− p
p

(1− (1− p)k)− k(1− p)k

in (3.5), and combining this with (3.4), we get

C(k) =
1− p
p
· 1− (1− p)k

(1− p)k =
1− p
p
· P(Rk)

P(¬Rk)
.

Note that P(Rk)/P(¬Rk) = 1/P(¬Rk)− 1 is the expected number of failed runs (runs
that ended in a restart), and 1−p

p
= 1

p
− 1 is the expected number of time steps before

a job gets interrupted. We find

C(k) = E(length of a failed run) · E(#failed runs).

If C(k) > M , it is no longer advantageous to restart J . This happens after state

k∗ = b
ln(1 + Mp

1−p)

− ln(1− p)c = b ln(1 + (M − 1)p)

− ln(1− p) + 1c. (3.6)

Summarizing, we have the following theorem.

Theorem 1 The optimal policy for the basic case is given by

a(k∗) = (1, k
∗
. . ., 1, 0, d−k

∗
. . . , 0),

where k∗ is determined by (3.6). The expected completion time is at most M + (d −
k)(1 + (M − 1)p).

3. The Basic Case 7

Proof. Since k∗ is the largest k so that C(k) ≤M , C(k∗) = Θ(M) and C(k∗) ≤M
(by at most a factor (1− p)). After this state, the job is not restarted, so the expected
completion time is about M + (d− k)(1 + (M − 1)p), since d− k more units of work
need te be done on J , which are each expected to take (1− p) · 1 + pM time.

If we compare this to [1], where the job was completed with probability 1−O(1/m)
if at least one machine was available for αd logm time, we see that we now have a
bound that does not depend on m. On the other hand, the behaviour of the machines
is now more precisely modeled.

3.4 The cost of restarting
In the above calculations, it is assumed that whenever the scheduler wants to restart,
an idle machine is immediately available. Of course, this does not always have to be
the case, but it is not difficult to see that we can always expect some machine to be
available quickly. The time until this happens is called the waiting time.

First we need the stationary distribution of the Markov chain on a single machine.
This is fairly straightforward, and it turns out that the stationary probabilities are
Mp/(Mp + 1) for node M and 1/(Mp + 1) for the idle node.

The probability that all machines are busy when one is needed is(
Mp

Mp + 1

)m−1

.

On each busy machine the time until it is again available is distributed homogeneously
on the values 1, 2, . . . ,M . The expectation of the minimum of m homogeneously dis-
tributed variables is M/(m+ 1). Therefore, the expected waiting time is(

Mp

Mp + 1

)m−1 M

m+ 1
.

Until now we used (3.1) and compared f(0) to M + f(i+ 1) to determine the optimal
policy in state i. Now we should compare f(0) plus the waiting time to f(i+ 1) plus
M , so we need to check if

f(0)− f(i+ 1) < M ′ = M −
(

Mp

Mp + 1

)m−1
M

m+ 1

in stead of (3.2). The calculations do not change, so the only result is that in (3.6), M
must be replaced by M ′. But the waiting time is much smaller than M and therefore
negligible. The situation in state 0 does not change either: although restarts are now
no longer free, they still cost far less than M . So we still have that in the starting
state, restarting is always optimal. Similar results hold if there are interrupting jobs
of different sizes, but not for general Markov chains, because of the different structure
of the algorithm in that case.

4. Two Jobs 8

p

2M

1

1-p

p

2M

1

111-p

p

0 1-p

p

dd-13

2

1111

0

2

p

2M

1

1 1-p1

2M

1

1

2
p

2

M1M1M 1

p
2

p

1M

Figure 3: Markov chain of our job

4. Two Jobs

4.1 The optimal policy
Suppose there are two jobs that can interrupt J , of sizes M1 and M2, where M1 < M2.
The probabilities of these interruptions are p1 and p2, respectively. We assume that
these interruptions do not occur simultaneously. Then for the completion costs f we
have

f(i) = (1− p1 − p2)(1 + f(i+ 1))

+p1 ·min{f(0),M1 + f(i+ 1)}
+p2 ·min{f(0),M2 + f(i+ 1)}.

A policy for this problem has the form

a =

(
a1

0 a1
1 . . . a1

d−1

a2
0 a2

1 . . . a2
d−1

)
,

where for all i and j, aji ∈ {0, 1}, and again

aji = 1 is optimal ⇔ f(0)− f(i+ 1) ≤Mj . (4.1)

Because f(i) is strictly decreasing, there is a largest l1 such that f(0)−f(l1 +1) < M1.
For states i > l1, a restart is no longer optimal when M1 interrupts J . Since M1 < M2,
there can be states i > l1 where it is still optimal to restart in case of M2. This holds
until state, say, l1 + l2. After that, J must never be restarted.

This implies that we can divide the states of J in three phases (state intervals). In
the first phase, when J is interrupted, it gets restarted. In the second phase, it is only
restarted when M2 interrupts it, and in the third phase it is not restarted at all.

4.2 Calculations
Because in the first phase J is always restarted when interrupted, we can determine
the optimal length of this phase using the method of the previous section: it ends at

4. Two Jobs 9

the point where a restart becomes too expensive, that is, more expensive than M1.
This follows directly from (4.1), and these costs do not depend on the second or third
phases, so l1 can be determined independently. When we know the optimal l∗1, we can
derive l2.

The event that a restart occurs in phase i is denoted by Ri. We denote the total
expected costs from state 0 until the end of phase i by Ci(li) is reached for the first
time. In general, we can only calculate costs of reaching a certain state for the first
time, since it is always possible that a restart occurs after that state. Ci(li) depends
on the lj where j ≤ i, but when we are going to calculate it, all lj with j < i will be
known, so li is the only unknown.

We will also need to look at the expected cost from the beginning of a phase until a
restart within that phase, which we will denote by CRi(li). This cost depends only on
the length li of phase i. Finally, we denote the expected time to go from one state to
the next in phase i, given that there is no restart, by Si. We have 1 = S1 < S2 < S3.

First we need to calculate for which states f(0) − f(i + 1) < M1, or for which l1
the expected cost of reaching state l1 for the first time (while restarting whenever J is
interrupted) become larger than M1. As noted above, this does not depend on l2.

The probability that J gets interrupted in the first phase is p1+p2 =: q1. Analogously
to section 3, we find

l∗1 = b ln(1 + (M1 − 1)q1)

− ln(1− q1)
+ 1c. (4.2)

The cost until l∗1 is reached is N1 := C1(l∗1) = Θ(M1). We need N1 to calculate l2,
since C2(l2) is equal to N1 plus the expected cost in case of a restart, plus the expected
cost if there is no restart:

C2(l2) = N1 + {CR2(l2) + C2(l2)}P(R2) + l2S2P(¬R2).

This equation is similar to (3.3), except here there is a contribution of N1 for the first
phase, and the cost of taking one step is now greater than 1.

It follows that

P(¬R2)C2(l2) = N1 + CR2(l2)P(R2) + P(¬R2)l2S2.

As was shown previously,

CR2(l2)P(R2) =
l2−1∑
i=0

i · S2q2(1− q2)i

= (
1− q2

q2
P(R2)− l2P(¬R2))S2.

Therefore

C2(l2) =
N1

P(¬R2)
+

1− q2

q2
· P(R2)

P(¬R2)
· S2. (4.3)

5. r Interrupting Jobs 10

Looking at this equation, we see that the expected cost of reaching l∗1 + l2 for the
first time is equal to (cost in phase 1)·(#times phase 1 is traversed) + E(length of a
run in phase 2)·E(#failed runs in phase 2)·(step size in phase 2).

This cost must be at most M2. It follows that

l∗2 =

⌊
ln

(
N1 + 1−q2

q2
S2

M2 + 1−q2
q2
S2

)/
ln(1− q2)

⌋
. (4.4)

We can now combine everything into the following theorem.

Theorem 2 The optimal policy for this type of Markov chain is of the form(
1 l∗1. . . 1 0 l∗2. . . 0 0 d−l∗1−l∗2. . . 0
1 . . . 1 1 . . . 1 0 . . . 0

)
,

where l∗1 and l∗2 are determined by (4.2) and (4.4).

5. r Interrupting Jobs

The calculations are completely analogous to those used in the previous section. First
we find

l∗1 = b ln(1 + (M1 − 1)q1)

− ln(1− q1)
+ 1c. (5.1)

Define Cj(lj) as the expected cost to reach the j+ 1st phase for the first time, starting
in state 0, where lj is the length of phase j. Define furthermore Nj = Cj(l

∗
j). Thus we

find
Cj(lj) = Nj−1 + (CRj(lj) + Cj(lj))P(Rj) + ljSjP(¬Rj).

For every phase, this gives us a formula of the form (4.3). Thus for j = 1, . . . , r we find

l∗j =

⌊
ln

(
Nj−1 +

1−qj
qj
Sj

Mj +
1−qj
qj
Sj

)/
ln(1− qj)

⌋
(5.2)

This leads to the following theorem.

Theorem 3 The optimal policy for each Mj is given by

aj = (1,
l∗1+···+l∗j. . . , 1, 0, . . . , 0),

and the lj’s are given by (5.1) and (5.2).

6. General Markov Chains 11

6. General Markov Chains

Finally, we consider the situation where n different jobs can interrupt the scheduler’s
job J . The interrupting jobs are connected via a Markov chain M . In this chain, node
j represents a job of size Mj (j = 1, . . . , n), and node 0 represents the ‘idle’ state in
which J can be run. In other words, for each node j 6= 0, the costs associated with a
restart are 0 and the cost of continuing is Mj . The probability that the system moves
from node i to node j is denoted by sij .

In the same way as in the previous sections, this induces a Markov decision process
on J . Naturally, we assume that M is irreducible (all states communicate). Moreover,
for simplicity we assume that M\{0} is acyclic.

A policy a for this problem consists of n policies aj , one for each node j. We write
aj = (aj0, a

j
1, . . . , a

j
d), where the subscript denotes the state of J . ajs = 1 means that

J will be restarted if j is visited in state s, and ajs = 0 means j is allowed and J will
continue. The optimal policy is denoted by a∗ = (a1

∗, . . . , a
n
∗). Again, it is deterministic

and stationary.

6.1 Definitions
We will now define some notions that we will need later.

• A node j of the Markov chain is called allowed in state s if ajs = 0, and it is called
reachable in state s if there exists a path in the Markov chain from 0 to j where
aj
′
s = 0 for all nodes j′ on this path.

• Cj(t + 1) is the cost of reaching state t + 1, starting in state t at node j and
assuming that j is allowed at state t. This consists of the cost of j itself, the cost
of successfully reaching t + 1 times the probability of this happening, and the
expected cost when a restart occurs times its probability. (We use C... to denote
the total cost of an event, including restarts; later we will define costs where a
restart is not allowed.)

• CNO(t) is the total cost of reaching state t, starting in state 0 in the idle node,
assuming that j is not allowed before state t. We will determine the strategy
iteratively, state by state. That way, when we are considering state t + 1, we
already know the value of CNO(t).

• CY ES(t+ 1) is the total cost of reaching state t+ 1, starting in state 0 in the idle
node, assuming that j is allowed from state t onwards. To reach t + 1 we first
need to get to t, this costs CNO(t). After that there are three possibilities:

– we visit j (costs after this are Cj(t+ 1)),

– we reach t+ 1 without visiting j, or

– we visit some forbidden node before reaching j or t+1, thus forcing a restart
which again costs CY ES(t+ 1).

6. General Markov Chains 12

6.2 When should a node be allowed?
We begin by looking at individual nodes, and show locally optimal strategies. Later
we will describe the global policy.

If we write f(t, j) for the optimal completion costs, starting in state t and node j,
we have that

f(t, j) = min{f(0, 0),Mj +
∑

k∈OUT (j)

f(t, k)}, (6.1)

similar to the earlier cases. We do not have a simple interpretation for f(0, 0)−f(t, k),
which we did have earlier. But we do know that an optimal policy will minimize the
cost to reach t for all t. (If it costs the policy more to reach t1, it will cost more to
reach any point after t1.)

Therefore, to determine the optimal policy in a certain state t, we do not need to
look more than one state ahead, to t + 1. By minimizing the cost until t + 1, we thus
find the optimal policy. Let ft+1(t, j) denote the optimal cost of reaching t+ 1 for the
first time, then ft+1(t, j) = min{ft+1(0, 0),Mj +

∑
k∈OUT (j) ft+1(t, k)}.

Since the decision in state t and node j is the same each time this pair is visited, we
can in fact replace this equality by

ft+1(t, j) = min{CNO(t+ 1), Cj(t+ 1)} (6.2)

if we calculate these costs for the optimal policy. Note that, although the minima in
these last two equations are equal, the respective parts are not always equal. In the
next section, it will be shown that once again, every node is forbidden until a certain
state is reached (which can be different for each node).

6.3 Some important costs
We will now formulate equations for the three important costs from 6.1. All costs
naturally depend on the chosen strategy, but we will not denote this explicitly in every
equation.

We will adopt a uniform notation for all costs, C, and probabilities, p. Subscripts
indicate the starting point from which the probability or cost is calculated, the first
argument indicates the point that is to be reached (the goal) and the second argument,
if present, indicates points that should be avoided. If the goal is not t + 1, then it is
assumed that t+1 is not reached before the goal. If the goal is not 0, we usually assume
no restart occurs before the goal is reached. The three exceptions were mentioned in
the previous subsection. The starting points of CNO(t) and CY ES(t) are 0.

As an example, pt(0,¬j) is the probability of a restart without visiting j or t + 1,
and starting in state t.

We first derive an equation for Cj(t + 1). This cost is equal to the cost of node j,
which is Mj , plus the expected cost if there is no restart, plus finally the expected cost

6. General Markov Chains 13

if there is one. Using our standard notation, we have

Cj(t+ 1) = Mj + pj(t+ 1)Cj(t+ 1,¬0) (6.3)

+ pj(0)(Cj(0) + CY ES(t + 1)),

where pj(t+ 1) + pj(0) = 1. Similarly, we can derive the following connection between
CNO(t+ 1) and CNO(t):

CNO(t + 1) = CNO(t) + pt(t+ 1,¬j)Ct(t + 1,¬j)
+ pt(j)

{
Ct(j) + CNO(t+ 1)

}
+ pt(0,¬j)

{
Ct(0,¬j) + CNO(t+ 1)

}
= {CNO(t) + pt(t+ 1,¬j)Ct(t+ 1,¬j) + pt(j)Ct(j)

+ pt(0,¬j)Ct(0,¬j)}/pt(t + 1,¬j). (6.4)

Note that pt(t+ 1,¬j) + pt(j) + pt(0,¬j) = 1.
A similar equation holds for CY ES(t+ 1):

CY ES(t+ 1)

= CNO(t) + pt(t+ 1,¬j)Ct(t + 1,¬j) + pt(j)(Ct(j) + Cj(t+ 1))

+ pt(0,¬j)(Ct(0,¬j) + CY ES(t+ 1))

= {CNO(t) + pt(t+ 1,¬j)Ct(t+ 1,¬j) + pt(j)(Ct(j) + Cj(t+ 1))

+ pt(0,¬j)Ct(0,¬j)} /(pt(t+ 1,¬j) + pt(j)).

Using (6.4), we can write this as

CY ES(t + 1) =
pt(t + 1,¬j)

pt(t+ 1,¬j) + pt(j)
CNO(t+ 1) +

pt(j)

pt(t+ 1,¬j) + pt(j)
Cj(t+ 1)

= αCNO(t+ 1) + (1− α)Cj(t + 1) (α ∈ [0, 1]) (6.5)

Note that pt(j) = 0 implies CY ES(t+ 1) = CNO(t+ 1).
According to (6.2), the optimal policy in each node is to allow it if this is cheaper

than forbidding it; in other words, if Cj(t + 1) < CNO(t + 1). Note that if t = 0,
restarting is always cheaper, even if we do not assume it is free (see 3.4).

We are therefore especially interested in those values of t, where Cj(t+1) = CNO(t+1)
(we will soon see that there can be only one), because they are the border between
states where j is allowed and states where it is not.

We can now see that this implies Cj(t+ 1) = CY ES(t+ 1) = CNO(t+ 1). Using these
equalities in (6.3), we find

CNO(t + 1) =
Mj + pj(t+ 1)Cj(t + 1,¬0) + pj(0)Cj(0)

pj(t+ 1)
. (6.6)

6. General Markov Chains 14

Finally, we have from (6.4) that

CNO(t) = pt(t+ 1,¬j){CNO(t + 1)− Ct(t+ 1,¬j)}
−pt(0,¬j)Ct(0,¬j)− pt(j)Ct(j) (6.7)

Combining this with the previous equation, we can see that CNO(t+ 1) > Cj(t+ 1) is
equivalent to

CNO(t) > −pt(0,¬j)Ct(0,¬j)− pt(j)Ct(j)

+pt(t+ 1,¬j)
{
Mj + pj(t+ 1)Cj(t+ 1,¬0) + pj(0)Cj(0)

pj(t + 1)
− Ct(t + 1,¬j)

}
(6.8)

The right side of this equation will be called the threshold. Note that it depends only
on which nodes are allowed in state t and which are not. This is because it consists
of costs to get from A to B, travelling through the part of the Markov chain which
is allowed in state t, and probabilities of taking certain paths in the currently allowed
part of the chain. As long as the subset of allowed nodes does not change, the threshold
is a constant. Furthermore, CNO(t) is strictly increasing in t (and we know what its
value is for t, see subsection 6.1), since it is not cheaper to reach t than it is to reach
t− 1.

This implies that for any subset of allowed nodes (which does not change over time),
there is one specific state tj , where for t < tj we have Cj(t + 1) > CNO(t + 1) and for
t > tj we have Cj(t + 1) < CNO(t + 1). This state is determined by the threshold: j
is forbidden until its threshold is reached. We have not yet excluded the case where in
some later state, when other nodes have been allowed and thus the subset of allowed
nodes has changed, j must be forbidden again. We will do this in subsection 6.6.

6.4 Calculating thresholds
We have seen that thresholds play an important part in a policy for this problem. We
will now show how to calculate thresholds. According to (6.8), a threshold depends on
no less than five different costs and five probabilities. But we can see immediately that
pj(0) = 1− pj(t + 1) and pt(0,¬j) = 1− pt(t + 1,¬j)− pt(j).

Consider a node j which has a set of outgoing edges OUT (j). For each state t we
divide OUT (j) in two sets, OKt(j) and BADt(j), where the “bad” edges lead to nodes
where J is restarted in state t. The associated end nodes are also called bad.

We call 0 a good node; for the following calculations (equations (6.9)–(6.11)) we put
p0(t+ 1) = 1, C0(t+ 1) = 0 and M0 = 0 whenever they appear in a right member. The
success probability pj(t+ 1) is the total probability of going to a good node, weighted
by the success probabilities of those nodes:

pj(t + 1) =
∑

(j,k)∈OKt(j)

sjk · pk(t + 1). (6.9)

6. General Markov Chains 15

To calculate Cj(t + 1,¬0), we must assume that J is not restarted, and therefore
that one of the “good” outgoing edges is chosen when leaving j. If we normalize the
transition probabilities on these “good” edges by putting s′jk = sjk/

∑
(j,j′)∈OKt(j) sjj′,

we get

Cj(t+ 1,¬0) =
∑

(j,k)∈OKt(j)

s′jk(Mk + Ck(t+ 1,¬0)). (6.10)

For Cj(0), a similar equation holds. If pj(t+1) = 1, we can put Cj(0) = 0. Otherwise,
since we assume that a restart actually occurs, we must disallow the edge (j, 0) if it
exists and in general any edge (j, k) for which pk(t + 1) = 1. We then normalize
the transition probabilities on the set of remaining edges, called REMt(j), by putting
s′jk = sjk/

∑
(j,k)∈REMt(j)

sjk. Note that REMt(j) may contain bad nodes. If the system
moves to a bad node, no more costs are incurred, because the job is then immediately
restarted. In a good node k however, an extra cost of expected size Mk + Ck(0) is
incurred. Therefore

Cj(0) =
∑

(j,k)∈OKt(j)∩REMt(j)

s′jk(Mk + Ck(0)). (6.11)

Similar relations hold for pt(t+ 1,¬j), Ct(t+ 1,¬j) and Ct(0,¬j), except that here
it needs to be taken into account that j must not be visited. Finally, Ct(j) and pt(j)
can also be calculated using standard techniques. These last five values only change
when a node gets allowed that is reachable from 0.

6.5 The algorithm
We are now finally ready to describe a method to determine the global strategy (for
the whole Markov chain). We will eventually tag each node with the state in which it
is allowed first.

What we need to know, when starting in the idle node, is first of all which of the
possible interrupting jobs that can be reached in a single step need to be allowed first.
But to find that out, we need to know what the optimal costs are after those jobs, i. e. in
the rest of the Markov chain. We will therefore begin at the “end” of the Markov chain
(which is well defined, since the chain is acyclic), and work our way back to nodes that
can be reached from 0, each time calculating which node should be allowed next. This
way, some nodes will be allowed before they can even be reached from 0, but we will
later show that this has no adverse effect on the costs of the algorithm.

The method is divided into steps. In each step x we calculate the next time step
tx on which a node jx gets allowed. We do this until all nodes are allowed or the
job finishes. Within each interval [tx−1, tx − 1] the thresholds are constant. We put
j0 = t0 = 0.

Each step x consists of a number of calculations. There are always a number of
relevant nodes, for which some calculations are necessary, but we need to do this in

6. General Markov Chains 16

the correct order since some calculations depend on other results. We will define two
sets of nodes: Ax and Bx. Each step consists of the following substeps.

• Define Ax as the set of allowed nodes from which jx−1 can be reached. For every
node j in this set, recalculate Cj(t + 1,¬0), Cj(0) and pj(t + 1). Do this in
reverse order (walking backwards through the graph): first for nodes that have
no successor in Ax, and then for each node as soon as all the data from the
successors are known.

• Define Bx as the set of forbidden nodes from which 0 or an already allowed node
can be reached in a single step. Calculate the thresholds of this set in any order,
using the new data from the set Ax when necessary.

• Allow the node jx ∈ Bx which first reaches its threshold. Calculate tx.

A few notes on this algorithm:

• For forbidden nodes j /∈ Bx we always have that the threshold is infinite.

• For nodes j ∈ Bx ∩Bx−1 from which jx−1 can not be reached, the threshold now
is the same as in step x− 1.

• It is possible for two or more nodes to have the minimal CV j
tx−1

. In this case,
allow the latest one in the natural ordering.

6.6 Optimality
Thresholds are crossed once We show that if a node is allowed, it will remain allowed
until the job is completed, unless the job is restarted. To simplify the wording, we will
now color allowed nodes green and forbidden nodes red.

We will prove the following stronger statement.

Lemma 1 From one state to the next, the cost of a node can never increase more than
the cost of a restart.

This implies that if a node is green in state t, it will not be red in state t+ 1, for any t.
Proof. Take a state t. We use an induction. Consider a green node j and suppose

that the cost of all its successors has not increased more than that of a restart. In that
case, no successor turned red.

We need to show that the cost of j can not increase faster than the cost of a restart.
Consider the following equation:

Cj(t) = Mj +
∑

i∈OUT (j)

sjiDi(t),

where

Di(t) =

{
Ci(t) i ∈ OKt(j)

CY ES(t) i ∈ BADt(j)
.

6. General Markov Chains 17

Write the increase in cost starting from j as δ = Cj(t+ 1)− Cj(t), the increase in the
costs of a successor i as δi = Di(t+1)−Di(t) for all i ∈ OUT (j) and finally the increase
in the cost of a restart (while j is green, allowed) as δY ES = CY ES(t + 1) − CY ES(t).
Now suppose the cost of j has increased faster than that of restarting, so that δ > δY ES,
then

∑
i∈OUT (j) sjiδi > δY ES and therefore, for some i, δi must be greater than δY ES.

We show a contradiction.
According to the induction hypothesis, no successor of j turned red in this state.

Therefore we have three cases:

• i remained green, then δi = Ci(t + 1) − Ci(t) < δY ES because of the induction
hypothesis

• i remained red. Then δi = CY ES(t + 1)− CY ES(t) = δY ES.

• i turned green: δi = Ci(t + 1) − CY ES(t) < CY ES(t + 1) − CY ES(t) = δY ES,
otherwise i could not be green now.

In other words, δi ≤ δY ES for all i, and therefore δ ≤ δY ES, a contradiction. The lemma
is proved.

The strategy is optimal The strategy we have described is deterministic and station-
ary. However, it is not immediately clear that it is indeed the best such strategy,
because this algorithm may allow a node which cannot yet be reached. This may seem
unnecessary and even could cause (reachable) predecessors to be allowed later than
when such a node would still be forbidden. However, we can show that this is never
the case.

Suppose that for a strategy S and a certain state t, we color all the nodes red,
green and blue. Red nodes are currently forbidden, green nodes are allowed (by our
algorithm) and blue nodes are undetermined. We could color unreachable nodes blue,
since the decision in such a node is not important yet: we can choose freely.

We will show that by changing the color of a blue node to green or red, the cost will
not increase.

For end nodes, that have 0 as only successor, the costs are always fixed: the cost is
the size of the job in that node. Since the costs of reaching state t (from 0) increase
monotonically with t, after some point t0 a restart in these nodes is more expensive than
continuing, while before t0, continuing is more expensive than restarting. Therefore,
if S has colored such a node blue, then coloring it green or red does not increase the
cost. Also, it is immediately clear that once such a node turns green, it remains green
in state t+ 1 and beyond.

We will now walk backwards through the Markov chain, using induction. (We can
do this because the graph is acyclic.) The induction hypothesis is that all successors of
the current node are either green or red. This implies that the cost following this node
is fixed, at least, the expectation of the cost is fixed (restarts may occur). Suppose
our algorithm, which bases its decision solely on that cost, colors the node green.

7. Conclusion 18

That means that from there it is cheaper to continue than it is to restart. If another
algorithm wants the color to be blue, then the costs can never be lower than if we
always continue (green); therefore, we might as well color it green. The same argument
holds if the node is red.

This shows that no algorithm can have lower costs than our algorithm, in other
words, that it is optimal.

6.7 Efficiency
We consider the time complexity of this algorithm. Consider one step in the algorithm.

Calculating Cj(t + 1,¬0) for a node j in Ax takes O(OKt(j)) steps according to
(6.10). This also holds for pj(t + 1) and Cj(0). Therefore the calculations for Ax take
O(number of outgoing edges from Ax), which is certainly O(n2).

For Bx, some costs and probabilities starting in t need to be recalculated if jx−1 is
reachable. This requires walking backwards through the graph starting in jx−1, and
doing O(number of outgoing edges) calculations in each node. Since each edge is used
only once, and the Markov chain is acyclic, the total costs of this are O(n2) as well.

The entire process therefore is O(n3). A first-passage problem like this can also be
solved using a linear program; however, in this case for each node in the Markov decision
process a variable needs to be introduced. Solving a linear programming problem with
nd variables can be done in O(d3n3) time. This is clearly far worse, especially if the
Markov chain of the machines is fairly small relative to the size of the job, so that
d >> n. Moreover, this linear program needs to be solved for every occurring job size
d. Since the time complexity is the third power of the job size itself, this is impractical.

6.8 On the use of this strategy
All the calculations for this strategy can be done before the job starts, and in fact this
is necessary. When for every node it is known when it should be allowed, this can be
represented internally by tagging each node with the state in which it is first allowed.
Every time the machine switches states, the scheduler can check the tag and compare
it to the current state to see whether the job needs to be restarted. Since the strategy
does not depend on the length of the job, this tagging only needs to happen once and
then many jobs could be run. Also, for jobs with checkpoints [3] these tags could be
used. A checkpoint is a point on which all data of a job is saved, so that if it is restarted
in the future, the work before this checkpoint does not have to be done again. In this
case the tags must be compared to the current state minus the last checkpoint.

7. Conclusion

We have shown optimal policies for scheduling on Markovian machines, for several
types of Markov chains, and an efficient way of calculating them. These policies can
be readily extended to run many jobs simultaneously on one network, or to run jobs
with checkpoints. Also, note that our solutions do not depend on d, neither in their
computational complexity, nor as input parameter. This means that it only needs to

8. Acknowledgments 19

be computed once, for all possible occurring jobs. Then the nodes can be tagged with
the state in which they are allowed first, and any job can be run on the network.

An open question is whether it is possible to do this for a Markov chain that has
cycles, since in our method and proofs we use heavily that it is possible to walk back-
wards through the graph. Perhaps in this case one would have to resort to using a
linear programming formulation, using dn variables. This can be solved in O(d3n3)
time, which is much more than d itself. As noted, this is substantially worse than in
the acyclic case, and requires new computations for every possible job size d. Hence,
this would be an impractical approach.

Furthermore, one could look at Markov chains that have more than one idle state,
each with different interrupting jobs connected to it. This could be used to model
different parts of the day, if it is known that some jobs are e. g. especially often run
in the afternoon. This can be modeled by having very small transition probabilities
between two idle states, so that the Markov chain is divided into nearly unconnected
subchains. In this case it is much harder to formulate a policy, since now it is no
longer certain that when restarting in some state you will later return to the same
state and subchain. Therefore it is no longer sufficient to consider the costs until a
state t. However, it seems that in practice we can restart our algorithm whenever the
process switches idle states to get a reasonable policy. For instance, if we want to run
jobs that take half an hour and the idle state is switched twice a day, we can determine
policies for both idle nodes and switch between them if necessary.

8. Acknowledgments

We would like to thank Sindo Nuñez Queija, Bert Zwart and Ger Koole for their
support on the basic case.

20

References

1. B. Awerbuch, Y. Azar, A. Fiat and T. Leighton. Making Commitments in the
Face of Uncertainty: How to Pick a Winner Almost Every Time. 28th Annual
ACM Symposium on Theory of Computing, 519–530, 1996.

2. A. Borodin, R. El-Yaniv. Online Computation and Competitive Analysis, Cam-
bridge University Press, 1998.

3. A. G. Coffman, J. Leopold Flatto and P. E. Wright. A Stochastic Checkpoint
Optimization Problem. SIAM J. Comput. 22, 650–659, 1993.

4. C. Derman, Finite State Markovian decision processes, Academic Press, New York,
1970.

5. A. Karlin, S. Phillips and P. Raghavan. Markov Paging. 33rd Annual IEEE Sym-
posium on Foundations of Computer Science, 208–217, 1992.

